WO2015145806A1 - Apparatus for manufacturing power storage device, and method for manufacturing power storage device - Google Patents

Apparatus for manufacturing power storage device, and method for manufacturing power storage device Download PDF

Info

Publication number
WO2015145806A1
WO2015145806A1 PCT/JP2014/072970 JP2014072970W WO2015145806A1 WO 2015145806 A1 WO2015145806 A1 WO 2015145806A1 JP 2014072970 W JP2014072970 W JP 2014072970W WO 2015145806 A1 WO2015145806 A1 WO 2015145806A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
insulating material
electrode material
current collector
collector foil
Prior art date
Application number
PCT/JP2014/072970
Other languages
French (fr)
Japanese (ja)
Inventor
正興 松岡
栄作 二ノ宮
藤井 武
高原 洋一
千恵美 窪田
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201480050428.5A priority Critical patent/CN105531855B/en
Priority to KR1020167006332A priority patent/KR101773728B1/en
Publication of WO2015145806A1 publication Critical patent/WO2015145806A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a manufacturing apparatus and a manufacturing method for an electricity storage device, and can be suitably used for, for example, a step of applying an electrode material for an electricity storage device.
  • Patent Document 1 JP-A-2003-054991
  • This publication includes a positive electrode sheet delivery mechanism, a positive electrode material coating mechanism, a positive electrode forming heating mechanism, an electrolysis and insulating material coating mechanism, an electrolysis and insulator forming heating mechanism, and a negative electrode sheet.
  • Secondary equipped with a state material delivery mechanism, a negative electrode material coating mechanism, a negative electrode formation heating mechanism, an electrolysis / insulation material coating mechanism, an electrolysis / insulator formation heating mechanism, and a winding mechanism A battery manufacturing apparatus is described.
  • the winding mechanism is formed by laminating a positive electrode sheet material to which a positive electrode material and electrolysis and an insulating material are fixed, and a negative electrode sheet material to which a negative electrode material and an electrolysis and insulating material are fixed, to form a predetermined shape. It is a rotating mechanism.
  • a positive or negative electrode material (also referred to as an electrode material or an electrode active material) is provided on both sides of a current collector foil (also referred to as a metal foil, an electrode plate, a base material, a substrate, or a sheet).
  • a current collector foil also referred to as a metal foil, an electrode plate, a base material, a substrate, or a sheet.
  • the thickness of the insulating material is, for example, about 5 ⁇ m to 40 ⁇ m
  • the insulating material may be cut and the electrode material may be exposed.
  • the side surfaces of the electrode material are inclined, and the thickness of the electrode material becomes non-uniform, making it impossible to form an electrode material having a desired shape. For these reasons, there is a problem that the production yield of the secondary battery is lowered.
  • An apparatus for manufacturing an electricity storage device includes a plurality of slurry-like first surfaces spaced apart from each other in a second direction orthogonal to the first direction and the surface of the current collector foil on the surface of the current collector foil traveling in the first direction.
  • a first application mechanism that applies one insulating material; and a second application mechanism that applies a slurry-like electrode material to a surface of a current collector foil sandwiched between first insulating materials adjacent in a second direction.
  • a third application mechanism is provided for applying a slurry-like second insulating material on the upper surfaces of the first insulating material and the electrode material.
  • a method for manufacturing an electricity storage device includes a plurality of slurry-like first surfaces separated from each other in a second direction orthogonal to the first direction and the surface of the current collector foil on the surface of the current collector foil traveling in the first direction.
  • a step of applying an insulating material a step of applying a slurry-like electrode material to the surface of a current collector foil sandwiched between first insulating materials adjacent in the second direction, and an upper surface of the first insulating material and the electrode material. And applying a slurry-like second insulating material.
  • the production yield of power storage devices such as lithium ion batteries can be improved.
  • FIG. 1 is a schematic diagram of an apparatus for producing an electrode sheet for a lithium ion battery in Embodiment 1.
  • FIG. It is sectional drawing of the electrode sheet of each application
  • FIG. (A) is sectional drawing (sectional drawing of A1-A1 of FIG. 1) of the electrode sheet of a 1st insulating material (spacer material) application
  • (B) is a cross-sectional view of the electrode sheet in the electrode material application step (cross-sectional view of B1-B1 in FIG. 1).
  • C) is a cross-sectional view (cross-sectional view of C1-C1 in FIG.
  • FIG. 3 is a process diagram summarizing a specific manufacturing process of the lithium ion battery in the first embodiment.
  • 6 is a schematic diagram of a production apparatus for an electrode sheet of a lithium ion battery in Embodiment 2.
  • FIG. It is principal part sectional drawing of the electrode sheet of each application
  • FIG. (A) is sectional drawing (sectional drawing of A2-A2 of FIG.
  • FIG. 5B is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step (cross-sectional view taken along B2-B2 in FIG. 4).
  • C is a cross-sectional view of the electrode sheet in the second insulating material (separator material) application step (cross-sectional view of C2-C2 in FIG. 4).
  • D is a cross-sectional view of the electrode sheet in the drying step (cross-sectional view of D2-D2 in FIG. 4).
  • 6 is a schematic diagram of a production apparatus for an electrode sheet of a lithium ion battery according to Embodiment 3.
  • FIG. 3 is a schematic diagram of a production apparatus for an electrode sheet of a lithium ion battery according to Embodiment 3.
  • FIG. (A) is sectional drawing (sectional drawing of A3-A3 of FIG. 6) of the electrode sheet of a 1st insulating material (spacer material) application
  • FIG. 6B is a cross-sectional view of the electrode sheet in the first electrode material application step (cross-sectional view of B3-B3 in FIG. 6).
  • (C) is a cross-sectional view of the electrode sheet in the second electrode material application step (C3-C3 cross-sectional view of FIG. 6).
  • (D) is a cross-sectional view of the electrode sheet in the second insulating material (separator material) application step (cross-sectional view of D3-D3 in FIG. 6).
  • (E) is a cross-sectional view of the electrode sheet in the drying process (cross-sectional view of E3-E3 in FIG. 6). It is process drawing which put together the specific manufacturing process of the lithium ion battery shown as a comparative example. It is the schematic of the manufacturing apparatus of the electrode sheet
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • the positive electrode material and the negative electrode material are collectively referred to as “electrode material”, the film made of the positive electrode material after the drying process is called “positive electrode film”, and the film made of the negative electrode material after the drying process is called “negative electrode film”.
  • the positive electrode film and the negative electrode film are collectively referred to as “electrode film”.
  • the positive electrode material, the negative electrode material, and the insulating material before the drying step are substances having fluidity including a liquid such as a binder solution and an organic solvent.
  • the current collector foil on which the positive electrode film is formed is “positive electrode sheet (also referred to as positive electrode plate)”, and the current collector foil on which the negative electrode film is formed is “negative electrode sheet (also referred to as negative electrode plate)”.
  • the positive electrode sheet and the negative electrode sheet are collectively referred to as an “electrode sheet (also referred to as an electrode plate)”.
  • the surface of the current collector foil refers to only the front surface, not the entire surface including the front surface and the back surface of the current collector foil.
  • a direction in which the current collector foil travels is referred to as a “first direction”
  • a direction orthogonal to the first direction on the surface of the current collector foil is referred to as a “second direction”.
  • a lithium ion battery is exemplified as a secondary battery that is an electricity storage device, and a manufacturing apparatus and a manufacturing method thereof will be described, but the present invention is not limited to this.
  • the lithium ion battery is a kind of non-aqueous electrolyte secondary battery, and is a secondary battery in which lithium ions in the electrolyte bear electric conduction.
  • a lithium-containing composite oxide is used for the positive electrode, and a carbonaceous material is used for the negative electrode.
  • the electrolyte for example, an organic solvent such as ethylene carbonate or a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is used.
  • LiPF 6 lithium hexafluorophosphate
  • a positive electrode sheet coated with a positive electrode material on the surface of a current collector foil eg, Al (aluminum) foil
  • a negative electrode material applied on the surface of a current collector foil eg, Cu (copper) foil
  • An electrode winding body is provided in which a negative electrode sheet and a separator such as a polymer film that prevents contact between the positive electrode film and the negative electrode film are wound. And in a lithium ion battery, while this electrode winding body is inserted in an armored can, electrolyte solution (the said electrolyte) is inject
  • a positive electrode sheet in which a positive electrode material is coated on the surface of a current collector foil and a negative electrode sheet in which a negative electrode material is coated on the surface of a current collector foil are formed in a band shape, and the positive electrode formed in a band shape
  • the sheet and the negative electrode sheet are wound in a cross-sectional spiral shape through a separator so that the positive electrode film on the positive electrode sheet and the negative electrode film on the negative electrode sheet are not in direct contact with each other to form an electrode winding body.
  • FIG. 8 is a process diagram summarizing a specific manufacturing process of a lithium ion battery shown as a comparative example.
  • the manufacturing process of the lithium ion battery includes a positive electrode sheet manufacturing process, a negative electrode sheet manufacturing process, a battery cell assembly process, and a battery module assembly process.
  • a slurry-like positive electrode material is applied to the surface of a film-like current collector foil (positive electrode material application), and then the upper and side surfaces of the positive electrode material and the current collector foil to which no positive electrode material is applied
  • a slurry-like insulating material to be a separator is applied to the surface of the substrate (application of separator material).
  • drying after drying the entire coating film obtained by laminating the slurry-like positive electrode material and the slurry-like insulating material (drying), a laminated film of the positive electrode film made of the positive electrode material and the separator made of the insulating material is formed.
  • the current collector foil is subjected to processing such as compression and cutting (processing) to produce a film-like positive electrode sheet having a positive electrode film and a separator.
  • the procedure until the negative electrode sheet is manufactured is the same as in the positive electrode sheet manufacturing process.
  • a separator is formed on the upper surface and side surfaces of the negative electrode material and on the surface of the current collector foil on which the negative electrode material is not applied.
  • a slurry-like insulating material is applied (separator material application).
  • a laminated film of the negative electrode film made of the negative electrode material and the separator made of the insulating material is formed.
  • the current collector foil is subjected to processing such as compression and cutting (processing) to produce a film-like negative electrode sheet having a negative electrode film and a separator.
  • a positive electrode having a size necessary for the battery cell is cut out from the film-like positive electrode sheet, and a negative electrode having a size necessary for the battery cell is cut out from the film-like negative electrode sheet.
  • a group of positive and negative electrode pairs assembled together is assembled and welded (welding / assembly). Subsequently, the group of welded electrode pairs is placed in a battery can into which an electrolytic solution has been injected (injection), and then the battery can is completely sealed (sealing) to produce a battery cell.
  • the produced battery cell is repeatedly charged / discharged (charge / discharge), and the performance and reliability of the battery cell are examined (for example, the capacity and voltage of the battery cell, and the current and current during charging or discharging the battery cell (Inspection of voltage etc.) (single cell inspection). Thereby, a battery cell is completed and a battery cell assembly process is complete
  • a battery module is configured by combining a plurality of battery cells in series, and a battery system is configured by connecting a controller for charge / discharge control (module assembly).
  • module assembly a controller for charge / discharge control
  • an inspection regarding performance and reliability of the assembled battery module for example, inspection of capacity and voltage of the battery module, current and voltage at the time of charging or discharging the battery module, etc.
  • FIG. 9 is a schematic view of an apparatus for manufacturing an electrode sheet of a lithium ion battery shown as a comparative example.
  • surface of a positive electrode sheet is illustrated. Although omitted here, the manufacturing process of one side of the negative electrode sheet is the same.
  • the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4, the fifth roller RL5, and the sixth roller RL6. Is conveyed to the take-up roll SL2.
  • a first slit die coater DC1 is installed facing the third roller RL3, and a second slit die coater DC2 is installed facing the fourth roller RL4.
  • the slurry-like positive electrode material PAS supplied from the first slit die coater DC1 at a position facing the third roller RL3 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1.
  • the positive electrode material PAS is stored in the tank TA1, and is supplied to the surface of the current collector foil PEP by the metering pump PU1.
  • a slurry-like insulating material IF supplied from the second slit die coater DC2 at a position facing the fourth roller RL4 is applied.
  • the insulating material IF is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP coated with the positive electrode material PAS by the metering pump PU2. That is, the insulating material IF is applied to the upper surface and side surfaces of the positive electrode material PAS and the surface of the current collector foil PEP to which the positive electrode material PAS is not applied.
  • the entire coating film obtained by laminating the positive electrode material PAS and the insulating material IF formed on the surface of the current collector foil PEP was dried, and the coating film was formed on the surface.
  • the current collector foil PEP is wound around the winding roll SL2.
  • FIG. 10 is a cross-sectional view schematically illustrating the state of application of the slurry-like positive electrode material PAS by the first slit die coater DC1. Although omitted here, the state of application of the slurry-like insulating material IF by the second slit die coater DC2 is also the same.
  • the slurry-like positive electrode material PAS is supplied to the manifold D2 of the die D1 from the tank in which the slurry-like cathode material PAS is stored by a metering pump.
  • the manifold D2 After the pressure distribution of the slurry-like positive electrode material PAS becomes uniform, the slurry-like positive electrode material PAS is supplied to and discharged from the slit portion D3 provided in the die D1.
  • the discharged slurry-like positive electrode material PAS forms an electrode material reservoir D4 called a bead between the base D1 and the current collector foil PEP that travels relative to the base D1 while maintaining the first distance h1.
  • the slurry-like positive electrode material PAS is pulled out as the current collector foil PEP travels to form a coating film made of the positive electrode material PAS.
  • the coating film is continuously formed.
  • the pressure for supplying the positive electrode material PAS to the manifold D2 is (pressure loss of the slit portion D3 + pressure loss of the downstream lip portion D6 of the base D1 + pressure of the downstream meniscus D5).
  • the inventors of the present invention are studying to increase the capacity and miniaturization of lithium ion batteries, and as one means for that, are studying a thinner separator and a thicker electrode film (positive electrode film and negative electrode film). .
  • the material IF cannot be uniformly applied, and the separator is cut off. Further, even if the insulating material IF can be uniformly applied to the upper surface of the electrode material, the insulating material IF can be uniformly applied to the side surfaces of the electrode material and the surface of the current collector foil PEP to which the electrode material is not applied. Can not. Furthermore, in order to form a thick electrode film, the electrode material must be applied thickly on the surface of the current collector foil PEP. However, when the electrode material is applied thickly, the side surface of the electrode material is inclined (current collector foil PEP).
  • FIG. 1 is a schematic diagram of an apparatus for manufacturing an electrode sheet for a lithium ion battery according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the electrode sheet in each coating step and drying step for explaining the method for producing the electrode sheet of the lithium ion battery in the first embodiment.
  • 2A is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step (cross-sectional view of A1-A1 in FIG. 1), and FIG.
  • FIG. 2B is a cross-sectional view of the electrode sheet in the electrode material application step.
  • FIG. 2C are cross-sectional views (cross-sectional view of C1-C1 in FIG. 1) of the electrode sheet in the second insulating material (separator material) application step.
  • FIG. 2D is a cross-sectional view of the electrode sheet in the drying process (cross-sectional view of D1-D1 in FIG. 1).
  • Embodiment 1 exemplifies a method of manufacturing a positive electrode film formed in two rows on the surface of the current collector foil along the first direction in which the current collector foil travels. Moreover, in this Embodiment 1, although the manufacturing method of the single side
  • the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4,
  • the paper is conveyed to the take-up roll SL2 by the 5-roller RL5, the sixth roller RL6, and the seventh roller RL7.
  • a dispenser DP is installed facing the third roller RL3, a first slit die coater DC1 is installed facing the fourth roller RL4, and a second slit die coater DC2 is installed facing the fifth roller RL5.
  • First coating process First insulating material (spacer material) coating process
  • the first insulating material IF1 is stored in the tank TA1, and is supplied to the surface of the current collector foil PEP by the metering pump PU1.
  • the plurality of first insulating materials IF1 are arranged on the surface of the current collector foil PEP traveling in the first direction in the second direction orthogonal to the first direction and the surface of the current collector foil PEP. They are applied separately from each other. That is, the plurality of first insulating materials IF1 collects current in such a manner that a region in which the positive electrode material PAS is applied to the surface of the current collector foil PEP traveling in the first direction in the second application step is sandwiched in the second direction. It is applied to the surface of the foil PEP.
  • the plurality of first insulating materials IF1 regulate the width in the second direction of the region of the positive electrode material PAS applied to the surface of the current collector foil PEP traveling in the first direction in the subsequent second application step.
  • the plurality of first insulating materials IF1 are separated from each other in the second direction, and the current collector foil Three rows are applied to the surface of the PEP along the first direction.
  • the thickness of the first insulating material IF1 is substantially the same as the thickness of the positive electrode material PAS applied to the surface of the current collector foil PEP in the subsequent second application step.
  • the region to which the first insulating material IF1 is applied is a region that is cut after the positive electrode sheet is completed, the width in the second direction of the first insulating material IF1 is set to be small in order to reduce the material cost.
  • the width in the second direction of the first insulating material IF1 is about 5 mm to 15 mm.
  • Second application process electrode material application process
  • the slurry-like positive electrode material PAS supplied from the first slit die coater DC1 at a position facing the fourth roller RL4 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1.
  • the positive electrode material PAS is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP by the metering pump PU2.
  • the plurality of positive electrode materials PAS are applied to the surface of the current collector foil PEP traveling in the first direction and to the surface of the current collector foil PEP in the previous first application step. 1 It apply
  • the plurality of positive electrode materials PAS are separated by the first insulating material IF1 in the second direction. Two rows are applied along the first direction on the surface of the current collector foil PEP so as to be separated from each other.
  • the thickness of the positive electrode material PAS is substantially the same as the thickness of the first insulating material IF1. Although it is desirable that the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 are the same, in order to prevent the positive electrode material PAS from being applied to the upper surface of the first insulating material IF1, the upper surface of the positive electrode material PAS is 1
  • the positive electrode material PAS is applied so as to be lower by about 0 ⁇ m to 10 ⁇ m than the upper surface of the insulating material IF1.
  • the thickness of the positive electrode material PAS can be adjusted, for example, by adjusting the height of the base D1 of the first slit die coater DC1 (see FIG. 10) and the feed amount of the positive electrode material PAS.
  • the positive electrode material PAS When the first insulating material IF1 is not applied, when the positive electrode material PAS is applied thickly, the side surface of the positive electrode material PAS is inclined, and a depression is formed on the upper surface of the positive electrode material PAS, so that the shape of the positive electrode material PAS is not stable. There is a problem. However, in the first embodiment, since the region where the positive electrode material PAS is applied is defined in advance by the first insulating material IF1, the positive electrode material can be applied even if the positive electrode material PAS is applied thickly (eg, about 100 ⁇ m to 400 ⁇ m). Since the side surface of the PAS is not inclined, the shape of the positive electrode material PAS is stabilized.
  • Second insulating material (separator material) coating process Next, a slurry-like second insulating material IF2 supplied from the second slit die coater DC2 at a position facing the fifth roller RL5 is applied.
  • the second insulating material IF2 is stored in the tank TA3, and is supplied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS by the metering pump PU3.
  • the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS along the first direction in which the current collector foil PEP travels.
  • the thickness of the second insulating material IF2 is, for example, about 5 ⁇ m to 40 ⁇ m.
  • the thickness of the second insulating material IF2 can be adjusted, for example, by adjusting the height of the base D1 of the second slit die coater DC2 (see FIG. 10) and feeding the second insulating material IF2.
  • the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS, which are substantially flat surfaces, for example, the side surfaces of the first insulating material IF1 and the positive electrode material PAS, and the first insulating material IF1 and It is not applied to the surface of the current collector foil PEP to which the positive electrode material PAS is not applied.
  • the second insulating material IF2 can be uniformly applied, so the film of the second insulating material IF2 Cutting can be prevented.
  • the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 were substantially the same before drying, but after drying, the thickness of the spacer SP made of the first insulating material IF1.
  • the thickness is smaller than the thickness of the positive electrode film PE made of the positive electrode material PAS. This is due to the difference between the amount of solid matter (eg, positive electrode active material and conductive additive) contained in the positive electrode material PAS and the amount of solid matter contained in the first insulating material IF1. That is, the amount of the solid matter contained in the positive electrode material PAS is relatively large, and the amount of the solid matter contained in the first insulating material IF1 is controlled to be relatively small. It is made thinner than the thickness of the positive electrode film PE.
  • the positive electrode film PE and the spacer SP were applied to the upper surfaces of these after drying.
  • the laminated film with the separator SE made of the second insulating material IF2 is cut, the laminated film is compressed (roll press). During the compression, it is important to apply a load to the positive electrode film PE. Therefore, if the spacer SP is thicker than the positive electrode film PE, the load is not applied to the positive electrode film PE. Therefore, it is necessary to make the thickness of the spacer SP thinner than the thickness of the positive electrode film PE.
  • the method for manufacturing the positive electrode film PE formed in two rows on the surface of the current collector foil PEP along the first direction in which the current collector foil PEP travels is exemplified, but the present invention is not limited thereto. It is not something.
  • the positive electrode film PE may be one row or three or more rows, and the same effect can be obtained.
  • FIG. 3 is a process diagram summarizing a specific manufacturing process of the lithium ion battery in the first embodiment.
  • the manufacturing process of the lithium ion battery is the same as the manufacturing process of the lithium ion battery shown in FIG. 8, the positive electrode sheet manufacturing process, the negative electrode sheet manufacturing process, the battery cell assembling process, and the battery. Module assembly process.
  • the first insulating material is produced by mixing and preparing various materials as raw materials.
  • a slurry-like positive electrode material is applied between the first insulating materials applied separately in the second direction (positive electrode material application).
  • the positive electrode material is produced by mixing and preparing various materials as raw materials.
  • a slurry-like second insulating material serving as a separator is applied to the top surfaces of the first insulating material and the positive electrode material formed on the surface of the film-like current collector foil (separator material application).
  • the second insulating material is produced by mixing and preparing various materials as raw materials.
  • the film-form current collector foil has a film-like shape in which the positive electrode film made of the positive electrode material and the spacer made of the first insulating material and the separator made of the second insulating material formed on the upper surface thereof are laminated.
  • the positive electrode sheet is manufactured.
  • the negative electrode sheet manufacturing process various materials used as raw materials are different from those in the positive electrode sheet manufacturing process, but the procedure until the negative electrode sheet is manufactured is the same as in the positive electrode sheet manufacturing process.
  • a plurality of slurry-like first insulating materials serving as spacers are applied to the surface of a film-like current collecting foil in a second direction perpendicular to the first direction in which the current collecting foil runs (spacer). Material application).
  • the first insulating material is produced by mixing and preparing various materials as raw materials.
  • a slurry-like negative electrode material is applied between the first insulating materials applied in the second direction so as to be separated from each other on the surface of the film-like current collecting foil (negative electrode material application).
  • the negative electrode material is produced by mixing and preparing various materials as raw materials.
  • a slurry-like second insulating material serving as a separator is applied to the upper surfaces of the first insulating material and the negative electrode material formed on the surface of the film-like current collecting foil (separator material application).
  • the second insulating material is produced by mixing and preparing various materials as raw materials.
  • a positive electrode having a size necessary for the battery cell is cut out from the film-like positive electrode sheet, and a negative electrode having a size necessary for the battery cell is cut out from the film-like negative electrode sheet.
  • each material of lithium ion battery for example, a lithium-containing composite oxide having a spinel structure containing lithium cobaltate or Mn (manganese) can be used.
  • a composite oxide containing Ni (nickel), Co (cobalt), and Mn (manganese), or an olivine type compound represented by olivine type iron phosphate can be used.
  • the material used for the positive electrode active material is not limited to these.
  • a lithium-containing composite oxide having a spinel structure containing Mn (manganese) is excellent in thermal stability, a lithium ion battery with high safety can be formed by forming a positive electrode sheet containing this.
  • the positive electrode active material only a lithium-containing composite oxide having a spinel structure containing Mn (manganese) may be used, but other positive electrode active materials may be used in combination. Examples of such other positive electrode active materials include olivine type represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.), for example. Compound etc. are mentioned.
  • lithium-containing transition metal oxide having a layer structure examples include LiCoO 2 or LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0). .2) can be used.
  • the lithium-containing transition metal oxide having a layered structure includes an oxide containing at least Ni (nickel), Co (cobalt), and Mn (manganese) (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3/5 Mn 1/5 Co 1/5 O 2, etc.) can be used.
  • a graphite material such as natural graphite (flaky graphite), artificial graphite, or expanded graphite can be used.
  • an easily graphitizable carbonaceous material such as coke obtained by firing pitch can be used.
  • a non-graphitizable carbonaceous material such as amorphous carbon obtained by low-temperature firing of furfuryl alcohol resin (PFA), polyparaphenylene (PPP), phenol resin, or the like may be used as the negative electrode active material.
  • PFA furfuryl alcohol resin
  • PPP polyparaphenylene
  • phenol resin phenol resin
  • Li (lithium) or a lithium-containing compound can also be used as the negative electrode active material.
  • lithium-containing compound examples include a lithium alloy such as Li—Al or an alloy containing an element that can be alloyed with Li (lithium) and Si (silicon) or Sn (tin). Furthermore, an oxide-based material such as Sn oxide or Si oxide can also be used.
  • a lithium alloy such as Li—Al or an alloy containing an element that can be alloyed with Li (lithium) and Si (silicon) or Sn (tin).
  • an oxide-based material such as Sn oxide or Si oxide can also be used.
  • the conductive auxiliary agent used in the first embodiment is used as an electronic conductive auxiliary agent to be contained in the positive electrode film.
  • a carbon material such as carbon black, acetylene black, ketjen black, graphite, carbon fiber, or carbon nanotube is preferable.
  • acetylene black or ketjen black is particularly preferable from the viewpoint of the amount of addition and conductivity and the manufacturability of the coating positive electrode mixture slurry.
  • the conductive auxiliary agent can be contained in the negative electrode film, and may be preferable.
  • the binder used in the first embodiment preferably also contains a binder for binding the active material and the conductive additive.
  • a binder for example, a polyvinylidene fluoride-based polymer (a polymer of a fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer) or a rubber-based polymer is preferably used. Two or more of the above polymers may be used in combination.
  • the binder is preferably provided in the form of a solution dissolved in a solvent.
  • Examples of the fluorine-containing monomer group for synthesizing the polyvinylidene fluoride-based polymer include vinylidene fluoride, or a mixture of vinylidene fluoride and another monomer, and a monomer mixture containing 80% by mass or more of vinylidene fluoride. Can be mentioned. Examples of other monomers include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.
  • Examples of the rubber-based polymer include styrene butadiene rubber (SBR), ethylene propylene diene rubber, and fluorine rubber.
  • SBR styrene butadiene rubber
  • ethylene propylene diene rubber examples include fluorine rubber.
  • Content of the binder in an electrode film is 0.1 mass% or more on the basis of the electrode film after drying, More preferably, it is 0.3 mass% or more, 10 mass% or less, Furthermore, it is 5 mass% or less. More desirable. If the binder content is too small, not only is the solidification in the drying process insufficient, but the mechanical strength of the electrode film after drying is insufficient, and the electrode film may peel from the current collector foil. Moreover, when there is too much content of a binder, there exists a possibility that the amount of active materials in an electrode film may reduce and battery capacity may become low.
  • an inorganic oxide such as Al 2 O 3 (alumina) or SiO 2 (silica) can be used.
  • a slurry in which fine particles of polypropylene or polyethylene are confused may be used, and by using this, shutdown property can be provided.
  • a resin is used as a binder.
  • the binder used for the electrode film is preferably used as the binder.
  • the current collector foil used in the first embodiment is not limited to a sheet-like foil.
  • the substrate for example, pure metal or alloy conductive material such as Al (aluminum), Cu (copper), stainless steel or Ti (titanium) is used, and the shape thereof is a net, punched metal, foam metal or plate.
  • a foil processed into a shape is used.
  • the thickness of the current collector foil for example, 5 ⁇ m to 30 ⁇ m, more preferably 8 ⁇ m to 16 ⁇ m is selected. Further, the thickness of the electrode film formed on one surface (surface) of the current collector foil is a thickness after drying, for example, about 50 ⁇ m to 400 ⁇ m.
  • the lithium ion battery in this Embodiment 1 can be manufactured similarly to the conventional lithium ion battery except including the positive electrode and negative electrode which are manufactured by the method mentioned above.
  • the structure or size of the battery container or the structure of the electrode body having the positive and negative electrodes as main components There is no particular limitation on the structure or size of the battery container or the structure of the electrode body having the positive and negative electrodes as main components.
  • the electrode material to be an electrode film is applied thickly on the surface of the current collector foil PEP, the side surface of the electrode material is not inclined and the shape of the electrode material is stabilized. Therefore, the electrode material can be applied thickly on the surface of the current collector foil PEP. Further, even if the electrode material is applied thickly and the second insulating material IF2 to be the separator SE is applied thinly, the second insulating material IF2 is not cut off, so the second insulating material IF2 is applied thinly and uniformly. be able to. Thereby, it is possible to reduce the thickness of the separator SE and the electrode film without reducing the production yield of the lithium ion battery.
  • Embodiment 2 The difference from the first embodiment described above is the process sequence of the step of applying the first insulating material to be the spacer and the step of applying the electrode material to be the electrode film. That is, in Embodiment 1 described above, the first insulating material IF1 is applied to the surface of the current collector foil PEP, and then the positive electrode material PAS is applied to the surface of the current collector foil PEP. After the material PAS is applied to the surface of the current collector foil PEP, the first insulating material IF1 is applied to the surface of the current collector foil PEP.
  • FIG. 4 is a schematic diagram of an apparatus for manufacturing an electrode sheet for a lithium ion battery according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the electrode sheet in each coating step and drying step for explaining the method of manufacturing the electrode sheet of the lithium ion battery in the second embodiment.
  • 5A is a cross-sectional view of the electrode sheet in the electrode material application step (cross-sectional view of A2-A2 in FIG. 4)
  • FIG. 5B is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step.
  • FIG. 5 (c) are cross-sectional views (cross-sectional view of C2-C2 in FIG. 4) of the electrode sheet in the second insulating material (separator material) application step.
  • FIG. 5D is a cross-sectional view of the electrode sheet in the drying process (cross-sectional view of D2-D2 in FIG. 4).
  • Embodiment 2 exemplifies a method for manufacturing a positive electrode film formed in a line on the surface of the current collector foil along the first direction in which the current collector foil travels.
  • a method for producing one side of the positive electrode sheet is illustrated, but the method for producing one side of the negative electrode sheet is also the same.
  • the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4,
  • the paper is conveyed to the take-up roll SL2 by the 5-roller RL5, the sixth roller RL6, and the seventh roller RL7.
  • a first slit die coater DC1 is installed facing the third roller RL3, a dispenser DP is installed facing the fourth roller RL4, and a second slit die coater DC2 is installed facing the fifth roller RL5.
  • First application process (electrode material application process) First, the slurry-like positive electrode material PAS supplied from the first slit die coater DC1 at a position facing the third roller RL3 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The positive electrode material PAS is stored in the tank TA1, and is supplied to the surface of the current collector foil PEP by the metering pump PU1.
  • the positive electrode material PAS is applied to the surface of the current collector foil PEP running in the first direction.
  • Second coating process (first insulating material (spacer material) coating process)
  • the slurry-like first insulating material IF1 supplied from the dispenser DP at a position facing the fourth roller RL4 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1.
  • the first insulating material IF1 is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP by the metering pump PU2.
  • the thickness of the first insulating material IF1 is substantially the same as the thickness of the positive electrode material PAS.
  • the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 are desirably the same, but the positive electrode material PAS is applied to the upper surface of the first insulating material IF1.
  • the first insulating material IF1 is applied such that the upper surface of the positive electrode material PAS is lower by about 0 ⁇ m to 10 ⁇ m than the upper surface of the first insulating material IF1.
  • the region to which the first insulating material IF1 is applied is a region that is cut after the positive electrode sheet is completed.
  • the dispenser DP has the advantage that the position adjustment is easier than the first slit die coater DC1 as a feature of the mechanism. For example, if the positive electrode material PAS is applied after the first insulating material IF1 is applied as in the first embodiment, the position of the first slit die coater DC1 is shifted, and the positive electrode material PAS is formed on the upper surface of the first insulating material IF1. May be applied. However, in the second embodiment, after applying the positive electrode material PAS, the first insulating material IF1 and the positive electrode material are applied using the dispenser DP whose alignment is easy to adjust. Misalignment with PAS can be eliminated. However, when the thickness of the positive electrode material PAS is increased, the side surface of the positive electrode material PAS is inclined, so that the positive electrode material PAS cannot be formed thick as in the case of the first embodiment described above.
  • Second insulating material (separator material) coating process Next, in the same manner as the third application process (second insulating material (separator material) application process) of the first embodiment, the slurry state supplied from the second slit die coater DC2 at a position facing the fifth roller RL5. The second insulating material IF2 is applied. The second insulating material IF2 is stored in the tank TA3, and is supplied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS by the metering pump PU3.
  • the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS along the first direction in which the current collector foil PEP travels.
  • the thickness of the second insulating material IF2 is, for example, about 5 ⁇ m to 40 ⁇ m.
  • the thickness of the second insulating material IF2 can be adjusted, for example, by adjusting the height of the base D1 of the second slit die coater DC2 (see FIG. 10) and feeding the second insulating material IF2.
  • the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS, which are substantially flat surfaces, for example, the side surfaces of the first insulating material IF1 and the positive electrode material PAS,
  • the first insulating material IF1 and the positive electrode material PAS are not applied to the surface of the current collector foil PEP to which the first insulating material IF1 and the positive electrode material PAS are not applied. Therefore, since the second insulating material IF2 can be uniformly applied, it is possible to prevent the second insulating material IF2 from being cut.
  • the positive electrode material PAS and the first insulating material IF1 applied to the surface of the current collector foil PEP by passing through the drying furnace (drying mechanism) DRY The entire coating film obtained by laminating the second insulating material IF2 applied to these upper surfaces is dried, and the current collector foil PEP having the positive electrode film and the separator formed on the surface is wound on the winding roll SL2.
  • the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 were substantially the same before drying, but after drying, the amount of solids contained in the positive electrode material PAS
  • the thickness of the spacer SP made of the first insulating material IF1 is thinner than the thickness of the positive electrode film PE made of the positive electrode material PAS because of the difference between the amount of the solid matter contained in the first insulating material IF1.
  • the method for manufacturing the positive electrode film PE formed in one row on the surface of the current collector foil PEP along the first direction in which the current collector foil PEP travels is exemplified, but the present invention is not limited to this. It is not something.
  • the positive electrode film PE may have two or more rows, and the same effect can be obtained.
  • the misalignment between the first insulating material IF1 and the electrode material is eliminated. Further, even if the second insulating material IF2 to be the separator SE is thinly applied, the film of the second insulating material IF2 does not break, so that the second insulating material IF2 can be thinly and uniformly applied. Thereby, the separator SE can be made thinner without reducing the production yield of the lithium ion battery.
  • Embodiment 3 The difference from the first embodiment described above is the number of steps for applying the electrode material. That is, in Embodiment 1 described above, the positive electrode material PAS is applied to the surface of the current collector foil PEP by a single application process, but in the present Embodiment 3, the positive electrode material PAS is collected by two application processes. It is applied to the surface of the electric foil PEP.
  • FIG. 6 is a schematic diagram of an apparatus for manufacturing an electrode sheet for a lithium ion battery according to the third embodiment.
  • FIG. 7 is a cross-sectional view of the electrode sheet in each coating step and drying step for explaining the method of manufacturing the electrode sheet of the lithium ion battery in the third embodiment.
  • 7A is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step (cross-sectional view of A3-A3 in FIG. 6)
  • FIG. 7B is an electrode sheet in the first electrode material application step.
  • FIG. 7 is a cross-sectional view of the electrode sheet in the second insulating material (separator material) application step (cross-sectional view of D3-D3 in FIG. 6)
  • FIG. 7E is a cross-sectional view of the electrode sheet in the drying step.
  • FIG. 7 is a sectional view taken along line E3-E3 in FIG.
  • Embodiment 3 exemplifies a method for manufacturing a positive electrode film formed in two rows on the surface of the current collector foil along the first direction in which the current collector foil travels. Moreover, in this Embodiment 3, although the manufacturing method of the single side
  • the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4,
  • the paper is conveyed to the take-up roll SL2 by the 5-roller RL5, the sixth roller RL6, the seventh roller RL7, and the eighth roller RL8.
  • a dispenser DP is installed facing the third roller RL3, a first slit die coater DC1 is installed facing the fourth roller RL4, a second slit die coater DC2 is installed facing the fifth roller RL5, and the sixth
  • a third slit die coater DC3 is installed facing the roller RL6.
  • First coating process First insulating material (spacer material) coating process
  • First, the first insulating material IF1 is applied to the surface of the current collector foil PEP in the same manner as the application process (first insulating material (separator material) applying process) of the first embodiment described above.
  • insulating material IF1 is in the 2nd direction orthogonal to the surface of the current collection foil PEP which runs in the 1st direction at the surface of the 1st direction and the current collection foil PEP. They are applied separately from each other. That is, the plurality of first insulating materials IF1 sandwich the region in which the positive electrode material PAS is applied on the surface of the current collector foil PEP traveling in the first direction in the second and third application steps in the second direction. To the surface of the current collector foil PEP.
  • the plurality of first insulating materials IF1 has the width in the second direction of the region of the positive electrode material PAS applied to the surface of the current collector foil PEP that travels in the first direction in the second and third application steps. Applied to regulate.
  • the plurality of first insulating materials IF1 are separated from each other in the second direction, and the current collector foil Three rows are applied to the surface of the PEP along the first direction.
  • the thickness of the first insulating material IF1 is substantially the same as the thickness of the positive electrode material PAS applied to the surface of the current collector foil PEP in the subsequent second and third application steps.
  • the region to which the first insulating material IF1 is applied is a region that is cut after the positive electrode sheet is completed, the width in the second direction of the first insulating material IF1 is set to be small in order to reduce the material cost.
  • the width in the second direction of the first insulating material IF1 is about 5 to 15 mm.
  • Second application process (first electrode material application process)
  • the slurry-like first positive electrode material PAS1 supplied from the first slit die coater DC1 at a position facing the fourth roller RL4 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1.
  • the first positive electrode material PAS1 is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP by the metering pump PU2.
  • the plurality of first positive electrode materials PAS1 are applied to the surface of the current collector foil PEP traveling in the first direction and to the surface of the current collector foil PEP in the previous first application step. It is applied to a region sandwiched between the first insulating materials IF1.
  • the plurality of first positive electrode materials PAS1 are separated by the first insulating material IF1 and second Two rows are applied along the first direction to the surface of the current collector foil PEP.
  • the thickness of the first positive electrode material PAS1 is smaller than the thickness of the first insulating material IF1 applied to the surface of the current collector foil PEP in the previous first application step. That is, the upper surface of the first positive electrode material PAS1 is at a position lower than the upper surface of the first insulating material IF1.
  • the thickness of the first positive electrode material PAS1 can be adjusted, for example, by adjusting the height of the base D1 of the first slit die coater DC1 (see FIG. 10) and feeding the first positive electrode material PAS1.
  • Second electrode material application process Next, the slurry-like second positive electrode material PAS2 supplied from the second slit die coater DC2 at a position facing the fifth roller RL5 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1.
  • the second positive electrode material PAS2 is stored in the tank TA3, and is supplied to the upper surface of the first positive electrode material PAS1 by the metering pump PU3.
  • the binder content of the second positive electrode material PAS2 is smaller than the binder content of the first positive electrode material PAS1.
  • the second positive electrode material PAS2 is applied to the upper surface of the first positive electrode material PAS1, and the positive electrode material PAS formed by laminating the first positive electrode material PAS1 and the second positive electrode material PAS2 is formed. It is formed.
  • the second positive electrode material PAS2 is applied so that the height from the surface of the current collector foil PEP to the upper surface of the positive electrode material PAS is substantially the same as the height from the surface of the current collector foil PEP to the upper surface of the first insulating material IF1.
  • the thickness of the positive electrode material PAS is substantially the same as the thickness of the first insulating material IF1 applied to the surface of the current collector foil PEP in the previous first application step.
  • the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 are desirably the same, in order to prevent the second positive electrode material PAS2 from being applied to the upper surface of the first insulating material IF1,
  • the second positive electrode material PAS2 is applied so as to be lower by about 0 ⁇ m to 10 ⁇ m than the upper surface of the first insulating material IF1.
  • the thickness of the second positive electrode material PAS2 can be adjusted, for example, by adjusting the height of the die D1 of the second slit die coater DC2 (see FIG. 10) and the feed amount of the second positive electrode material PAS2.
  • the positive electrode material PAS is configured by laminating the first positive electrode material PAS1 and the second positive electrode material PAS2 having different binder contents. This is due to the following reason.
  • the slurry-like positive electrode material PAS contains a binder for binding the active material and the conductive auxiliary agent in addition to the active material and the conductive auxiliary agent.
  • this binder tends to segregate on the upper surface side of the positive electrode material PAS in the drying process, and if the binder content is too small, this causes the positive electrode material PAS at the interface between the current collector foil PEP and the positive electrode material PAS. May peel off.
  • the positive electrode material PAS is thickly coated, the segregation of the binder becomes remarkable, and the peeling of the positive electrode material PAS becomes a serious problem.
  • the segregation of the binder can be made difficult to occur.
  • the binder content is too large, the amount of the active material is reduced and the battery capacity is lowered, or the binder is difficult to mix, and thus the current distribution of the positive electrode film varies.
  • the viscosity and surface tension of the positive electrode material PAS there is also a trade-off between the viscosity and surface tension of the positive electrode material PAS, and it is difficult to adjust the binder content contained in the positive electrode material PAS to the optimum content.
  • the positive electrode material PAS is thickly coated Therefore, it becomes more difficult to adjust the binder content.
  • the first positive electrode material PAS1 having a relatively high binder content is applied, and the second positive electrode material PAS2 having a relatively low binder content is applied thereon.
  • the first positive electrode material PAS1 and the second positive electrode material PAS2 are mixed, but when the positive electrode material PAS is coated with two layers of the first positive electrode material PAS1 and the second positive electrode material PAS2, Since the segregation of the binder on the upper surface side of the positive electrode material PAS is less than when the positive electrode material PAS is coated, in the third embodiment, the positive electrode material PAS can be prevented from peeling off.
  • the first positive electrode material PAS1 and the second positive electrode material PAS2 having such viscosity and surface tension that the side surfaces of the first positive electrode material PAS1 and the second positive electrode material PAS2 are inclined. May have to be used.
  • the first insulating material IF1 prescribes the region where the first positive electrode material PAS1 and the second positive electrode material PAS2 are applied. The shapes of the positive electrode material PAS1 and the second positive electrode material PAS2 are stable.
  • Fourth coating process (second insulating material (separator material) coating process)
  • the second insulating material IF2 is applied.
  • the second insulating material IF2 is stored in the tank TA4, and is supplied to the upper surfaces of the first insulating material IF1 and the second positive electrode material PAS2 by the metering pump PU4.
  • the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS along the first direction in which the current collector foil PEP travels.
  • the thickness of the second insulating material IF2 is, for example, about 5 ⁇ m to 40 ⁇ m.
  • the thickness of the second insulating material IF2 can be adjusted, for example, by adjusting the height of the base D1 of the third slit die coater DC3 (see FIG. 10) and feeding the second insulating material IF2.
  • the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS, which are substantially flat surfaces, for example, the side surfaces of the first insulating material IF1 and the positive electrode material PAS,
  • the first insulating material IF1 and the positive electrode material PAS are not applied to the surface of the current collector foil PEP to which the first insulating material IF1 and the positive electrode material PAS are not applied. Therefore, since the second insulating material IF2 can be uniformly applied, it is possible to prevent the second insulating material IF2 from being cut.
  • the positive electrode material PAS and the first insulating material IF1 applied to the surface of the current collector foil PEP by passing through the drying furnace (drying mechanism) DRY The entire coating film obtained by laminating the second insulating material IF2 applied to these upper surfaces is dried, and the current collector foil PEP having the positive electrode film and the separator formed on the surface is wound on the winding roll SL2.
  • the first positive electrode material PAS1 and the second positive electrode material PAS2 are mixed to form a single-layer positive electrode material PAS.
  • the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 were substantially the same before drying, but after drying, the amount of solids contained in the first positive electrode material PAS1 and the second positive electrode material PAS2
  • the thickness of the spacer SP made of the first insulating material IF1 is thinner than the thickness of the positive electrode film PE made of the positive electrode material PAS because of the difference between the amount of the solid matter contained in the first insulating material IF1.
  • the method of manufacturing the positive electrode film PE formed in two rows on the surface of the current collector foil PEP along the first direction in which the current collector foil PEP travels is exemplified, but the present invention is not limited thereto. It is not something.
  • the positive electrode film PE may be one row or three or more rows, and the same effect can be obtained.
  • the positive electrode material PAS is configured by two layers of the first positive electrode material PAS1 and the second positive electrode material PAS2 having different binder contents.
  • the positive electrode material PAS may be composed of three or more layers having different contents.
  • the third embodiment by forming the positive electrode material PAS by stacking the first positive electrode material PAS1 and the second positive electrode material PAS2, the segregation of the binder on the upper surface side of the positive electrode material PAS is reduced. Thus, peeling of the positive electrode material PAS can be prevented.
  • the region where the first positive electrode material PAS1 and the second positive electrode material PAS2 are applied is defined in advance by the first insulating material IF1, the shapes of the first positive electrode material PAS1 and the second positive electrode material PAS2 are stable.
  • the film of the second insulating material IF2 does not break, so that the second insulating material IF2 can be thinly and uniformly applied. Thereby, it is possible to reduce the thickness of the separator SE and the electrode film without reducing the production yield of the lithium ion battery.

