JP2007273870A - Manufacturing method of thin film magnetic element - Google Patents

Manufacturing method of thin film magnetic element Download PDF

Info

Publication number
JP2007273870A
JP2007273870A JP2006099710A JP2006099710A JP2007273870A JP 2007273870 A JP2007273870 A JP 2007273870A JP 2006099710 A JP2006099710 A JP 2006099710A JP 2006099710 A JP2006099710 A JP 2006099710A JP 2007273870 A JP2007273870 A JP 2007273870A
Authority
JP
Japan
Prior art keywords
conductive film
film
magnetic
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006099710A
Other languages
Japanese (ja)
Inventor
Kiyouhisa Sai
京九 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006099710A priority Critical patent/JP2007273870A/en
Publication of JP2007273870A publication Critical patent/JP2007273870A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of manufacturing a thin film magnetic element with high reliability with simple steps. <P>SOLUTION: The manufacturing method of forming the thin film magnetic element 1 includes: an insulation layer forming step of forming an insulation layer 3 for covering a conductive film 20 patterned in a way that the conductive film 20 is provided on a base 5, and grooves 2 are formed; a magnetic film forming step of forming a magnetic film 41 on the insulation layer 3, and the insulation layer forming step includes the steps of forming a first insulator 31 made of a cured body of a thermosetting resin, and embedding at least part of the grooves 2 with a pattern for exposing at least part of a face S of the conductive film 20 opposite to the base 5; and forming a second insulator 32 for covering the first insulator 31 and the conductive film 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性膜及び磁性膜を有する薄膜磁気素子の製造方法に関する。   The present invention relates to a method for manufacturing a thin film magnetic element having a conductive film and a magnetic film.

従来、基体上でパターニングされた導電性膜からなる配線と、磁性膜等の機能性膜とを有する素子の製造方法として、配線のリークを防止するために絶縁層を配線を覆い、その上に機能性膜を形成する方法が知られている(例えば、特許文献1。)。一方、薄膜素子の機能性膜を平坦化するために、CMP(Chemical Mechanical Polishing)等の手法が活用されてきた(例えば、特許文献2、3。)。
特許第3563709号公報 特開平11−67897号公報 特開2001−44201号公報
Conventionally, as a method of manufacturing an element having a wiring made of a conductive film patterned on a substrate and a functional film such as a magnetic film, an insulating layer is covered over the wiring to prevent leakage of the wiring. A method of forming a functional film is known (for example, Patent Document 1). On the other hand, techniques such as CMP (Chemical Mechanical Polishing) have been used to planarize the functional film of a thin film element (for example, Patent Documents 2 and 3).
Japanese Patent No. 3563709 Japanese Patent Laid-Open No. 11-67897 Japanese Patent Laid-Open No. 2001-44201

溝が形成されるようにパターニングされた導電性膜を覆う絶縁層を形成させると、多くの場合、溝の上部に位置する絶縁層の表面に凹みが生じる。特に硬化性樹脂の塗布及び硬化によって絶縁層を形成させる場合、硬化収縮等に起因して表面が大きく凹み易い傾向にある。   When an insulating layer that covers the conductive film patterned so as to form a groove is formed, in many cases, a dent is generated on the surface of the insulating layer located above the groove. In particular, when an insulating layer is formed by application and curing of a curable resin, the surface tends to be easily dented due to curing shrinkage or the like.

表面に凹みが形成された絶縁層上に形成された磁性膜は、絶縁層の凹みに沿って溝内部に向かって屈曲した状態となる。磁性膜がこのように屈曲すると、得られる薄膜磁気素子の信頼性が低下するといった問題が生じ得る。例えばインダクタの場合、インダクタンスの向上のためには導電性膜と磁性層との間隔を小さくすることが望ましいが、そのために導電性膜と磁性膜の間の絶縁層の厚さを薄くすると、絶縁層の凹みに由来するインダクタンスの低下、高周波特性の劣化、直流重畳特性の低下等の問題が顕在化する傾向にある。   The magnetic film formed on the insulating layer having a recess formed on the surface is bent toward the inside of the groove along the recess of the insulating layer. If the magnetic film is bent in this way, there may arise a problem that the reliability of the obtained thin film magnetic element is lowered. For example, in the case of an inductor, it is desirable to reduce the distance between the conductive film and the magnetic layer in order to improve the inductance. However, if the thickness of the insulating layer between the conductive film and the magnetic film is reduced, insulation is reduced. There is a tendency for problems such as a decrease in inductance, deterioration in high-frequency characteristics, a decrease in DC superimposition characteristics, and the like due to the dents in the layer to become apparent.

