JP2007271085A - Method of installing friction pendulum type base isolation device - Google Patents

Method of installing friction pendulum type base isolation device Download PDF

Info

Publication number
JP2007271085A
JP2007271085A JP2007107667A JP2007107667A JP2007271085A JP 2007271085 A JP2007271085 A JP 2007271085A JP 2007107667 A JP2007107667 A JP 2007107667A JP 2007107667 A JP2007107667 A JP 2007107667A JP 2007271085 A JP2007271085 A JP 2007271085A
Authority
JP
Japan
Prior art keywords
plate
metal thin
thin plate
isolation device
pendulum type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107667A
Other languages
Japanese (ja)
Inventor
Takashi Kurosawa
隆志 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2007107667A priority Critical patent/JP2007271085A/en
Publication of JP2007271085A publication Critical patent/JP2007271085A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of installing a friction pendulum type base isolation device whose machining cost and material cost are reduced by forming the curved supporting plane of an upper side load supporting part or a lower side load supporting part of the friction pendulum type base isolation device with a metal thin plate and a grout solidified layer in one unit. <P>SOLUTION: In the method of installing the friction pendulum type base isolation device between structures, at least one of the upper side load supporting part B and the lower side load supporting part A is arranged at a predetermined position on the structure to which the metal thin plates 5, 24 should be fixed to form the curved supporting planes 5a, 24a. When the metal thin plate 24 is arranged on the upper side load supporting part B, non-contractive grout material 8 is filled between a flat plate 25 and the metal thin plate 24 through one of a plurality of through-holes 25a of the flat plate 25 covering the upper face of the metal thin plate 24. After the grout material 8 is blown out of the other through-holes 25a of the flat plate 25 to make sure that the grout material 8 is filled up, the grout solidified layer and the metal thin plate 24 are formed in one unit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、建築物や美術品展示ケース或いはコンピューター用免震床等に適用可能な摩擦振子型免震装置の設置方法に関するものである。   The present invention relates to a method for installing a friction pendulum type seismic isolation device that can be applied to a building or art display case or a seismic isolation floor for a computer.

従来の摩擦振子型免震装置の一例として特公平5-62179号公報に開示された技術(特許文献1)は、図10に示すように、地盤上に設けられた支持基礎50に接続され、コンクリートで構成された皿ハウジング51により板厚30mm以上のステンレス鋼からなる厚板を機械加工して削り出して製作された曲面状の皿52を保持し、該皿52上を滑動して移動可能な荷重伝達体となる関節スライダ53を滑動可能に保持するスライダハウジング54が支持コラム55に接続され、更に支持コラム55が構造物接続板56に接続され、該構造物接続板56がボルト57により支持構造物58に固定されている。関節スライダ53は鋼材を機械加工して削り出して製作され、その上下側には夫々球面からなる凸形関節面53a及び凸形滑動面53bが形成されている。   As an example of a conventional friction pendulum type seismic isolation device, the technology (Patent Document 1) disclosed in Japanese Patent Publication No. 5-62179 is connected to a support base 50 provided on the ground, as shown in FIG. A curved plate 52 made by machining and machining a thick plate made of stainless steel with a plate thickness of 30 mm or more is held by a plate housing 51 made of concrete, and can be slid and moved on the plate 52 A slider housing 54 that slidably holds a joint slider 53 serving as a proper load transmission body is connected to a support column 55, and the support column 55 is further connected to a structure connection plate 56. The structure connection plate 56 is connected to a bolt 57. It is fixed to the support structure 58. The joint slider 53 is manufactured by machining a steel material, and a convex joint surface 53a and a convex sliding surface 53b each having a spherical surface are formed on the upper and lower sides thereof.

また、第2公知例として図11に示す技術は、板厚30mm以上の厚軟鋼板を機械加工して曲面61aを削り出して形成した下沓61を地盤上に設けられた支持基礎60上に載置してボルト止めにより固定し、該曲面61a上を滑動して移動可能な荷重伝達体となる下部スライディングプレート62を同じく荷重伝達体となる上部スライディングプレート63に接着し、該上部スライディングプレート63を滑動可能に保持する柱状部材64がフランジ部材65に接続されて上沓を形成し、該フランジ部材65がボルト止めにより支持構造物66に固定されている。上下部スライディングプレート63,62及び柱状部材64は夫々軟鋼材を機械加工して曲面63a,62a,64aを削り出して形成したものであり、フランジ部材65も軟鋼材により形成されている。   Further, as a second known example, the technique shown in FIG. 11 is a technique in which a lower iron 61 formed by machining a soft steel plate having a thickness of 30 mm or more and machining a curved surface 61a is formed on a support base 60 provided on the ground. The lower sliding plate 62, which is mounted and fixed by bolting, is slidable on the curved surface 61a and becomes a movable load transmission body, is bonded to the upper sliding plate 63, which is also the load transmission body, and the upper sliding plate 63 A columnar member 64 that slidably holds is connected to a flange member 65 to form an upper collar, and the flange member 65 is fixed to the support structure 66 by bolting. The upper and lower sliding plates 63, 62 and the columnar member 64 are each formed by machining a mild steel material to cut out the curved surfaces 63a, 62a, 64a, and the flange member 65 is also formed by a mild steel material.

一方、上記荷重伝達体となる関節スライダ53及び上下部スライディングプレート63,62は上下両面が球面となっており、これ等は通常、機械加工の削り出しにより製造される。この機械加工を行う際には削られる材料はしっかりと加工装置に固定されていなければならない。   On the other hand, the joint slider 53 and the upper and lower sliding plates 63 and 62 serving as the load transmission body have spherical surfaces on both upper and lower sides, and these are usually manufactured by machining. When performing this machining, the material to be machined must be firmly fixed to the processing device.

また、荷重伝達体となる関節スライダ53及び上下部スライディングプレート63,62の高さ方向の寸法が大きい場合には該荷重伝達体が転倒してスライダハウジング54や柱状部材64から脱離する虞があるため該荷重伝達体の高さ方向の寸法は出来るだけ小さい方が望ましい。   Further, when the height dimension of the joint slider 53 and the upper and lower sliding plates 63 and 62 serving as the load transmitting body is large, the load transmitting body may fall down and be detached from the slider housing 54 and the columnar member 64. Therefore, it is desirable that the dimension of the load transmission body in the height direction be as small as possible.

上記関節スライダ53及び上下部スライディングプレート63,62からなる荷重伝達体は平面的には円形をしているので通常は図12(a)に示すような円柱状の丸棒71から削り出して製造されている。その際、2球面のうち一方の球面71aを削る時は丸棒71の切削側と反対側の側面部位を加工装置の把持機構72で把持することにより丸棒71はしっかりと固定され(図12(b)参照)、その球面71aは切削工具73により切削して容易に形成される(図12(c)参照)。   Since the load transmission body composed of the joint slider 53 and the upper and lower sliding plates 63 and 62 is circular in plan view, it is usually manufactured by cutting out from a cylindrical round bar 71 as shown in FIG. Has been. At this time, when cutting one spherical surface 71a of the two spherical surfaces, the round bar 71 is firmly fixed by gripping the side surface portion opposite to the cutting side of the round bar 71 with the gripping mechanism 72 of the processing apparatus (FIG. 12). The spherical surface 71a is easily formed by cutting with the cutting tool 73 (see FIG. 12C).

しかしながら、残りの球面部を削る際にはその切削側と反対側の部位は既に球面71aが形成されているため、図12(d)に示すように、把持機構72により把持することが出来ず、残りの球面部の切削加工が困難であった。   However, when the remaining spherical portion is cut, the portion on the side opposite to the cutting side has already been formed with the spherical surface 71a, so that it cannot be gripped by the gripping mechanism 72 as shown in FIG. The remaining spherical portion was difficult to cut.

