JP2007273114A - Method of manufacturing electrode for nonaqueous electrolyte secondary battery - Google Patents

Method of manufacturing electrode for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2007273114A
JP2007273114A JP2006093801A JP2006093801A JP2007273114A JP 2007273114 A JP2007273114 A JP 2007273114A JP 2006093801 A JP2006093801 A JP 2006093801A JP 2006093801 A JP2006093801 A JP 2006093801A JP 2007273114 A JP2007273114 A JP 2007273114A
Authority
JP
Japan
Prior art keywords
active material
electrolyte secondary
current collector
secondary battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006093801A
Other languages
Japanese (ja)
Inventor
Dan Ishizaki
段 石崎
Atsushi Okazaki
淳 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006093801A priority Critical patent/JP2007273114A/en
Publication of JP2007273114A publication Critical patent/JP2007273114A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode for a nonaqueous electrolyte secondary battery capable of manufacturing a nonaqueous electrolyte secondary battery that reduces rupture and cracks in a strip of collector in a compression process even if the strip of collector is thinned, improves a manufacturing yield, and has a high capacity, in manufacture through a process for compressing the electrode for a nonaqueous electrolyte secondary battery after applying active material mix slurry onto the strip of collector for drying by a die-coating method. <P>SOLUTION: The method of manufacturing the electrode for the nonaqueous electrolyte secondary battery has a process for applying the active material mix slurry onto the strip of collector 21 for drying before compression. In the manufacturing method, a reinforced substance layer 26 that is controlled to be thinner than the thickness of the active material mix slurry after compression is continuously applied and formed along edges at both the sides of the strip of collector 21, and then an active material mix slurry layer 27 is formed by applying the active material mix slurry between the reinforced substance layers 26 on the strip of collector 21 without any gaps. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非水電解質二次電池用電極の製造方法に関し、特に非水電解質二次電池用電極を活物質合剤スラリーをダイコート法により帯状集電体上に塗布し、乾燥した後に圧縮する工程を経て製造する際に、帯状集電体の厚さを薄くしても圧縮工程時に帯状集電体の破断や亀裂が少なく、製造歩留まりが向上するとともに高容量の非水電解質二次電池を製造し得る非水電解質二次電池用電極の製造方法に関する。   The present invention relates to a method for producing an electrode for a non-aqueous electrolyte secondary battery, and in particular, a process of applying an electrode for a non-aqueous electrolyte secondary battery on a strip-shaped current collector by applying an active material mixture slurry by a die coating method, and then compressing it. During manufacturing, even if the thickness of the strip-shaped current collector is reduced, the strip-shaped current collector is less broken or cracked during the compression process, and the production yield is improved and a high-capacity nonaqueous electrolyte secondary battery is manufactured. The present invention relates to a method for producing an electrode for a nonaqueous electrolyte secondary battery.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウムイオン非水電解質二次電池が注目され、このリチウムイオン非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small, thin, high capacity, excellent cycle characteristics and stable performance are required. . In the field of secondary batteries, lithium ion non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention. The proportion of lithium ion non-aqueous electrolyte secondary batteries accounts for a significant increase in the secondary battery market. Is shown.

図2は、従来から作製されている円筒形の非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極11と負極12とがセパレータ13を介して巻回された巻回電極体14を、この巻回電極体14の上下にそれぞれ絶縁板15及び16を配置した後、負極端子を兼ねるスチール製の円筒形の電池外装缶17の内部に収容し、負極12の集電タブ12aを電池外装缶17の内側底部17aに溶接するとともに正極11の集電タブ11aを安全装置が組み込まれた電流遮断封口体18の底板部に溶接し、この電池外装缶17の開口部から所定の非水電解液を注入した後、電流遮断封口体18によって電池外装缶17を密閉することにより製造されている。   FIG. 2 is a perspective view showing a conventional cylindrical non-aqueous electrolyte secondary battery cut in the vertical direction. In this nonaqueous electrolyte secondary battery 10, a wound electrode body 14 in which a positive electrode 11 and a negative electrode 12 are wound via a separator 13 is disposed, and insulating plates 15 and 16 are disposed above and below the wound electrode body 14, respectively. Then, it is housed in a steel cylindrical battery outer can 17 also serving as a negative electrode terminal, and the current collecting tab 12a of the negative electrode 12 is welded to the inner bottom portion 17a of the battery outer can 17 and the current collecting tab 11a of the positive electrode 11 is welded. Is welded to the bottom plate portion of the current interrupting sealing body 18 incorporating the safety device, a predetermined nonaqueous electrolyte is injected from the opening of the battery outer can 17, and then the battery outer can 17 is attached by the current interrupting sealing body 18. Manufactured by sealing.

そして、上記の巻回電極体14は、通常、以下の製法で作製されている。先ず、帯状の負極集電体の両面に長手方向に沿って負極用活物質が間欠的に塗布され、所定厚さ及び幅に加工されて多数の負極が連続した負極材と、同様に帯状の正極集電体の両面に長手方向に沿って正極用活物質が間歇的に塗布され、所定厚さ及び幅に加工されて多数の正極が連続した正極材とが形成される。この負極材及び正極材は、これらの間に介在させる2枚のセパレータと共に所定の巻回位置へ送られる。   And said winding electrode body 14 is normally produced with the following manufacturing methods. First, a negative electrode active material is intermittently applied along the longitudinal direction on both surfaces of a strip-shaped negative electrode current collector, processed into a predetermined thickness and width, and a negative electrode material in which a large number of negative electrodes are continuous. A positive electrode active material is intermittently applied to both surfaces of the positive electrode current collector along the longitudinal direction, and processed into a predetermined thickness and width to form a positive electrode material in which a large number of positive electrodes are continuous. The negative electrode material and the positive electrode material are sent to a predetermined winding position together with two separators interposed therebetween.