Abstract

 The present invention improves the manufacturing yield for power storage devices such as lithium-ion cells. In order to overcome the above problem, an electrode sheet manufacturing apparatus has a dispenser, a first slit die coater, and a second slit die coater installed in the stated order along the first direction of travel of a collector foil. The dispenser applies a plurality of first insulation materials in a slurry form onto the surface of the collector foil, the first slit die coater applies a positive electrode material in a slurry form onto the surface of the collector foil, and the second slit die coater applies a second insulation material in a slurry form onto the upper surface of the first insulation materials and the positive electrode material. The first insulation materials are applied so as to be set apart from each other in a second direction orthogonal to the first direction, and the positive electrode material is applied between first insulation films adjacent to each other in the second direction.

Description

蓄電デバイスの製造装置および蓄電デバイスの製造方法Electric storage device manufacturing apparatus and electric storage device manufacturing method
 本発明は、蓄電デバイスの製造装置および製造方法に関し、例えば蓄電デバイスの電極材料を塗布する工程に好適に利用できるものである。 The present invention relates to a manufacturing apparatus and a manufacturing method for an electricity storage device, and can be suitably used for, for example, a step of applying an electrode material for an electricity storage device.
 本技術分野の背景技術として、特開2003-045491号公報(特許文献1)がある。この公報には、正極シート状物送出機構と、正極電極物質塗工機構と、正極電極形成用加熱機構と、電解、絶縁物質塗工機構と、電解、絶縁物形成用加熱機構と、負極シート状物送出機構と、負極電極物質塗工機構と、負極電極形成用加熱機構と、電解、絶縁物質塗工機構と、電解、絶縁物形成用加熱機構と、捲回機構とを備えた二次電池製造装置が記載されている。上記捲回機構は、正極電極物質と電解、絶縁物質とが固着された正極シート状物と負極電極物質と電解、絶縁物質とが固着された負極シート状物を積層して所定の形状に捲回する機構である。 As a background art in this technical field, there is JP-A-2003-054991 (Patent Document 1). This publication includes a positive electrode sheet delivery mechanism, a positive electrode material coating mechanism, a positive electrode forming heating mechanism, an electrolysis and insulating material coating mechanism, an electrolysis and insulator forming heating mechanism, and a negative electrode sheet. Secondary equipped with a state material delivery mechanism, a negative electrode material coating mechanism, a negative electrode formation heating mechanism, an electrolysis / insulation material coating mechanism, an electrolysis / insulator formation heating mechanism, and a winding mechanism A battery manufacturing apparatus is described. The winding mechanism is formed by laminating a positive electrode sheet material to which a positive electrode material and electrolysis and an insulating material are fixed, and a negative electrode sheet material to which a negative electrode material and an electrolysis and insulating material are fixed, to form a predetermined shape. It is a rotating mechanism.
特開2003-045491号公報JP 2003-054991 A
 前記特許文献1には、集電箔(金属箔、電極板、基材、基板、シート状物などとも言う)の両面に正極または負極の電極材料(電極物質、電極活物質などとも言う)を塗布し、その電極材料の上に、連続してセパレータとなる絶縁材料(電解、絶縁物質などとも言う)を塗布することによって、二次電池の生産効率の向上および二次電池の製造装置のコンパクト化が可能となることが記載されている。 In Patent Document 1, a positive or negative electrode material (also referred to as an electrode material or an electrode active material) is provided on both sides of a current collector foil (also referred to as a metal foil, an electrode plate, a base material, a substrate, or a sheet). Applying and applying an insulating material (also called electrolysis or insulating material) that continuously forms a separator on the electrode material improves the production efficiency of the secondary battery and makes the secondary battery manufacturing equipment compact. It is described that it becomes possible.
 しかし、このような二次電池の製造方法では、絶縁材料の厚さが、例えば5μm~40μm程度になると絶縁材料に膜切れが生じて電極材料が露出する場合がある。また、例えば100μm~400μm程度の厚さの電極材料を塗布すると、電極材料の側面が傾斜し、また、電極材料の厚さも不均一となって、所望する形状の電極材料が形成できなくなる。これらが原因となって二次電池の製造歩留りが低下するという問題があった。 However, in such a method for manufacturing a secondary battery, when the thickness of the insulating material is, for example, about 5 μm to 40 μm, the insulating material may be cut and the electrode material may be exposed. For example, when an electrode material having a thickness of about 100 μm to 400 μm is applied, the side surfaces of the electrode material are inclined, and the thickness of the electrode material becomes non-uniform, making it impossible to form an electrode material having a desired shape. For these reasons, there is a problem that the production yield of the secondary battery is lowered.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and novel features will become clear from the description of the present specification and the accompanying drawings.
 一実施の形態による蓄電デバイスの製造装置は、第1方向に走行する集電箔の表面に、第1方向と集電箔の表面で直交する第2方向に互いに離間する複数のスラリー状の第1絶縁材料を塗布する第1塗布機構と、第2方向に隣り合う第1絶縁材料に挟まれる集電箔の表面に、スラリー状の電極材料を塗布する第2塗布機構とを備える。さらに、第1絶縁材料および電極材料の上面にスラリー状の第2絶縁材料を塗布する第3塗布機構を備える。 An apparatus for manufacturing an electricity storage device according to an embodiment includes a plurality of slurry-like first surfaces spaced apart from each other in a second direction orthogonal to the first direction and the surface of the current collector foil on the surface of the current collector foil traveling in the first direction. A first application mechanism that applies one insulating material; and a second application mechanism that applies a slurry-like electrode material to a surface of a current collector foil sandwiched between first insulating materials adjacent in a second direction. Further, a third application mechanism is provided for applying a slurry-like second insulating material on the upper surfaces of the first insulating material and the electrode material.
 一実施の形態による蓄電デバイスの製造方法は、第1方向に走行する集電箔の表面に、第1方向と集電箔の表面で直交する第2方向に互いに離間する複数のスラリー状の第1絶縁材料を塗布する工程と、第2方向に隣り合う第1絶縁材料に挟まれる集電箔の表面に、スラリー状の電極材料を塗布する工程と、第1絶縁材料および電極材料の上面にスラリー状の第2絶縁材料を塗布する工程とを有する。 A method for manufacturing an electricity storage device according to an embodiment includes a plurality of slurry-like first surfaces separated from each other in a second direction orthogonal to the first direction and the surface of the current collector foil on the surface of the current collector foil traveling in the first direction. A step of applying an insulating material, a step of applying a slurry-like electrode material to the surface of a current collector foil sandwiched between first insulating materials adjacent in the second direction, and an upper surface of the first insulating material and the electrode material. And applying a slurry-like second insulating material.
 一実施の形態によれば、リチウムイオン電池等の蓄電デバイスの製造歩留りを向上することができる。 According to one embodiment, the production yield of power storage devices such as lithium ion batteries can be improved.
実施の形態1におけるリチウムイオン電池の電極シートの製造装置の概略図である。1 is a schematic diagram of an apparatus for producing an electrode sheet for a lithium ion battery in Embodiment 1. FIG. 実施の形態1におけるリチウムイオン電池の電極シートの製造方法を説明する各塗布工程および乾燥工程の電極シートの断面図である。(a)は第1絶縁材料(スペーサ材料)塗布工程の電極シートの断面図(図1のA1-A1の断面図)である。(b)は電極材料塗布工程の電極シートの断面図(図1のB1-B1の断面図)である。(c)は第2絶縁材料(セパレータ材料)塗布工程の電極シートの断面図(図1のC1-C1の断面図)である。(d)は乾燥工程の電極シートの断面図(図1のD1-D1の断面図)である。It is sectional drawing of the electrode sheet of each application | coating process and drying process explaining the manufacturing method of the electrode sheet of the lithium ion battery in Embodiment 1. FIG. (A) is sectional drawing (sectional drawing of A1-A1 of FIG. 1) of the electrode sheet of a 1st insulating material (spacer material) application | coating process. (B) is a cross-sectional view of the electrode sheet in the electrode material application step (cross-sectional view of B1-B1 in FIG. 1). (C) is a cross-sectional view (cross-sectional view of C1-C1 in FIG. 1) of the electrode sheet in the second insulating material (separator material) application step. (D) is a cross-sectional view of the electrode sheet in the drying step (cross-sectional view of D1-D1 in FIG. 1). 実施の形態1におけるリチウムイオン電池の具体的な製造工程をまとめた工程図である。FIG. 3 is a process diagram summarizing a specific manufacturing process of the lithium ion battery in the first embodiment. 実施の形態2におけるリチウムイオン電池の電極シートの製造装置の概略図である。6 is a schematic diagram of a production apparatus for an electrode sheet of a lithium ion battery in Embodiment 2. FIG. 実施の形態2におけるリチウムイオン電池の電極シートの製造方法を説明する各塗布工程および乾燥工程の電極シートの要部断面図である。(a)は電極材料塗布工程の電極シートの断面図(図4のA2-A2の断面図)である。(b)は第1絶縁材料(スペーサ材料)塗布工程の電極シートの断面図(図4のB2-B2の断面図)である。(c)は第2絶縁材料(セパレータ材料)塗布工程の電極シートの断面図(図4のC2-C2の断面図)である。(d)は乾燥工程の電極シートの断面図(図4のD2-D2の断面図)である。It is principal part sectional drawing of the electrode sheet of each application | coating process and drying process explaining the manufacturing method of the electrode sheet of the lithium ion battery in Embodiment 2. FIG. (A) is sectional drawing (sectional drawing of A2-A2 of FIG. 4) of the electrode sheet of an electrode material application | coating process. FIG. 5B is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step (cross-sectional view taken along B2-B2 in FIG. 4). (C) is a cross-sectional view of the electrode sheet in the second insulating material (separator material) application step (cross-sectional view of C2-C2 in FIG. 4). (D) is a cross-sectional view of the electrode sheet in the drying step (cross-sectional view of D2-D2 in FIG. 4). 実施の形態3におけるリチウムイオン電池の電極シートの製造装置の概略図である。6 is a schematic diagram of a production apparatus for an electrode sheet of a lithium ion battery according to Embodiment 3. FIG. 実施の形態3におけるリチウムイオン電池の電極シートの製造方法を説明する各塗布工程および乾燥工程の電極シートの要部断面図である。(a)は第1絶縁材料(スペーサ材料)塗布工程の電極シートの断面図(図6のA3-A3の断面図)である。(b)は第1電極材料塗布工程の電極シートの断面図(図6のB3-B3の断面図)である。(c)は第2電極材料塗布工程の電極シートの断面図(図6のC3-C3の断面図)である。(d)は第2絶縁材料(セパレータ材料)塗布工程の電極シートの断面図(図6のD3-D3の断面図)である。(e)は乾燥工程の電極シートの断面図(図6のE3-E3の断面図)である。It is principal part sectional drawing of the electrode sheet of each application | coating process and drying process explaining the manufacturing method of the electrode sheet of the lithium ion battery in Embodiment 3. FIG. (A) is sectional drawing (sectional drawing of A3-A3 of FIG. 6) of the electrode sheet of a 1st insulating material (spacer material) application | coating process. FIG. 6B is a cross-sectional view of the electrode sheet in the first electrode material application step (cross-sectional view of B3-B3 in FIG. 6). (C) is a cross-sectional view of the electrode sheet in the second electrode material application step (C3-C3 cross-sectional view of FIG. 6). (D) is a cross-sectional view of the electrode sheet in the second insulating material (separator material) application step (cross-sectional view of D3-D3 in FIG. 6). (E) is a cross-sectional view of the electrode sheet in the drying process (cross-sectional view of E3-E3 in FIG. 6). 比較例として示すリチウムイオン電池の具体的な製造工程をまとめた工程図である。It is process drawing which put together the specific manufacturing process of the lithium ion battery shown as a comparative example. 比較例として示すリチウムイオン電池の電極シートの製造装置の概略図である。It is the schematic of the manufacturing apparatus of the electrode sheet | seat of the lithium ion battery shown as a comparative example. スリットダイコータによるスラリー状の電極材料の塗布の状態を模式的に説明する断面図である。It is sectional drawing which illustrates typically the state of application | coating of the slurry-like electrode material by a slit die coater.
 以下の実施の形態においては、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 In the following embodiments, when referring to the number of elements, etc. (including the number, numerical value, quantity, range, etc.), unless otherwise specified, the principle is clearly limited to a specific number, etc. The number is not limited to the specific number, and may be a specific number or more.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
 また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 In addition, when referring to “consisting of A”, “consisting of A”, “having A”, and “including A”, other elements are excluded unless specifically indicated that only that element is included. It goes without saying that it is not what you do. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す。また、以下の実施の形態を説明するための全図において、同一機能を有するものは同一の符号を付し、その繰り返しの説明は省略する。以下、実施の形態を図面に基づいて詳細に説明する。 Further, in the drawings used in the following embodiments, hatching is added even in a plan view to make the drawings easy to see. In all the drawings for explaining the following embodiments, parts having the same function are denoted by the same reference numerals, and repeated explanation thereof is omitted. Hereinafter, embodiments will be described in detail with reference to the drawings.
 以下の説明では、正極材料および負極材料を総括して「電極材料」と呼び、乾燥工程後の正極材料からなる膜を「正極膜」、乾燥工程後の負極材料からなる膜を「負極膜」、正極膜および負極膜を総括して「電極膜」と呼ぶ。また、以下の説明では、乾燥工程前の正極材料、負極材料および絶縁材料は、バインダ溶液および有機溶剤などの液体を含み、流動性を有する物質である。また、以下の説明では、正極膜が形成された集電箔を「正極シート(正極板などとも言う)」、負極膜が形成された集電箔を「負極シート(負極板などとも言う)」、正極シートおよび負極シートを総括して「電極シート(電極板などとも言う)」と呼ぶ。また、以下の説明で「集電箔の表面」という場合は、集電箔の表側の面および裏側の面を含めた全面ではなく、表側の面のみを指すものとする。また、以下の説明では、集電箔が走行する方向を「第1方向」とし、第1方向と集電箔の表面で直交する方向を「第2方向」とする。 In the following description, the positive electrode material and the negative electrode material are collectively referred to as “electrode material”, the film made of the positive electrode material after the drying process is called “positive electrode film”, and the film made of the negative electrode material after the drying process is called “negative electrode film”. The positive electrode film and the negative electrode film are collectively referred to as “electrode film”. Moreover, in the following description, the positive electrode material, the negative electrode material, and the insulating material before the drying step are substances having fluidity including a liquid such as a binder solution and an organic solvent. In the following description, the current collector foil on which the positive electrode film is formed is “positive electrode sheet (also referred to as positive electrode plate)”, and the current collector foil on which the negative electrode film is formed is “negative electrode sheet (also referred to as negative electrode plate)”. The positive electrode sheet and the negative electrode sheet are collectively referred to as an “electrode sheet (also referred to as an electrode plate)”. In the following description, “the surface of the current collector foil” refers to only the front surface, not the entire surface including the front surface and the back surface of the current collector foil. In the following description, a direction in which the current collector foil travels is referred to as a “first direction”, and a direction orthogonal to the first direction on the surface of the current collector foil is referred to as a “second direction”.
 本実施の形態では、蓄電デバイスである二次電池としてリチウムイオン電池を例示し、その製造装置およびその製造方法について説明するが、これに限定されるものではない。 In this embodiment, a lithium ion battery is exemplified as a secondary battery that is an electricity storage device, and a manufacturing apparatus and a manufacturing method thereof will be described, but the present invention is not limited to this.
 リチウムイオン電池は、非水電解質二次電池の一種で、電解質中のリチウムイオンが電気伝導を担う二次電池である。 The lithium ion battery is a kind of non-aqueous electrolyte secondary battery, and is a secondary battery in which lithium ions in the electrolyte bear electric conduction.
 正極には、例えばリチウム含有複合酸化物を用い、負極には、例えば炭素質材料を用いる。電解質には、例えば炭酸エチレンなどの有機溶剤またはヘキサフルオロリン酸リチウム(LiPF)などのリチウム塩を用いる。リチウムイオン電池内では、充電時にリチウムイオンは正極から出て負極に入り、放電時に逆にリチウムイオンは負極から出て正極に入る。 For example, a lithium-containing composite oxide is used for the positive electrode, and a carbonaceous material is used for the negative electrode. As the electrolyte, for example, an organic solvent such as ethylene carbonate or a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) is used. In a lithium ion battery, lithium ions exit from the positive electrode during charging and enter the negative electrode, and conversely during discharge, lithium ions exit from the negative electrode and enter the positive electrode.
 リチウムイオン電池は、例えば集電箔(例えばAl(アルミニウム)箔)の表面に正極材料を塗工した正極シートと、集電箔(例えばCu(銅)箔)の表面に負極材料を塗工した負極シートと、正極膜と負極膜との接触を防止するポリマフィルムなどのセパレータとを捲回した電極捲回体を備えている。そして、リチウムイオン電池では、この電極捲回体が外装缶に挿入されるとともに、外装缶内に電解液(上記電解質)が注入されている。 In the lithium ion battery, for example, a positive electrode sheet coated with a positive electrode material on the surface of a current collector foil (eg, Al (aluminum) foil) and a negative electrode material applied on the surface of a current collector foil (eg, Cu (copper) foil). An electrode winding body is provided in which a negative electrode sheet and a separator such as a polymer film that prevents contact between the positive electrode film and the negative electrode film are wound. And in a lithium ion battery, while this electrode winding body is inserted in an armored can, electrolyte solution (the said electrolyte) is inject | poured in the armored can.
 つまり、リチウムイオン電池では、集電箔の表面に正極材料を塗工した正極シートと、集電箔の表面に負極材料を塗工した負極シートとが帯状に形成され、帯状に形成された正極シートと負極シートとが、正極シート上の正極膜と負極シート上の負極膜とが直接接触しないように、セパレータを介して断面渦巻状に捲回されて電極捲回体が形成されている。 That is, in a lithium ion battery, a positive electrode sheet in which a positive electrode material is coated on the surface of a current collector foil and a negative electrode sheet in which a negative electrode material is coated on the surface of a current collector foil are formed in a band shape, and the positive electrode formed in a band shape The sheet and the negative electrode sheet are wound in a cross-sectional spiral shape through a separator so that the positive electrode film on the positive electrode sheet and the negative electrode film on the negative electrode sheet are not in direct contact with each other to form an electrode winding body.
 (比較例)
 まず、本実施の形態によるリチウムイオン電池の製造装置および製造方法がより明確となると思われるため、比較例として、本発明者らによって検討された、本願発明が適用される前のリチウムイオン電池の製造装置および製造方法について以下に説明する。
(Comparative example)
First, since it seems that the manufacturing apparatus and manufacturing method of a lithium ion battery according to the present embodiment will become clearer, as a comparative example, a lithium ion battery before application of the present invention, which was examined by the present inventors, was studied. The manufacturing apparatus and manufacturing method will be described below.
 図8は、比較例として示すリチウムイオン電池の具体的な製造工程をまとめた工程図である。 FIG. 8 is a process diagram summarizing a specific manufacturing process of a lithium ion battery shown as a comparative example.
 図8に示すように、リチウムイオン電池の製造工程は、正極シート製造工程と、負極シート製造工程と、電池セル組立工程と、電池モジュール組立工程とを含んでいる。 As shown in FIG. 8, the manufacturing process of the lithium ion battery includes a positive electrode sheet manufacturing process, a negative electrode sheet manufacturing process, a battery cell assembly process, and a battery module assembly process.
 正極シート製造工程では、まず、フィルム状の集電箔の表面にスラリー状の正極材料を塗布した後(正極材料塗布)、正極材料の上面および側面、並びに正極材料が塗布されていない集電箔の表面にセパレータとなるスラリー状の絶縁材料を塗布する(セパレータ材料塗布)。続いて、スラリー状の正極材料とスラリー状の絶縁材料とを積層した塗膜の全体を乾燥させた後(乾燥)、正極材料からなる正極膜と絶縁材料からなるセパレータとの積層膜が形成された集電箔に圧縮および切断といった加工を行い(加工)、正極膜およびセパレータを有するフィルム状の正極シートを製造する。 In the positive electrode sheet manufacturing process, first, a slurry-like positive electrode material is applied to the surface of a film-like current collector foil (positive electrode material application), and then the upper and side surfaces of the positive electrode material and the current collector foil to which no positive electrode material is applied A slurry-like insulating material to be a separator is applied to the surface of the substrate (application of separator material). Subsequently, after drying the entire coating film obtained by laminating the slurry-like positive electrode material and the slurry-like insulating material (drying), a laminated film of the positive electrode film made of the positive electrode material and the separator made of the insulating material is formed. The current collector foil is subjected to processing such as compression and cutting (processing) to produce a film-like positive electrode sheet having a positive electrode film and a separator.