そのため、図11に示した第2公知例のように荷重伝達体を上下部スライディングプレート63,62の2部材から構成したものがある。その際、例えば、図13(a)に示すように、把持機構72により把持した丸棒71の切削側と反対側の端部に予め丸棒71を把持するための把持部71bを形成しておき、該把持部71bを把持機構74により把持して球面71aを形成する(図13(b)参照)。そして、他方の丸棒71も同様にして把持部71bを形成して該把持部71bを把持機構74により把持して球面71cを形成し、図13(c),(d)に示すように両者を接着して荷重伝達体を構成している。   Therefore, as shown in the second known example shown in FIG. 11, there is one in which the load transmitting body is composed of two members, upper and lower sliding plates 63 and 62. At this time, for example, as shown in FIG. 13A, a gripping portion 71b for gripping the round bar 71 is formed in advance on the end of the round bar 71 gripped by the gripping mechanism 72 on the opposite side to the cutting side. Then, the gripping portion 71b is gripped by the gripping mechanism 74 to form a spherical surface 71a (see FIG. 13B). Similarly, the other round bar 71 is formed with a gripping portion 71b, and the gripping portion 71b is gripped by the gripping mechanism 74 to form a spherical surface 71c, as shown in FIGS. 13 (c) and 13 (d). Is bonded to form a load transmission body.

また、他の構成として、例えば、図14(a)に示すように、把持機構72により把持した丸棒71の切削側と反対側の端部に予め丸棒71を把持するための雌ネジ71dを形成しておき、把持機構72により把持された固定治具75に立設された雄ネジ75aに丸棒71に形成した雌ネジ71dを螺合締着して固定して球面71aを形成する(図14(b)参照)。そして、他方の丸棒71も同様にして雌ネジ71dを形成して把持機構72により把持された固定治具75に立設された雄ネジ75aに丸棒71に形成した雌ネジ71dを螺合締着して固定して球面71cを形成し、図14(c),(d)に示すように両者を接着して荷重伝達体を構成している。   As another configuration, for example, as shown in FIG. 14A, a female screw 71d for previously holding the round bar 71 at the end opposite to the cutting side of the round bar 71 held by the holding mechanism 72 is provided. The spherical surface 71a is formed by screwing and fastening the female screw 71d formed on the round bar 71 to the male screw 75a standing on the fixing jig 75 held by the holding mechanism 72. (See FIG. 14 (b)). Similarly, the other round bar 71 is also formed with a female screw 71d, and the male screw 71d formed on the round bar 71 is screwed onto the male screw 75a standing on the fixing jig 75 held by the holding mechanism 72. The spherical surface 71c is formed by fastening and fixing, and as shown in FIGS. 14 (c) and 14 (d), both are bonded to form a load transmission body.

特公平05−062179号公報Japanese Patent Publication No. 05-062179

しかしながら、前述の各公知例において、図10に示した特許文献1の皿52及び図11に示した第2公知例の下沓61は板厚30mm以上の厚ステンレス鋼板或いは厚軟鋼板を機械加工して球形凹形滑動面52a、曲面61aを削り出して形成するため加工作業に手間がかかり加工コストが増大する上、原材料として鋼材の厚板を使用するため高価であり材料コストが増大するという問題がある。特に図11に示した第2公知例の下沓61では下沓61の重量が大きくなり、例えば、1m角、30mm厚の厚軟鋼板では236kg程度の重量があるため、起重機械により搬入しなければならず、施工作業が困難であった。   However, in each of the above-described known examples, the plate 52 of Patent Document 1 shown in FIG. 10 and the lower iron 61 of the second known example shown in FIG. 11 machine a thick stainless steel plate or a mild steel plate having a thickness of 30 mm or more. Then, since the spherical concave sliding surface 52a and the curved surface 61a are formed by cutting out, it takes time for processing work and increases the processing cost, and because it uses a steel plate as a raw material, it is expensive and increases the material cost. There's a problem. In particular, the lower iron 61 in the second known example shown in FIG. 11 is heavier. For example, a 1 mm square, 30 mm thick thick steel plate has a weight of about 236 kg. The construction work was difficult.

また、図11に示した第2公知例の構成では、柱状部材64を支持構造物66に結合するために別途にフランジ部材65が設けられており、該フランジ部材65と柱状部材64との相互を結合するための機械加工が必要となるばかりかフランジ部材65と柱状部材64との結合作業に手間がかかり、軟鋼材からなるフランジ部材65の材料コストもかかるという問題がある。   In the configuration of the second known example shown in FIG. 11, a flange member 65 is separately provided for coupling the columnar member 64 to the support structure 66, and the flange member 65 and the columnar member 64 are mutually connected. There is a problem that not only the machining for connecting the flange members 65 and the columnar members 64 is required, but also the work of joining the flange members 65 and the columnar members 64 is troublesome, and the material cost of the flange members 65 made of mild steel is also increased.

また、図12に示したように荷重伝達体を丸棒71から加工する際の困難さから図13及び図14に示したように、荷重伝達体を2分割して別々に加工した後、両者を接着する場合には荷重伝達体の製造作業に手間がかかり、製造コストが増大するという問題がある。   Also, as shown in FIG. 12, due to the difficulty in processing the load transmission body from the round bar 71, as shown in FIGS. 13 and 14, the load transmission body is divided into two parts and processed separately. In the case of bonding, there is a problem that the manufacturing work of the load transmission body takes time and the manufacturing cost increases.

本発明は前記課題を解決するものであり、その目的とするところは、摩擦振子型免震装置の上側荷重受部或いは下側荷重受部の曲面状の受面を金属薄板とグラウト固化層とを一体化して構成して加工コスト及び材料コストを低減した摩擦振子型免震装置の設置方法を提供せんとするものである。   The present invention solves the above-mentioned problems, and the object of the present invention is to provide a curved thin receiving surface of the upper load receiving portion or the lower load receiving portion of the friction pendulum type seismic isolation device with a thin metal plate and a grout solidified layer. It is intended to provide a method for installing a friction pendulum type seismic isolation device that is formed by integrating the components and reducing processing costs and material costs.

前記目的を達成するための本発明に係る摩擦振子型免震装置の設置方法は、曲面状の受面を有し、且つ一方の構造物に固定される上側荷重受部と、曲面状の受面を有し、且つ他方の構造物に固定される下側荷重受部と、前記上側荷重受部及び前記下側荷重受部の両受面間に介在される荷重伝達体を有する摩擦振子型免震装置を前記構造物間に設置する方法において、前記上側荷重受部と前記下側荷重受部の少なくとも一方は、その曲面状の受面を形成するための金属薄板を固定すべき構造物の所定位置に配置し、前記金属薄板を前記下側荷重受部に配置する場合には前記金属薄板に設けた複数の貫通孔のひとつから前記構造物と前記金属薄板間に無収縮性のグラウト材を充填して、該金属薄板に設けた他の貫通孔から前記グラウト材が吹き出すことで該グラウト材が満たされたことを確認し、前記金属薄板を前記上側荷重受部に配置する場合には前記金属薄板上面を覆う平板に設けた複数の貫通孔のひとつから前記平板と前記金属薄板間に無収縮性のグラウト材を充填して、該平板に設けた他の貫通孔から前記グラウト材が吹き出すことで該グラウト材が満たされたことを確認した上で固化させたグラウト固化層と前記金属薄板とを一体化することにより形成したことを特徴とする。   In order to achieve the above object, a friction pendulum type seismic isolation device according to the present invention includes a curved receiving surface, an upper load receiving portion fixed to one structure, and a curved receiving device. A friction pendulum type having a lower load receiving portion having a surface and fixed to the other structure, and a load transmitting body interposed between both the upper load receiving portion and the lower load receiving portion In the method of installing a seismic isolation device between the structures, at least one of the upper load receiving portion and the lower load receiving portion is a structure to which a metal thin plate for forming a curved receiving surface is to be fixed. When the metal thin plate is disposed in the lower load receiving portion, a non-shrinkable grout is provided between the structure and the metal thin plate from one of a plurality of through holes provided in the metal thin plate. The grout material is blown out from other through holes provided in the metal sheet. By confirming that the grout material has been filled, when the metal thin plate is disposed in the upper load receiving portion, the flat plate and the plate are removed from one of a plurality of through holes provided in the flat plate covering the upper surface of the metal thin plate. A non-shrinkable grout material is filled between thin metal plates, and the grout material is solidified after confirming that the grout material is filled by blowing out the grout material from other through holes provided in the flat plate. The layer is formed by integrating the metal thin plate.