巻回位置では、負極材から巻芯に巻回させる負極の部分を切り出すと共に、正極材から巻芯に巻回させる正極の部分を切り出し、さらに第1及び第2のセパレータからも巻芯に巻回させる1つの巻回電極体に用いる長さ分を切り出して、この位置に設けられた円柱状ないし楕円柱状の巻芯に負極材及び第1のセパレータ、正極材及び第2のセパレータの順に重ねながら当該負極材を内側にして巻回させ、ほぼ円柱状ないし楕円柱状の巻回電極体が順次形成される。また、電位取出用の負極タブ及び正極タブは巻回の直前に負極材及び正極材の未塗布部分に溶接又は成形される。なお、角形電池を製造する場合には、更に所定のプレス装置を用いて円柱状ないし楕円柱状の電極体を径方向から挟み込むようにして押し潰し、偏平状の電極体を形成するものである。   At the winding position, the negative electrode portion to be wound around the core from the negative electrode material is cut out, the positive electrode portion to be wound around the core from the positive electrode material is cut out, and the first and second separators are also wound around the core. The length used for one wound electrode body to be rotated is cut out, and a negative electrode material, a first separator, a positive electrode material, and a second separator are stacked in this order on a cylindrical or elliptical cylindrical core provided at this position. However, the negative electrode material is wound inside, and a substantially cylindrical or elliptical cylindrical electrode body is sequentially formed. Further, the negative electrode tab and the positive electrode tab for taking out the potential are welded or molded to the uncoated portions of the negative electrode material and the positive electrode material immediately before winding. In the case of manufacturing a rectangular battery, a cylindrical or elliptical columnar electrode body is further crushed so as to be sandwiched from the radial direction by using a predetermined pressing device to form a flat electrode body.

このような電極として用いられる帯状の電極材の製造方法としては、正極ないし負極の活物質合剤スラリーをダイコート法(エクストルージョン法ともいう)により帯状集電体に塗布する方法が知られている(下記特許文献1〜3参照)。このダイコート法は、正極用ないし負極用の活物質合剤スラリーをダイコーターのノズルより吐出させ、走行する帯状集電体上に塗布する方法であり、活物質合剤スラリーの塗布量の規制を定流量ポンプの吐出量設定により行うことができ、また、活物質合剤スラリーは塗布されるまでほとんど外気と触れないため、溶媒の蒸発による活物質合剤スラリーの濃度変化が起こらず、スラリーの粘度変化に合わせた塗布厚みの調整の必要がなく、他の方法よりも安定した塗布を行うことができ、製品性能のバラツキが少ないという利点が存在している。   As a method for producing a strip-shaped electrode material used as such an electrode, a method of applying a positive electrode or negative electrode active material mixture slurry to a strip current collector by a die coating method (also referred to as an extrusion method) is known. (See Patent Documents 1 to 3 below). This die coating method is a method in which an active material mixture slurry for positive electrode or negative electrode is discharged from a nozzle of a die coater and applied onto a traveling strip current collector, and the amount of application of the active material mixture slurry is regulated. It can be performed by setting the discharge rate of the constant flow pump, and since the active material mixture slurry hardly touches the outside air until it is applied, the concentration of the active material mixture slurry does not change due to evaporation of the solvent, and the slurry There is an advantage that there is no need to adjust the coating thickness in accordance with the viscosity change, the coating can be performed more stably than other methods, and there is little variation in product performance.

特開平11− 31502号公報(特許請求の範囲、段落[0004]、[0013]〜[0019]JP-A-11-31502 (Claims, paragraphs [0004], [0013] to [0019] 特開平10− 64521号公報(特許請求の範囲、段落[0004]、[0011]〜[0026]、図1、図2)JP-A-10-64521 (claims, paragraphs [0004], [0011] to [0026], FIGS. 1 and 2) 特開2000−251942号公報(特許請求の範囲、段落[0005]〜[0007]、[0016]〜[023]、図2〜図6)JP 2000-251942 A (claims, paragraphs [0005] to [0007], [0016] to [023], FIGS. 2 to 6)

このような帯状被乾燥体は、活物質合剤スラリーを帯状集電体の表面に間欠的に塗布することが行われているために必然的に活物質合剤スラリーが塗布されていない被塗布部が存在し、また、活物質合剤スラリーを連続的に帯状集電体の表面に塗布した場合においても集電タブ取付けないしは別途電池の端子との間の電気的接続形成のために活物質合剤スラリーが塗布されていない被塗布部が存在する。加えて、このようなダイコート法により帯状集電体の表面に活物質合剤スラリーが塗布された帯状被乾燥体は、活物質合剤の充填密度を上昇させて電池の容量を大きくするため、乾燥後にローラープレス装置によって圧縮処理されている(上記特許文献2及び3参照)。   Such a belt-shaped body to be dried is coated with an active material mixture slurry that is not necessarily coated with an active material mixture slurry because the active material mixture slurry is intermittently applied to the surface of the belt-shaped current collector. In addition, when the active material mixture slurry is continuously applied to the surface of the strip-shaped current collector, the active material is attached to the current collector tab or separately to form an electrical connection with the battery terminal. There are portions to be coated where the mixture slurry is not coated. In addition, the band-shaped object to be dried, in which the active material mixture slurry is applied to the surface of the band current collector by such a die coating method, increases the packing density of the active material mixture and increases the capacity of the battery. After drying, it is compressed by a roller press device (see Patent Documents 2 and 3 above).

一方、非水電解質二次電池の更なる高容量化を達成するには、帯状集電体上に塗布される活物質の量を増加させることが必要であるが、電池外装缶の容積の制限があるために限界がある。また、上述のような圧縮処理による活物質合剤の充填密度の向上に基づいた電池容量の増大化は、理論的には圧縮時の圧力を大きくすれば大きくするほど活物質合剤の充填密度は向上するが、現状では帯状集電体の厚さと強度の問題から圧縮時の圧力を現状以上に増加させることは困難である。   On the other hand, in order to achieve further increase in capacity of the non-aqueous electrolyte secondary battery, it is necessary to increase the amount of active material applied on the strip-shaped current collector, but the volume limit of the battery outer can is limited. There are limits to being. In addition, the increase in battery capacity based on the improvement of the packing density of the active material mixture by the compression treatment as described above is theoretically the higher the pressure during compression, the larger the packing density of the active material mixture. However, at present, it is difficult to increase the pressure during compression beyond the current level due to the thickness and strength of the belt-like current collector.

従って、これ以上の電池容量の増大化を図るには帯状集電体の厚さを薄くすることが必要と考えられるが、帯状集電体の厚さを薄くした分だけその強度が落ちるため、圧縮時の圧力を現状で採用されている圧力よりも下げる必要が生じるので活物質合剤の充填密度の向上効果は限定されてしまい、また、圧縮時の圧力を現状と同じ程度とした場合には、帯状集電体の破断による歩留まり低下や亀裂発生品の混入が起る可能性がある。   Therefore, in order to increase the battery capacity beyond this, it is considered necessary to reduce the thickness of the band-shaped current collector, but because the strength decreases by the thickness of the band-shaped current collector, Since the pressure at the time of compression needs to be lower than the pressure currently adopted, the effect of improving the packing density of the active material mixture is limited, and when the pressure at the time of compression is set to the same level as the present May cause a decrease in yield due to the rupture of the band-shaped current collector or mixing of cracked products.