絶縁層を平坦化する方法としては、十分に厚い絶縁層を形成してからこれをCMP等によって表面の凹みがなくなる所定の厚さまで研磨する方法が考えられる。しかし、この方法では研磨工程の追加による生産効率の低下や高価な装置の導入による製造コストの上昇を招くという問題がある。   As a method of planarizing the insulating layer, a method of forming a sufficiently thick insulating layer and polishing it to a predetermined thickness that eliminates the surface dent by CMP or the like is conceivable. However, this method has a problem in that the production efficiency is reduced due to the addition of a polishing step and the manufacturing cost is increased due to the introduction of an expensive apparatus.

そこで、本発明は、高い信頼性の薄膜磁気素子を簡易な工程で製造することを可能にする製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a manufacturing method that enables a highly reliable thin film magnetic element to be manufactured by a simple process.

本発明は、基体上に設けられ溝が形成されるようにパターニングされた導電性膜を覆う絶縁層を形成させる絶縁層形成工程と、該絶縁層上に磁性膜を形成させる磁性膜形成工程と、を備える薄膜磁気素子の製造方法であって、絶縁層形成工程は、硬化性樹脂の硬化体からなり上記溝の少なくとも一部を埋める第1の絶縁部を、導電性膜の基体と反対側の面の少なくとも一部が露出するようなパターンで形成させる工程と、第1の絶縁部及び導電性膜を覆う第2の絶縁部を形成させる工程と、を含むものである。   The present invention provides an insulating layer forming step of forming an insulating layer that covers a conductive film provided on a substrate and patterned so as to form a groove, and a magnetic film forming step of forming a magnetic film on the insulating layer. In the method of manufacturing a thin film magnetic element, the insulating layer forming step includes forming a first insulating portion made of a cured curable resin and filling at least a part of the groove on the side opposite to the base of the conductive film. Forming a pattern in which at least a part of the surface is exposed, and forming a second insulating portion that covers the first insulating portion and the conductive film.

上記本発明に係る製造方法においては、導電性膜を覆う絶縁層を、溝を埋める第1の絶縁部と、第1の絶縁部とともに導電性膜を覆う第2の絶縁部の2段階に分けて形成させる。磁性膜側に位置する第2の絶縁部を形成させる前に第1の絶縁部によって導電性膜の溝を予め埋めておくことにより、溝上部における絶縁層の表面の凹みが抑制されるか、又は逆に絶縁層の表面が盛り上がった状態となり、絶縁層上に形成される磁性膜が溝内部に向かって屈曲することが防止される。その結果、CMP等の手法を用いずとも、高い信頼性の薄膜磁気素子を簡易な工程で製造することが可能となった。   In the manufacturing method according to the present invention, the insulating layer covering the conductive film is divided into two stages: a first insulating part that fills the groove and a second insulating part that covers the conductive film together with the first insulating part. To form. By pre-filling the groove of the conductive film with the first insulating portion before forming the second insulating portion located on the magnetic film side, the depression of the surface of the insulating layer in the upper portion of the groove is suppressed, Or conversely, the surface of the insulating layer is raised, and the magnetic film formed on the insulating layer is prevented from bending toward the inside of the groove. As a result, it is possible to manufacture a highly reliable thin film magnetic element by a simple process without using a technique such as CMP.