上記構成によれば、摩擦振子型免震装置の一方の構造物に固定される上側荷重受部や他方の構造物に固定される下側荷重受部の曲面状の受面を金属薄板で構成し、該金属薄板と構造物との間に無収縮性のグラウト材を充填して固化させたグラウト固化層と前記金属薄板とを一体化して構成したことで、高価で重量のある厚ステンレス鋼板や厚軟鋼板を機械加工する必要がなく、加工作業を省略して加工コストを削減すると共に材料コストを低減し、重量を低減して施工作業を容易にした摩擦振子型免震装置の設置方法を提供することが出来る。   According to the above configuration, the curved load receiving surface of the upper load receiving portion fixed to one structure of the friction pendulum type seismic isolation device and the lower load receiving portion fixed to the other structure is constituted by a thin metal plate. In addition, an expensive and heavy thick stainless steel plate is formed by integrating the grout solidified layer filled with a non-shrinkable grout material between the metal thin plate and the structure and solidifying the metal thin plate. The installation method of a friction pendulum type seismic isolation device that eliminates the need to machine steel and thick and mild steel plates, reduces processing costs by reducing processing costs, reduces material costs, and reduces the weight to facilitate construction work Can be provided.

即ち、摩擦振子型免震装置の一方の構造物に固定される上側荷重受部と他方の構造物に固定される下側荷重受部の少なくとも一方の曲面状の受面を金属薄板で構成したことで、例えば、板厚2.3mm以下程度の金属薄板を曲げ加工することにより曲面状の受面を容易に形成することが出来る。従って、プレス加工により大量生産することも出来、少量生産であればヘラ絞り加工等により金属薄板を曲げ加工して曲面状の受面を容易に形成することが出来る。   That is, at least one curved receiving surface of the upper load receiving portion fixed to one structure of the friction pendulum type seismic isolation device and the lower load receiving portion fixed to the other structure is configured by a thin metal plate. Thus, for example, a curved receiving surface can be easily formed by bending a thin metal plate having a thickness of about 2.3 mm or less. Therefore, mass production can be performed by press working, and if it is small production, a curved receiving surface can be easily formed by bending a thin metal plate by spatula drawing or the like.

また、薄軟鋼板であれば、材料費が安価で、例えば、1m角、2.3mm厚の薄軟鋼板では18kg程度の重量であるので超軽量化することが出来、機械にたよらずに作業員によって容易に搬入することが出来、施工作業も容易に出来る。   In addition, if it is a thin mild steel plate, the material cost is low. For example, a 1 mm square, 2.3 mm thick thin mild steel plate weighs about 18 kg, so it can be made very light and work without depending on the machine. It can be easily carried in by a worker, and construction work can also be done easily.

また、通常、摩擦振子型免震装置の設置には、その高さレベル調整や水平度調整のために該摩擦振子型免震装置の下に無収縮性のグラウト材を数mmから数十mm程度の厚さで打設するが、上記構成によれば、金属薄板と構造物との間に無収縮性のグラウト材を充填して固化させたグラウト固化層と該金属薄板とを一体化して構成されるため、該無収縮性のグラウト材がそのまま高さレベル調整や水平度調整用を兼ねることが出来るので合理的である。   Usually, for installation of a friction pendulum type seismic isolation device, a non-shrinkable grout material is placed under the friction pendulum type seismic isolation device for adjusting the height level and levelness of several to several tens of mm. However, according to the above configuration, the grout solidified layer filled with a non-shrinkable grout material between the metal thin plate and the structure and solidified is integrated with the metal thin plate. Since it is configured, the non-shrinkable grout material can be used as it is for height level adjustment and horizontality adjustment, which is reasonable.

従って、従来例のように高価で重量のある厚ステンレス鋼板や厚軟鋼板を機械加工する必要がなく、加工作業を省略して加工コストを削減すると共に材料コストを低減し、重量を低減して施工作業を容易にすることが出来る。   Therefore, it is not necessary to machine expensive and heavy thick stainless steel plate or thick mild steel plate as in the conventional example, reducing the processing cost by omitting the processing work, reducing the material cost, and reducing the weight. Construction work can be facilitated.

図により本発明に係る摩擦振子型免震装置の設置方法の一実施形態を具体的に説明する。図1は本発明に係る摩擦振子型免震装置の設置方法により設置された摩擦振子型免震装置の第1実施形態の構成を示す断面説明図、図2は第1実施形態の下側荷重受部の構成を示す平面図、図3(a)〜(c)は第1実施形態の下側荷重受部の設置方法を示す断面説明図、図4は荷重伝達体となるシューの構成を示す図、図5は荷重伝達体となるシューの製造方法を説明する図、図6は荷重伝達体を保持する柱状部となるシューホルダの構成を示す図、図7は本発明に係る摩擦振子型免震装置の設置方法により設置された摩擦振子型免震装置の第2実施形態の構成を示す断面説明図、図8は第2実施形態の上側荷重受部の構成を示す平面図、図9(a)〜(c)は第2実施形態の上側荷重受部の設置方法を示す断面説明図である。   An embodiment of a method for installing a friction pendulum type seismic isolation device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional explanatory view showing the configuration of the first embodiment of the friction pendulum type seismic isolation device installed by the method of installing the friction pendulum type seismic isolation device according to the present invention, and FIG. 2 shows the lower load of the first embodiment. FIGS. 3A to 3C are cross-sectional explanatory views showing the installation method of the lower load receiving portion of the first embodiment, and FIG. 4 shows the configuration of a shoe serving as a load transmission body. FIG. 5 is a view for explaining a manufacturing method of a shoe that becomes a load transmission body, FIG. 6 is a view showing a configuration of a shoe holder that becomes a columnar portion that holds the load transmission body, and FIG. 7 is a friction pendulum according to the present invention. Cross-sectional explanatory drawing showing the configuration of the second embodiment of the friction pendulum type seismic isolation device installed by the installation method of the type seismic isolation device, FIG. 8 is a plan view showing the configuration of the upper load receiving portion of the second embodiment, FIG. 9 (a) to (c) are cross-sectional explanatory views showing the installation method of the upper load receiving portion of the second embodiment.

本発明に係る摩擦振子型免震装置の設置方法は住宅やオフィス等の建築物や美術品展示ケース或いはコンピューター用免震床等に適宜適用可能な摩擦振子型免震装置に関するものであり、以下の説明では、住宅やオフィス等の建築物に適用した場合の一例について説明する。   The installation method of the friction pendulum type seismic isolation device according to the present invention relates to a friction pendulum type seismic isolation device that can be appropriately applied to buildings such as houses and offices, art display cases, or seismic isolation floors for computers. In the description, an example of application to a building such as a house or an office will be described.

先ず、図1〜図5を用いて本発明に係る摩擦振子型免震装置の設置方法により設置された摩擦振子型免震装置の第1実施形態について説明する。図1において、1は地盤であり、該地盤1内部には構造物となる杭2が埋設され、該杭2の上端部にはアンカーボルト3が地盤1上部に立設して取り付けられている。   First, a first embodiment of a friction pendulum type seismic isolation device installed by the method for installing a friction pendulum type seismic isolation device according to the present invention will be described with reference to FIGS. In FIG. 1, reference numeral 1 denotes a ground, and a pile 2 serving as a structure is embedded in the ground 1, and an anchor bolt 3 is erected on the top of the ground 1 and attached to an upper end portion of the pile 2. .

アンカーボルト3の高さ方向所定位置にはナット4が螺合されており、図3(a)に示すように、中央部に平面的には円形で下に凸の所定の曲率を有する曲面状の受面5aを形成した金属薄板5の該曲面状の受面5aの外部で4隅に形成された座ぐり部5bが該ナット4の上面に載置され、更に該座ぐり部5bの上面にアンカーボルト3に螺合締着されたナット6が当接して金属薄板5がアンカーボルト3に固定され、地盤1から浮いた状態で架設される。   A nut 4 is screwed into a predetermined position in the height direction of the anchor bolt 3, and as shown in FIG. 3 (a), a curved surface having a predetermined curvature that is circular in a plan view and convex downward in the center. Countersunk portions 5b formed at the four corners outside the curved receiving surface 5a of the thin metal plate 5 on which the receiving surface 5a is formed are placed on the upper surface of the nut 4, and further the upper surface of the counterbore portion 5b. Then, the nut 6 screwed and fastened to the anchor bolt 3 comes into contact with the metal thin plate 5 and is fixed to the anchor bolt 3 so as to be suspended from the ground 1.