本願の発明者等は特に帯状集電体の破断や亀裂発生の可能性が高い圧縮工程における破断状態を調査した結果、以下のような現象が生じていることが分かった。
(1)帯状被乾燥体の両側の端部に沿った活物質合剤スラリーの未塗布部と塗布部との境界に亀裂が生じ、破断に至る。
(2)活物質合剤スラリーを間欠塗布した場合、未塗布部において帯状集電体が直接圧縮ロールと接触するために破断が発生し易い。
(3)上記(1)の対策として上記特許文献3に開示されているように帯状被乾燥体の両側の端部に沿って剥離テープを貼付して補強する方法を採用すると、剥離テープを帯状被乾燥帯の両側の端部に沿って隙間なく貼付することが困難であるため、
(3−1)活物質合剤スラリーに剥離テープが被さった部分が存在すると、この剥離テープが被さった部分で圧縮時に剥離テープの糊材がはみ出し、この糊材が圧縮ロールに付着して逆に帯状集電体の破断を生じることがある。
(3−2)活物質合剤スラリーと剥離テープとの間に隙間があると、その部分で帯状集電体にしわや亀裂が生じる。
As a result of investigating the fracture state in the compression process, in which the inventors of the present application particularly have a high possibility of fracture or crack generation of the strip-shaped current collector, it has been found that the following phenomenon occurs.
(1) A crack is generated at the boundary between the uncoated portion and the coated portion of the active material mixture slurry along the end portions on both sides of the belt-shaped body to be dried.
(2) When the active material mixture slurry is intermittently applied, the band-shaped current collector is in direct contact with the compression roll in the unapplied portion, and thus breakage is likely to occur.
(3) As a measure against the above (1), if a method of applying and reinforcing a peeling tape along the end portions on both sides of the belt-like object to be dried as disclosed in Patent Document 3 above, Because it is difficult to paste along the edges on both sides of the dry zone without any gaps,
(3-1) If there is a part covered with the release tape on the active material mixture slurry, the adhesive material of the release tape protrudes during compression at the part covered with the release tape, and the adhesive material adheres to the compression roll and reverses. In some cases, the strip current collector may break.
(3-2) If there is a gap between the active material mixture slurry and the peeling tape, wrinkles and cracks are generated in the band-like current collector at that portion.

なお、上記特許文献3には、上記(1)の対策として、帯状被乾燥体の両側の端部に沿って剥離テープを貼って補強する方法以外に、帯状被乾燥体の両側の端部をアニール処理ないしは凹凸形成処理することも示されているが、別途帯状被乾燥体の両側の端部のみをアニール処理ないしは凹凸形成処理して延伸し易い状態にするという特殊な処理が必要であって、従来から使用されている電極の製造装置をそのまま使用することができず、しかも、これらの方法は帯状集電体の厚さが薄い場合にはそのまま採用しても必ずしも所定の効果を奏するわけではないため、直ちには採用し難い。   In addition, in the said patent document 3, as a countermeasure of said (1), the edge part of the both sides of a strip | belt-shaped to-be-dried body other than the method of affixing a peeling tape along the both-ends of a strip | belt-shaped to-be-dried body is reinforced. Although an annealing process or an unevenness forming process is also shown, a special process is required in which only the end portions on both sides of the belt-shaped body to be dried are subjected to an annealing process or an unevenness forming process to make it easy to stretch. In addition, conventional electrode manufacturing apparatuses cannot be used as they are, and these methods do not always have a predetermined effect even if they are used as they are when the thickness of the belt-like current collector is thin. Because it is not, it is difficult to adopt it immediately.

また、上記特許文献2には、帯状集電体上に活物質合剤スラリーを間欠塗布した場合において、一対の圧縮ロールが活物質合剤スラリーの非塗布部で帯状集電体の表面と接触しないようにするために一対の圧縮ロール間に間隙を設けるようにした例が示されているが、上記(1)の対策には必ずしも有効ではなく、特に帯状集電体の厚さが薄い場合にはそのまま採用しても帯状集電体の破断や亀裂発生を防ぐことは困難であった。   Moreover, in the said patent document 2, when an active material mixture slurry is intermittently apply | coated on a strip | belt-shaped collector, a pair of compression roll contacts the surface of a strip | belt-shaped collector in the non-application part of an active material mixture slurry. In order to avoid this, an example in which a gap is provided between a pair of compression rolls is shown. However, this is not always effective for the measure (1) above, and the band-shaped current collector is particularly thin. However, it was difficult to prevent the strip-shaped current collector from being broken or cracked even if it was adopted as it was.

本願の発明者等は、帯状集電体の厚さを従来から普通に採用されている厚さより薄くしても圧縮時に破断や亀裂が生じない製造方法を得るべく種々実験を重ねた結果、帯状集電体の両側の端部に沿って圧縮後の活物質合剤スラリーの厚さよりも薄い補強物層を形成した後、この帯状集電体上の補強物層の間に隙間なく活物質合剤スラリーを塗布することにより解決し得ることを見出し、本発明を完成するに至ったのである。   The inventors of the present application have conducted various experiments in order to obtain a manufacturing method that does not cause breakage or cracking during compression even if the thickness of the strip-shaped current collector is made thinner than the thickness conventionally employed. After forming a reinforcing material layer that is thinner than the thickness of the compressed active material mixture slurry along the ends on both sides of the current collector, the active material mixture is formed without any gaps between the reinforcing material layers on the belt-like current collector. The present inventors have found that the problem can be solved by applying an agent slurry, and have completed the present invention.

すなわち、本発明は、非水電解質二次電池用電極を活物質合剤スラリーを帯状集電体上に塗布し、乾燥した後に圧縮する工程を経て製造する際に、帯状集電体の厚さを薄くしても製造時に帯状集電体の破断や亀裂が少なく、製造歩留まりが向上するとともに高容量の非水電解質二次電池を製造し得る非水電解質二次電池用電極の製造方法を提供することを目的とする。   That is, the present invention provides the thickness of the strip current collector when the electrode for a non-aqueous electrolyte secondary battery is manufactured through a process in which an active material mixture slurry is applied onto the strip current collector and dried and then compressed. Provides a method for producing an electrode for a nonaqueous electrolyte secondary battery that can produce a high-capacity nonaqueous electrolyte secondary battery while improving the production yield with less rupture and cracking of the strip current collector during production The purpose is to do.