本発明に係る製造方法においては、上記第1の絶縁部を、基体と反対側の方向に導電性膜よりも突出するように形成させることが好ましい。この場合、第2の絶縁部はその表面が溝上部において盛り上がった状態となる。その結果、磁性膜が溝内部に向かって屈曲することがより確実に防止される。   In the manufacturing method according to the present invention, it is preferable that the first insulating portion is formed so as to protrude from the conductive film in a direction opposite to the base. In this case, the surface of the second insulating portion is raised at the upper portion of the groove. As a result, the magnetic film is more reliably prevented from bending toward the inside of the groove.

本発明に係る製造方法においては、第1の絶縁部を、導電性膜の基体と反対側の面上に張り出すように形成させることが好ましい。この場合も、磁性膜が溝内部に向かって屈曲することがより確実に防止される。また、導電性膜の基体と反対側の面と溝の壁面とで直角又は鋭角が形成されている場合、この部分を絶縁層で確実に覆って絶縁を維持することが困難になる傾向にあるが、上記のように第1の絶縁部を形成させることにより、このような場合でも絶縁を維持することが容易になる。   In the manufacturing method according to the present invention, it is preferable to form the first insulating portion so as to project on the surface of the conductive film opposite to the base. Also in this case, the magnetic film is more reliably prevented from bending toward the inside of the groove. Also, when a right angle or acute angle is formed between the surface of the conductive film opposite to the base and the wall surface of the groove, it tends to be difficult to maintain insulation by reliably covering this portion with an insulating layer. However, by forming the first insulating portion as described above, it becomes easy to maintain insulation even in such a case.

本発明によれば、高い信頼性の薄膜磁気素子を簡易な工程で製造することが可能である。また、本発明は、第2の絶縁部の厚さを適宜調整することにより、導電性膜と磁性膜の間隔の大きさを制御することが容易であるという利点も有する。   According to the present invention, a highly reliable thin film magnetic element can be manufactured by a simple process. The present invention also has an advantage that the size of the distance between the conductive film and the magnetic film can be easily controlled by appropriately adjusting the thickness of the second insulating portion.

以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

図1は、本発明に係る製造方法によって得られる薄膜磁気素子の一実施形態を示す平面図であり、図2は図1のII−II線に沿った概略断面図である。薄膜磁気素子1は、基体5と、基体5上に設けられた導電性膜20と、導電性膜20を覆う絶縁層3と、絶縁層3を覆う磁性膜41とから構成される。薄膜磁気素子1は、コイルパターンを形成している導電性膜20と、磁性膜41とを備える薄膜インダクタである。   FIG. 1 is a plan view showing an embodiment of a thin film magnetic element obtained by the manufacturing method according to the present invention, and FIG. 2 is a schematic sectional view taken along the line II-II in FIG. The thin film magnetic element 1 includes a base 5, a conductive film 20 provided on the base 5, an insulating layer 3 covering the conductive film 20, and a magnetic film 41 covering the insulating layer 3. The thin film magnetic element 1 is a thin film inductor including a conductive film 20 forming a coil pattern and a magnetic film 41.

基体5は、基板10、下部磁性膜40及び下部絶縁層30がこの順で積層された積層体である。基体5の下部絶縁層30側の面上に導電性膜20が形成されている。   The base 5 is a laminated body in which the substrate 10, the lower magnetic film 40, and the lower insulating layer 30 are laminated in this order. A conductive film 20 is formed on the surface of the base 5 on the lower insulating layer 30 side.

基板10としては、例えば、フェライトを主成分として構成されたフェライト基板が用いられる。この場合、フェライト基板は、薄膜磁気素子1全体を支持する基板として機能するとともに、インダクタンスを高めるための磁性層としても機能する。当然なことに、基板10としては、シリコンやガリウム砒素などの半導体ウェハ、または、アルミナ、ガラス、酸化ケイ素などのセラミックスを用いることが可能である。   As the substrate 10, for example, a ferrite substrate composed of ferrite as a main component is used. In this case, the ferrite substrate functions as a substrate that supports the entire thin film magnetic element 1 and also functions as a magnetic layer for increasing the inductance. As a matter of course, a semiconductor wafer such as silicon or gallium arsenide, or ceramics such as alumina, glass, or silicon oxide can be used as the substrate 10.