前記金属薄板5は、例えば、板厚が2.3mm以下程度の薄軟鋼板で構成することが出来、該金属薄板5を曲げ加工することにより曲面状の受面5aを容易に形成することが出来る。従って、プレス加工により大量生産することも出来、少量生産であればヘラ絞り加工等により金属薄板5を曲げ加工して曲面状の受面5aを容易に形成することが出来るものである。   The metal thin plate 5 can be composed of, for example, a thin mild steel plate having a plate thickness of about 2.3 mm or less, and a curved receiving surface 5a can be easily formed by bending the metal thin plate 5. I can do it. Therefore, mass production can be performed by press working, and if it is small production, the metal sheet 5 can be bent by spatula drawing or the like to easily form the curved receiving surface 5a.

また、金属薄板5が薄軟鋼板であれば、材料費が安価で、例えば、1m角、2.3mm厚の薄軟鋼板では18kg程度の重量であるので前述の従来例と比較して超軽量化することが出来、起重機械にたよらずに作業員によって容易に現場に搬入することが出来、施工作業も容易に出来る。   Further, if the metal thin plate 5 is a thin mild steel plate, the material cost is low. For example, a 1 m square, 2.3 mm thick thin mild steel plate has a weight of about 18 kg. It can be easily carried on site by workers without relying on a hoisting machine, and construction work can also be facilitated.

また、金属薄板5の4隅に設けられた座ぐり部5bもプレス加工等により容易に形成することが出来る。   Also, spot facings 5b provided at the four corners of the thin metal plate 5 can be easily formed by press working or the like.

また、金属薄板5の曲面状の受面5aの外部の4隅で座ぐり部5bの近傍内側位置には、図2に示すように、貫通孔5cが形成されている。そして、図3(a)に示すように、アンカーボルト3に金属薄板5を固定して架設し、該アンカーボルト3の外側で金属薄板5の4辺に型枠7を配置した後、図3(b)に示すように、金属薄板5の貫通孔5cの1つから無収縮性のグラウト材8を充填する。   Further, as shown in FIG. 2, through-holes 5c are formed at four corners outside the curved receiving surface 5a of the thin metal plate 5 and in the vicinity of the spot facing portion 5b. Then, as shown in FIG. 3A, the metal thin plate 5 is fixed to the anchor bolt 3 and installed, and the mold 7 is arranged on the four sides of the metal thin plate 5 outside the anchor bolt 3. As shown in (b), the non-shrinkable grout material 8 is filled from one of the through holes 5c of the thin metal plate 5.

無収縮性のグラウト材8は地盤1と型枠7と金属薄板5とにより形成された空間に充填され、他の3つの貫通孔5cから無収縮性のグラウト材8が吹き出したことを確認することで地盤1と型枠7と金属薄板5とにより形成された空間に無収縮性のグラウト材8が満たされたことを確認することが出来る。   The non-shrinkable grout material 8 is filled in the space formed by the ground 1, the mold 7 and the metal thin plate 5, and it is confirmed that the non-shrinkable grout material 8 is blown out from the other three through holes 5c. Thus, it can be confirmed that the space formed by the ground 1, the mold 7 and the metal thin plate 5 is filled with the non-shrinkable grout material 8.

そして、無収縮性のグラウト材8が固化した段階で、図3(c)に示すように、型枠7を取り除き、無収縮性のグラウト材8が固化したグラウト固化層と金属薄板5とを一体化することにより下側荷重受部Aが形成される。   Then, at the stage where the non-shrinkable grout material 8 is solidified, as shown in FIG. 3C, the mold 7 is removed, and the grout solidified layer and the metal thin plate 5 obtained by solidifying the non-shrinkable grout material 8 are obtained. By integrating, the lower load receiving portion A is formed.

また、通常、摩擦振子型免震装置の設置には、その高さレベル調整や水平度調整のために該摩擦振子型免震装置の下に無収縮性のグラウト材を数mmから数十mm程度の厚さで打設するが、上記構成によれば、金属薄板5と地盤1との間に無収縮性のグラウト材8を充填して固化させたグラウト固化層と該金属薄板5とを一体化して構成されるため、該無収縮性のグラウト材8がそのまま高さレベル調整や水平度調整用を兼ねることが出来るので合理的である。   Usually, for installation of a friction pendulum type seismic isolation device, a non-shrinkable grout material is placed under the friction pendulum type seismic isolation device for adjusting the height level and levelness of several to several tens of mm. According to the above configuration, the grout solidified layer filled with the non-shrinkable grout material 8 between the metal thin plate 5 and the ground 1 and solidified, and the metal thin plate 5 are placed. Since it is constructed integrally, the non-shrinkable grout material 8 can be used for height level adjustment and horizontality adjustment as it is, which is reasonable.

従って、前述の各公知例のように高価で重量のある厚ステンレス鋼板や厚軟鋼板を機械加工する必要がなく、加工作業を省略して加工コストを削減すると共に材料コストを低減し、重量を低減して施工作業を容易にすることが出来る。   Therefore, there is no need to machine expensive and heavy thick stainless steel plates and thick mild steel plates as in the above-mentioned known examples, and processing costs are reduced by omitting processing operations, material costs are reduced, and weight is reduced. It can be reduced and the construction work can be facilitated.

下側荷重受部Aの上面を構成する金属薄板5の曲面状の受面5a上には荷重伝達体となるシュー9が該曲面状の受面5aに対して滑動して移動自在に配置されている。シュー9は図4に示すように金属薄板5の曲面状の受面5aの曲率に対応して平面的には円形で下に凸の所定の曲率を有する滑動球面部9aと、該滑動球面部9aと同心上で同じく平面的には円形で上に凸の所定の曲率を有する滑動球面部9bとを有する一部品で構成されている。   On the curved receiving surface 5a of the thin metal plate 5 constituting the upper surface of the lower load receiving portion A, a shoe 9 serving as a load transmitting body is slidably disposed on the curved receiving surface 5a. ing. As shown in FIG. 4, the shoe 9 has a sliding spherical surface portion 9a having a predetermined curvature that is circular and convex downward corresponding to the curvature of the curved receiving surface 5a of the thin metal plate 5, and the sliding spherical surface portion. It is composed of a single part having a sliding spherical surface portion 9b having a predetermined curvature that is concentric with 9a and is also circular in plan and convex upward.

また、シュー9の滑動球面部9b側には、滑動球面部9a,9bと同心上で該滑動球面部9b側から滑動球面部9a方向に所定の深さで穿設されたネジ孔9cが形成されており、該ネジ孔9cの滑動球面部9b側には面取り部9dが形成されている。   Further, on the sliding spherical surface portion 9b side of the shoe 9, there is formed a screw hole 9c that is concentric with the sliding spherical surface portions 9a and 9b and is drilled at a predetermined depth from the sliding spherical surface portion 9b side toward the sliding spherical surface portion 9a. A chamfered portion 9d is formed on the sliding spherical surface portion 9b side of the screw hole 9c.

本実施形態では、シュー9を軟鋼材を用いて切削加工して形成しており、例えば、滑動球面部9aの曲率半径が2234mm、滑動球面部9bの曲率半径が50mm、ネジ孔9cの径が16mm、深さを20mmに設定したものである。シュー9の表面はリン酸マンガン処理(パーカライジング)により錆止めが施され、更にその表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。   In this embodiment, the shoe 9 is formed by cutting using a mild steel material. For example, the radius of curvature of the sliding spherical surface portion 9a is 2234 mm, the radius of curvature of the sliding spherical surface portion 9b is 50 mm, and the diameter of the screw hole 9c is the same. 16mm and depth are set to 20mm. The surface of the shoe 9 is rust-prevented by manganese phosphate treatment (parkarizing), and the surface is lubricated by coating molybdenum disulfide by baking or the like.