 一方、負極シート製造工程では、使用される原料となる各種材料は正極シート製造工程とは異なるが、負極シートが製造されるまでの手順は正極シート製造工程と同じである。まず、フィルム状の集電箔の表面にスラリー状の負極材料を塗布した後(負極材料塗布)、負極材料の上面および側面、並びに負極材料が塗布されていない集電箔の表面にセパレータとなるスラリー状の絶縁材料を塗布する(セパレータ材料塗布)。続いて、スラリー状の負極材料とスラリー状の絶縁材料とを積層した塗膜の全体を乾燥させた後(乾燥)、負極材料からなる負極膜と絶縁材料からなるセパレータとの積層膜が形成された集電箔に圧縮および切断といった加工を行い(加工)、負極膜およびセパレータを有するフィルム状の負極シートを製造する。 On the other hand, in the negative electrode sheet manufacturing process, various materials used as raw materials are different from those in the positive electrode sheet manufacturing process, but the procedure until the negative electrode sheet is manufactured is the same as in the positive electrode sheet manufacturing process. First, after applying a slurry-like negative electrode material on the surface of the film-like current collector foil (negative electrode material application), a separator is formed on the upper surface and side surfaces of the negative electrode material and on the surface of the current collector foil on which the negative electrode material is not applied. A slurry-like insulating material is applied (separator material application). Subsequently, after drying the whole coating film obtained by laminating the slurry-like negative electrode material and the slurry-like insulating material (drying), a laminated film of the negative electrode film made of the negative electrode material and the separator made of the insulating material is formed. The current collector foil is subjected to processing such as compression and cutting (processing) to produce a film-like negative electrode sheet having a negative electrode film and a separator.
 次に、電池セル組立工程では、フィルム状の正極シートから、電池セルに必要な大きさの正極を切り出し、フィルム状の負極シートから、電池セルに必要な大きさの負極を切り出して、正極と負極とを挟んで重ねて捲き合わせる(捲回)。正極シートおよび負極シートには、すでにセパレータが形成されているので、この捲回工程では、正極と負極との間にセパレータを挟んで重ねて捲き合わせる必要がなく、リチウムイオン電池の製造コストを低減することができる。 Next, in the battery cell assembling step, a positive electrode having a size necessary for the battery cell is cut out from the film-like positive electrode sheet, and a negative electrode having a size necessary for the battery cell is cut out from the film-like negative electrode sheet. Put the negative electrode on top of each other and roll them together (winding). Since the separator is already formed on the positive electrode sheet and the negative electrode sheet, in this winding process, it is not necessary to sandwich the separator between the positive electrode and the negative electrode, and the manufacturing cost of the lithium ion battery is reduced. can do.
 次に、捲き合わせた正極および負極の電極対の群を組み立てて溶接する(溶接・組立)。続いて、溶接した電極対の群を、電解液が注入された電池缶内に配置した後(注液)、電池缶を完全に密閉して(封口)、電池セルを作製する。 Next, a group of positive and negative electrode pairs assembled together is assembled and welded (welding / assembly). Subsequently, the group of welded electrode pairs is placed in a battery can into which an electrolytic solution has been injected (injection), and then the battery can is completely sealed (sealing) to produce a battery cell.
 次に、作製された電池セルを繰り返し充放電して(充放電)、この電池セルの性能および信頼性に関する検査(例えば電池セルの容量および電圧、並びに電池セルの充電時または放電時の電流および電圧等の検査)を行う(単電池検査)。これにより、電池セルが完成し、電池セル組立工程が終了する。 Next, the produced battery cell is repeatedly charged / discharged (charge / discharge), and the performance and reliability of the battery cell are examined (for example, the capacity and voltage of the battery cell, and the current and current during charging or discharging the battery cell (Inspection of voltage etc.) (single cell inspection). Thereby, a battery cell is completed and a battery cell assembly process is complete | finished.
 次に、電池モジュール組立工程では、複数個の電池セルを直列に組み合わせて電池モジュールを構成し、さらに、充電/放電制御用コントローラを接続して電池システムを構成する(モジュール組立)。続いて、組み立てられた電池モジュールの性能および信頼性に関する検査(例えば電池モジュールの容量および電圧、並びに電池モジュールの充電時または放電時の電流および電圧等の検査)を行う(モジュール検査)。これにより、電池モジュールが完成し、電池モジュール組立工程が終了する。 Next, in the battery module assembly process, a battery module is configured by combining a plurality of battery cells in series, and a battery system is configured by connecting a controller for charge / discharge control (module assembly). Subsequently, an inspection regarding performance and reliability of the assembled battery module (for example, inspection of capacity and voltage of the battery module, current and voltage at the time of charging or discharging the battery module, etc.) is performed (module inspection). Thereby, a battery module is completed and a battery module assembly process is complete | finished.
 図9は、比較例として示すリチウムイオン電池の電極シートの製造装置の概略図である。図9では、正極シートの片面の製造工程を例示している。ここでは省略するが、負極シートの片面の製造工程も同様である。 FIG. 9 is a schematic view of an apparatus for manufacturing an electrode sheet of a lithium ion battery shown as a comparative example. In FIG. 9, the manufacturing process of the single side | surface of a positive electrode sheet is illustrated. Although omitted here, the manufacturing process of one side of the negative electrode sheet is the same.
 図9に示すように、集電箔PEPは、巻き出しロールSL1から送り出され、第1ローラRL1、第2ローラRL2、第3ローラRL3、第4ローラRL4、第5ローラRL5および第6ローラRL6によって巻き取りロールSL2へ搬送される。第3ローラRL3に対向して第1スリットダイコータDC1が設置され、第4ローラRL4に対向して第2スリットダイコータDC2が設置されている。 As shown in FIG. 9, the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4, the fifth roller RL5, and the sixth roller RL6. Is conveyed to the take-up roll SL2. A first slit die coater DC1 is installed facing the third roller RL3, and a second slit die coater DC2 is installed facing the fourth roller RL4.
 まず、巻き出しロールSL1から送り出された集電箔PEPの表面に、第3ローラRL3と対向した位置の第1スリットダイコータDC1から供給されるスラリー状の正極材料PASが塗布される。正極材料PASはタンクTA1に貯留されており、定量ポンプPU1によって集電箔PEPの表面に供給される。 First, the slurry-like positive electrode material PAS supplied from the first slit die coater DC1 at a position facing the third roller RL3 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The positive electrode material PAS is stored in the tank TA1, and is supplied to the surface of the current collector foil PEP by the metering pump PU1.
 続いて、第4ローラRL4と対向した位置の第2スリットダイコータDC2から供給されるスラリー状の絶縁材料IFが塗布される。絶縁材料IFはタンクTA2に貯留されており、定量ポンプPU2によって正極材料PASが塗布された集電箔PEPの表面に供給される。すなわち、絶縁材料IFは正極材料PASの上面および側面、並びに正極材料PASが塗布されていない集電箔PEPの表面に塗布される。 Subsequently, a slurry-like insulating material IF supplied from the second slit die coater DC2 at a position facing the fourth roller RL4 is applied. The insulating material IF is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP coated with the positive electrode material PAS by the metering pump PU2. That is, the insulating material IF is applied to the upper surface and side surfaces of the positive electrode material PAS and the surface of the current collector foil PEP to which the positive electrode material PAS is not applied.
 続いて、乾燥炉DRYを通過することで、集電箔PEPの表面に形成された正極材料PASと絶縁材料IFとを積層した塗膜の全体が乾燥し、その表面に塗膜が形成された集電箔PEPは巻き取りロールSL2に巻き取られる。 Subsequently, by passing through the drying furnace DRY, the entire coating film obtained by laminating the positive electrode material PAS and the insulating material IF formed on the surface of the current collector foil PEP was dried, and the coating film was formed on the surface. The current collector foil PEP is wound around the winding roll SL2.
 図10は、第1スリットダイコータDC1によるスラリー状の正極材料PASの塗布の状態を模式的に説明する断面図を示す。ここでは省略するが、第2スリットダイコータDC2によるスラリー状の絶縁材料IFの塗布の状態も同様である。 FIG. 10 is a cross-sectional view schematically illustrating the state of application of the slurry-like positive electrode material PAS by the first slit die coater DC1. Although omitted here, the state of application of the slurry-like insulating material IF by the second slit die coater DC2 is also the same.
 図10に示すように、スラリー状の正極材料PASを貯留したタンクから定量ポンプによって、口金D1のマニホールドD2にスラリー状の正極材料PASが供給される。マニホールドD2において、スラリー状の正極材料PASの圧力分布が均一となった後、口金D1に設けられたスリット部D3へスラリー状の正極材料PASが供給され、吐出される。吐出されたスラリー状の正極材料PASは、口金D1と第1間隔h1を保って口金D1と相対的に走行する集電箔PEPとの間に、ビードと呼ばれる電極材料溜りD4を形成し、この状態で集電箔PEPの走行に伴ってスラリー状の正極材料PASが引き出されて正極材料PASからなる塗膜が形成される。 As shown in FIG. 10, the slurry-like positive electrode material PAS is supplied to the manifold D2 of the die D1 from the tank in which the slurry-like cathode material PAS is stored by a metering pump. In the manifold D2, after the pressure distribution of the slurry-like positive electrode material PAS becomes uniform, the slurry-like positive electrode material PAS is supplied to and discharged from the slit portion D3 provided in the die D1. The discharged slurry-like positive electrode material PAS forms an electrode material reservoir D4 called a bead between the base D1 and the current collector foil PEP that travels relative to the base D1 while maintaining the first distance h1. In the state, the slurry-like positive electrode material PAS is pulled out as the current collector foil PEP travels to form a coating film made of the positive electrode material PAS.
 ここで、塗膜の形成により消費される正極材料PASの量と同量の正極材料PASをスリット部D3から供給することにより、塗膜は連続して形成される。蒸発速度の速い有機溶剤系の正極材料PASを安定して塗布するためには、電極材料溜りD4の下流側メニスカス(液面の屈曲)D5の形成の安定化が重要となる。そのため、マニホールドD2へ正極材料PASを供給する圧力は、(スリット部D3の圧損+口金D1の下流側リップ部D6の圧損+下流側メニスカスD5の圧力)となる。 Here, by supplying the same amount of positive electrode material PAS as the amount of positive electrode material PAS consumed by the formation of the coating film from the slit portion D3, the coating film is continuously formed. In order to stably apply the organic solvent-based positive electrode material PAS having a high evaporation rate, it is important to stabilize the formation of the meniscus (bending liquid surface) D5 on the downstream side of the electrode material reservoir D4. Therefore, the pressure for supplying the positive electrode material PAS to the manifold D2 is (pressure loss of the slit portion D3 + pressure loss of the downstream lip portion D6 of the base D1 + pressure of the downstream meniscus D5).
 本発明者らは、リチウムイオン電池の高容量化および小型化を検討しており、その一手段として、セパレータの薄膜化および電極膜(正極膜および負極膜)の厚膜化を検討している。 The inventors of the present invention are studying to increase the capacity and miniaturization of lithium ion batteries, and as one means for that, are studying a thinner separator and a thicker electrode film (positive electrode film and negative electrode film). .
 しかし、セパレータを薄く形成するためには、第2スリットダイコータDC2の口金D1と集電箔PEPとの間の第1間隔h1を小さくする必要があるが、第1間隔h1が大き過ぎると、絶縁材料IFを均一に塗布することができなくなり、セパレータに膜切れが生じる。また、電極材料の上面に均一に絶縁材料IFを塗布することができても、電極材料の側面および電極材料が塗布されていない集電箔PEPの表面に均一に絶縁材料IFを塗布することができない。さらに、電極膜を厚く形成するためには、集電箔PEPの表面に電極材料を厚く塗布しなくてはならないが、電極材料を厚く塗布すると、電極材料の側面が傾斜し(集電箔PEPの表面に対して角度を有して傾く)、また、電極材料の上面に窪みが形成されて、電極材料の形状が安定しない。このため、セパレータの薄膜化および電極膜の厚膜化を図ろうとすると、リチウムイオン電池の製造歩留りが低下するという問題があった。 However, in order to form a thin separator, it is necessary to reduce the first distance h1 between the base D1 of the second slit die coater DC2 and the current collector foil PEP. The material IF cannot be uniformly applied, and the separator is cut off. Further, even if the insulating material IF can be uniformly applied to the upper surface of the electrode material, the insulating material IF can be uniformly applied to the side surfaces of the electrode material and the surface of the current collector foil PEP to which the electrode material is not applied. Can not. Furthermore, in order to form a thick electrode film, the electrode material must be applied thickly on the surface of the current collector foil PEP. However, when the electrode material is applied thickly, the side surface of the electrode material is inclined (current collector foil PEP). In addition, a depression is formed on the upper surface of the electrode material, and the shape of the electrode material is not stable. For this reason, when trying to reduce the thickness of the separator and the electrode film, there is a problem that the production yield of the lithium ion battery decreases.
 (実施の形態1)
 ≪リチウムイオン電池の電極シートの製造方法≫
 本実施の形態1におけるリチウムイオン電池の電極シートの製造方法を図1および図2を用いて説明する。図1は、本実施の形態1におけるリチウムイオン電池の電極シートの製造装置の概略図である。図2は、本実施の形態1におけるリチウムイオン電池の電極シートの製造方法を説明する各塗布工程および乾燥工程の電極シートの断面図である。図2(a)は第1絶縁材料(スペーサ材料)塗布工程の電極シートの断面図(図1のA1-A1の断面図)、図2(b)は電極材料塗布工程の電極シートの断面図(図1のB1-B1の断面図)および図2(c)は第2絶縁材料(セパレータ材料)塗布工程の電極シートの断面図(図1のC1-C1の断面図)である。さらに、図2(d)は乾燥工程の電極シートの断面図(図1のD1-D1の断面図)である。
(Embodiment 1)
≪Method of manufacturing electrode sheet for lithium ion battery≫
A method for manufacturing the electrode sheet of the lithium ion battery in the first embodiment will be described with reference to FIGS. FIG. 1 is a schematic diagram of an apparatus for manufacturing an electrode sheet for a lithium ion battery according to the first embodiment. FIG. 2 is a cross-sectional view of the electrode sheet in each coating step and drying step for explaining the method for producing the electrode sheet of the lithium ion battery in the first embodiment. 2A is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step (cross-sectional view of A1-A1 in FIG. 1), and FIG. 2B is a cross-sectional view of the electrode sheet in the electrode material application step. (Cross-sectional view of B1-B1 in FIG. 1) and FIG. 2C are cross-sectional views (cross-sectional view of C1-C1 in FIG. 1) of the electrode sheet in the second insulating material (separator material) application step. Further, FIG. 2D is a cross-sectional view of the electrode sheet in the drying process (cross-sectional view of D1-D1 in FIG. 1).
 本実施の形態1では、集電箔が走行する第1方向に沿って集電箔の表面に2列に形成される正極膜の製造方法を例示する。また、本実施の形態1では、正極シートの片面の製造方法を例示するが、負極シートの片面の製造方法も同様である。 Embodiment 1 exemplifies a method of manufacturing a positive electrode film formed in two rows on the surface of the current collector foil along the first direction in which the current collector foil travels. Moreover, in this Embodiment 1, although the manufacturing method of the single side | surface of a positive electrode sheet is illustrated, the manufacturing method of the single side | surface of a negative electrode sheet is also the same.
 図1に示すように、電極シート製造装置M1においては、集電箔PEPは、巻き出しロールSL1から送り出され、第1ローラRL1、第2ローラRL2、第3ローラRL3、第4ローラRL4、第5ローラRL5、第6ローラRL6および第7ローラRL7によって巻き取りロールSL2へ搬送される。第3ローラRL3に対向してディスペンサDPが設置され、第4ローラRL4に対向して第1スリットダイコータDC1が設置され、第5ローラRL5に対向して第2スリットダイコータDC2が設置されている。 As shown in FIG. 1, in the electrode sheet manufacturing apparatus M1, the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4, The paper is conveyed to the take-up roll SL2 by the 5-roller RL5, the sixth roller RL6, and the seventh roller RL7. A dispenser DP is installed facing the third roller RL3, a first slit die coater DC1 is installed facing the fourth roller RL4, and a second slit die coater DC2 is installed facing the fifth roller RL5.
 1.第1塗布工程(第1絶縁材料(スペーサ材料)塗布工程)
 まず、巻き出しロールSL1から送り出された集電箔PEPの表面に、第3ローラRL3と対向した位置のディスペンサDPから供給されるスラリー状の第1絶縁材料IF1が塗布される。第1絶縁材料IF1はタンクTA1に貯留されており、定量ポンプPU1によって集電箔PEPの表面に供給される。
1. First coating process (first insulating material (spacer material) coating process)
First, the slurry-like first insulating material IF1 supplied from the dispenser DP at a position facing the third roller RL3 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The first insulating material IF1 is stored in the tank TA1, and is supplied to the surface of the current collector foil PEP by the metering pump PU1.
 図2(a)に示すように、複数の第1絶縁材料IF1は、第1方向に走行する集電箔PEPの表面に、第1方向と集電箔PEPの表面で直交する第2方向に互いに離間して塗布される。すなわち、複数の第1絶縁材料IF1は、後の第2塗布工程において第1方向に走行する集電箔PEPの表面に正極材料PASが塗布される領域を、第2方向に挟むように集電箔PEPの表面に塗布される。言い換えれば、複数の第1絶縁材料IF1は、後の第2塗布工程において第1方向に走行する集電箔PEPの表面に塗布される正極材料PASの領域の第2方向の幅を規制するように塗布される。本実施の形態1では、集電箔PEPの表面に第1方向に沿って2列の正極膜を形成するため、複数の第1絶縁材料IF1は、第2方向に互いに離間し、集電箔PEPの表面に第1方向に沿って3列塗布される。 As shown in FIG. 2A, the plurality of first insulating materials IF1 are arranged on the surface of the current collector foil PEP traveling in the first direction in the second direction orthogonal to the first direction and the surface of the current collector foil PEP. They are applied separately from each other. That is, the plurality of first insulating materials IF1 collects current in such a manner that a region in which the positive electrode material PAS is applied to the surface of the current collector foil PEP traveling in the first direction in the second application step is sandwiched in the second direction. It is applied to the surface of the foil PEP. In other words, the plurality of first insulating materials IF1 regulate the width in the second direction of the region of the positive electrode material PAS applied to the surface of the current collector foil PEP traveling in the first direction in the subsequent second application step. To be applied. In the first embodiment, in order to form two rows of positive electrode films along the first direction on the surface of the current collector foil PEP, the plurality of first insulating materials IF1 are separated from each other in the second direction, and the current collector foil Three rows are applied to the surface of the PEP along the first direction.
 第1絶縁材料IF1の厚さは、後の第2塗布工程において集電箔PEPの表面に塗布される正極材料PASの厚さとほぼ同じである。また、第1絶縁材料IF1が塗布される領域は、正極シートが完成した後に切断される領域であるため、材料費を抑えるためにも第1絶縁材料IF1の第2方向の幅は小さく設定される。例えば、切断に要する幅を考慮して、第1絶縁材料IF1の第2方向の幅は5mm~15mm程度である。 The thickness of the first insulating material IF1 is substantially the same as the thickness of the positive electrode material PAS applied to the surface of the current collector foil PEP in the subsequent second application step. In addition, since the region to which the first insulating material IF1 is applied is a region that is cut after the positive electrode sheet is completed, the width in the second direction of the first insulating material IF1 is set to be small in order to reduce the material cost. The For example, considering the width required for cutting, the width in the second direction of the first insulating material IF1 is about 5 mm to 15 mm.
 2.第2塗布工程(電極材料塗布工程)
 次に、巻き出しロールSL1から送り出された集電箔PEPの表面に、第4ローラRL4と対向した位置の第1スリットダイコータDC1から供給されるスラリー状の正極材料PASが塗布される。正極材料PASはタンクTA2に貯留されており、定量ポンプPU2によって集電箔PEPの表面に供給される。
2. Second application process (electrode material application process)
Next, the slurry-like positive electrode material PAS supplied from the first slit die coater DC1 at a position facing the fourth roller RL4 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The positive electrode material PAS is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP by the metering pump PU2.
 図2(b)に示すように、複数の正極材料PASは、第1方向に走行する集電箔PEPの表面で、かつ前の第1塗布工程において集電箔PEPの表面に塗布された第1絶縁材料IF1に挟まれた領域に塗布される。本実施の形態1では、集電箔PEPの表面に第1方向に沿って2列の正極膜を形成するため、複数の正極材料PASは、第1絶縁材料IF1によって分離されて第2方向に互いに離間し、集電箔PEPの表面に第1方向に沿って2列塗布される。 As shown in FIG. 2B, the plurality of positive electrode materials PAS are applied to the surface of the current collector foil PEP traveling in the first direction and to the surface of the current collector foil PEP in the previous first application step. 1 It apply | coats to the area | region pinched | interposed into insulating material IF1. In the first embodiment, in order to form two rows of positive electrode films along the first direction on the surface of the current collector foil PEP, the plurality of positive electrode materials PAS are separated by the first insulating material IF1 in the second direction. Two rows are applied along the first direction on the surface of the current collector foil PEP so as to be separated from each other.
 正極材料PASの厚さは、第1絶縁材料IF1の厚さとほぼ同じである。正極材料PASの厚さと第1絶縁材料IF1の厚さとは同じであることが望ましいが、第1絶縁材料IF1の上面に正極材料PASが塗布されることを防ぐため、正極材料PASの上面が第1絶縁材料IF1の上面よりも0μm~10μm程度低くなるように正極材料PASは塗布される。正極材料PASの厚さは、例えば第1スリットダイコータDC1の口金D1の高さ調整(前記図10参照)および正極材料PASの送量によって調整することができる。 The thickness of the positive electrode material PAS is substantially the same as the thickness of the first insulating material IF1. Although it is desirable that the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 are the same, in order to prevent the positive electrode material PAS from being applied to the upper surface of the first insulating material IF1, the upper surface of the positive electrode material PAS is 1 The positive electrode material PAS is applied so as to be lower by about 0 μm to 10 μm than the upper surface of the insulating material IF1. The thickness of the positive electrode material PAS can be adjusted, for example, by adjusting the height of the base D1 of the first slit die coater DC1 (see FIG. 10) and the feed amount of the positive electrode material PAS.
 第1絶縁材料IF1を塗布しない場合は、正極材料PASを厚く塗布すると、正極材料PASの側面が傾斜し、また、正極材料PASの上面に窪みが形成されて、正極材料PASの形状が安定しないという問題がある。しかし、本実施の形態1では、予め、正極材料PASを塗布する領域を第1絶縁材料IF1で規定しているので、正極材料PASを厚く(例えば100μm~400μm程度)塗布しても、正極材料PASの側面が傾斜しないので、正極材料PASの形状が安定する。 When the first insulating material IF1 is not applied, when the positive electrode material PAS is applied thickly, the side surface of the positive electrode material PAS is inclined, and a depression is formed on the upper surface of the positive electrode material PAS, so that the shape of the positive electrode material PAS is not stable. There is a problem. However, in the first embodiment, since the region where the positive electrode material PAS is applied is defined in advance by the first insulating material IF1, the positive electrode material can be applied even if the positive electrode material PAS is applied thickly (eg, about 100 μm to 400 μm). Since the side surface of the PAS is not inclined, the shape of the positive electrode material PAS is stabilized.