下部磁性膜40は、軟磁性金属磁性体から構成される。軟磁性金属磁性体としては、CoZrTa系合金、CoZrNb系合金、CoFeSiB系合金等のCo系非晶質合金や、FeSi、FeNi、Fe、CoFeを主成分とする合金が挙げられる。これらの中でも、磁歪定数が低く、高透磁率、且つ、高抵抗が得られるため、CoZrNb系合金又はCoZrTa系合金が好ましい。更には、インダクタの直流重畳特性を考慮すると、飽和磁化が大きいCoZrTa系合金が特に好ましい。   The lower magnetic film 40 is made of a soft magnetic metal magnetic material. Examples of the soft magnetic metal magnetic material include Co-based amorphous alloys such as CoZrTa-based alloys, CoZrNb-based alloys, and CoFeSiB-based alloys, and alloys mainly composed of FeSi, FeNi, Fe, and CoFe. Among these, a CoZrNb alloy or a CoZrTa alloy is preferable because the magnetostriction constant is low, high magnetic permeability, and high resistance are obtained. Furthermore, considering the direct current superposition characteristics of the inductor, a CoZrTa alloy having a large saturation magnetization is particularly preferable.

下部絶縁層30は、下部磁性膜40と導電性膜20との絶縁を保つことを主な目的として設けられている。下部絶縁層30を構成する絶縁材料は特に限定されず、セラミックや硬化性樹脂の硬化体等により下部絶縁層30が形成される。   The lower insulating layer 30 is provided mainly for maintaining insulation between the lower magnetic film 40 and the conductive film 20. The insulating material constituting the lower insulating layer 30 is not particularly limited, and the lower insulating layer 30 is formed of a cured body of ceramic or a curable resin.

導電性膜20は基体5上でスパイラル型のコイルパターンを形成している。導電性膜20のコイルパターンの端部20Tが外部に露出するように、絶縁層3及び磁性膜41に開口が形成されている(図1)。導電性膜20の厚さは、典型的には5〜100μm程度である。導電性膜20はCu等の導電体から構成される。導電性膜20のコイルパターンの形状、幅、間隔、ターン数等は、要求特性等に応じて適宜変更が可能である。   The conductive film 20 forms a spiral coil pattern on the substrate 5. An opening is formed in the insulating layer 3 and the magnetic film 41 so that the end 20T of the coil pattern of the conductive film 20 is exposed to the outside (FIG. 1). The thickness of the conductive film 20 is typically about 5 to 100 μm. The conductive film 20 is made of a conductor such as Cu. The shape, width, interval, number of turns, and the like of the coil pattern of the conductive film 20 can be appropriately changed according to required characteristics.

絶縁層3は、導電性膜20及び基体5によって形成されている溝2を埋める第1の絶縁部31と、第1の絶縁部31及び導電性膜20を覆う第2の絶縁部32とから構成されている。絶縁層3が介在することによって、導電性膜20と磁性膜41とが電気的に絶縁されている。   The insulating layer 3 includes a first insulating portion 31 that fills the groove 2 formed by the conductive film 20 and the base 5, and a second insulating portion 32 that covers the first insulating portion 31 and the conductive film 20. It is configured. By interposing the insulating layer 3, the conductive film 20 and the magnetic film 41 are electrically insulated.