上記目的を達成するため、本願の請求項1に係る非水電解質二次電池用電極の製造方法の発明は、活物質合剤スラリーを帯状集電体上に塗布し、乾燥した後に圧縮する工程を有する非水電解質二次電池用電極の製造方法において、前記帯状集電体の両側の端部に沿って、圧縮後の前記活物質合剤スラリー層の厚さよりも薄く制御した補強物層を連続的に塗布形成した後、前記帯状集電体上の補強物層の間に隙間なく前記活物質合剤スラリーを塗布することを特徴とする。   In order to achieve the above object, the invention of a method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 1 of the present application is a process in which an active material mixture slurry is applied onto a band-shaped current collector, dried and then compressed. In the method for manufacturing an electrode for a non-aqueous electrolyte secondary battery having a reinforcing material layer controlled to be thinner than the thickness of the active material mixture slurry layer after compression along end portions on both sides of the strip-shaped current collector After the continuous application and formation, the active material mixture slurry is applied with no gap between the reinforcing material layers on the strip-shaped current collector.

また、請求項2に係る発明は、請求項1に記載の非水電解質二次電池用電極の製造方法において、前記補強物層が前記活物質合剤スラリーと同じ溶剤を含むことを特徴とする。   The invention according to claim 2 is the method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the reinforcing material layer contains the same solvent as the active material mixture slurry. .

また、請求項3に係る発明は、請求項2に記載の非水電解質二次電池用電極の製造方法において、前記補強物層が前記活物質合剤スラリーと同じ溶剤に可溶な高分子材料を用いることを特徴とする。   The invention according to claim 3 is the method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 2, wherein the reinforcing material layer is a polymer material that is soluble in the same solvent as the active material mixture slurry. It is characterized by using.

また、請求項4に係る発明は、請求項3に記載の非水電解質二次電池用電極の製造方法において、前記高分子材料がポリフッ化ビニリデン、ポリイミド、エチレンプロピレンジエンゴムから選択された1種であることを特徴とする。   The invention according to claim 4 is the method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the polymer material is selected from polyvinylidene fluoride, polyimide, and ethylene propylene diene rubber. It is characterized by being.

また、請求項5に係る発明は、請求項1に記載の非水電解質二次電池用電極の製造方法において、前記活物質合剤スラリーをダイコート法により間欠的に前記帯状集電体に塗布することを特徴とする。   The invention according to claim 5 is the method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the active material mixture slurry is intermittently applied to the belt-like current collector by a die coating method. It is characterized by that.

また、請求項6に係る発明は、請求項1〜5のいずれかに記載の非水電解質二次電池用電極の製造方法において、前記活物質合剤スラリーが正極活物質合剤スラリーであり、前記帯状集電体がアルミニウムからなることを特徴とする。   The invention according to claim 6 is the method for producing an electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the active material mixture slurry is a positive electrode active material mixture slurry, The strip current collector is made of aluminum.

また、請求項7に係る発明は、請求項6に記載の非水電解質二次電池用電極の製造方法において、前記帯状集電体の厚さが8μm以上12μm以下であることを特徴とする。   The invention according to claim 7 is the method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 6, wherein the thickness of the strip-shaped current collector is 8 μm or more and 12 μm or less.

本発明は、上記の製造方法を採用することにより以下に述べるような優れた効果を奏する。すなわち、請求項1に係る発明によれば、補強物層が乾燥される前に活物質合剤スラリーが塗布されるために、活物質合剤層と補強物層とが両者の境界で実質的に隙間なく一体化され、しかも、帯状集電体の両側の端部が補強物層により補強されているため、帯状集電体上に活物質合剤スラリーを塗布した後に乾燥工程及び圧縮工程を経ても、帯状集電体の両側の端部に亀裂が生じたり帯状集電体が破断する可能性が大きく減少する。   The present invention has the following excellent effects by adopting the above manufacturing method. That is, according to the first aspect of the invention, since the active material mixture slurry is applied before the reinforcing material layer is dried, the active material mixture layer and the reinforcing material layer are substantially separated at the boundary between them. Since both ends of the belt-shaped current collector are reinforced by the reinforcing material layer, the drying process and the compression process are performed after applying the active material mixture slurry on the belt-shaped current collector. Even after passing, the possibility of cracks occurring at both end portions of the belt-shaped current collector or breaking of the belt-shaped current collector is greatly reduced.

更に、この発明においては、活物質合剤層と補強物層との間に隙間が生じないため、従来例のような活物質合剤スラリーと補強物層との間に隙間が存在することに起因する圧縮工程時に帯状集電体にしわや亀裂が生じることが極めて少なくなる。加えて、この発明における補強物層は圧縮前に乾燥されているため、従来例のような剥離テープの糊材に起因する帯状集電体の破断が生じなくなる。   Furthermore, in this invention, since no gap is generated between the active material mixture layer and the reinforcing material layer, there is a gap between the active material mixture slurry and the reinforcing material layer as in the conventional example. During the compression process, the band-shaped current collector is extremely less likely to be wrinkled or cracked. In addition, since the reinforcing material layer in the present invention is dried before compression, the band-shaped current collector due to the adhesive material of the peeling tape as in the conventional example does not occur.

また、請求項2に係る発明によれば、補強物層が活物質合剤スラリーと同じ溶剤を含むために、帯状集電体の両側の端部に沿って補強物層を設けた後に両側の補強物層間に活物質合剤スラリーを塗布すると、補強物層及び活物質合剤層の溶剤同士が互いに混ざり合い、補強物層と活物質合剤層間により隙間が生じ難くなるので、従来例のような活物質合剤スラリーと補強物層との間に隙間が存在することに起因する圧縮工程時に帯状集電体にしわや亀裂が生じることが極めて少なくなる。   Further, according to the invention according to claim 2, since the reinforcing material layer contains the same solvent as the active material mixture slurry, the reinforcing material layer is provided on both sides after the reinforcing material layer is provided along the end portions on both sides of the belt-like current collector. When the active material mixture slurry is applied between the reinforcing material layers, the solvents of the reinforcing material layer and the active material mixture layer mix with each other, and it is difficult for gaps to form between the reinforcing material layer and the active material mixture layer. Such a band current collector is extremely less likely to be wrinkled or cracked during the compression process due to the presence of a gap between the active material mixture slurry and the reinforcing material layer.