次に荷重伝達体となるシュー9の製造方法について図5を用いて説明する。先ず、図5(a)に示す軟鋼材等の金属ブロックとなる例えば外径100mmの丸棒10を加工装置の把持機構11により把持して該丸棒10の一端部に切削工具12により滑動球面部9bを切削して形成する(図5(b)参照)。   Next, a manufacturing method of the shoe 9 serving as a load transmission body will be described with reference to FIG. First, for example, a round bar 10 having an outer diameter of 100 mm, which becomes a metal block such as a mild steel material shown in FIG. 5A, is gripped by a gripping mechanism 11 of a processing apparatus, and a sliding spherical surface is formed on one end of the round bar 10 by a cutting tool 12. The part 9b is cut and formed (see FIG. 5B).

その後、図5(c)に示すように、穿孔工具13により滑動球面部9bのセンターに丸棒10の軸方向に穿孔した後、タップをかけて該滑動球面部9bに加工装置の把持部として利用するネジ孔9cを形成する。   Thereafter, as shown in FIG. 5 (c), after drilling in the axial direction of the round bar 10 at the center of the sliding spherical surface portion 9b with the drilling tool 13, the tap is applied to the sliding spherical surface portion 9b as a gripping portion of the processing apparatus. A screw hole 9c to be used is formed.

その後、図5(d)に示すように、把持機構11により把持された固定治具14に立設された雄ネジ14aに丸棒10に形成したネジ孔9cを螺合締着して固定して丸棒10の他端部に切削工具12により残りの滑動球面部9aを切削して形成する。   Thereafter, as shown in FIG. 5 (d), the screw hole 9c formed in the round bar 10 is screwed and fastened to the male screw 14a erected on the fixing jig 14 held by the holding mechanism 11, and fixed. Then, the remaining sliding spherical surface portion 9 a is cut and formed on the other end portion of the round bar 10 by the cutting tool 12.

上記構成によれば、荷重伝達体となるシュー9を1部品で構成することが出来ると共に該シュー9の加工作業を容易にすることが出来、従来例のように荷重伝達体を2分割して別々に加工して両者を接着する必要もなく荷重伝達体の製造作業が容易で製造コストを低減することが出来る。   According to the above configuration, the shoe 9 serving as a load transmission body can be constituted by one part and the processing work of the shoe 9 can be facilitated. The load transmission body is divided into two as in the conventional example. There is no need to process them separately and bond them together, making it easy to manufacture the load transmission body and reducing the manufacturing cost.

尚、前記実施形態では、丸棒10に滑動球面部9bを形成した後、ネジ孔9cを形成したが、逆に、先ず丸棒10にネジ孔9cを形成した後、滑動球面部9bを形成するように加工をしても良い。   In the above embodiment, the threaded spherical portion 9b is formed in the round bar 10, and then the screw hole 9c is formed. Conversely, the threaded hole 9c is first formed in the round bar 10, and then the sliding spherical portion 9b is formed. You may process so that it does.

図1において、シュー9の上部には該シュー9を滑動自在に保持する柱状部であって上側荷重受部となるシューホルダ15が配置されている。シューホルダ15の上端部には構造物の鉄骨材となるH形鋼16の下フランジ16aに形成した貫通孔16bに該下フランジ16aの上面側からボルト17を挿通して該ボルト17を螺合締着することによりボルト結合するための結合部となるネジ孔15aがシューホルダ15の上端面側から厚さ方向に所定の深さで穿設されている。   In FIG. 1, a shoe holder 15 that is a columnar portion that slidably holds the shoe 9 and that serves as an upper load receiving portion is disposed on the upper portion of the shoe 9. At the upper end of the shoe holder 15, a bolt 17 is inserted from the upper surface side of the lower flange 16a into a through hole 16b formed in the lower flange 16a of the H-shaped steel 16 which is a steel frame of the structure, and the bolt 17 is screwed together. A screw hole 15a serving as a coupling portion for bolt coupling by fastening is drilled from the upper end surface side of the shoe holder 15 at a predetermined depth in the thickness direction.

また、シューホルダ15の下端部にはシュー9の滑動球面部9bに対応して平面的には円形で上に凸の所定の曲率を有する曲面状の受面15bが形成されている(図6参照)。   Further, a curved receiving surface 15b having a predetermined curvature that is circular in plan and has an upward convex is formed on the lower end portion of the shoe holder 15 in correspondence with the sliding spherical surface portion 9b of the shoe 9 (FIG. 6). reference).

本実施形態では、シューホルダ15も前記シュー9と同様に軟鋼材を用いて切削加工して形成しており、例えば、シューホルダ15の外径が110mm、厚さが50mmで、曲面状の受面15bの曲率半径が50mm、ネジ孔15aの径が12mm、深さを15mm、該ネジ孔15aを60mm四方の位置に配置して設定し、曲面状の受面15bの上端部の周部には更に曲率半径が1mmの曲面15cが形成されている。   In the present embodiment, the shoe holder 15 is also formed by cutting using a mild steel material in the same manner as the shoe 9. For example, the shoe holder 15 has an outer diameter of 110 mm and a thickness of 50 mm, and is a curved receiving member. The radius of curvature of the surface 15b is 50mm, the diameter of the screw hole 15a is 12mm, the depth is 15mm, and the screw hole 15a is arranged at a position of 60mm square, and is set on the periphery of the upper end of the curved receiving surface 15b. Further, a curved surface 15c having a curvature radius of 1 mm is formed.

また、シューホルダ15の表面は前記シュー9と同様にリン酸マンガン処理(パーカライジング)により錆止めが施され、更に曲面状の受面15bの表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。   The surface of the shoe holder 15 is rust-prevented by manganese phosphate treatment (parkerizing) in the same manner as the shoe 9, and the surface of the curved receiving surface 15b is covered with molybdenum disulfide by baking or the like. Processing has been applied.

シューホルダ15の製造方法は前述と同様に図5(a)に示すような外径110mmの丸棒10から機械加工により削り出すが、図6に示したシューホルダ15の場合、高さ寸法が50mmある周側面部15dを図5(b),(c)に示すように加工装置の把持機構11により把持して曲面状の受面15bを切削すると共にネジ孔15aを形成すれば良い。   The shoe holder 15 is manufactured by machining from a round bar 10 having an outer diameter of 110 mm as shown in FIG. 5A in the same manner as described above. In the case of the shoe holder 15 shown in FIG. As shown in FIGS. 5B and 5C, the circumferential side surface portion 15d having a diameter of 50 mm is gripped by the gripping mechanism 11 of the processing apparatus to cut the curved receiving surface 15b and to form the screw hole 15a.

上記構成により、結合部となるネジ孔15aにボルト17を螺合締着して柱状部であるシューホルダ15を構造物となるH形鋼16に直接結合することが出来、前述した第2公知例のように柱状部と構造物との結合に別途必要であったフランジ部材を省略して該フランジ部材にかかる加工作業や結合作業を削減すると共に材料コストを低減することが出来る。   With the above configuration, the bolt 17 is screwed and fastened to the screw hole 15a serving as the coupling portion, so that the shoe holder 15 serving as the columnar portion can be directly coupled to the H-section steel 16 serving as the structure. As in the example, the flange member that is separately required for the coupling between the columnar part and the structure can be omitted, so that the processing work and the coupling work for the flange member can be reduced and the material cost can be reduced.

上記構成において、地震等によりH形鋼16上部に構築された建築物に振動が加わると下側荷重受部Aの金属薄板5の曲面状の受面5a上に滑動自在に載置して支持されたシュー9が該曲面状の受面5a上を滑って移動し、水平方向の揺れを許容して建築物にかかる地震荷重を減衰させることが出来るようになっている。   In the above configuration, when vibration is applied to the building constructed above the H-shaped steel 16 due to an earthquake or the like, it is slidably placed and supported on the curved receiving surface 5a of the thin metal plate 5 of the lower load receiving portion A. The made shoe 9 slides and moves on the curved receiving surface 5a to allow horizontal vibration to be damped and to attenuate the seismic load applied to the building.

尚、建築物は上記摩擦振子型免震装置を少なくとも4基以上を介して地盤1側の構造物(杭2)に支持されている。そして、夫々の上側荷重受部となるシューホルダ15は上部構造物に固定され、夫々の下側荷重受部Aは地盤側構造物(杭2)に固定されているため上側荷重受部となるシューホルダ15及びこれを固定した上部構造物は地盤側構造物(杭2)及び下側荷重受部Aに対して常時平行に配置される。   In addition, the building is supported by the structure (pile 2) on the ground 1 side through at least four or more friction pendulum type seismic isolation devices. And the shoe holder 15 used as each upper load receiving part is fixed to an upper structure, and since each lower load receiving part A is fixed to the ground side structure (pile 2), it becomes an upper load receiving part. The shoe holder 15 and the upper structure to which the shoe holder 15 is fixed are always arranged in parallel with the ground side structure (pile 2) and the lower load receiving portion A.