第1の絶縁部31の溝2における厚さは、導電性膜20の厚さよりも大きくなっている。すなわち、第1の絶縁部31は基体5と反対側の方向に向かって導電性膜20よりも突出するように形成されている。また、第1の絶縁部31は、導電性膜20の基体と反対側の面S上に張り出している。第1の絶縁部31は、熱硬化性樹脂、感光性樹脂等の硬化性樹脂の硬化により形成された硬化体によって形成されている。フォトリソグラフィー法により導電性膜20の基体5と反対側の面が露出するようにパターニングすることが容易である点等から、第1の絶縁部31は感光性樹脂の硬化体として形成されることが好ましい。第1の絶縁部31を形成させるための硬化性樹脂は、アクリルモノマー等の架橋性モノマーやオリゴマー等の他、熱可塑性樹脂や低分子量成分等の他の添加成分を更に含んでいてもよい。   The thickness of the first insulating portion 31 in the groove 2 is larger than the thickness of the conductive film 20. That is, the first insulating portion 31 is formed so as to protrude from the conductive film 20 in the direction opposite to the base 5. Further, the first insulating portion 31 projects on the surface S on the opposite side of the base of the conductive film 20. The first insulating portion 31 is formed by a cured body formed by curing a curable resin such as a thermosetting resin or a photosensitive resin. The first insulating part 31 is formed as a cured body of a photosensitive resin because it is easy to pattern so that the surface of the conductive film 20 opposite to the base 5 is exposed by photolithography. Is preferred. The curable resin for forming the first insulating portion 31 may further include other additive components such as a thermoplastic resin and a low molecular weight component in addition to a crosslinkable monomer such as an acrylic monomer and an oligomer.

第2の絶縁部32は、第1の絶縁部31の突出した部分の形状を反映して、溝2の上部に位置する部分において盛り上がった形状を有している。第2の絶縁部32は、上記第1の絶縁部31と同様の硬化性樹脂の硬化体から形成されていてもよいし、セラミック等の他の絶縁性材料から形成されていてもよい。   The second insulating portion 32 has a shape that rises at a portion located in the upper portion of the groove 2, reflecting the shape of the protruding portion of the first insulating portion 31. The second insulating portion 32 may be formed from a cured body of a curable resin similar to the first insulating portion 31 or may be formed from another insulating material such as ceramic.

磁性膜41は、第2の絶縁部32の形状を反映して、溝2の上部において、基体5と反対側の方向に屈曲した形状を有している。従来の製造方法の場合、本実施形態とは逆に、磁性膜が溝の内部に向かう方向に屈曲した形状となる傾向が強く、これによりインダクタンスの低下、高周波特性の劣化、直流重畳特性の低下等の信頼性の低下を招いていた。これに対して、本実施形態に係る製造方法によれば、磁性膜41が溝2の内部に向かう方向へ屈曲することを防止できる。磁性膜41は、下部磁性膜40と同一又は異なる組成の軟磁性金属磁性体から形成されている。軟磁性金属磁性体から構成される下部磁性膜の作成方法としては、スパッタリング方法、蒸着方法、めっき方法などがある。軟磁性金属磁性体と非磁性絶縁体を相互に成膜した積層構成を有し渦電流損失を抑制した高周波化磁性体層も採用することができる。磁性膜41の厚さは、デバイスの仕様によるが、0.5〜10μmであることが好ましく、電源用インダクタの場合は5〜10μm、信号系の場合は0.5〜1μmであることがより好ましい。   The magnetic film 41 reflects the shape of the second insulating portion 32 and has a shape bent in the direction opposite to the base 5 at the upper portion of the groove 2. In the case of the conventional manufacturing method, contrary to the present embodiment, the magnetic film tends to be bent in the direction toward the inside of the groove, thereby reducing the inductance, the high frequency characteristics, and the DC superposition characteristics. This has led to a decrease in reliability. On the other hand, according to the manufacturing method according to the present embodiment, the magnetic film 41 can be prevented from bending in the direction toward the inside of the groove 2. The magnetic film 41 is formed of a soft magnetic metal magnetic material having the same or different composition as the lower magnetic film 40. Examples of a method for forming the lower magnetic film made of the soft magnetic metal magnetic material include a sputtering method, a vapor deposition method, and a plating method. A high-frequency magnetic material layer having a laminated structure in which a soft magnetic metal magnetic material and a nonmagnetic insulator are formed on each other and suppressing eddy current loss can also be employed. The thickness of the magnetic film 41 is preferably 0.5 to 10 μm, depending on the device specifications, but is preferably 5 to 10 μm in the case of a power inductor and 0.5 to 1 μm in the case of a signal system. preferable.