また、請求項3に係る発明によれば、補強物層が活物質合剤スラリーと同じ溶剤に可溶な高分子材料を用いているので、帯状集電体の両側の端部に沿って補強物層を設けた後に両側の補強物層間に活物質合剤スラリーを塗布すると、補強物層及び活物質合剤層の溶剤同士だけでなく高分子材料も互いに混ざり合うため、更に補強物層と活物質合剤層との間に隙間が生じ難くなる。   According to the invention of claim 3, since the reinforcing material layer uses a polymer material that is soluble in the same solvent as the active material mixture slurry, the reinforcing material layer is reinforced along the end portions on both sides of the belt-like current collector. When the active material mixture slurry is applied between the reinforcing material layers on both sides after the physical layer is provided, not only the solvent of the reinforcing material layer and the active material mixture layer but also the polymer material are mixed with each other. A gap is less likely to occur between the active material mixture layer.

また、請求項4に係る発明によれば、補強物層に用いる高分子材料として溶剤に溶解するものであれば活物質合剤スラリーにバインダーとして普通に使用されているものだけでなく、それ以外のものも適宜選択して使用し得るが、ポリフッ化ビニリデン、ポリイミド、エチレンプロピレンジエンゴムから選択された1種を採用すると、これらの高分子は非水電解質二次電池の電極製造活物質合剤スラリーにバインダーとして普通に混入されているものであるため、特に良好な効果を奏する。   Further, according to the invention according to claim 4, as long as it can be dissolved in a solvent as a polymer material used in the reinforcing material layer, not only those normally used as a binder in the active material mixture slurry, but also other than that However, when one kind selected from polyvinylidene fluoride, polyimide, and ethylene propylene diene rubber is adopted, these polymers are used as an electrode active material mixture for non-aqueous electrolyte secondary batteries. Since it is normally mixed in the slurry as a binder, it has a particularly good effect.

また、活物質合剤スラリーを間欠的に塗布した場合には、補強物層が存在していないと圧縮工程において圧縮ロールは活物質合剤スラリーの未塗布部において帯状集電体と直接接触してしまうこととなるが、請求項5に係る発明によれば、圧縮工程における圧縮ロールは、帯状集電体の両側の端部に沿って設けられた乾燥後の補強物層上に乗るため、帯状集電体に接触することがなくなり、従来例のように圧縮ロールと帯状集電体が直接接触することに起因する帯状集電体の亀裂ないし破断が防止される。   In addition, when the active material mixture slurry is intermittently applied and the reinforcing material layer is not present, the compression roll is in direct contact with the belt-like current collector in the uncoated portion of the active material mixture slurry in the compression step. However, according to the invention according to claim 5, since the compression roll in the compression step rides on the dried reinforcing material layer provided along the end portions on both sides of the belt-like current collector, The contact with the belt-shaped current collector is eliminated, and cracking or breakage of the belt-shaped current collector due to direct contact between the compression roll and the belt-shaped current collector as in the conventional example is prevented.

また、請求項6に係る発明によれば、本発明の非水電解質二次電池用電極の製造方法は正極及び負極の何れの製造方法としても採用できるが、LiCoO等のリチウム遷移金属複合酸化物を正極活物質とする正極活物質合剤スラリーを使用する場合には、帯状集電体として強度が弱いアルミニウムが使用されるため、特に本発明の効果が顕著に表れる。 According to the invention of claim 6, the method for producing a nonaqueous electrolyte secondary battery electrode of the present invention can be adopted as any method of producing a positive electrode and a negative electrode, but a lithium transition metal composite oxide such as LiCoO 2 is used. In the case of using a positive electrode active material mixture slurry having a product as a positive electrode active material, since the aluminum having low strength is used as the band-shaped current collector, the effect of the present invention is particularly prominent.

また、非水電解質二次電池の正極用帯状集電体としてアルミニウムを使用した場合、従来は厚さが約20μm程度のものが普通に使用されているが、請求項6に係る発明によれば8μm以上12μm以下のものを使用することができるようになり、このような正極用帯状集電体の厚さを薄くした分だけ電池内に収容できる正極及び負極活物質の量を増加させることができるようになるので、従来例と比すると非水電解質二次電池の容量の増大を図ることができるようになる。なお、帯状集電体としてのアルミニウムの厚さが12μmを越えるものの場合は、従来例のものに比すると電池製造時に活物質の量の増加量が少ないために、あえて薄くすることの効果はなく、また、アルミニウムの厚さが8μm未満であると本発明の補強物層を設けても亀裂ないしは破断が増加し出すので、好ましくない。   Further, when aluminum is used as the strip-shaped current collector for the positive electrode of the non-aqueous electrolyte secondary battery, a conventional one having a thickness of about 20 μm is conventionally used. According to the invention according to claim 6, 8 μm or more and 12 μm or less can be used, and the amount of the positive electrode and negative electrode active material that can be accommodated in the battery can be increased by reducing the thickness of the strip current collector for positive electrode. Therefore, the capacity of the nonaqueous electrolyte secondary battery can be increased as compared with the conventional example. In the case where the thickness of the aluminum as the band-shaped current collector exceeds 12 μm, the increase in the amount of the active material is small at the time of manufacturing the battery as compared with the conventional one, so there is no effect of reducing the thickness. Further, if the thickness of the aluminum is less than 8 μm, even if the reinforcing material layer of the present invention is provided, cracks or breaks increase, which is not preferable.

以下、図面を参照して本発明の実施例を説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池用電極としてコバルト酸リチウム等のリチウム遷移金属複合酸化物を正極活物質として使用する正極の製造方法を例示するものであって、本発明をこの非水電解質二次電池の負極の製造方法に特定することを意図するものではなく、炭素質物等を活物質として使用する負極の製造方法としても等しく適用し得るものである。   Embodiments of the present invention will be described below with reference to the drawings. However, in the following examples, the production of a positive electrode using a lithium transition metal composite oxide such as lithium cobaltate as a positive electrode active material as an electrode for a non-aqueous electrolyte secondary battery for embodying the technical idea of the present invention. It is intended to illustrate a method, and is not intended to specify the present invention as a method for producing a negative electrode for a non-aqueous electrolyte secondary battery, but also as a method for producing a negative electrode using a carbonaceous material as an active material. It is equally applicable.