次に図7〜図9を用いて本発明に係る摩擦振子型免震装置の設置方法により設置された摩擦振子型免震装置の第2実施形態について説明する。図7において、地盤1上に円盤状のベース21が設置され、該円盤状のベース21の所定位置には構造物の鉄骨材となるアンカーボルト21aの下部が円盤状のベース21の内部に埋設され、該アンカーボルト21aの上部が露出するように立設されている。   Next, a second embodiment of the friction pendulum type seismic isolation device installed by the installation method of the friction pendulum type seismic isolation device according to the present invention will be described with reference to FIGS. In FIG. 7, a disk-shaped base 21 is installed on the ground 1, and a lower portion of an anchor bolt 21 a serving as a steel frame of a structure is embedded in the disk-shaped base 21 at a predetermined position of the disk-shaped base 21. The anchor bolt 21a is erected so that the upper part of the anchor bolt 21a is exposed.

22は下側荷重受部を構成する柱状部となるシューホルダであり、図6に示して前述した第1実施形態のシューホルダ15のネジ孔15aの代わりに結合部となる鍔部22aがシューホルダ22本体の下端部外周に溶接して固着され、該鍔部22aの所定位置にはアンカーボルト21aが挿通し得る貫通孔22bが形成されている。尚、シューホルダ22の他の構成は前述した第1実施形態のシューホルダ15と同様に構成される。   Reference numeral 22 denotes a shoe holder serving as a columnar portion constituting the lower load receiving portion. A brim portion 22a serving as a coupling portion instead of the screw hole 15a of the shoe holder 15 of the first embodiment shown in FIG. A through hole 22b into which the anchor bolt 21a can be inserted is formed at a predetermined position of the flange 22a. The other structure of the shoe holder 22 is the same as that of the shoe holder 15 of the first embodiment described above.

そして、シューホルダ22の鍔部22aに設けた貫通孔22bを円盤状のベース21に埋設して立設されたアンカーボルト21aに嵌挿して該シューホルダ22を円盤状のベース21上に載置した後、該アンカーボルト21aにナット23を螺合締着してシューホルダ22を円盤状のベース21上に固定する。   Then, the through hole 22b provided in the flange portion 22a of the shoe holder 22 is inserted into an anchor bolt 21a that is embedded in the disc-like base 21 and the shoe holder 22 is placed on the disc-like base 21. After that, the nut 23 is screwed and fastened to the anchor bolt 21a to fix the shoe holder 22 on the disk-shaped base 21.

一方、建築物を支持するH形鋼16の下部には上側荷重受部Bが設けられている。前記上側荷重受部Bの設置方法は、先ず、図9(a)に示すように、中央部に平面的には円形で上に凸の所定の曲率を有する曲面状の受面24aを形成し、外側の4辺に起立した側片24bを有する箱型形状の金属薄板24の上部に貫通孔25a及びネジ孔25bを設けた平板25がビス26を金属薄板24の側片24bの外側から該平板25の側辺部25cに止め付けることによって固定される。   On the other hand, an upper load receiving portion B is provided at the lower portion of the H-section steel 16 that supports the building. As shown in FIG. 9 (a), first, the upper load receiving portion B is formed by forming a curved receiving surface 24a having a predetermined curvature that is circular in a plan view and convex upward in the center portion. A flat plate 25 provided with a through hole 25a and a screw hole 25b in the upper part of a box-shaped thin metal plate 24 having side pieces 24b erected on the outer four sides is connected to the screw 26 from the outside of the side piece 24b of the thin metal plate 24. The flat plate 25 is fixed by being fastened to the side portion 25c.

前記金属薄板24は、前記第1実施形態の金属薄板5と同様に、例えば、板厚が2.3mm以下程度の薄軟鋼板で構成することが出来、該金属薄板24を曲げ加工することにより曲面状の受面24aを容易に形成することが出来る。また、金属薄板24の外側の4辺に起立して設けられた側片24bもプレス加工等により容易に形成することが出来、前述した第1実施形態の金属薄板5と略同様な効果を得ることが出来る。また、金属薄板24と略同じ大きさを有する平板25も軟鋼板等で構成することが出来る。   The metal thin plate 24 can be composed of, for example, a thin soft steel plate having a thickness of about 2.3 mm or less, like the metal thin plate 5 of the first embodiment, and by bending the metal thin plate 24, The curved receiving surface 24a can be easily formed. Further, the side pieces 24b provided upright on the outer four sides of the thin metal plate 24 can be easily formed by pressing or the like, and the substantially same effect as the thin metal plate 5 of the first embodiment described above is obtained. I can do it. Further, the flat plate 25 having substantially the same size as the metal thin plate 24 can also be constituted by a mild steel plate or the like.

そして、図9(b)に示すように、平板25に形成した貫通孔25aの1つ(例えば中央部に設けた貫通孔25a)から無収縮性のグラウト材8を充填する。   Then, as shown in FIG. 9B, the non-shrinkable grout material 8 is filled from one of the through holes 25a formed in the flat plate 25 (for example, the through hole 25a provided in the central portion).

無収縮性のグラウト材8は箱型形状の金属薄板24と平板25とにより形成された空間に充填され、他の4つの貫通孔25aから無収縮性のグラウト材8が吹き出したことを確認することで金属薄板24と平板25とにより形成された空間に無収縮性のグラウト材8が満たされたことを確認することが出来る。   The non-shrinkable grout material 8 is filled in the space formed by the box-shaped thin metal plate 24 and the flat plate 25, and it is confirmed that the non-shrinkable grout material 8 is blown out from the other four through holes 25a. Thus, it can be confirmed that the space formed by the metal thin plate 24 and the flat plate 25 is filled with the non-shrinkable grout material 8.

そして、無収縮性のグラウト材8が固化した段階で、該無収縮性のグラウト材8が固化したグラウト固化層と金属薄板24とを一体化することにより上側荷重受部Bが形成される。   When the non-shrinkable grout material 8 is solidified, the upper load receiving portion B is formed by integrating the grout solidified layer obtained by solidifying the non-shrinkable grout material 8 and the metal thin plate 24.

そして、図7に示すように、円盤状のベース21上に設置したシューホルダ22の滑動球面部22c上に前述した第1実施形態のシュー9の滑動球面部9bを滑動自在に載置し、該シュー9の滑動球面部9aに対して金属薄板24の曲面状の受面24aが滑動自在に接触し得るように上側荷重受部BをH形鋼16の下部に固定する。   Then, as shown in FIG. 7, the sliding spherical surface portion 9b of the shoe 9 of the first embodiment described above is slidably placed on the sliding spherical surface portion 22c of the shoe holder 22 installed on the disk-shaped base 21, The upper load receiving portion B is fixed to the lower portion of the H-shaped steel 16 so that the curved receiving surface 24a of the thin metal plate 24 can slidably contact the sliding spherical portion 9a of the shoe 9.

上側荷重受部BをH形鋼16の下部に固定する際には、H形鋼16の下フランジ16aに設けた貫通孔16bに該下フランジ16aの上面側からボルト27を挿入して平板25のネジ孔25bに螺合締着して固定することで上側荷重受部BがH形鋼16に固定されて支持される。   When the upper load receiving portion B is fixed to the lower part of the H-shaped steel 16, a bolt 27 is inserted into the through-hole 16b provided in the lower flange 16a of the H-shaped steel 16 from the upper surface side of the lower flange 16a to form a flat plate 25. The upper load receiving portion B is fixed to and supported by the H-section steel 16 by being screwed and fixed to the screw hole 25b.