図3は、本発明に係る薄膜磁気素子の製造方法の一実施形態を示す概略断面図である。図3に示す製造方法においては、まず、基体5の下部絶縁層30側の面上に、コイルパターンが形成されるようにパターニングされた導電性膜20が形成される(図3の(a))。   FIG. 3 is a schematic cross-sectional view showing an embodiment of a method for manufacturing a thin film magnetic element according to the present invention. In the manufacturing method shown in FIG. 3, first, a conductive film 20 patterned so as to form a coil pattern is formed on the surface of the base 5 on the lower insulating layer 30 side ((a) of FIG. 3). ).

基体5は、例えば、基板10上に下部磁性膜40及び下部絶縁層30を順次形成させることにより、得られる。基板10として用いるフェライト基板は、従来公知の方法により得ることが可能である。一般的には、セラミックス焼成方法による焼結体から所定の形状、厚さに切り出されたフェライト基板が使用される。フェライト基板は商業的にも入手可能である。下部磁性膜40及び下部絶縁層30はスパッタ法、ペースト法等の通常の方法により形成させることができる。当然なことに、基板10としては、シリコンやガリウム砒素などの半導体ウェハ、または、アルミナ、ガラス、酸化ケイ素などのセラミックスを用いることが可能である。   The base 5 is obtained, for example, by sequentially forming the lower magnetic film 40 and the lower insulating layer 30 on the substrate 10. The ferrite substrate used as the substrate 10 can be obtained by a conventionally known method. In general, a ferrite substrate cut into a predetermined shape and thickness from a sintered body obtained by a ceramic firing method is used. Ferrite substrates are also commercially available. The lower magnetic film 40 and the lower insulating layer 30 can be formed by a normal method such as a sputtering method or a paste method. As a matter of course, a semiconductor wafer such as silicon or gallium arsenide, or ceramics such as alumina, glass, or silicon oxide can be used as the substrate 10.

導電性膜20のコイルパターンは、フォトリソグラフィーを利用した方法によって好適に形成させることができる。具体的には、例えば、基体5の一面上にスパッタ法等の薄膜プロセスにより導電体からなるシード層を形成させ、これの所定部分が露出するようにコイルパターンに対応するフォトレジストパターンを形成し、露出しているシード層上にCu等の導電体からなる層をめっき法によって形成してからフォトレジストパターンを除去し、露出したシード層をエッチングにより除去する方法で、導電性膜20を形成させることができる。   The coil pattern of the conductive film 20 can be suitably formed by a method using photolithography. Specifically, for example, a seed layer made of a conductor is formed on one surface of the substrate 5 by a thin film process such as sputtering, and a photoresist pattern corresponding to the coil pattern is formed so that a predetermined portion thereof is exposed. The conductive film 20 is formed by forming a layer made of a conductor such as Cu on the exposed seed layer by plating, removing the photoresist pattern, and removing the exposed seed layer by etching. Can be made.

導電性膜20の形成の後、第1の絶縁部31を、導電性膜20の基体5と反対側の面の一部が露出するようなパターンで、基体と反対側の方向に突出するように、且つ、導電性膜20の基体5と反対側の面S上に張り出すように形成させる。第1の絶縁部31は、硬化性樹脂としての感光性樹脂を、溝2が充填されるとともに導電性膜20全体が覆われるように塗布して硬化性樹脂層(感光性樹脂層)31aを形成する工程(図3の(b))と、硬化性樹脂層31aの露光及び現像により導電性膜20の基体5と反対側の面の一部が露出するようにパターニングされた第1の絶縁部31を形成させる工程(図3の(c))とを経て形成される。   After the formation of the conductive film 20, the first insulating portion 31 is projected in the direction opposite to the base in a pattern in which a part of the surface of the conductive film 20 opposite to the base 5 is exposed. In addition, the conductive film 20 is formed so as to protrude on the surface S opposite to the base 5. The first insulating part 31 is coated with a photosensitive resin as a curable resin so that the groove 2 is filled and the entire conductive film 20 is covered, and a curable resin layer (photosensitive resin layer) 31a is applied. A first insulation patterned so that a part of the surface opposite to the substrate 5 of the conductive film 20 is exposed by the step of forming (FIG. 3B) and the exposure and development of the curable resin layer 31a. It is formed through the step of forming the portion 31 (FIG. 3C).