[試料の作製]
コバルト酸リチウム95質量%、導電剤としてアセチレンブラック2質量%、バインダーとしてのポリフッ化ビニリデンPVdF粉末3質量%を溶剤としてのN−メチルピロリドンNMP中に分散させたスラリーを作製し、正極活物質合剤スラリーとした。また、補強物としてはPVdFのNMP溶液を用いた。この補強物及び正極活物質合剤スラリーを用いて、以下に示す塗布装置を使用してアルミニウム製芯体の表面に塗布して、実施例及び比較例1の試料を作製した。
[Preparation of sample]
A slurry in which 95% by mass of lithium cobaltate, 2% by mass of acetylene black as a conductive agent, and 3% by mass of polyvinylidene fluoride PVdF powder as a binder was dispersed in N-methylpyrrolidone NMP as a solvent was prepared. An agent slurry was obtained. Further, an NMP solution of PVdF was used as a reinforcement. Using this reinforcing material and the positive electrode active material mixture slurry, the sample was applied to the surface of an aluminum core using the following coating apparatus to prepare the samples of Example and Comparative Example 1.

使用した塗布装置20の概略斜視図を図1に示す。この塗布装置20は、厚さ12μmのアルミニウム製の帯状集電体21が第1ロール22及び第2ロール23を経て連続的に矢印の方向に移送されており、第1ロール22に対向する位置に補強物塗布用第1コーティングダイ24が、第2ロール23に対向する位置に第2コーティングダイ25がそれぞれ設けられている。そして、実施例においては、第1コーティングダイ24においては帯状集電体21の表面の両端側に沿って連続的に、乾燥後の厚さが活物質合剤層の圧縮後の厚さよりも薄い厚さ(例えば5μm)となるように実験的に定めた塗布量で塗布することにより補強物層26を形成し、第2コーティングダイ25においては正極活物質合剤スラリーを帯状集電体21の両側の補強物層26との間に隙間が生じないように乾燥後の厚さが90μmとなるように塗布して正極活物質合剤層27を有する実施例の帯状被乾燥体を作製した。また、比較例1及び2においては、補強物塗布用第1コーティングダイ24を使用せず、第2コーティングダイ25のみを使用して正極活物質合剤スラリーを実施例の場合と同じ厚さ及び同じ幅となるように塗布して正極活物質合剤層27のみを有する比較例1及び2の帯状被乾燥体を作製した。   A schematic perspective view of the coating apparatus 20 used is shown in FIG. In this coating apparatus 20, a strip-shaped current collector 21 made of aluminum having a thickness of 12 μm is continuously transferred in the direction of the arrow through the first roll 22 and the second roll 23, and is positioned opposite the first roll 22. Further, a first coating die 24 for applying a reinforcing material is provided, and a second coating die 25 is provided at a position facing the second roll 23. In the embodiment, in the first coating die 24, the thickness after drying is continuously smaller than the thickness after compression of the active material mixture layer along both end sides of the surface of the strip-shaped current collector 21. The reinforcing material layer 26 is formed by applying an experimentally determined coating amount so as to have a thickness (for example, 5 μm). In the second coating die 25, the positive electrode active material mixture slurry is applied to the belt-like current collector 21. The belt-shaped body to be dried of the example having the positive electrode active material mixture layer 27 was prepared by applying the film so that the thickness after drying was 90 μm so that no gap was formed between the reinforcing material layers 26 on both sides. Further, in Comparative Examples 1 and 2, the positive electrode active material mixture slurry having the same thickness and the same thickness as in the example was used without using the first coating die 24 for applying the reinforcing material and using only the second coating die 25. The strip-shaped materials to be dried of Comparative Examples 1 and 2 having only the positive electrode active material mixture layer 27 were applied so as to have the same width.

その後、実施例、比較例1及び2の帯状被乾燥体を温風を吹き付けて乾燥する乾燥炉(図示せず)内に連続的に通すことにより乾燥し、実施例、比較例1及び2の帯状乾燥体を作製した。次いで、実施例及び比較例1の帯状乾燥体についてはそのまま一対の対向する圧縮ロール間を通して、塗布された活物質合剤の厚さが60μmとなるように圧縮した。また、比較例2の帯状乾燥体については、両側の端部の活物質合剤が塗布されていない箇所を粘着テープにより補強した後、実施例及び比較例1の場合と同様に一対の対向する圧縮ロール間を通して、塗布された活物質合剤の厚さが60μmとなるように圧縮した。そして、実施例、比較例1及び2のそれぞれの試料について長さ100mに亘って一対の圧縮ロール間を通した際の亀裂、破断状態及びしわの発生状態を目視により確認した。結果をまとめて表1に示した。   Thereafter, the belt-like objects to be dried in Examples and Comparative Examples 1 and 2 were dried by continuously passing them through a drying furnace (not shown) for drying by blowing warm air, and the Examples and Comparative Examples 1 and 2 were dried. A belt-like dried body was produced. Next, the belt-like dried bodies of Examples and Comparative Example 1 were directly compressed through a pair of opposing compression rolls so that the applied active material mixture had a thickness of 60 μm. Moreover, about the strip | belt-shaped dry body of the comparative example 2, after reinforce | strengthening the location where the active material mixture of the both ends is not apply | coated with an adhesive tape, a pair of opposition is carried out similarly to the case of an Example and the comparative example 1. It compressed so that the thickness of the apply | coated active material mixture might be set to 60 micrometers through between compression rolls. And the crack, the fracture | rupture state, and the generation | occurrence | production state of a wrinkle at the time of letting each sample of an Example and the comparative examples 1 and 2 pass between a pair of compression rolls over length 100m were confirmed visually. The results are summarized in Table 1.