 3.第3塗布工程(第2絶縁材料(セパレータ材料)塗布工程)
 次に、第5ローラRL5と対向した位置の第2スリットダイコータDC2から供給されるスラリー状の第2絶縁材料IF2が塗布される。第2絶縁材料IF2はタンクTA3に貯留されており、定量ポンプPU3によって第1絶縁材料IF1および正極材料PASの上面に供給される。
3. Third coating process (second insulating material (separator material) coating process)
Next, a slurry-like second insulating material IF2 supplied from the second slit die coater DC2 at a position facing the fifth roller RL5 is applied. The second insulating material IF2 is stored in the tank TA3, and is supplied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS by the metering pump PU3.
 図2(c)に示すように、第2絶縁材料IF2は、集電箔PEPが走行する第1方向に沿って第1絶縁材料IF1および正極材料PASの上面に塗布される。第2絶縁材料IF2の厚さは、例えば5μm~40μm程度である。第2絶縁材料IF2の厚さは、例えば第2スリットダイコータDC2の口金D1の高さ調整(前記図10参照)および第2絶縁材料IF2の送量によって調整することができる。 As shown in FIG. 2 (c), the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS along the first direction in which the current collector foil PEP travels. The thickness of the second insulating material IF2 is, for example, about 5 μm to 40 μm. The thickness of the second insulating material IF2 can be adjusted, for example, by adjusting the height of the base D1 of the second slit die coater DC2 (see FIG. 10) and feeding the second insulating material IF2.
 第2絶縁材料IF2を薄く塗布するためには、前記図10に示したように、第2スリットダイコータDC2の口金D1と集電箔PEPとの間の第1間隔h1を小さくする必要がある。しかし、ほぼ平坦な面である第1絶縁材料IF1および正極材料PASの上面に第2絶縁材料IF2は塗布されて、例えば第1絶縁材料IF1および正極材料PASの側面、並びに第1絶縁材料IF1および正極材料PASが塗布されていない集電箔PEPの表面には塗布されない。従って、第2スリットダイコータDC2の口金D1と集電箔PEPとの間の第1間隔h1が小さくても、第2絶縁材料IF2を均一に塗布することができるので、第2絶縁材料IF2の膜切れを防ぐことができる。 In order to apply the second insulating material IF2 thinly, as shown in FIG. 10, it is necessary to reduce the first distance h1 between the base D1 of the second slit die coater DC2 and the current collector foil PEP. However, the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS, which are substantially flat surfaces, for example, the side surfaces of the first insulating material IF1 and the positive electrode material PAS, and the first insulating material IF1 and It is not applied to the surface of the current collector foil PEP to which the positive electrode material PAS is not applied. Accordingly, even if the first distance h1 between the die D1 of the second slit die coater DC2 and the current collector foil PEP is small, the second insulating material IF2 can be uniformly applied, so the film of the second insulating material IF2 Cutting can be prevented.
 4.乾燥工程
 次に、乾燥炉(乾燥機構)DRYを通過することで、集電箔PEPの表面に塗布した正極材料PASおよび第1絶縁材料IF1と、これらの上面に塗布した第2絶縁材料IF2とを積層した塗膜の全体が乾燥し、その表面に正極膜およびセパレータが形成された集電箔PEPが巻き取りロールSL2に巻き取られる。
4). Next, by passing through a drying furnace (drying mechanism) DRY, the positive electrode material PAS and the first insulating material IF1 applied to the surface of the current collector foil PEP, and the second insulating material IF2 applied to the upper surface thereof The entire coated film is dried, and the current collector foil PEP on which the positive electrode film and the separator are formed is wound on the winding roll SL2.
 図2(d)に示すように、乾燥前は、正極材料PASの厚さと第1絶縁材料IF1の厚さとはほぼ同じであったが、乾燥後は、第1絶縁材料IF1からなるスペーサSPの厚さは正極材料PASからなる正極膜PEの厚さよりも薄くなる。これは、正極材料PASに含まれる固形物(例えば正極活物質および導電助剤など)の量と第1絶縁材料IF1に含まれる固形物の量との違いに起因する。すなわち、正極材料PASに含まれる固形物の量は相対的に多く、第1絶縁材料IF1に含まれる固形物の量は相対的に少なく制御することにより、乾燥後には、スペーサSPの厚さが正極膜PEの厚さよりも薄くなるようにしている。 As shown in FIG. 2D, the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 were substantially the same before drying, but after drying, the thickness of the spacer SP made of the first insulating material IF1. The thickness is smaller than the thickness of the positive electrode film PE made of the positive electrode material PAS. This is due to the difference between the amount of solid matter (eg, positive electrode active material and conductive additive) contained in the positive electrode material PAS and the amount of solid matter contained in the first insulating material IF1. That is, the amount of the solid matter contained in the positive electrode material PAS is relatively large, and the amount of the solid matter contained in the first insulating material IF1 is controlled to be relatively small. It is made thinner than the thickness of the positive electrode film PE.
 これは以下の理由による。すなわち、集電箔PEPと正極膜PEとの密着性を向上させ、正極材料PAS中の固形物を互いに結着させるために、乾燥後、正極膜PEおよびスペーサSPと、これらの上面に塗布した第2絶縁材料IF2からなるセパレータSEとの積層膜を切断する前に、この積層膜の圧縮(ロールプレス)を実施している。この圧縮の際には、正極膜PEに荷重を加えることが重要となるので、スペーサSPの厚さが正極膜PEの厚さよりも厚いと、正極膜PEに荷重が加わらなくなる。そのため、スペーサSPの厚さを正極膜PEの厚さよりも薄くする必要がある。 This is due to the following reasons. That is, in order to improve the adhesion between the current collector foil PEP and the positive electrode film PE and to bind the solids in the positive electrode material PAS to each other, the positive electrode film PE and the spacer SP were applied to the upper surfaces of these after drying. Before the laminated film with the separator SE made of the second insulating material IF2 is cut, the laminated film is compressed (roll press). During the compression, it is important to apply a load to the positive electrode film PE. Therefore, if the spacer SP is thicker than the positive electrode film PE, the load is not applied to the positive electrode film PE. Therefore, it is necessary to make the thickness of the spacer SP thinner than the thickness of the positive electrode film PE.
 なお、本実施の形態1では、集電箔PEPが走行する第1方向に沿って集電箔PEPの表面に2列に形成される正極膜PEの製造方法を例示したが、これに限定されるものではない。例えば正極膜PEは1列、または3列以上であってもよく、同様の効果を得ることができる。 In the first embodiment, the method for manufacturing the positive electrode film PE formed in two rows on the surface of the current collector foil PEP along the first direction in which the current collector foil PEP travels is exemplified, but the present invention is not limited thereto. It is not something. For example, the positive electrode film PE may be one row or three or more rows, and the same effect can be obtained.
 ≪リチウムイオン電池の具体的な製造工程≫
 本実施の形態1におけるリチウムイオン電池の具体的な製造工程を図3を用いて説明する。図3は、本実施の形態1におけるリチウムイオン電池の具体的な製造工程をまとめた工程図である。
≪Specific manufacturing process of lithium-ion battery≫
A specific manufacturing process of the lithium ion battery according to the first embodiment will be described with reference to FIG. FIG. 3 is a process diagram summarizing a specific manufacturing process of the lithium ion battery in the first embodiment.
 図3に示すように、リチウムイオン電池の製造工程は、前記図8に示したリチウムイオン電池の製造工程と同様に、正極シート製造工程と、負極シート製造工程と、電池セル組立工程と、電池モジュール組立工程とを含んでいる。 As shown in FIG. 3, the manufacturing process of the lithium ion battery is the same as the manufacturing process of the lithium ion battery shown in FIG. 8, the positive electrode sheet manufacturing process, the negative electrode sheet manufacturing process, the battery cell assembling process, and the battery. Module assembly process.
 正極シート製造工程では、まず、フィルム状の集電箔の表面に、スペーサとなるスラリー状の複数の第1絶縁材料を、集電箔が走行する第1方向と直交する第2方向に互いに離間して塗布する(スペーサ材料塗布)。第1絶縁材料は、原料となる各種材料を混連および調合することにより作製される。 In the positive electrode sheet manufacturing process, first, a plurality of slurry-like first insulating materials serving as spacers are separated from each other in a second direction orthogonal to the first direction in which the current collector foil runs on the surface of the film-like current collector foil. And apply (spacer material application). The first insulating material is produced by mixing and preparing various materials as raw materials.
 続いて、フィルム状の集電箔の表面で、第2方向に互いに離間して塗布された第1絶縁材料の間にスラリー状の正極材料を塗布する(正極材料塗布)。正極材料は、原料となる各種材料を混連および調合することにより作製される。 Subsequently, on the surface of the film-like current collector foil, a slurry-like positive electrode material is applied between the first insulating materials applied separately in the second direction (positive electrode material application). The positive electrode material is produced by mixing and preparing various materials as raw materials.
 続いて、フィルム状の集電箔の表面に形成された第1絶縁材料および正極材料の上面に、セパレータとなるスラリー状の第2絶縁材料を塗布する(セパレータ材料塗布)。第2絶縁材料は、原料となる各種材料を混連および調合することにより作製される。 Subsequently, a slurry-like second insulating material serving as a separator is applied to the top surfaces of the first insulating material and the positive electrode material formed on the surface of the film-like current collector foil (separator material application). The second insulating material is produced by mixing and preparing various materials as raw materials.
 続いて、フィルム状の集電箔の表面に塗布した正極材料および第1絶縁材料と、これらの上面に塗布した第2絶縁材料とを積層した塗膜の全体を乾燥させた後(乾燥)、この塗膜が形成された集電箔に圧縮および切断といった加工を行う(加工)。これにより、フィルム状の集電箔の表面に、正極材料からなる正極膜および第1絶縁材料からなるスペーサと、これらの上面に形成された第2絶縁材料からなるセパレータとが積層されたフィルム状の正極シートが製造される。上記塗膜が形成された集電箔を切断する際には、第1絶縁材料からなるスペーサが形成された領域が切断される。 Subsequently, after drying the entire coating film obtained by laminating the positive electrode material and the first insulating material applied to the surface of the film-shaped current collector foil and the second insulating material applied to the upper surface thereof (drying), Processing such as compression and cutting is performed on the current collector foil on which the coating film is formed (processing). Thereby, the film-form current collector foil has a film-like shape in which the positive electrode film made of the positive electrode material and the spacer made of the first insulating material and the separator made of the second insulating material formed on the upper surface thereof are laminated. The positive electrode sheet is manufactured. When cutting the current collector foil on which the coating film is formed, the region where the spacer made of the first insulating material is formed is cut.
 一方、負極シート製造工程では、使用される原料となる各種材料は正極シート製造工程とは異なるが、負極シートが製造されるまでの手順は正極シート製造工程と同じである。まず、フィルム状の集電箔の表面に、スペーサとなるスラリー状の複数の第1絶縁材料を、集電箔が走行する第1方向と直交する第2方向に互いに離間して塗布する(スペーサ材料塗布)。第1絶縁材料は、原料となる各種材料を混連および調合することにより作製される。 On the other hand, in the negative electrode sheet manufacturing process, various materials used as raw materials are different from those in the positive electrode sheet manufacturing process, but the procedure until the negative electrode sheet is manufactured is the same as in the positive electrode sheet manufacturing process. First, a plurality of slurry-like first insulating materials serving as spacers are applied to the surface of a film-like current collecting foil in a second direction perpendicular to the first direction in which the current collecting foil runs (spacer). Material application). The first insulating material is produced by mixing and preparing various materials as raw materials.
 続いて、フィルム状の集電箔の表面で、第2方向に互いに離間して塗布された第1絶縁材料の間にスラリー状の負極材料を塗布する(負極材料塗布)。負極材料は、原料となる各種材料を混連および調合することにより作製される。 Subsequently, a slurry-like negative electrode material is applied between the first insulating materials applied in the second direction so as to be separated from each other on the surface of the film-like current collecting foil (negative electrode material application). The negative electrode material is produced by mixing and preparing various materials as raw materials.
 続いて、フィルム状の集電箔の表面に形成された第1絶縁材料および負極材料の上面に、セパレータとなるスラリー状の第2絶縁材料を塗布する(セパレータ材料塗布)。第2絶縁材料は、原料となる各種材料を混連および調合することにより作製される。 Subsequently, a slurry-like second insulating material serving as a separator is applied to the upper surfaces of the first insulating material and the negative electrode material formed on the surface of the film-like current collecting foil (separator material application). The second insulating material is produced by mixing and preparing various materials as raw materials.
 続いて、フィルム状の集電箔の表面に塗布した負極材料および第1絶縁材料と、これらの上面に塗布した第2絶縁材料とを積層した塗膜の全体を乾燥させた後(乾燥)、この塗膜が形成された集電箔に圧縮および切断といった加工を行う(加工)。これにより、フィルム状の集電箔の表面に、負極材料からなる負極膜および第1絶縁材料からなるスペーサと、これらの上面に形成された第2絶縁材料からなるセパレータとが積層されたフィルム状の負極シートが製造される。上記塗膜が形成された集電箔を切断する際には、第1絶縁材料からなるスペーサが形成された領域が切断される。 Subsequently, after drying the entire coating film obtained by laminating the negative electrode material and the first insulating material applied to the surface of the film-like current collector foil and the second insulating material applied to the upper surface thereof (drying), Processing such as compression and cutting is performed on the current collector foil on which the coating film is formed (processing). As a result, a film-like current collecting foil is laminated on the surface of the negative electrode film made of the negative electrode material and the spacer made of the first insulating material and the separator made of the second insulating material formed on the upper surface thereof. The negative electrode sheet is manufactured. When cutting the current collector foil on which the coating film is formed, the region where the spacer made of the first insulating material is formed is cut.
 次に、電池セル組立工程では、フィルム状の正極シートから、電池セルに必要な大きさの正極を切り出し、フィルム状の負極シートから、電池セルに必要な大きさの負極を切り出して、正極と負極とを挟んで重ねて捲き合わせる(捲回)。正極シートおよび負極シートには、すでにセパレータが形成されているので、この捲回工程では、正極と負極との間にセパレータを挟んで重ねて捲き合わせる必要がなく、製造コストを低減することができる。 Next, in the battery cell assembling step, a positive electrode having a size necessary for the battery cell is cut out from the film-like positive electrode sheet, and a negative electrode having a size necessary for the battery cell is cut out from the film-like negative electrode sheet. Put the negative electrode on top of each other and roll them together (winding). Since the separator is already formed on the positive electrode sheet and the negative electrode sheet, in this winding step, it is not necessary to sandwich the separator between the positive electrode and the negative electrode, and the manufacturing cost can be reduced. .
 その後は、前記図8を用いて説明した比較例のリチウムイオン電池の製造方法と同様にして、電池セルを完成させ、さらに、電池モジュールを完成させる。 Thereafter, the battery cell is completed and the battery module is completed in the same manner as the method of manufacturing the lithium ion battery of the comparative example described with reference to FIG.
 ≪リチウムイオン電池の各材料≫
 本実施の形態1で用いる正極活物質には、例えばコバルト酸リチウムまたはMn(マンガン)を含有するスピネル構造のリチウム含有複合酸化物を用いることができる。また、正極活物質には、Ni(ニッケル)、Co(コバルト)およびMn(マンガン)を含む複合酸化物、またはオリビン型リン酸鉄に代表されるオリビン型化合物などを用いることもできる。ただし、正極活物質に用いる材料は、これらに限定されるものではない。
≪Each material of lithium ion battery≫
As the positive electrode active material used in Embodiment 1, for example, a lithium-containing composite oxide having a spinel structure containing lithium cobaltate or Mn (manganese) can be used. As the positive electrode active material, a composite oxide containing Ni (nickel), Co (cobalt), and Mn (manganese), or an olivine type compound represented by olivine type iron phosphate can be used. However, the material used for the positive electrode active material is not limited to these.
 Mn(マンガン)を含有するスピネル構造のリチウム含有複合酸化物は熱的安定性に優れているため、これを含む正極シートを形成することで、安全性の高いリチウムイオン電池を構成することができる。また、正極活物質には、Mn(マンガン)を含有するスピネル構造のリチウム含有複合酸化物のみを用いてもよいが、他の正極活物質を併用してもよい。このような他の正極活物質としては、例えばLi1+xMO(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mg、Zr、Tiなど)で表わされるオリビン型化合物などが挙げられる。また、層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOまたはLiNi1-xCox-yAl(0.1≦x≦0.3、0.01≦y≦0.2)などを用いることができる。また、層状構造のリチウム含有遷移金属酸化物には、少なくともNi(ニッケル)、Co(コバルト)およびMn(マンガン)を含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5など)などを用いることができる。 Since a lithium-containing composite oxide having a spinel structure containing Mn (manganese) is excellent in thermal stability, a lithium ion battery with high safety can be formed by forming a positive electrode sheet containing this. . Further, as the positive electrode active material, only a lithium-containing composite oxide having a spinel structure containing Mn (manganese) may be used, but other positive electrode active materials may be used in combination. Examples of such other positive electrode active materials include olivine type represented by Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, Zr, Ti, etc.), for example. Compound etc. are mentioned. Further, specific examples of the lithium-containing transition metal oxide having a layer structure include LiCoO 2 or LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0). .2) can be used. Further, the lithium-containing transition metal oxide having a layered structure includes an oxide containing at least Ni (nickel), Co (cobalt), and Mn (manganese) (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3/5 Mn 1/5 Co 1/5 O 2, etc.) can be used.
 本実施の形態1で用いる負極活物質には、例えば天然黒鉛(鱗片状黒鉛)、人造黒鉛または膨張黒鉛などの黒鉛材料を用いることができる。また、負極活物質には、ピッチを焼成して得られるコークスなどの易黒鉛化性炭素質材料を用いることもできる。また、負極活物質には、フルフリルアルコール樹脂(PFA)、ポリパラフェニレン(PPP)またはフェノール樹脂などを低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料を用いてもよい。また、炭素材料の他に、Li(リチウム)またはリチウム含有化合物なども負極活物質として用いることができる。 As the negative electrode active material used in Embodiment 1, for example, a graphite material such as natural graphite (flaky graphite), artificial graphite, or expanded graphite can be used. Further, as the negative electrode active material, an easily graphitizable carbonaceous material such as coke obtained by firing pitch can be used. Further, a non-graphitizable carbonaceous material such as amorphous carbon obtained by low-temperature firing of furfuryl alcohol resin (PFA), polyparaphenylene (PPP), phenol resin, or the like may be used as the negative electrode active material. Good. In addition to the carbon material, Li (lithium) or a lithium-containing compound can also be used as the negative electrode active material.
 リチウム含有化合物としては、Li-Alなどのリチウム合金、あるいはSi(ケイ素)またはSn(スズ)などとLi(リチウム)との合金化が可能な元素を含む合金が挙げられる。さらに、Sn酸化物またはSi酸化物などの酸化物系材料も用いることも可能である。 Examples of the lithium-containing compound include a lithium alloy such as Li—Al or an alloy containing an element that can be alloyed with Li (lithium) and Si (silicon) or Sn (tin). Furthermore, an oxide-based material such as Sn oxide or Si oxide can also be used.
 本実施の形態1で用いる導電助剤は、正極膜に含有させる電子伝導助剤として用いるもので、例えばカーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト、カーボンファイバーまたはカーボンナノチューブなどの炭素材料が好ましい。上記炭素材料の中でも、添加量と導電性の効果、および塗布用正極合剤スラリーの製造性の点から、アセチレンブラックまたはケッチェンブラックが特に好ましい。導電助剤は負極膜に含有させることも可能であり、好ましい場合もある。 The conductive auxiliary agent used in the first embodiment is used as an electronic conductive auxiliary agent to be contained in the positive electrode film. For example, a carbon material such as carbon black, acetylene black, ketjen black, graphite, carbon fiber, or carbon nanotube is preferable. . Among the above carbon materials, acetylene black or ketjen black is particularly preferable from the viewpoint of the amount of addition and conductivity and the manufacturability of the coating positive electrode mixture slurry. The conductive auxiliary agent can be contained in the negative electrode film, and may be preferable.
 本実施の形態1で用いるバインダは、活物質および導電助剤を結着するためのバインダも含有していることが好ましい。バインダとしては、例えばポリビニリデンフルオライド系ポリマー(主成分モノマーであるビニリデンフルオライドを80質量%以上含有する含フッ素モノマー群の重合体)またはゴム系ポリマーなどが好適に用いられる。上記ポリマーは、2種以上を併用してもよい。また、バインダは、溶媒に溶解した溶液の形態で供されるものが好ましい。 The binder used in the first embodiment preferably also contains a binder for binding the active material and the conductive additive. As the binder, for example, a polyvinylidene fluoride-based polymer (a polymer of a fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer) or a rubber-based polymer is preferably used. Two or more of the above polymers may be used in combination. The binder is preferably provided in the form of a solution dissolved in a solvent.
 上記ポリビニリデンフルオライド系ポリマーを合成するための含フッ素モノマー群としては、ビニリデンフルオライド、またはビニリデンフルオライドと他のモノマーとの混合物で、ビニリデンフルオライドを80質量%以上含有するモノマー混合物などが挙げられる。他のモノマーとしては、例えばビニルフルオライド、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびフルオロアルキルビニルエーテルなどが挙げられる。 Examples of the fluorine-containing monomer group for synthesizing the polyvinylidene fluoride-based polymer include vinylidene fluoride, or a mixture of vinylidene fluoride and another monomer, and a monomer mixture containing 80% by mass or more of vinylidene fluoride. Can be mentioned. Examples of other monomers include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.
 上記ゴム系ポリマーとしては、例えばスチレンブタジエンゴム(SBR)、エチレンプロピレンジエンゴムおよびフッ素ゴムなどが挙げられる。 Examples of the rubber-based polymer include styrene butadiene rubber (SBR), ethylene propylene diene rubber, and fluorine rubber.
 電極膜中におけるバインダの含有量は、乾燥後の電極膜を基準として0.1質量%以上、より好ましくは0.3質量%以上であって、10質量%以下、さらに、5質量%以下であることがより望ましい。バインダの含有量が少な過ぎると、乾燥工程における固化が不十分となるばかりでなく、乾燥後の電極膜の機械的強度が不足し、電極膜が集電箔から剥離するおそれがある。また、バインダの含有量が多過ぎると、電極膜中の活物質量が減少して、電池容量が低くなるおそれがある。 Content of the binder in an electrode film is 0.1 mass% or more on the basis of the electrode film after drying, More preferably, it is 0.3 mass% or more, 10 mass% or less, Furthermore, it is 5 mass% or less. More desirable. If the binder content is too small, not only is the solidification in the drying process insufficient, but the mechanical strength of the electrode film after drying is insufficient, and the electrode film may peel from the current collector foil. Moreover, when there is too much content of a binder, there exists a possibility that the amount of active materials in an electrode film may reduce and battery capacity may become low.