続いて、第2の絶縁部32を第1の絶縁部31及び導電性膜20を覆うように形成させる(図3の(d))。これにより、第1の絶縁部31及び第2の絶縁部からなる絶縁層3が形成される。第2の絶縁部32は、硬化性樹脂を用いて形成させる場合、硬化性樹脂を第1の絶縁部31及び導電性膜20を覆うように塗付し、これを露光や加熱等により硬化して、形成させることができる。酸化ケイ素等の無機系の絶縁性材料を用いる場合、スパッタ法、CVD法等の方法により第2の絶縁部32を形成させることができる。   Subsequently, the second insulating portion 32 is formed so as to cover the first insulating portion 31 and the conductive film 20 ((d) in FIG. 3). Thereby, the insulating layer 3 which consists of the 1st insulating part 31 and the 2nd insulating part is formed. When the second insulating portion 32 is formed using a curable resin, the curable resin is applied so as to cover the first insulating portion 31 and the conductive film 20, and is cured by exposure, heating, or the like. Can be formed. When an inorganic insulating material such as silicon oxide is used, the second insulating portion 32 can be formed by a method such as a sputtering method or a CVD method.

第2の絶縁部32上に磁性膜41を成膜して、薄膜磁気素子1が得られる。磁性膜41は、軟磁性金属磁性体を用いて、絶縁層3上にスパッタリング方法、蒸着方法、めっき方法等により形成させることができる。   The thin film magnetic element 1 is obtained by forming the magnetic film 41 on the second insulating portion 32. The magnetic film 41 can be formed on the insulating layer 3 by a sputtering method, a vapor deposition method, a plating method or the like using a soft magnetic metal magnetic material.

本発明は、上記実施形態のような薄膜インダクタの製造方法に限られず、導電性膜及び磁性膜と、これらの間に介在する絶縁層とが設けられた構成を含む他の薄膜磁気素子の製造方法としても好適に採用されるものである。   The present invention is not limited to the method of manufacturing a thin film inductor as in the above embodiment, and other thin film magnetic elements including a configuration in which a conductive film and a magnetic film, and an insulating layer interposed therebetween are provided. The method is also preferably employed.

本発明に係る製造方法によって得られる薄膜磁気素子の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the thin film magnetic element obtained by the manufacturing method which concerns on this invention. 図1のII−II線に沿った概略断面図である。It is a schematic sectional drawing along the II-II line of FIG. 本発明に係る薄膜電子素子の製造方法の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the manufacturing method of the thin film electronic element which concerns on this invention.

符号の説明Explanation of symbols

1…薄膜磁気素子、2…溝、3…絶縁層、5…基体、10…基板、20…導電性膜、30…下部絶縁層、31…第1の絶縁部、32…第2の絶縁部、40…下部磁性膜、41…磁性膜。   DESCRIPTION OF SYMBOLS 1 ... Thin film magnetic element, 2 ... Groove, 3 ... Insulating layer, 5 ... Base | substrate, 10 ... Substrate, 20 ... Conductive film, 30 ... Lower insulating layer, 31 ... 1st insulating part, 32 ... 2nd insulating part , 40: lower magnetic film, 41: magnetic film.