Figure 2007273114
Figure 2007273114

表1に示した結果から明らかなように、帯状集電体21の両側の端部を全てPVdFからなる補強物層26で被覆した実施例の試料では100mに亘って圧縮処理しても亀裂、破断及びしわは全く生じなかった。しかしながら、補強物層を何も設けなかった比較例1の試料は、正極活物質合剤の塗布部と被塗布部との境界においてしわは発生しなかったが破断が多発(27箇所)した。また、圧縮時に帯状集電体21の両側の端部を粘着テープで補強した比較例2の試料においては、粘着テープを活物質合剤の塗布部に沿って均一に貼着することが困難であったため、粘着テープの糊材が圧縮ロールに付着し、この糊材が比較例2の試料の表面に張り付いたことによる破断、又は、粘着テープと発物質塗布部との間に隙間が生じたことによるしわや破断が多発(破断8箇所、しわ34箇所)した。   As is apparent from the results shown in Table 1, in the sample of the example in which the end portions on both sides of the belt-like current collector 21 were all covered with the reinforcing material layer 26 made of PVdF, even if the compression treatment was performed over 100 m, the cracks, There were no breaks or wrinkles. However, in the sample of Comparative Example 1 in which no reinforcement layer was provided, wrinkles did not occur at the boundary between the coated portion and the coated portion of the positive electrode active material mixture, but breakage occurred frequently (27 locations). Further, in the sample of Comparative Example 2 in which the end portions on both sides of the strip-shaped current collector 21 are reinforced with an adhesive tape during compression, it is difficult to uniformly adhere the adhesive tape along the application portion of the active material mixture. Therefore, the adhesive tape glue material adhered to the compression roll, and the glue material stuck to the surface of the sample of Comparative Example 2, or a gap was created between the adhesive tape and the material-applying portion. There were frequent wrinkles and breaks (8 breaks, 34 wrinkles).

以上、示した結果から、帯状集電体の両側の端部を全てPVdFからなる補強物26で被覆した実施例の試料によれば極めて良好な結果が得られていることが分かる。なお、実施例においては、補強物として正極活物質合剤スラリーの溶媒及びバインダーと同じ溶剤及び高分子材料を含むものを使用した例を示したが、これらの溶剤及び高分子材料はそれぞれ異なっていてもよい。しかしながら、これらの溶剤及び高分子材料としてあえて異なるものを使用する利点はないので、補強物として正極活物質合剤スラリーの溶媒及びバインダーと同じ溶剤及び高分子材料を含むものを使用した方がよい。   From the results shown above, it can be seen that very good results are obtained with the sample of the example in which both ends of the belt-like current collector are covered with the reinforcing material 26 made of PVdF. In addition, in the Example, although the example using the same solvent and polymer material as the solvent and binder of a positive electrode active material mixture slurry was used as a reinforcement, these solvents and polymer materials are different from each other. May be. However, since there is no advantage of using different solvents and polymer materials, it is better to use a material containing the same solvent and polymer material as the positive electrode active material mixture slurry and binder as the reinforcing material. .

さらに、補強物層に用いる高分子材料としては、PVdFだけでなく、正極及び負極のバインダーとして用いられている高分子材料のうち溶剤に溶解するものであれば使用し得る。この場合、活物質合剤スラリーにバインダーとして普通に使用されているPVdF、ポリイミド、エチレンプロピレンジエンゴムから選択された1種を採用すると、補強物層と活物質合剤層との間の境界が互いに溶け合って、両者間に実質的に境界が生じなくなることから非常に良好な結果を得ることができる。   Furthermore, as the polymer material used for the reinforcing material layer, not only PVdF but also a polymer material used as a binder for the positive electrode and the negative electrode can be used as long as it dissolves in a solvent. In this case, when one kind selected from PVdF, polyimide, and ethylene propylene diene rubber, which are commonly used as a binder in the active material mixture slurry, is adopted, the boundary between the reinforcing material layer and the active material mixture layer is Very good results can be obtained because they melt together and virtually no boundary is created between them.

また、実施例では帯状集電体の両側の端部に補強物層を連続的に設けるとともに正極活物質合剤層を連続的に設けた例を示したが、正極活物質合剤層は間欠的に設けてもよい。このように、帯状集電体の両側の端部に補強物層を連続的に設けるとともに正極活物質合剤層を間欠的に設けると、正極活物質合剤層が設けられていない箇所においても圧縮工程で圧縮ロールが帯状集電体に直接接触することがないため、補強物層を設けない従来例の場合と比すると特に効果が顕著に表れる。   Further, in the examples, the example in which the reinforcing material layer is continuously provided at the both end portions of the belt-shaped current collector and the positive electrode active material mixture layer is continuously provided is shown, but the positive electrode active material mixture layer is intermittent. It may be provided. In this way, when the reinforcing material layer is continuously provided at both end portions of the strip-shaped current collector and the positive electrode active material mixture layer is provided intermittently, even in a place where the positive electrode active material mixture layer is not provided. Since the compression roll does not come into direct contact with the belt-like current collector in the compression step, the effect is particularly prominent as compared with the conventional example in which no reinforcing material layer is provided.

以上は、コバルト酸リチウム等のリチウム複合酸化物からなる正極活物質合剤スラリーを帯状集電体に塗布した場合の例を示したが、黒鉛等の炭素材料を負極活物質とする負極活物質合剤スラリーを帯状集電体に塗布した場合についても、その程度は異なるにしても、同様の傾向が生じる。従って、本発明によれば、非水電解質二次電池の品質および生産性を向上させることができ、その工業的価値は大である。   The above shows an example in which a positive electrode active material mixture slurry made of a lithium composite oxide such as lithium cobalt oxide is applied to a strip-shaped current collector, but a negative electrode active material using a carbon material such as graphite as a negative electrode active material Even when the mixture slurry is applied to the belt-like current collector, the same tendency occurs even if the degree is different. Therefore, according to the present invention, the quality and productivity of the nonaqueous electrolyte secondary battery can be improved, and its industrial value is great.

塗布装置の概略斜視図である。It is a schematic perspective view of a coating device. 従来から作製されている円筒形の非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cuts the cylindrical nonaqueous electrolyte secondary battery produced conventionally from the lengthwise direction.

符号の説明Explanation of symbols

20 塗布装置
21 帯状集電体
22 第1ロール
23 第2ロール
24 第1コーティングダイ
25 第2コーティングダイ
26 補強物層
27 正極活物質合剤層
20 Coating Device 21 Band Current Collector 22 First Roll 23 Second Roll 24 First Coating Die 25 Second Coating Die 26 Reinforcement Layer 27 Positive Electrode Active Material Mixture Layer

Claims (7)