 本実施の形態1で用いる絶縁材料には、Al(アルミナ)またはSiO(シリカ)などの無機酸化物を用いることができる。また、ポリプロピレンまたはポリエチレンの微粒子を混同したスラリーを用いてもよく、これを用いることで、シャットダウン性を持たせることができる。また、絶縁材料に用いた無機酸化物粒子を結着させるために、バインダとして樹脂を用いる。バインダには、電極膜に用いられるバインダが好適に用いられる。 As the insulating material used in Embodiment 1, an inorganic oxide such as Al 2 O 3 (alumina) or SiO 2 (silica) can be used. In addition, a slurry in which fine particles of polypropylene or polyethylene are confused may be used, and by using this, shutdown property can be provided. In order to bind the inorganic oxide particles used for the insulating material, a resin is used as a binder. The binder used for the electrode film is preferably used as the binder.
 本実施の形態1で用いる集電箔は、シート状の箔に限定されることはない。その基体としては、例えばAl(アルミニウム)、Cu(銅)、ステンレス鋼またはTi(チタン)などの純金属または合金性導電材料を用いて、その形状として、網、パンチドメタル、フォームメタルまたは板状に加工した箔などが用いられる。集電箔の厚さとしては、例えば5μm~30μm、より好ましくは8μm~16μmが選択される。また、集電箔の一方の面(表面)に形成される電極膜の厚さは、乾燥後の厚さで、例えば50μm~400μm程度である。 The current collector foil used in the first embodiment is not limited to a sheet-like foil. As the substrate, for example, pure metal or alloy conductive material such as Al (aluminum), Cu (copper), stainless steel or Ti (titanium) is used, and the shape thereof is a net, punched metal, foam metal or plate. A foil processed into a shape is used. As the thickness of the current collector foil, for example, 5 μm to 30 μm, more preferably 8 μm to 16 μm is selected. Further, the thickness of the electrode film formed on one surface (surface) of the current collector foil is a thickness after drying, for example, about 50 μm to 400 μm.
 なお、本実施の形態1におけるリチウムイオン電池は、前述した方法で製造される正極および負極を含むこと以外は、従来のリチウムイオン電池と同様に製造することができる。電池の容器の構造またはサイズ、あるいは正極および負極を主構成要素とする電極体の構造等について、特に制限はない。 In addition, the lithium ion battery in this Embodiment 1 can be manufactured similarly to the conventional lithium ion battery except including the positive electrode and negative electrode which are manufactured by the method mentioned above. There is no particular limitation on the structure or size of the battery container or the structure of the electrode body having the positive and negative electrodes as main components.
 このように、本実施の形態1によれば、集電箔PEPの表面に電極膜となる電極材料を厚く塗布しても、電極材料の側面が傾斜せず、電極材料の形状が安定する。従って、集電箔PEPの表面に厚く電極材料を塗布することができる。また、電極材料を厚く塗布し、セパレータSEとなる第2絶縁材料IF2を薄く塗布しても、第2絶縁材料IF2の膜切れが生じないので、第2絶縁材料IF2を薄くかつ均一に塗布することができる。これにより、リチウムイオン電池の製造歩留りを低下させることなく、セパレータSEの薄膜化および電極膜の厚膜化を図ることができる。 As described above, according to the first embodiment, even when the electrode material to be an electrode film is applied thickly on the surface of the current collector foil PEP, the side surface of the electrode material is not inclined and the shape of the electrode material is stabilized. Therefore, the electrode material can be applied thickly on the surface of the current collector foil PEP. Further, even if the electrode material is applied thickly and the second insulating material IF2 to be the separator SE is applied thinly, the second insulating material IF2 is not cut off, so the second insulating material IF2 is applied thinly and uniformly. be able to. Thereby, it is possible to reduce the thickness of the separator SE and the electrode film without reducing the production yield of the lithium ion battery.
 (実施の形態2)
 前述の実施の形態1と相違する点は、スペーサとなる第1絶縁材料を塗布する工程と、電極膜となる電極材料を塗布する工程との工程順である。すなわち、前述の実施の形態1では、第1絶縁材料IF1を集電箔PEPの表面に塗布した後、正極材料PASを集電箔PEPの表面に塗布したが、本実施の形態2では、正極材料PASを集電箔PEPの表面に塗布した後、第1絶縁材料IF1を集電箔PEPの表面に塗布する。
(Embodiment 2)
The difference from the first embodiment described above is the process sequence of the step of applying the first insulating material to be the spacer and the step of applying the electrode material to be the electrode film. That is, in Embodiment 1 described above, the first insulating material IF1 is applied to the surface of the current collector foil PEP, and then the positive electrode material PAS is applied to the surface of the current collector foil PEP. After the material PAS is applied to the surface of the current collector foil PEP, the first insulating material IF1 is applied to the surface of the current collector foil PEP.
 ≪リチウムイオン電池の電極シートの製造方法≫
 本実施の形態2におけるリチウムイオン電池の電極シートの製造方法を図4および図5を用いて説明する。図4は、本実施の形態2におけるリチウムイオン電池の電極シートの製造装置の概略図である。図5は、本実施の形態2におけるリチウムイオン電池の電極シートの製造方法を説明する各塗布工程および乾燥工程の電極シートの断面図である。図5(a)は電極材料塗布工程の電極シートの断面図(図4のA2-A2の断面図)、図5(b)は第1絶縁材料(スペーサ材料)塗布工程の電極シートの断面図(図4のB2-B2の断面図)および図5(c)は第2絶縁材料(セパレータ材料)塗布工程の電極シートの断面図(図4のC2-C2の断面図)である。さらに、図5(d)は乾燥工程の電極シートの断面図(図4のD2-D2の断面図)である。
≪Method of manufacturing electrode sheet for lithium ion battery≫
A method for manufacturing the electrode sheet of the lithium ion battery in the second embodiment will be described with reference to FIGS. FIG. 4 is a schematic diagram of an apparatus for manufacturing an electrode sheet for a lithium ion battery according to the second embodiment. FIG. 5 is a cross-sectional view of the electrode sheet in each coating step and drying step for explaining the method of manufacturing the electrode sheet of the lithium ion battery in the second embodiment. 5A is a cross-sectional view of the electrode sheet in the electrode material application step (cross-sectional view of A2-A2 in FIG. 4), and FIG. 5B is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step. (Cross-sectional view of B2-B2 in FIG. 4) and FIG. 5 (c) are cross-sectional views (cross-sectional view of C2-C2 in FIG. 4) of the electrode sheet in the second insulating material (separator material) application step. Further, FIG. 5D is a cross-sectional view of the electrode sheet in the drying process (cross-sectional view of D2-D2 in FIG. 4).
 本実施の形態2では、集電箔が走行する第1方向に沿って集電箔の表面に1列に形成される正極膜の製造方法を例示する。また、本実施の形態2では、正極シートの片面の製造方法を例示するが、負極シートの片面の製造方法も同様である。 Embodiment 2 exemplifies a method for manufacturing a positive electrode film formed in a line on the surface of the current collector foil along the first direction in which the current collector foil travels. In the second embodiment, a method for producing one side of the positive electrode sheet is illustrated, but the method for producing one side of the negative electrode sheet is also the same.
 図4に示すように、電極シート製造装置M2においては、集電箔PEPは、巻き出しロールSL1から送り出され、第1ローラRL1、第2ローラRL2、第3ローラRL3、第4ローラRL4、第5ローラRL5、第6ローラRL6および第7ローラRL7によって巻き取りロールSL2へ搬送される。第3ローラRL3に対向して第1スリットダイコータDC1が設置され、第4ローラRL4に対向してディスペンサDPが設置され、第5ローラRL5に対向して第2スリットダイコータDC2が設置されている。 As shown in FIG. 4, in the electrode sheet manufacturing apparatus M2, the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4, The paper is conveyed to the take-up roll SL2 by the 5-roller RL5, the sixth roller RL6, and the seventh roller RL7. A first slit die coater DC1 is installed facing the third roller RL3, a dispenser DP is installed facing the fourth roller RL4, and a second slit die coater DC2 is installed facing the fifth roller RL5.
 1.第1塗布工程(電極材料塗布工程)
 まず、巻き出しロールSL1から送り出された集電箔PEPの表面に、第3ローラRL3と対向した位置の第1スリットダイコータDC1から供給されるスラリー状の正極材料PASが塗布される。正極材料PASはタンクTA1に貯留されており、定量ポンプPU1によって集電箔PEPの表面に供給される。
1. First application process (electrode material application process)
First, the slurry-like positive electrode material PAS supplied from the first slit die coater DC1 at a position facing the third roller RL3 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The positive electrode material PAS is stored in the tank TA1, and is supplied to the surface of the current collector foil PEP by the metering pump PU1.
 図5(a)に示すように、正極材料PASは、第1方向に走行する集電箔PEPの表面に塗布される。 As shown in FIG. 5A, the positive electrode material PAS is applied to the surface of the current collector foil PEP running in the first direction.
 2.第2塗布工程(第1絶縁材料(スペーサ材料)塗布工程)
 次に、巻き出しロールSL1から送り出された集電箔PEPの表面に、第4ローラRL4と対向した位置のディスペンサDPから供給されるスラリー状の第1絶縁材料IF1が塗布される。第1絶縁材料IF1はタンクTA2に貯留されており、定量ポンプPU2によって集電箔PEPの表面に供給される。
2. Second coating process (first insulating material (spacer material) coating process)
Next, the slurry-like first insulating material IF1 supplied from the dispenser DP at a position facing the fourth roller RL4 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The first insulating material IF1 is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP by the metering pump PU2.
 図5(b)に示すように、複数の第1絶縁材料IF1は、第1方向に走行する集電箔PEPの表面に、前の第1塗布工程において集電箔PEPの表面に塗布された正極材料PASを第1方向と集電箔PEPの表面で直交する第2方向に挟むように塗布される。言い換えれば、第1絶縁材料IF1は、正極材料PASの第2方向の両側面に接し、正極材料PASの第2方向の外側の集電箔PEPの表面に塗布される。 As shown in FIG.5 (b), several 1st insulating material IF1 was apply | coated to the surface of current collection foil PEP in the 1st application | coating process on the surface of current collection foil PEP which drive | works in a 1st direction. The positive electrode material PAS is applied so as to be sandwiched between a first direction and a second direction orthogonal to the surface of the current collector foil PEP. In other words, the first insulating material IF1 is applied to the surface of the current collector foil PEP outside the positive electrode material PAS in the second direction in contact with both side surfaces of the positive electrode material PAS in the second direction.
 第1絶縁材料IF1の厚さは、正極材料PASの厚さとほぼ同じである。前述の実施の形態1と同様に、正極材料PASの厚さと第1絶縁材料IF1の厚さとは同じであることが望ましいが、第1絶縁材料IF1の上面に正極材料PASが塗布されることを防ぐため、正極材料PASの上面が第1絶縁材料IF1の上面よりも0μm~10μm程度低くなるように第1絶縁材料IF1は塗布される。また、第1絶縁材料IF1が塗布される領域は、正極シートが完成した後に切断される領域である。 The thickness of the first insulating material IF1 is substantially the same as the thickness of the positive electrode material PAS. As in the first embodiment, the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 are desirably the same, but the positive electrode material PAS is applied to the upper surface of the first insulating material IF1. In order to prevent this, the first insulating material IF1 is applied such that the upper surface of the positive electrode material PAS is lower by about 0 μm to 10 μm than the upper surface of the first insulating material IF1. Further, the region to which the first insulating material IF1 is applied is a region that is cut after the positive electrode sheet is completed.
 ディスペンサDPは、その機構の特徴として、第1スリットダイコータDC1よりも位置の調整が容易であるという利点を有している。例えば前述の実施の形態1のように、第1絶縁材料IF1を塗布した後に、正極材料PASを塗布すると、第1スリットダイコータDC1の位置がずれて、第1絶縁材料IF1の上面に正極材料PASが塗布される可能性がある。しかし、本実施の形態2では、正極材料PASを塗布した後に、位置合わせの調整が容易であるディスペンサDPを用いて第1絶縁材料IF1を塗布しているので、第1絶縁材料IF1と正極材料PASとの合わせずれを解消することができる。ただし、正極材料PASの厚さを厚くすると、正極材料PASの側面が傾斜するため、前述の実施の形態1の場合のように、正極材料PASの厚さを厚く形成することはできない。 The dispenser DP has the advantage that the position adjustment is easier than the first slit die coater DC1 as a feature of the mechanism. For example, if the positive electrode material PAS is applied after the first insulating material IF1 is applied as in the first embodiment, the position of the first slit die coater DC1 is shifted, and the positive electrode material PAS is formed on the upper surface of the first insulating material IF1. May be applied. However, in the second embodiment, after applying the positive electrode material PAS, the first insulating material IF1 and the positive electrode material are applied using the dispenser DP whose alignment is easy to adjust. Misalignment with PAS can be eliminated. However, when the thickness of the positive electrode material PAS is increased, the side surface of the positive electrode material PAS is inclined, so that the positive electrode material PAS cannot be formed thick as in the case of the first embodiment described above.
 3.第3塗布工程(第2絶縁材料(セパレータ材料)塗布工程)
 次に、前述の実施の形態1の第3塗布工程(第2絶縁材料(セパレータ材料)塗布工程)と同様に、第5ローラRL5と対向した位置の第2スリットダイコータDC2から供給されるスラリー状の第2絶縁材料IF2が塗布される。第2絶縁材料IF2はタンクTA3に貯留されており、定量ポンプPU3によって第1絶縁材料IF1および正極材料PASの上面に供給される。
3. Third coating process (second insulating material (separator material) coating process)
Next, in the same manner as the third application process (second insulating material (separator material) application process) of the first embodiment, the slurry state supplied from the second slit die coater DC2 at a position facing the fifth roller RL5. The second insulating material IF2 is applied. The second insulating material IF2 is stored in the tank TA3, and is supplied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS by the metering pump PU3.
 図5(c)に示すように、第2絶縁材料IF2は、集電箔PEPが走行する第1方向に沿って第1絶縁材料IF1および正極材料PASの上面に塗布される。第2絶縁材料IF2の厚さは、例えば5μm~40μm程度である。第2絶縁材料IF2の厚さは、例えば第2スリットダイコータDC2の口金D1の高さ調整(前記図10参照)および第2絶縁材料IF2の送量によって調整することができる。 As shown in FIG. 5C, the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS along the first direction in which the current collector foil PEP travels. The thickness of the second insulating material IF2 is, for example, about 5 μm to 40 μm. The thickness of the second insulating material IF2 can be adjusted, for example, by adjusting the height of the base D1 of the second slit die coater DC2 (see FIG. 10) and feeding the second insulating material IF2.
 前述の実施の形態1と同様、ほぼ平坦な面である第1絶縁材料IF1および正極材料PASの上面に第2絶縁材料IF2は塗布されて、例えば第1絶縁材料IF1および正極材料PASの側面、並びに第1絶縁材料IF1および正極材料PASが塗布されていない集電箔PEPの表面には塗布されない。従って、第2絶縁材料IF2を均一に塗布することができるので、第2絶縁材料IF2の膜切れを防ぐことができる。 Similar to the first embodiment, the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS, which are substantially flat surfaces, for example, the side surfaces of the first insulating material IF1 and the positive electrode material PAS, In addition, the first insulating material IF1 and the positive electrode material PAS are not applied to the surface of the current collector foil PEP to which the first insulating material IF1 and the positive electrode material PAS are not applied. Therefore, since the second insulating material IF2 can be uniformly applied, it is possible to prevent the second insulating material IF2 from being cut.
 4.乾燥工程
 次に、前述の実施の形態1の乾燥工程と同様に、乾燥炉(乾燥機構)DRYを通過することで、集電箔PEPの表面に塗布した正極材料PASおよび第1絶縁材料IF1と、これらの上面に塗布した第2絶縁材料IF2とを積層した塗膜の全体が乾燥し、その表面に正極膜およびセパレータが形成された集電箔PEPが巻き取りロールSL2に巻き取られる。
4). Next, similarly to the drying process of the first embodiment, the positive electrode material PAS and the first insulating material IF1 applied to the surface of the current collector foil PEP by passing through the drying furnace (drying mechanism) DRY The entire coating film obtained by laminating the second insulating material IF2 applied to these upper surfaces is dried, and the current collector foil PEP having the positive electrode film and the separator formed on the surface is wound on the winding roll SL2.
 図5(d)に示すように、乾燥前は、正極材料PASの厚さと第1絶縁材料IF1の厚さとはほぼ同じであったが、乾燥後は、正極材料PASに含まれる固形物の量と第1絶縁材料IF1に含まれる固形物の量との違いから、第1絶縁材料IF1からなるスペーサSPの厚さは正極材料PASからなる正極膜PEの厚さよりも薄くなる。 As shown in FIG. 5D, the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 were substantially the same before drying, but after drying, the amount of solids contained in the positive electrode material PAS The thickness of the spacer SP made of the first insulating material IF1 is thinner than the thickness of the positive electrode film PE made of the positive electrode material PAS because of the difference between the amount of the solid matter contained in the first insulating material IF1.
 なお、本実施の形態2では、集電箔PEPが走行する第1方向に沿って集電箔PEPの表面に1列に形成される正極膜PEの製造方法を例示したが、これに限定されるものではない。例えば正極膜PEは2列以上であってもよく、同様の効果を得ることができる。 In the second embodiment, the method for manufacturing the positive electrode film PE formed in one row on the surface of the current collector foil PEP along the first direction in which the current collector foil PEP travels is exemplified, but the present invention is not limited to this. It is not something. For example, the positive electrode film PE may have two or more rows, and the same effect can be obtained.
 このように、本実施の形態2によれば、第1絶縁材料IF1と電極材料との合わせずれが解消される。また、セパレータSEとなる第2絶縁材料IF2を薄く塗布しても、第2絶縁材料IF2の膜切れが生じないので、第2絶縁材料IF2を薄くかつ均一に塗布することができる。これにより、リチウムイオン電池の製造歩留りを低下させることなく、セパレータSEの薄膜化を図ることができる。 As described above, according to the second embodiment, the misalignment between the first insulating material IF1 and the electrode material is eliminated. Further, even if the second insulating material IF2 to be the separator SE is thinly applied, the film of the second insulating material IF2 does not break, so that the second insulating material IF2 can be thinly and uniformly applied. Thereby, the separator SE can be made thinner without reducing the production yield of the lithium ion battery.
 (実施の形態3)
 前述の実施の形態1と相違する点は、電極材料を塗布する工程数である。すなわち、前述の実施の形態1では、一度の塗布工程によって、正極材料PASを集電箔PEPの表面に塗布したが、本実施の形態3では、二度の塗布工程によって、正極材料PASを集電箔PEPの表面に塗布する。
(Embodiment 3)
The difference from the first embodiment described above is the number of steps for applying the electrode material. That is, in Embodiment 1 described above, the positive electrode material PAS is applied to the surface of the current collector foil PEP by a single application process, but in the present Embodiment 3, the positive electrode material PAS is collected by two application processes. It is applied to the surface of the electric foil PEP.
 ≪リチウムイオン電池の電極シートの製造方法≫
 本実施の形態3におけるリチウムイオン電池の電極シートの製造方法を図6および図7を用いて説明する。図6は、本実施の形態3におけるリチウムイオン電池の電極シートの製造装置の概略図である。図7は、本実施の形態3におけるリチウムイオン電池の電極シートの製造方法を説明する各塗布工程および乾燥工程の電極シートの断面図である。図7(a)は第1絶縁材料(スペーサ材料)塗布工程の電極シートの断面図(図6のA3-A3の断面図)、図7(b)は第1電極材料塗布工程の電極シートの断面図(図6のB3-B3の断面図)および図7(c)は第2電極材料塗布工程の電極シートの断面図(図6のC3-C3の断面図)である。さらに、図7(d)は第2絶縁材料(セパレータ材料)塗布工程の電極シートの断面図(図6のD3-D3の断面図)および図7(e)は乾燥工程の電極シートの断面図(図6のE3-E3の断面図)である。
≪Method of manufacturing electrode sheet for lithium ion battery≫
A method for manufacturing the electrode sheet of the lithium ion battery in the third embodiment will be described with reference to FIGS. FIG. 6 is a schematic diagram of an apparatus for manufacturing an electrode sheet for a lithium ion battery according to the third embodiment. FIG. 7 is a cross-sectional view of the electrode sheet in each coating step and drying step for explaining the method of manufacturing the electrode sheet of the lithium ion battery in the third embodiment. 7A is a cross-sectional view of the electrode sheet in the first insulating material (spacer material) application step (cross-sectional view of A3-A3 in FIG. 6), and FIG. 7B is an electrode sheet in the first electrode material application step. Cross-sectional views (cross-sectional view of B3-B3 in FIG. 6) and FIG. 7 (c) are cross-sectional views (cross-sectional view of C3-C3 in FIG. 6) of the electrode sheet in the second electrode material application step. Further, FIG. 7D is a cross-sectional view of the electrode sheet in the second insulating material (separator material) application step (cross-sectional view of D3-D3 in FIG. 6), and FIG. 7E is a cross-sectional view of the electrode sheet in the drying step. FIG. 7 is a sectional view taken along line E3-E3 in FIG.
 本実施の形態3では、集電箔が走行する第1方向に沿って集電箔の表面に2列に形成される正極膜の製造方法を例示する。また、本実施の形態3では、正極シートの片面の製造方法を例示するが、負極シートの片面の製造方法も同様である。 Embodiment 3 exemplifies a method for manufacturing a positive electrode film formed in two rows on the surface of the current collector foil along the first direction in which the current collector foil travels. Moreover, in this Embodiment 3, although the manufacturing method of the single side | surface of a positive electrode sheet is illustrated, the manufacturing method of the single side | surface of a negative electrode sheet is also the same.
 図6に示すように、電極シート製造装置M3においては、集電箔PEPは、巻き出しロールSL1から送り出され、第1ローラRL1、第2ローラRL2、第3ローラRL3、第4ローラRL4、第5ローラRL5、第6ローラRL6、第7ローラRL7および第8ローラRL8によって巻き取りロールSL2へ搬送される。第3ローラRL3に対向してディスペンサDPが設置され、第4ローラRL4に対向して第1スリットダイコータDC1が設置され、第5ローラRL5に対向して第2スリットダイコータDC2が設置され、第6ローラRL6に対向して第3スリットダイコータDC3が設置されている。 As shown in FIG. 6, in the electrode sheet manufacturing apparatus M3, the current collector foil PEP is fed from the unwinding roll SL1, and the first roller RL1, the second roller RL2, the third roller RL3, the fourth roller RL4, The paper is conveyed to the take-up roll SL2 by the 5-roller RL5, the sixth roller RL6, the seventh roller RL7, and the eighth roller RL8. A dispenser DP is installed facing the third roller RL3, a first slit die coater DC1 is installed facing the fourth roller RL4, a second slit die coater DC2 is installed facing the fifth roller RL5, and the sixth A third slit die coater DC3 is installed facing the roller RL6.
 1.第1塗布工程(第1絶縁材料(スペーサ材料)塗布工程)
 まず、前述の実施の形態1の塗布工程(第1絶縁材料(セパレータ材料)塗布工程)と同様に、集電箔PEPの表面に第1絶縁材料IF1が塗布される。