尚、他の設置方法として、先ず、平板25をH形鋼16に取り付けた後、平板25に金属薄板24を固定してH形鋼16を避けて形成された貫通孔25aから無収縮性のグラウト材8を充填しても良いし、先ず、金属薄板24に平板25を取り付けた後、該平板25を金属薄板24と一体的にH形鋼16に固定して同じく該H形鋼16を避けて形成された貫通孔25aから無収縮性のグラウト材8を充填しても良い。   As another installation method, first, the flat plate 25 is attached to the H-shaped steel 16, and then the metal thin plate 24 is fixed to the flat plate 25 so as to avoid the H-shaped steel 16. The grout material 8 may be filled. First, after attaching the flat plate 25 to the metal thin plate 24, the flat plate 25 is fixed to the H-shaped steel 16 integrally with the metal thin plate 24, and the H-shaped steel 16 is also fixed. The non-shrinkable grout material 8 may be filled from the through hole 25a formed so as to be avoided.

上記構成により、結合部となる鍔部22aの貫通孔22bに円盤状のベース21に埋設されて立設されたアンカーボルト21aを嵌挿してナット23を該アンカーボルト21aに螺合締着して柱状部であるシューホルダ22を構造物となる円盤状のベース21に直接結合することが出来、前述した第2公知例のように柱状部と構造物との結合に別途必要であったフランジ部材を省略して該フランジ部材にかかる加工作業や結合作業を削減すると共に材料コストを低減することが出来る。他の構成は前記第1実施形態と略同様に構成され、同様の効果を得ることが出来る。   With the above configuration, the anchor bolt 21a embedded in the disk-like base 21 is fitted into the through hole 22b of the flange portion 22a serving as the coupling portion, and the nut 23 is screwed and fastened to the anchor bolt 21a. A flange member that can directly connect the shoe holder 22 that is a columnar part to the disk-shaped base 21 that is a structure, and is separately required for coupling the columnar part and the structure as in the second known example described above. Can be omitted, and the processing work and coupling work applied to the flange member can be reduced and the material cost can be reduced. Other configurations are substantially the same as those of the first embodiment, and the same effects can be obtained.

上記構成において、地震等によりH形鋼16上部に構築された建築物に振動が加わるとシューホルダ22の滑動球面部22c上に滑動自在に保持されたシュー9が上側荷重受部Bの金属薄板24の曲面状の受面24a上を滑動してH形鋼16及び上側荷重受部Bが一体的に移動し、水平方向の揺れを許容して建築物にかかる地震荷重を減衰させることが出来るようになっている。   In the above configuration, the shoe 9 slidably held on the sliding spherical surface portion 22c of the shoe holder 22 is slidably held on the sliding spherical portion 22c of the shoe holder 22 when vibration is applied to the building constructed above the H-shaped steel 16 due to an earthquake or the like. The H-section steel 16 and the upper load receiving part B move integrally by sliding on the 24 curved receiving surfaces 24a, and the seismic load applied to the building can be attenuated by allowing horizontal shaking. It is like that.

また、金属薄板5,24の曲面状の受面5a,24a、シュー9の滑動球面部9a,9b及びシューホルダ15,22の曲面状の受面15b、滑動球面部22cは球面で形成しても良いし、他の曲面で形成しても良い。   The curved receiving surfaces 5a and 24a of the thin metal plates 5 and 24, the sliding spherical surface portions 9a and 9b of the shoe 9, the curved receiving surfaces 15b of the shoe holders 15 and 22, and the sliding spherical surface portion 22c are formed as spherical surfaces. Alternatively, it may be formed with other curved surfaces.

尚、前記各実施形態では、下側荷重受部A或いは上側荷重受部Bの一方を曲面状の受面5a,24aを形成した金属薄板5,24と構造物との間に無収縮性のグラウト材8を充填して固化させたグラウト固化層と金属薄板5,24とを一体化して構成したが、他の構成として、下側荷重受部A及び上側荷重受部Bの両方を曲面状の受面5a,24aを形成した金属薄板5,24と構造物との間に無収縮性のグラウト材8を充填して固化させたグラウト固化層と金属薄板5,24とを一体化して構成し、該曲面状の受面5a,24a間に滑動自在な荷重伝達体を配置して構成しても良い。   In each of the above embodiments, one of the lower load receiving portion A and the upper load receiving portion B is made of a non-shrinkable material between the metal thin plates 5 and 24 having the curved receiving surfaces 5a and 24a and the structure. The grout solidified layer filled with the grout material 8 and solidified and the metal thin plates 5 and 24 are integrated, but as another configuration, both the lower load receiving portion A and the upper load receiving portion B are curved. The metal thin plates 5 and 24 formed with the receiving surfaces 5a and 24a and the structure are filled with the non-shrinkable grout material 8 and solidified, and the metal thin plates 5 and 24 are integrated. In addition, a slidable load transmitting body may be arranged between the curved receiving surfaces 5a and 24a.

本発明の活用例として、建築物や美術品展示ケース或いはコンピューター用免震床等に適用可能な摩擦振子型免震装置の設置方法に適用出来る。   As an application example of the present invention, the present invention can be applied to an installation method of a friction pendulum type seismic isolation device that can be applied to a building or art display case or a seismic isolation floor for a computer.

本発明に係る摩擦振子型免震装置の設置方法により設置された摩擦振子型免震装置の第1実施形態の構成を示す断面説明図である。It is a section explanatory view showing composition of a 1st embodiment of a friction pendulum type seismic isolation device installed by an installation method of a friction pendulum type seismic isolation device concerning the present invention. 第1実施形態の下側荷重受部の構成を示す平面図である。It is a top view which shows the structure of the lower side load receiving part of 1st Embodiment. (a)〜(c)は第1実施形態の下側荷重受部の設置方法を示す断面説明図である。(A)-(c) is sectional explanatory drawing which shows the installation method of the lower side load receiving part of 1st Embodiment. 荷重伝達体となるシューの構成を示す図である。It is a figure which shows the structure of the shoes used as a load transmission body. 荷重伝達体となるシューの製造方法を説明する図である。It is a figure explaining the manufacturing method of the shoe used as a load transmission body. 荷重伝達体を保持する柱状部となるシューホルダの構成を示す図である。It is a figure which shows the structure of the shoe holder used as the columnar part holding a load transmission body. 本発明に係る摩擦振子型免震装置の設置方法により設置された摩擦振子型免震装置の第2実施形態の構成を示す断面説明図である。It is sectional explanatory drawing which shows the structure of 2nd Embodiment of the friction pendulum type seismic isolation apparatus installed by the installation method of the friction pendulum type seismic isolation apparatus which concerns on this invention. 第2実施形態の上側荷重受部の構成を示す平面図である。It is a top view which shows the structure of the upper side load receiving part of 2nd Embodiment. (a)〜(c)は第2実施形態の上側荷重受部の設置方法を示す断面説明図である。(A)-(c) is sectional explanatory drawing which shows the installation method of the upper side load receiving part of 2nd Embodiment. 特許文献1を説明する図である。It is a figure explaining patent document 1. 第2公知例を説明する図である。It is a figure explaining a 2nd well-known example. 従来例の課題を説明する図である。It is a figure explaining the subject of a prior art example. 従来例の荷重伝達体の製造方法を示す図である。It is a figure which shows the manufacturing method of the load transmission body of a prior art example. 従来例の荷重伝達体の他の製造方法を示す図である。It is a figure which shows the other manufacturing method of the load transmission body of a prior art example.