活物質合剤スラリーを帯状集電体上に塗布し、乾燥した後に圧縮する工程を有する非水電解質二次電池用電極の製造方法において、前記帯状集電体の両側の端部に沿って、圧縮後の前記活物質合剤スラリー層の厚さよりも薄く制御した補強物層を連続的に塗布形成した後、前記帯状集電体上の補強物層の間に隙間なく前記活物質合剤スラリーを塗布することを特徴とする非水電解質二次電池用電極の製造方法。   In the method of manufacturing an electrode for a non-aqueous electrolyte secondary battery including a step of applying an active material mixture slurry onto a strip current collector, drying and then compressing, along the end portions on both sides of the strip current collector, After continuously forming the reinforcing material layer controlled to be thinner than the thickness of the active material mixture slurry layer after compression, the active material mixture slurry without gaps between the reinforcing material layers on the strip-shaped current collector The manufacturing method of the electrode for nonaqueous electrolyte secondary batteries characterized by apply | coating. 前記補強物層が前記活物質合剤スラリーと同じ溶剤を含むことを特徴とする請求項1に記載の非水電解質二次電池用電極の製造方法。   The method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the reinforcing material layer contains the same solvent as the active material mixture slurry. 前記補強物層が前記活物質合剤スラリーと同じ溶剤に可溶な高分子材料を含むことを特徴とする請求項2に記載の非水電解質二次電池用電極の製造方法。   The method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 2, wherein the reinforcing material layer contains a polymer material soluble in the same solvent as the active material mixture slurry. 前記高分子材料がポリフッ化ビニリデン、ポリイミド、エチレンプロピレンジエンゴムから選択された1種であることを特徴とする請求項3に記載の非水電解質二次電池用電極の製造方法。   The method for producing an electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the polymer material is one selected from polyvinylidene fluoride, polyimide, and ethylene propylene diene rubber. 前記活物質合剤スラリーをダイコート法により間欠的に前記帯状集電体に塗布することを特徴とする請求項1に記載の非水電解質二次電池用電極の製造方法。   The method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the active material mixture slurry is intermittently applied to the strip-shaped current collector by a die coating method. 前記活物質合剤スラリーが正極活物質合剤スラリーであり、前記帯状集電体がアルミニウムからなることを特徴とする請求項1〜5のいずれかに記載の非水電解質二次電池用電極の製造方法。   The electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein the active material mixture slurry is a positive electrode active material mixture slurry, and the band-shaped current collector is made of aluminum. Production method. 前記帯状集電体の厚さが8μm以上12μm以下であることを特徴とする請求項5に記載の非水電解質二次電池用電極の製造方法。
6. The method for producing an electrode for a nonaqueous electrolyte secondary battery according to claim 5, wherein the thickness of the strip-shaped current collector is 8 μm or more and 12 μm or less.
JP2006093801A 2006-03-30 2006-03-30 Method of manufacturing electrode for nonaqueous electrolyte secondary battery Pending JP2007273114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006093801A JP2007273114A (en) 2006-03-30 2006-03-30 Method of manufacturing electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006093801A JP2007273114A (en) 2006-03-30 2006-03-30 Method of manufacturing electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2007273114A true JP2007273114A (en) 2007-10-18

Family

ID=38675732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006093801A Pending JP2007273114A (en) 2006-03-30 2006-03-30 Method of manufacturing electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2007273114A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468475A (en) * 2010-11-05 2012-05-23 株式会社杰士汤浅国际 Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
JP2013045659A (en) * 2011-08-24 2013-03-04 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014182999A (en) * 2013-03-21 2014-09-29 Nissan Motor Co Ltd Electrode manufacturing method and electrode manufacturing apparatus
US9099757B2 (en) 2010-09-03 2015-08-04 Gs Yuasa International Ltd. Battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9099757B2 (en) 2010-09-03 2015-08-04 Gs Yuasa International Ltd. Battery
CN102468475A (en) * 2010-11-05 2012-05-23 株式会社杰士汤浅国际 Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
JP2012114079A (en) * 2010-11-05 2012-06-14 Gs Yuasa Corp Electrode for electricity storage element, electricity storage element employing the same, and method of manufacturing electrode for electricity storage element
US8986891B2 (en) 2010-11-05 2015-03-24 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
CN102468475B (en) * 2010-11-05 2016-05-04 株式会社杰士汤浅国际 The manufacture method of electrode for electrode, the charge storage element that uses it and charge storage element for charge storage element
US9450236B2 (en) 2010-11-05 2016-09-20 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
JP2013045659A (en) * 2011-08-24 2013-03-04 Toyota Motor Corp Nonaqueous electrolyte secondary battery
JP2014182999A (en) * 2013-03-21 2014-09-29 Nissan Motor Co Ltd Electrode manufacturing method and electrode manufacturing apparatus

Similar Documents

Publication Publication Date Title
EP2403037B1 (en) Electrode plate for nonaqueous secondary battery, manufacturing method therefor, and nonaqueous secondary battery using same
US10553852B2 (en) Method for manufacturing electrode and method for manufacturing secondary battery
EP2319109B1 (en) Battery electrode plate, forming method thereof and battery having the same
US8273482B2 (en) Electrode
CN107004837B (en) Method for manufacturing electrode for lithium ion secondary battery
JP5842407B2 (en) Method for producing lithium ion secondary battery
US10673059B2 (en) Method for manufacturing electrode and method for manufacturing secondary battery
JP2017076631A (en) Electrode manufacturing method
JP6038813B2 (en) Electrode manufacturing method and non-aqueous electrolyte battery manufacturing method
JP5260851B2 (en) Lithium ion secondary battery
JP2007311328A (en) Nonaqueous electrolyte battery
WO2015145806A1 (en) Apparatus for manufacturing power storage device, and method for manufacturing power storage device
JP2016081829A (en) Method for manufacturing electrode for lithium ion secondary battery
JP2007273114A (en) Method of manufacturing electrode for nonaqueous electrolyte secondary battery
WO2008026358A1 (en) Electrode for nonaqueous electrolyte secondary battery, process for producing the same, and nonaqueous electrolyte secondary battery
JP2007294400A (en) Manufacturing method of lithium-ion secondary battery
JP5100153B2 (en) Method for producing electrode of non-aqueous electrolyte secondary battery
JP2010205429A (en) Nonaqueous electrolyte secondary battery and electrode for the same
JP2022538822A (en) Patterned positive electrode for lithium-sulfur secondary battery, manufacturing method thereof, and lithium-sulfur secondary battery including the same
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP2016181469A (en) Method for manufacturing electrode sheet of power storage device, and inspection method
JP2007265698A (en) Manufacturing method of electrode for nonaqueous electrolyte secondary battery
CN111433944A (en) Collector electrode sheet and method for manufacturing same, and battery and method for manufacturing same
WO2019082575A1 (en) Current collector electrode sheet manufacturing method, compression roller, current collector electrode sheet, and battery
JP4663303B2 (en) Method for producing electrode of non-aqueous electrolyte secondary battery