1. First coating process (first insulating material (spacer material) coating process)
First, the first insulating material IF1 is applied to the surface of the current collector foil PEP in the same manner as the application process (first insulating material (separator material) applying process) of the first embodiment described above.
 図7(a)に示すように、複数の第1絶縁材料IF1は、第1方向に走行する集電箔PEPの表面に、第1方向と集電箔PEPの表面で直交する第2方向に互いに離間して塗布される。すなわち、複数の第1絶縁材料IF1は、後の第2および第3塗布工程において第1方向に走行する集電箔PEPの表面に正極材料PASが塗布される領域を、第2方向に挟むように集電箔PEPの表面に塗布される。言い換えれば、複数の第1絶縁材料IF1は、後の第2および第3塗布工程において第1方向に走行する集電箔PEPの表面に塗布される正極材料PASの領域の第2方向の幅を規制するように塗布される。本実施の形態3では、集電箔PEPの表面に第1方向に沿って2列の正極膜を形成するため、複数の第1絶縁材料IF1は、第2方向に互いに離間し、集電箔PEPの表面に第1方向に沿って3列塗布される。 As shown to Fig.7 (a), several 1st insulating material IF1 is in the 2nd direction orthogonal to the surface of the current collection foil PEP which runs in the 1st direction at the surface of the 1st direction and the current collection foil PEP. They are applied separately from each other. That is, the plurality of first insulating materials IF1 sandwich the region in which the positive electrode material PAS is applied on the surface of the current collector foil PEP traveling in the first direction in the second and third application steps in the second direction. To the surface of the current collector foil PEP. In other words, the plurality of first insulating materials IF1 has the width in the second direction of the region of the positive electrode material PAS applied to the surface of the current collector foil PEP that travels in the first direction in the second and third application steps. Applied to regulate. In Embodiment 3, in order to form two rows of positive electrode films along the first direction on the surface of the current collector foil PEP, the plurality of first insulating materials IF1 are separated from each other in the second direction, and the current collector foil Three rows are applied to the surface of the PEP along the first direction.
 第1絶縁材料IF1の厚さは、後の第2および第3塗布工程において集電箔PEPの表面に塗布される正極材料PASの厚さとほぼ同じである。また、第1絶縁材料IF1が塗布される領域は、正極シートが完成した後に切断される領域であるため、材料費を抑えるためにも第1絶縁材料IF1の第2方向の幅は小さく設定される。例えば、切断に要する幅を考慮して、第1絶縁材料IF1の第2方向の幅は5~15mm程度である。 The thickness of the first insulating material IF1 is substantially the same as the thickness of the positive electrode material PAS applied to the surface of the current collector foil PEP in the subsequent second and third application steps. In addition, since the region to which the first insulating material IF1 is applied is a region that is cut after the positive electrode sheet is completed, the width in the second direction of the first insulating material IF1 is set to be small in order to reduce the material cost. The For example, considering the width required for cutting, the width in the second direction of the first insulating material IF1 is about 5 to 15 mm.
 2.第2塗布工程(第1電極材料塗布工程)
 次に、巻き出しロールSL1から送り出された集電箔PEPの表面に、第4ローラRL4と対向した位置の第1スリットダイコータDC1から供給されるスラリー状の第1正極材料PAS1が塗布される。第1正極材料PAS1はタンクTA2に貯留されており、定量ポンプPU2によって集電箔PEPの表面に供給される。
2. Second application process (first electrode material application process)
Next, the slurry-like first positive electrode material PAS1 supplied from the first slit die coater DC1 at a position facing the fourth roller RL4 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The first positive electrode material PAS1 is stored in the tank TA2, and is supplied to the surface of the current collector foil PEP by the metering pump PU2.
 図7(b)に示すように、複数の第1正極材料PAS1は、第1方向に走行する集電箔PEPの表面で、かつ前の第1塗布工程において集電箔PEPの表面に塗布された第1絶縁材料IF1に挟まれた領域に塗布される。本実施の形態3では、集電箔PEPの表面に第1方向に沿って2列の正極膜を形成するため、複数の第1正極材料PAS1は、第1絶縁材料IF1によって分離されて第2方向に互いに離間し、集電箔PEPの表面に第1方向に沿って2列塗布される。 As shown in FIG. 7B, the plurality of first positive electrode materials PAS1 are applied to the surface of the current collector foil PEP traveling in the first direction and to the surface of the current collector foil PEP in the previous first application step. It is applied to a region sandwiched between the first insulating materials IF1. In Embodiment 3, in order to form two rows of positive electrode films along the first direction on the surface of the current collector foil PEP, the plurality of first positive electrode materials PAS1 are separated by the first insulating material IF1 and second Two rows are applied along the first direction to the surface of the current collector foil PEP.
 第1正極材料PAS1の厚さは、前の第1塗布工程において集電箔PEPの表面に塗布された第1絶縁材料IF1の厚さよりも薄い。すなわち、第1正極材料PAS1の上面は第1絶縁材料IF1の上面よりも低い位置にある。第1正極材料PAS1の厚さは、例えば第1スリットダイコータDC1の口金D1の高さ調整(前記図10参照)および第1正極材料PAS1の送量によって調整することができる。 The thickness of the first positive electrode material PAS1 is smaller than the thickness of the first insulating material IF1 applied to the surface of the current collector foil PEP in the previous first application step. That is, the upper surface of the first positive electrode material PAS1 is at a position lower than the upper surface of the first insulating material IF1. The thickness of the first positive electrode material PAS1 can be adjusted, for example, by adjusting the height of the base D1 of the first slit die coater DC1 (see FIG. 10) and feeding the first positive electrode material PAS1.
 3.第3塗布工程(第2電極材料塗布工程)
 次に、巻き出しロールSL1から送り出された集電箔PEPの表面に、第5ローラRL5と対向した位置の第2スリットダイコータDC2から供給されるスラリー状の第2正極材料PAS2が塗布される。第2正極材料PAS2はタンクTA3に貯留されており、定量ポンプPU3によって第1正極材料PAS1の上面に供給される。ここで、第2正極材料PAS2のバインダの含有量は、第1正極材料PAS1のバインダの含有量よりも少ない。
3. Third application process (second electrode material application process)
Next, the slurry-like second positive electrode material PAS2 supplied from the second slit die coater DC2 at a position facing the fifth roller RL5 is applied to the surface of the current collector foil PEP fed from the unwinding roll SL1. The second positive electrode material PAS2 is stored in the tank TA3, and is supplied to the upper surface of the first positive electrode material PAS1 by the metering pump PU3. Here, the binder content of the second positive electrode material PAS2 is smaller than the binder content of the first positive electrode material PAS1.
 図7(c)に示すように、第2正極材料PAS2は、第1正極材料PAS1の上面に塗布されて、第1正極材料PAS1と第2正極材料PAS2とが積層されてなる正極材料PASが形成される。 As shown in FIG. 7C, the second positive electrode material PAS2 is applied to the upper surface of the first positive electrode material PAS1, and the positive electrode material PAS formed by laminating the first positive electrode material PAS1 and the second positive electrode material PAS2 is formed. It is formed.
 集電箔PEPの表面から正極材料PASの上面までの高さと集電箔PEPの表面から第1絶縁材料IF1の上面までの高さとがほぼ同じとなるように、第2正極材料PAS2は塗布される。すなわち、正極材料PASの厚さは、前の第1塗布工程において集電箔PEPの表面に塗布された第1絶縁材料IF1の厚さとほぼ同じとなる。正極材料PASの厚さと第1絶縁材料IF1の厚さは同じであることが望ましいが、第1絶縁材料IF1の上面に第2正極材料PAS2が塗布されることを防ぐため、正極材料PASの上面が、第1絶縁材料IF1の上面よりも0μm~10μm程度低くなるように第2正極材料PAS2は塗布される。第2正極材料PAS2の厚さは、例えば第2スリットダイコータDC2の口金D1の高さ調整(前記図10参照)および第2正極材料PAS2の送量によって調整することができる。 The second positive electrode material PAS2 is applied so that the height from the surface of the current collector foil PEP to the upper surface of the positive electrode material PAS is substantially the same as the height from the surface of the current collector foil PEP to the upper surface of the first insulating material IF1. The That is, the thickness of the positive electrode material PAS is substantially the same as the thickness of the first insulating material IF1 applied to the surface of the current collector foil PEP in the previous first application step. Although the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 are desirably the same, in order to prevent the second positive electrode material PAS2 from being applied to the upper surface of the first insulating material IF1, However, the second positive electrode material PAS2 is applied so as to be lower by about 0 μm to 10 μm than the upper surface of the first insulating material IF1. The thickness of the second positive electrode material PAS2 can be adjusted, for example, by adjusting the height of the die D1 of the second slit die coater DC2 (see FIG. 10) and the feed amount of the second positive electrode material PAS2.
 本実施の形態3では、バインダの含有量が互いに異なる第1正極材料PAS1と第2正極材料PAS2とを積層して正極材料PASを構成している。これは以下の理由による。 In the third embodiment, the positive electrode material PAS is configured by laminating the first positive electrode material PAS1 and the second positive electrode material PAS2 having different binder contents. This is due to the following reason.
 まず、単層で正極材料PASを構成した場合の課題について説明する。スラリー状の正極材料PASは、活物質および導電助剤に加えて、活物質と導電助剤とを結着するためのバインダを含有している。しかし、このバインダは、乾燥工程において正極材料PASの上面側に偏析しやすく、バインダの含有量が少な過ぎると、これが原因となって、集電箔PEPと正極材料PASとの界面で正極材料PASが剥がれることがある。特に、正極材料PASを厚く塗膜した場合には、バインダの偏析が顕著となるため、正極材料PASの剥がれは深刻な問題となる。一方、正極材料PASに含まれるバインダの含有量を増やすことにより、バインダの偏析を生じにくくすることはできる。しかし、バインダの含有量が多過ぎると、活物質の量が減少して電池容量が低くなる、または、バインダは混ざりにくいため、正極膜の通電にばらつきが生じてしまう。このため、正極材料PASの粘度および表面張力との兼ね合いもあり、正極材料PASに含まれるバインダの含有量を最適な含有量に調整することが難しく、特に、正極材料PASを厚く塗膜する場合には、よりバインダの含有量の調整が難しくなる。 First, a problem when the positive electrode material PAS is formed of a single layer will be described. The slurry-like positive electrode material PAS contains a binder for binding the active material and the conductive auxiliary agent in addition to the active material and the conductive auxiliary agent. However, this binder tends to segregate on the upper surface side of the positive electrode material PAS in the drying process, and if the binder content is too small, this causes the positive electrode material PAS at the interface between the current collector foil PEP and the positive electrode material PAS. May peel off. In particular, when the positive electrode material PAS is thickly coated, the segregation of the binder becomes remarkable, and the peeling of the positive electrode material PAS becomes a serious problem. On the other hand, by increasing the content of the binder contained in the positive electrode material PAS, the segregation of the binder can be made difficult to occur. However, if the binder content is too large, the amount of the active material is reduced and the battery capacity is lowered, or the binder is difficult to mix, and thus the current distribution of the positive electrode film varies. For this reason, there is also a trade-off between the viscosity and surface tension of the positive electrode material PAS, and it is difficult to adjust the binder content contained in the positive electrode material PAS to the optimum content. In particular, when the positive electrode material PAS is thickly coated Therefore, it becomes more difficult to adjust the binder content.
 しかし、本実施の形態3では、相対的にバインダの含有量が多い第1正極材料PAS1を塗布し、その上に相対的にバインダの含有量が少ない第2正極材料PAS2を塗布する。乾燥工程において、第1正極材料PAS1と第2正極材料PAS2とは混ざり合うものの、第1正極材料PAS1と第2正極材料PAS2との2層で正極材料PASを塗膜した場合は、単層で正極材料PASを塗膜した場合よりも、正極材料PASの上面側におけるバインダの偏析が少なくなるので、本実施の形態3では、正極材料PASの剥がれを防止することができる。 However, in the third embodiment, the first positive electrode material PAS1 having a relatively high binder content is applied, and the second positive electrode material PAS2 having a relatively low binder content is applied thereon. In the drying process, the first positive electrode material PAS1 and the second positive electrode material PAS2 are mixed, but when the positive electrode material PAS is coated with two layers of the first positive electrode material PAS1 and the second positive electrode material PAS2, Since the segregation of the binder on the upper surface side of the positive electrode material PAS is less than when the positive electrode material PAS is coated, in the third embodiment, the positive electrode material PAS can be prevented from peeling off.
 また、最適なバインダの含有量を設定するために、例えば第1正極材料PAS1および第2正極材料PAS2の側面が傾斜するような粘度および表面張力を有する第1正極材料PAS1および第2正極材料PAS2を使用しなくてはならない場合がある。しかし、このような場合であっても、本実施の形態3では、予め、第1正極材料PAS1および第2正極材料PAS2を塗布する領域を第1絶縁材料IF1で規定しているので、第1正極材料PAS1および第2正極材料PAS2の形状は安定する。 Further, in order to set the optimum binder content, for example, the first positive electrode material PAS1 and the second positive electrode material PAS2 having such viscosity and surface tension that the side surfaces of the first positive electrode material PAS1 and the second positive electrode material PAS2 are inclined. May have to be used. However, even in such a case, in the third embodiment, the first insulating material IF1 prescribes the region where the first positive electrode material PAS1 and the second positive electrode material PAS2 are applied. The shapes of the positive electrode material PAS1 and the second positive electrode material PAS2 are stable.
 4.第4塗布工程(第2絶縁材料(セパレータ材料)塗布工程)
 次に、前述の実施の形態1の第3塗布工程(第2絶縁材料(セパレータ材料)塗布工程)と同様に、第6ローラRL6と対向した位置の第3スリットダイコータDC3から供給されるスラリー状の第2絶縁材料IF2が塗布される。第2絶縁材料IF2はタンクTA4に貯留されており、定量ポンプPU4によって第1絶縁材料IF1および第2正極材料PAS2の上面に供給される。
4). Fourth coating process (second insulating material (separator material) coating process)
Next, in the same manner as the third application process (second insulating material (separator material) application process) of the first embodiment described above, the slurry state supplied from the third slit die coater DC3 at a position facing the sixth roller RL6. The second insulating material IF2 is applied. The second insulating material IF2 is stored in the tank TA4, and is supplied to the upper surfaces of the first insulating material IF1 and the second positive electrode material PAS2 by the metering pump PU4.
 図7(d)に示すように、第2絶縁材料IF2は、集電箔PEPが走行する第1方向に沿って第1絶縁材料IF1および正極材料PASの上面に塗布される。第2絶縁材料IF2の厚さは、例えば5μm~40μm程度である。第2絶縁材料IF2の厚さは、例えば第3スリットダイコータDC3の口金D1の高さ調整(前記図10参照)および第2絶縁材料IF2の送量によって調整することができる。 As shown in FIG. 7D, the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS along the first direction in which the current collector foil PEP travels. The thickness of the second insulating material IF2 is, for example, about 5 μm to 40 μm. The thickness of the second insulating material IF2 can be adjusted, for example, by adjusting the height of the base D1 of the third slit die coater DC3 (see FIG. 10) and feeding the second insulating material IF2.
 前述の実施の形態1と同様、ほぼ平坦な面である第1絶縁材料IF1および正極材料PASの上面に第2絶縁材料IF2は塗布されて、例えば第1絶縁材料IF1および正極材料PASの側面、並びに第1絶縁材料IF1および正極材料PASが塗布されていない集電箔PEPの表面には塗布されない。従って、第2絶縁材料IF2を均一に塗布することができるので、第2絶縁材料IF2の膜切れを防ぐことができる。 Similar to the first embodiment, the second insulating material IF2 is applied to the upper surfaces of the first insulating material IF1 and the positive electrode material PAS, which are substantially flat surfaces, for example, the side surfaces of the first insulating material IF1 and the positive electrode material PAS, In addition, the first insulating material IF1 and the positive electrode material PAS are not applied to the surface of the current collector foil PEP to which the first insulating material IF1 and the positive electrode material PAS are not applied. Therefore, since the second insulating material IF2 can be uniformly applied, it is possible to prevent the second insulating material IF2 from being cut.
 5.乾燥工程
 次に、前述の実施の形態1の乾燥工程と同様に、乾燥炉(乾燥機構)DRYを通過することで、集電箔PEPの表面に塗布した正極材料PASおよび第1絶縁材料IF1と、これらの上面に塗布した第2絶縁材料IF2とを積層した塗膜の全体が乾燥し、その表面に正極膜およびセパレータが形成された集電箔PEPが巻き取りロールSL2に巻き取られる。
5. Next, similarly to the drying process of the first embodiment, the positive electrode material PAS and the first insulating material IF1 applied to the surface of the current collector foil PEP by passing through the drying furnace (drying mechanism) DRY The entire coating film obtained by laminating the second insulating material IF2 applied to these upper surfaces is dried, and the current collector foil PEP having the positive electrode film and the separator formed on the surface is wound on the winding roll SL2.
 図7(e)に示すように、第1正極材料PAS1と第2正極材料PAS2とは混ざり合って、1層の正極材料PASとなる。また、乾燥前は、正極材料PASの厚さと第1絶縁材料IF1の厚さとはほぼ同じであったが、乾燥後は、第1正極材料PAS1および第2正極材料PAS2に含まれる固形物の量と第1絶縁材料IF1に含まれる固形物の量との違いから、第1絶縁材料IF1からなるスペーサSPの厚さは正極材料PASからなる正極膜PEの厚さよりも薄くなる。 As shown in FIG. 7 (e), the first positive electrode material PAS1 and the second positive electrode material PAS2 are mixed to form a single-layer positive electrode material PAS. In addition, the thickness of the positive electrode material PAS and the thickness of the first insulating material IF1 were substantially the same before drying, but after drying, the amount of solids contained in the first positive electrode material PAS1 and the second positive electrode material PAS2 The thickness of the spacer SP made of the first insulating material IF1 is thinner than the thickness of the positive electrode film PE made of the positive electrode material PAS because of the difference between the amount of the solid matter contained in the first insulating material IF1.
 なお、本実施の形態3では、集電箔PEPが走行する第1方向に沿って集電箔PEPの表面に2列に形成される正極膜PEの製造方法を例示したが、これに限定されるものではない。例えば正極膜PEは1列、または3列以上であってもよく、同様の効果を得ることができる。 In the third embodiment, the method of manufacturing the positive electrode film PE formed in two rows on the surface of the current collector foil PEP along the first direction in which the current collector foil PEP travels is exemplified, but the present invention is not limited thereto. It is not something. For example, the positive electrode film PE may be one row or three or more rows, and the same effect can be obtained.
 また、本実施の形態3では、バインダの含有量が互いに異なる第1正極材料PAS1と第2正極材料PAS2の2層によって正極材料PASを構成したが、これに限定されるものではなく、バインダの含有量が互いに異なる3層以上で正極材料PASを構成してもよい。 In the third embodiment, the positive electrode material PAS is configured by two layers of the first positive electrode material PAS1 and the second positive electrode material PAS2 having different binder contents. However, the present invention is not limited to this. The positive electrode material PAS may be composed of three or more layers having different contents.
 このように、本実施の形態3によれば、第1正極材料PAS1と第2正極材料PAS2とを積層して正極材料PASを構成することにより、正極材料PASの上面側におけるバインダの偏析を少なくして、正極材料PASの剥がれを防止することができる。また、予め、第1正極材料PAS1および第2正極材料PAS2を塗布する領域を第1絶縁材料IF1で規定しているので、第1正極材料PAS1および第2正極材料PAS2の形状は安定する。また、セパレータSEとなる第2絶縁材料IF2を薄く塗布しても、第2絶縁材料IF2の膜切れが生じないので、第2絶縁材料IF2を薄くかつ均一に塗布することができる。これにより、リチウムイオン電池の製造歩留りを低下させることなく、セパレータSEの薄膜化および電極膜の厚膜化を図ることができる。 As described above, according to the third embodiment, by forming the positive electrode material PAS by stacking the first positive electrode material PAS1 and the second positive electrode material PAS2, the segregation of the binder on the upper surface side of the positive electrode material PAS is reduced. Thus, peeling of the positive electrode material PAS can be prevented. In addition, since the region where the first positive electrode material PAS1 and the second positive electrode material PAS2 are applied is defined in advance by the first insulating material IF1, the shapes of the first positive electrode material PAS1 and the second positive electrode material PAS2 are stable. Further, even if the second insulating material IF2 to be the separator SE is thinly applied, the film of the second insulating material IF2 does not break, so that the second insulating material IF2 can be thinly and uniformly applied. Thereby, it is possible to reduce the thickness of the separator SE and the electrode film without reducing the production yield of the lithium ion battery.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
D1 口金
D2 マニホールド
D3 スリット部
D4 電極材料溜り
D5 下流側メニスカス(液面の屈曲)
D6 下流側リップ部
DC1 第1スリットダイコータ
DC2 第2スリットダイコータ
DC3 第3スリットダイコータ
DP ディスペンサ
DRY 乾燥炉
h1 第1間隔
IF 絶縁材料
IF1 第1絶縁材料
IF2 第2絶縁材料
M1 電極シート製造装置
M2 電極シート製造装置
M3 電極シート製造装置
PAS 正極材料
PAS1 第1正極材料
PAS2 第2正極材料
PE 正極膜
PEP 集電箔
PU1,PU2,PU3,PU4 定量ポンプ
RL1 第1ローラ
RL2 第2ローラ
RL3 第3ローラ
RL4 第4ローラ
RL5 第5ローラ
RL6 第6ローラ
RL7 第7ローラ
RL8 第8ローラ
SE セパレータ
SL1 巻き出しロール
SL2 巻き取りロール
SP スペーサ
TA1,TA2,TA3,TA4 タンク
D1 Base D2 Manifold D3 Slit D4 Electrode material reservoir D5 Downstream meniscus (bending of liquid level)
D6 Downstream lip portion DC1 First slit die coater DC2 Second slit die coater DC3 Third slit die coater DP Dispenser DRY Drying furnace h1 First interval IF Insulating material IF1 First insulating material IF2 Second insulating material M1 Electrode sheet manufacturing apparatus M2 Electrode sheet Manufacturing apparatus M3 Electrode sheet manufacturing apparatus PAS Positive electrode material PAS1 First positive electrode material PAS2 Second positive electrode material PE Positive electrode film PEP Current collector foil PU1, PU2, PU3, PU4 Metering pump RL1 First roller RL2 Second roller RL3 Third roller RL4 First 4 roller RL5 5th roller RL6 6th roller RL7 7th roller RL8 8th roller SE Separator SL1 Unwinding roll SL2 Winding roll SP Spacer TA1, TA2, TA3, TA4 Tank