符号の説明Explanation of symbols

A…下側荷重受部
B…上側荷重受部
1…地盤
2…杭
3…アンカーボルト
4…ナット
5…金属薄板
5a…曲面状の受面
5b…座ぐり部
5c…貫通孔
6…ナット
7…型枠
8…無収縮性のグラウト材
9…シュー
9a,9b…滑動球面部
9c…ネジ孔
9d…面取り部
10…丸棒
11…把持機構
12…切削工具
13…穿孔工具
14…固定治具
14a…雄ねじ
15…シューホルダ
15a…ネジ孔
15b…曲面状の受面
15c…曲面
16…H形鋼
16a…下フランジ
16b…貫通孔
17…ボルト
21…円盤状のベース
21a…アンカーボルト
22…シューホルダ
22a…鍔部
22b…貫通孔
22c…滑動球面部
23…ナット
24…金属薄板
24a…曲面状の受面
24b…側片
25…平板
25a…貫通孔
25b…ネジ孔
25c…側辺部
26…ビス
27…ボルト
A ... Lower load receiving portion B ... Upper load receiving portion 1 ... Ground 2 ... Pile 3 ... Anchor bolt 4 ... Nut 5 ... Metal sheet 5a ... Curved receiving surface 5b ... Counterbore portion 5c ... Through hole 6 ... Nut 7 ... Formwork 8 ... Non-shrinkable grout material 9 ... Shoe 9a, 9b ... Sliding spherical surface part 9c ... Screw hole 9d ... Chamfered part
10 ... Round bar
11 ... Grip mechanism
12 ... Cutting tools
13 ... Drilling tool
14 ... Fixing jig
14a ... Male thread
15 ... Shoe holder
15a ... Screw hole
15b ... Curved receiving surface
15c ... curved surface
16 ... H-section steel
16a ... Lower flange
16b ... through hole
17 ... Bolt
21 ... Disc-shaped base
21a ... Anchor bolt
22… Shoe holder
22a ... Buttocks
22b ... through hole
22c ... Sliding spherical surface
23 ... Nut
24 ... metal sheet
24a ... Curved surface
24b ... side piece
25 ... Flat plate
25a ... through hole
25b ... Screw hole
25c ... side
26 ... screw
27 ... Bolt

Claims (1)

曲面状の受面を有し、且つ一方の構造物に固定される上側荷重受部と、曲面状の受面を有し、且つ他方の構造物に固定される下側荷重受部と、前記上側荷重受部及び前記下側荷重受部の両受面間に介在される荷重伝達体を有する摩擦振子型免震装置を前記構造物間に設置する方法において、
前記上側荷重受部と前記下側荷重受部の少なくとも一方は、その曲面状の受面を形成するための金属薄板を固定すべき構造物の所定位置に配置し、
前記金属薄板を前記下側荷重受部に配置する場合には前記金属薄板に設けた複数の貫通孔のひとつから前記構造物と前記金属薄板間に無収縮性のグラウト材を充填して、該金属薄板に設けた他の貫通孔から前記グラウト材が吹き出すことで該グラウト材が満たされたことを確認し、
前記金属薄板を前記上側荷重受部に配置する場合には前記金属薄板上面を覆う平板に設けた複数の貫通孔のひとつから前記平板と前記金属薄板間に無収縮性のグラウト材を充填して、該平板に設けた他の貫通孔から前記グラウト材が吹き出すことで該グラウト材が満たされたことを確認した上で固化させたグラウト固化層と前記金属薄板とを一体化することにより形成したことを特徴とする摩擦振子型免震装置の設置方法。
An upper load receiving portion having a curved receiving surface and fixed to one structure; a lower load receiving portion having a curved receiving surface and fixed to the other structure; In a method of installing a friction pendulum type seismic isolation device having a load transmitting body interposed between both receiving surfaces of the upper load receiving portion and the lower load receiving portion between the structures,
At least one of the upper load receiving portion and the lower load receiving portion is disposed at a predetermined position of the structure to which the metal thin plate for forming the curved receiving surface is to be fixed,
When the metal thin plate is disposed in the lower load receiving portion, a non-shrinkable grout material is filled between the structure and the metal thin plate from one of a plurality of through holes provided in the metal thin plate, Confirm that the grout material is filled by blowing out the grout material from other through holes provided in the metal thin plate,
When the thin metal plate is disposed in the upper load receiving portion, a non-shrinkable grout material is filled between the flat plate and the thin metal plate from one of a plurality of through holes provided in the flat plate covering the upper surface of the thin metal plate. It was formed by integrating the grout solidified layer and the metal thin plate which were solidified after confirming that the grout material was filled by blowing out the grout material from other through holes provided in the flat plate. The installation method of the friction pendulum type seismic isolation device characterized by this.
JP2007107667A 2007-04-17 2007-04-17 Method of installing friction pendulum type base isolation device Pending JP2007271085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107667A JP2007271085A (en) 2007-04-17 2007-04-17 Method of installing friction pendulum type base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107667A JP2007271085A (en) 2007-04-17 2007-04-17 Method of installing friction pendulum type base isolation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11170798A Division JP3963567B2 (en) 1998-04-22 1998-04-22 Friction pendulum type seismic isolation device

Publications (1)

Publication Number Publication Date
JP2007271085A true JP2007271085A (en) 2007-10-18

Family

ID=38674082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107667A Pending JP2007271085A (en) 2007-04-17 2007-04-17 Method of installing friction pendulum type base isolation device

Country Status (1)

Country Link
JP (1) JP2007271085A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054339A1 (en) * 2007-10-23 2009-04-30 Tokyo Denki University Seismic isolation system and seismic isolation structure
JP2016524060A (en) * 2013-06-11 2016-08-12 ファビオ・パロディFabio PARODI Formwork whose thickness is reduced by the load of on-site cast slab
JP6976471B1 (en) * 2021-05-28 2021-12-08 日鉄エンジニアリング株式会社 Foundation for spherical sliding device and its construction method
JP7109136B1 (en) * 2021-10-29 2022-07-29 株式会社金澤製作所 Guide member for seismic isolation unit and seismic isolation unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329343U (en) * 1989-07-18 1991-03-22
JPH1073145A (en) * 1996-06-14 1998-03-17 Mitsubishi Steel Mfg Co Ltd Base isolation sliding support for structural body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329343U (en) * 1989-07-18 1991-03-22
JPH1073145A (en) * 1996-06-14 1998-03-17 Mitsubishi Steel Mfg Co Ltd Base isolation sliding support for structural body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054339A1 (en) * 2007-10-23 2009-04-30 Tokyo Denki University Seismic isolation system and seismic isolation structure
JP5122578B2 (en) * 2007-10-23 2013-01-16 学校法人東京電機大学 Seismic isolation devices and seismic isolation structures
US8833745B2 (en) 2007-10-23 2014-09-16 Tokyo Denki University Oiles Corporation Seismic isolation device and seismic isolation structure
JP2016524060A (en) * 2013-06-11 2016-08-12 ファビオ・パロディFabio PARODI Formwork whose thickness is reduced by the load of on-site cast slab
JP6976471B1 (en) * 2021-05-28 2021-12-08 日鉄エンジニアリング株式会社 Foundation for spherical sliding device and its construction method
JP2022182348A (en) * 2021-05-28 2022-12-08 日鉄エンジニアリング株式会社 Foundation for spherical surface sliding device and method for constructing the same
JP7109136B1 (en) * 2021-10-29 2022-07-29 株式会社金澤製作所 Guide member for seismic isolation unit and seismic isolation unit

Similar Documents

Publication Publication Date Title
JP2007271085A (en) Method of installing friction pendulum type base isolation device
JP6457141B1 (en) Sliding seismic isolation structure during construction and construction method of seismic isolation building
JP3963567B2 (en) Friction pendulum type seismic isolation device
JP2007216382A (en) Load transmitting body manufacturing method
JP5227519B2 (en) Seismic isolation building
JP4306644B2 (en) Building ceiling structure
JP2006307568A (en) Structure and method for joining beam and column together
JP2013036261A (en) Joint fitting for column base of wooden building
JPH11303929A (en) Friction pendulum-type base isolation device and installing method for it
JP2008266897A (en) Pedestal cover structure of base-isolated building
JP6914023B2 (en) Construction method of suspended ceiling reinforcement structure and suspended ceiling reinforcement structure
JP2003278407A (en) Temporary restraining tool for seismic isolator and restraining method
JP7208028B2 (en) Construction method of earthquake-resistant ceiling structure
JP4141011B2 (en) How to install a pendulum type seismic isolation device
JP4460377B2 (en) Clean room joists and clean room joists using the same
JP7397700B2 (en) Anchor bolt vertical installation method
JP6826510B2 (en) Temporary support member for joining steel beams and joining method of steel beams
JP5055089B2 (en) Inner wall structure and construction method
JP2000027938A (en) Pendulum type base isolation structure and work executing method
JP2009144418A (en) Base isolation member mounting structure
JP2014181552A (en) Installation structure of wall panel
JP2024024423A (en) Load bearing wall panel connection structure
JP2012144884A (en) Fixing metal fitting, fixing structure, and fixing method for building panel and building component
JP6027341B2 (en) Floor support structure
JPH10280330A (en) Installation method of bridge girder and bearing and bridge girder used therefor and bridge laid by this method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A977 Report on retrieval

Effective date: 20100514

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928