Claims (3)

基体上に設けられ溝が形成されるようにパターニングされた導電性膜を覆う絶縁層を形成させる絶縁層形成工程と、該絶縁層上に磁性膜を形成させる磁性膜形成工程と、を備える薄膜磁気素子の製造方法であって、
前記絶縁層形成工程は、
硬化性樹脂の硬化体からなり前記溝の少なくとも一部を埋める第1の絶縁部を、前記導電性膜の前記基体と反対側の面の少なくとも一部が露出するようなパターンで形成させる工程と、
前記第1の絶縁部及び前記導電性膜を覆う第2の絶縁部を形成させる工程と、
を含む、製造方法。
A thin film comprising: an insulating layer forming step for forming an insulating layer covering a conductive film provided on a substrate and patterned so as to form a groove; and a magnetic film forming step for forming a magnetic film on the insulating layer A method of manufacturing a magnetic element,
The insulating layer forming step includes
Forming a first insulating portion made of a cured resin of a curable resin and filling at least a part of the groove in a pattern in which at least a part of the surface of the conductive film opposite to the base is exposed; ,
Forming a second insulating portion covering the first insulating portion and the conductive film;
Manufacturing method.
前記第1の絶縁部を、前記基体と反対側の方向に前記導電性膜よりも突出するように形成させる、請求項1記載の製造方法。   The manufacturing method according to claim 1, wherein the first insulating portion is formed so as to protrude from the conductive film in a direction opposite to the base. 前記第1の絶縁部を、前記導電性膜の前記基体と反対側の面上に張り出すように形成させる、請求項1又は2記載の製造方法。   The manufacturing method according to claim 1, wherein the first insulating portion is formed so as to protrude on a surface of the conductive film opposite to the base.
JP2006099710A 2006-03-31 2006-03-31 Manufacturing method of thin film magnetic element Withdrawn JP2007273870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099710A JP2007273870A (en) 2006-03-31 2006-03-31 Manufacturing method of thin film magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099710A JP2007273870A (en) 2006-03-31 2006-03-31 Manufacturing method of thin film magnetic element

Publications (1)

Publication Number Publication Date
JP2007273870A true JP2007273870A (en) 2007-10-18

Family

ID=38676329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099710A Withdrawn JP2007273870A (en) 2006-03-31 2006-03-31 Manufacturing method of thin film magnetic element

Country Status (1)

Country Link
JP (1) JP2007273870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140349A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Coil component and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019140349A (en) * 2018-02-15 2019-08-22 Tdk株式会社 Coil component and method of manufacturing the same
JP7124333B2 (en) 2018-02-15 2022-08-24 Tdk株式会社 Coil component and its manufacturing method

Similar Documents

Publication Publication Date Title
US6429764B1 (en) Microcomponents of the microinductor or microtransformer type and process for fabricating such microcomponents
JP2006324489A (en) Chip coil and manufacturing method thereof
US20070077395A1 (en) Thin film device and thin film inductor
JP2002158112A (en) Fine element of type such as minute inductor and minute transformer
US5448822A (en) Method of making a thin film magnetic head having multi-layer coils
US7338816B2 (en) Magnetic field sensing device and a fabricating method of the same
JP4711593B2 (en) Planar magnetic element
JP2007273802A (en) Thin-film device
JP2007081349A (en) Inductor
JP2007273804A (en) Thin-film device
JP2002525869A (en) Method for manufacturing semiconductor device having semiconductor substrate having surface on which coil having magnetic core is provided
JP2007273870A (en) Manufacturing method of thin film magnetic element
JP4332243B2 (en) Thin film coil parts
JPH08330142A (en) Surface installation electron component with grooved core and its preparation
JP2002050520A (en) Microinductor or microelement or microtransformer type
US20020048117A1 (en) Magnetic recording head with dielectric layer
JP2535819B2 (en) Method of manufacturing thin film magnetic head
US20240128014A1 (en) Inductor component
JP2001518702A (en) Method of increasing operating frequency of magnetic circuit and magnetic circuit thereof
US20240128015A1 (en) Inductor component
US20240029953A1 (en) Inductor component and method for manufacturing same
JP2007287904A (en) Inductance component
JP2008227228A (en) Method for manufacturing chip component
JP2007242220A (en) Perpendicular magnetic recording head and method of manufacturing the same
JP2814750B2 (en) Method for manufacturing thin-film magnetic head

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602