Claims (12)

  1.  集電箔を第1方向に搬送する搬送機構と、
     前記集電箔の表面で、かつ前記第1方向と前記集電箔の表面で直交する第2方向に互いに離間する複数の第1領域に、スラリー状の第1絶縁材料を塗布する第1塗布機構と、
     前記集電箔の表面で、かつ前記第2方向に隣り合う前記第1領域に挟まれる第2領域に、スラリー状の第1電極材料を塗布する第2塗布機構と、
     前記第1絶縁材料および前記第1電極材料の上面にスラリー状の第2絶縁材料を塗布する第3塗布機構と、
    を備える、蓄電デバイスの製造装置。
    A transport mechanism for transporting the current collector foil in the first direction;
    A first application in which a slurry-like first insulating material is applied to a plurality of first regions spaced from each other in a second direction orthogonal to the first direction and the surface of the current collector foil on the surface of the current collector foil Mechanism,
    A second application mechanism for applying a slurry-like first electrode material to a second region sandwiched between the first regions adjacent to each other in the second direction on the surface of the current collector foil;
    A third application mechanism for applying a slurry-like second insulating material on top surfaces of the first insulating material and the first electrode material;
    An apparatus for manufacturing an electricity storage device.
  2.  請求項1記載の蓄電デバイスの製造装置において、
     前記第1電極材料、前記第1絶縁材料および前記第2絶縁材料を乾燥させる乾燥機構、
    をさらに備える、蓄電デバイスの製造装置。
    The apparatus for manufacturing an electricity storage device according to claim 1,
    A drying mechanism for drying the first electrode material, the first insulating material, and the second insulating material;
    An apparatus for manufacturing an electricity storage device, further comprising:
  3.  請求項1記載の蓄電デバイスの製造装置において、
     前記第1方向に、前記第1塗布機構、前記第2塗布機構および前記第3塗布機構が順に設置されている、蓄電デバイスの製造装置。
    The apparatus for manufacturing an electricity storage device according to claim 1,
    The electrical storage device manufacturing apparatus, wherein the first application mechanism, the second application mechanism, and the third application mechanism are sequentially installed in the first direction.
  4.  請求項3記載の蓄電デバイスの製造装置において、
     前記第2塗布機構と前記第3塗布機構との間に、
     前記第1電極材料の上面に、スラリー状の第2電極材料を塗布する第4塗布機構、
    をさらに備える、蓄電デバイスの製造装置。
    In the manufacturing apparatus of the electrical storage device according to claim 3,
    Between the second application mechanism and the third application mechanism,
    A fourth application mechanism for applying a slurry-like second electrode material on the upper surface of the first electrode material;
    An apparatus for manufacturing an electricity storage device, further comprising:
  5.  請求項1記載の蓄電デバイスの製造装置において、
     前記第1方向に、前記第2塗布機構、前記第1塗布機構および前記第3塗布機構が順に設置されている、蓄電デバイスの製造装置。
    The apparatus for manufacturing an electricity storage device according to claim 1,
    The electrical storage device manufacturing apparatus, wherein the second application mechanism, the first application mechanism, and the third application mechanism are sequentially installed in the first direction.
  6.  請求項1から請求項5のいずれか1項に記載の蓄電デバイスの製造装置において、
     前記第1塗布機構はディスペンサを有し、前記第2塗布機構および前記第3塗布機構はスリットダイコータを有する、蓄電デバイスの製造装置。
    In the manufacturing apparatus of the electrical storage device of any one of Claims 1-5,
    The first application mechanism has a dispenser, and the second application mechanism and the third application mechanism have a slit die coater.
  7.  (a)第1方向に走行する集電箔の表面に、前記第1方向と前記集電箔の表面で直交する第2方向に互いに離間する複数のスラリー状の第1絶縁材料を塗布する工程、
     (b)前記(a)工程の後、前記第2方向に隣り合う前記第1絶縁材料に挟まれる前記集電箔の表面に、スラリー状の電極材料を塗布する工程、
     (c)前記(b)工程の後、前記電極材料および前記第1絶縁材料の上面にスラリー状の第2絶縁材料を塗布する工程、
     (d)前記(c)工程の後、前記電極材料、前記第1絶縁材料および前記第2絶縁材料を乾燥させる工程、
    を有する、蓄電デバイスの製造方法。
    (A) A step of applying a plurality of slurry-like first insulating materials separated from each other in a second direction orthogonal to the first direction and the surface of the current collector foil on the surface of the current collector foil traveling in the first direction ,
    (B) After the step (a), applying a slurry-like electrode material to the surface of the current collector foil sandwiched between the first insulating materials adjacent in the second direction;
    (C) After the step (b), applying a slurry-like second insulating material on the electrode material and the upper surface of the first insulating material;
    (D) after the step (c), drying the electrode material, the first insulating material, and the second insulating material;
    A method for manufacturing an electricity storage device.
  8.  (a)第1方向に走行する集電箔の表面に、スラリー状の電極材料を塗布する工程、
     (b)前記(a)工程の後、前記第1方向と前記集電箔の表面で直交する第2方向の前記電極材料の両側の前記集電箔の表面に、スラリー状の第1絶縁材料を塗布する工程、
     (c)前記(b)工程の後、前記電極材料および前記第1絶縁材料の上面にスラリー状の第2絶縁材料を塗布する工程、
     (d)前記(c)工程の後、前記電極材料、前記第1絶縁材料および前記第2絶縁材料を乾燥させる工程、
    を有する、蓄電デバイスの製造方法。
    (A) applying a slurry-like electrode material to the surface of the current collector foil traveling in the first direction;
    (B) After the step (a), a slurry-like first insulating material is formed on the surface of the current collector foil on both sides of the electrode material in the second direction perpendicular to the first direction and the surface of the current collector foil. The step of applying,
    (C) After the step (b), applying a slurry-like second insulating material on the electrode material and the upper surface of the first insulating material;
    (D) after the step (c), drying the electrode material, the first insulating material, and the second insulating material;
    A method for manufacturing an electricity storage device.
  9.  請求項7記載の蓄電デバイスの製造方法において、
     前記(b)工程では、バインダの含有量が互いに異なる複数の電極材料が積層される、蓄電デバイスの製造方法。
    In the manufacturing method of the electrical storage device of Claim 7,
    In the step (b), a method for manufacturing an electricity storage device, wherein a plurality of electrode materials having different binder contents are laminated.
  10.  請求項7または8記載の蓄電デバイスの製造方法において、
     前記第1絶縁材料の前記第2方向の幅は5mmから15mm程度である、蓄電デバイスの製造方法。
    In the manufacturing method of the electrical storage device of Claim 7 or 8,
    The method for manufacturing an electricity storage device, wherein the width of the first insulating material in the second direction is about 5 mm to 15 mm.
  11.  請求項7または8記載の蓄電デバイスの製造方法において、
     前記(b)工程では、前記電極材料の上面が前記第1絶縁材料の上面よりも0μmから10μm低い、蓄電デバイスの製造方法。
    In the manufacturing method of the electrical storage device of Claim 7 or 8,
    In the step (b), the method for manufacturing an electricity storage device, wherein the upper surface of the electrode material is 0 μm to 10 μm lower than the upper surface of the first insulating material.
  12.  請求項7または8記載の蓄電デバイスの製造方法において、
     前記(c)工程で塗布される前記第2絶縁材料の厚さは5μmから40μmである、蓄電デバイスの製造方法。
    In the manufacturing method of the electrical storage device of Claim 7 or 8,
    The method for manufacturing an electricity storage device, wherein the thickness of the second insulating material applied in the step (c) is 5 μm to 40 μm.
PCT/JP2014/072970 2014-03-26 2014-09-02 Apparatus for manufacturing power storage device, and method for manufacturing power storage device WO2015145806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480050428.5A CN105531855B (en) 2014-03-26 2014-09-02 The manufacture device of electrical storage device and the manufacture method of electrical storage device
KR1020167006332A KR101773728B1 (en) 2014-03-26 2014-09-02 Apparatus for manufacturing power storage device, and method for manufacturing power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014064851A JP6121353B2 (en) 2014-03-26 2014-03-26 Electric storage device manufacturing apparatus and electric storage device manufacturing method
JP2014-064851 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015145806A1 true WO2015145806A1 (en) 2015-10-01

Family

ID=54194385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072970 WO2015145806A1 (en) 2014-03-26 2014-09-02 Apparatus for manufacturing power storage device, and method for manufacturing power storage device

Country Status (4)

Country Link
JP (1) JP6121353B2 (en)
KR (1) KR101773728B1 (en)
CN (1) CN105531855B (en)
WO (1) WO2015145806A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495781B2 (en) * 2020-08-05 2022-11-08 Hyundai Motor Company System and method for manufacturing positive electrode for secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964485A (en) * 2016-06-11 2016-09-28 深圳市新嘉拓自动化技术有限公司 Curtain type coating glue supplying mechanism
JP7279298B2 (en) 2017-03-06 2023-05-23 株式会社リコー electrode
WO2018164076A1 (en) 2017-03-06 2018-09-13 Ricoh Company, Ltd. Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus
US11139467B2 (en) 2018-07-09 2021-10-05 24M Technologies, Inc. Continuous and semi-continuous methods of semi-solid electrode and battery manufacturing
CN113363667A (en) * 2021-05-06 2021-09-07 惠州锂威新能源科技有限公司 Production equipment of battery diaphragm and diaphragm

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253353A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical element
WO2005081336A1 (en) * 2004-02-20 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing lithium ion secondary battery
JP2009262070A (en) * 2008-04-25 2009-11-12 Panasonic Corp Coating film forming apparatus, coating film forming method, polar plate for cell, and nonaqueous electrolyte secondary cell
WO2011138920A1 (en) * 2010-05-07 2011-11-10 日産自動車株式会社 Electrode structure, method for producing same, and bipolar battery
JP2012015039A (en) * 2010-07-05 2012-01-19 Konica Minolta Holdings Inc Separator-integrated electrode, method for manufacturing separator-integrated electrode, and lithium ion secondary battery
JP2012022827A (en) * 2010-07-13 2012-02-02 Dainippon Screen Mfg Co Ltd Battery manufacturing method, battery, vehicle, and electronic device
JP2013105680A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Secondary battery
JP2013188663A (en) * 2012-03-13 2013-09-26 Toppan Printing Co Ltd Intermittent coating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335448B2 (en) * 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP4201619B2 (en) * 2003-02-26 2008-12-24 三洋電機株式会社 Nonaqueous electrolyte secondary battery and method for producing electrode used therefor
KR101506284B1 (en) * 2012-04-19 2015-03-26 주식회사 엘지화학 Multilayer-Structured Electrode and Lithium Secondary Battery Comprising The Same
JP5875487B2 (en) * 2012-08-29 2016-03-02 株式会社日立製作所 Manufacturing method and manufacturing apparatus for lithium ion secondary battery
JP2014078439A (en) * 2012-10-11 2014-05-01 Toyota Industries Corp Electrode manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004253353A (en) * 2002-12-27 2004-09-09 Matsushita Electric Ind Co Ltd Manufacturing method of electrochemical element
WO2005081336A1 (en) * 2004-02-20 2005-09-01 Matsushita Electric Industrial Co., Ltd. Method for producing lithium ion secondary battery
JP2009262070A (en) * 2008-04-25 2009-11-12 Panasonic Corp Coating film forming apparatus, coating film forming method, polar plate for cell, and nonaqueous electrolyte secondary cell
WO2011138920A1 (en) * 2010-05-07 2011-11-10 日産自動車株式会社 Electrode structure, method for producing same, and bipolar battery
JP2012015039A (en) * 2010-07-05 2012-01-19 Konica Minolta Holdings Inc Separator-integrated electrode, method for manufacturing separator-integrated electrode, and lithium ion secondary battery
JP2012022827A (en) * 2010-07-13 2012-02-02 Dainippon Screen Mfg Co Ltd Battery manufacturing method, battery, vehicle, and electronic device
JP2013105680A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Secondary battery
JP2013188663A (en) * 2012-03-13 2013-09-26 Toppan Printing Co Ltd Intermittent coating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495781B2 (en) * 2020-08-05 2022-11-08 Hyundai Motor Company System and method for manufacturing positive electrode for secondary battery

Also Published As

Publication number Publication date
KR20160042088A (en) 2016-04-18
KR101773728B1 (en) 2017-08-31
CN105531855A (en) 2016-04-27
JP2015187943A (en) 2015-10-29
CN105531855B (en) 2018-02-16
JP6121353B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6121353B2 (en) Electric storage device manufacturing apparatus and electric storage device manufacturing method
US9105931B2 (en) Positive electrode plate for use in lithium ion secondary battery, lithium ion secondary battery, vehicle, device with battery mounted thereon, and method for producing positive electrode plate for lithium ion secondary battery
WO2020066254A1 (en) Lithium secondary battery
KR101660189B1 (en) Method and device for manufacturing lithium-ion secondary battery
WO2014136714A1 (en) Non-aqueous electrolyte secondary battery
JP6358911B2 (en) Electric storage device manufacturing apparatus and electric storage device manufacturing method
JP2007329050A (en) Sheet type battery and its manufacturing method
WO2015045533A1 (en) Lithium-ion secondary battery manufacturing method, lithium-ion secondary battery manufacturing device, and lithium-ion secondary battery
CN109478676B (en) Electrode assembly and method of manufacturing the same
JP2012009209A (en) Negative electrode for lithium ion secondary battery
JP2013051040A (en) Manufacturing method of electrode for battery, and electrode for battery
US20200251726A1 (en) Multilayered electrodes having high charge and discharge rates
WO2013098970A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
EP4207413A1 (en) Lithium secondary battery
CN109565069B (en) Electrode assembly and method of manufacturing the same
US20200161628A1 (en) Layered electrode with high rate top layer
JP2017011068A (en) Method of manufacturing electrode for power storage device and apparatus for manufacturing the electrode
CN108365164B (en) Method for manufacturing battery
WO2016111063A1 (en) Lithium ion battery, method for manufacturing same, and apparatus for manufacturing lithium ion battery
JP6021775B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery manufacturing apparatus
JP7302593B2 (en) lithium polymer battery
JP2019021418A (en) Controller and control method of nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery system having the controller, and method for manufacturing nonaqueous electrolyte secondary battery
JP6081333B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery manufacturing apparatus
WO2019198495A1 (en) Battery production method
JP5919929B2 (en) Method for producing electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050428.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167006332

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14887014

Country of ref document: EP

Kind code of ref document: A1