JP3963567B2 - Friction pendulum type seismic isolation device - Google Patents

Friction pendulum type seismic isolation device Download PDF

Info

Publication number
JP3963567B2
JP3963567B2 JP11170798A JP11170798A JP3963567B2 JP 3963567 B2 JP3963567 B2 JP 3963567B2 JP 11170798 A JP11170798 A JP 11170798A JP 11170798 A JP11170798 A JP 11170798A JP 3963567 B2 JP3963567 B2 JP 3963567B2
Authority
JP
Japan
Prior art keywords
curved
plate
load receiving
shoe
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11170798A
Other languages
Japanese (ja)
Other versions
JPH11303453A (en
Inventor
隆志 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP11170798A priority Critical patent/JP3963567B2/en
Publication of JPH11303453A publication Critical patent/JPH11303453A/en
Application granted granted Critical
Publication of JP3963567B2 publication Critical patent/JP3963567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物や美術品展示ケース或いはコンピューター用免震床等に適用可能な摩擦振子型免震装置に関するものである。
【0002】
【従来の技術】
従来の摩擦振子型免震装置の一例として特公平5-62179号公報に開示された技術(第1公知例)は、図10に示すように、地盤上に設けられた支持基礎50に接続され、コンクリートで構成された皿ハウジング51により板厚30mm以上のステンレス鋼からなる厚板を機械加工して削り出して製作された曲面状の皿52を保持し、該皿52上を滑動して移動可能な荷重伝達体となる関節スライダ53を滑動可能に保持するスライダハウジング54が支持コラム55に接続され、更に支持コラム55が構造物接続板56に接続され、該構造物接続板56がボルト57により支持構造物58に固定されている。関節スライダ53は鋼材を機械加工して削り出して製作され、その上下側には夫々球面からなる凸形関節面53a及び凸形滑動面53bが形成されている。
【0003】
また、第2公知例として図11に示す技術は、板厚30mm以上の厚軟鋼板を機械加工して曲面61aを削り出して形成した下沓61を地盤上に設けられた支持基礎60上に載置してボルト止めにより固定し、該曲面61a上を滑動して移動可能な荷重伝達体となる下部スライディングプレート62を同じく荷重伝達体となる上部スライディングプレート63に接着し、該上部スライディングプレート63を滑動可能に保持する柱状部材64がフランジ部材65に接続されて上沓を形成し、該フランジ部材65がボルト止めにより支持構造物66に固定されている。上下部スライディングプレート63,62及び柱状部材64は夫々軟鋼材を機械加工して曲面63a,62a,64aを削り出して形成したものであり、フランジ部材65も軟鋼材により形成されている。
【0004】
一方、上記荷重伝達体となる関節スライダ53及び上下部スライディングプレート63,62は上下両面が球面となっており、これ等は通常、機械加工の削り出しにより製造される。この機械加工を行う際には削られる材料はしっかりと加工装置に固定されていなければならない。
【0005】
また、荷重伝達体となる関節スライダ53及び上下部スライディングプレート63,62の高さ方向の寸法が大きい場合には該荷重伝達体が転倒してスライダハウジング54や柱状部材64から脱離する虞があるため該荷重伝達体の高さ方向の寸法は出来るだけ小さい方が望ましい。
【0006】
上記関節スライダ53及び上下部スライディングプレート63,62からなる荷重伝達体は平面的には円形をしているので通常は図12(a)に示すような円柱状の丸棒71から削り出して製造されている。その際、2球面のうち一方の球面71aを削る時は丸棒71の切削側と反対側の側面部位を加工装置の把持機構72で把持することにより丸棒71はしっかりと固定され(図12(b)参照)、その球面71aは切削工具73により切削して容易に形成される(図12(c)参照)。
【0007】
しかしながら、残りの球面部を削る際にはその切削側と反対側の部位は既に球面71aが形成されているため、図12(d)に示すように、把持機構72により把持することが出来ず、残りの球面部の切削加工が困難であった。
【0008】
そのため、図11に示した第2公知例のように荷重伝達体を上下部スライディングプレート63,62の2部材から構成したものがある。その際、例えば、図13(a)に示すように、把持機構72により把持した丸棒71の切削側と反対側の端部に予め丸棒71を把持するための把持部71bを形成しておき、該把持部71bを把持機構74により把持して球面71aを形成する(図13(b)参照)。そして、他方の丸棒71も同様にして把持部71bを形成して該把持部71bを把持機構74により把持して球面71cを形成し、図13(c),(d)に示すように両者を接着して荷重伝達体を構成している。
【0009】
また、他の構成として、例えば、図14(a)に示すように、把持機構72により把持した丸棒71の切削側と反対側の端部に予め丸棒71を把持するための雌ネジ71dを形成しておき、把持機構72により把持された固定治具75に立設された雄ネジ75aに丸棒71に形成した雌ネジ71dを螺合締着して固定して球面71aを形成する(図14(b)参照)。そして、他方の丸棒71も同様にして雌ネジ71dを形成して把持機構72により把持された固定治具75に立設された雄ネジ75aに丸棒71に形成した雌ネジ71dを螺合締着して固定して球面71cを形成し、図14(c),(d)に示すように両者を接着して荷重伝達体を構成している。
【0010】
【発明が解決しようとする課題】
しかしながら、前述の各公知例において、図10に示した第1公知例の皿52及び図11に示した第2公知例の下沓61は板厚30mm以上の厚ステンレス鋼板或いは厚軟鋼板を機械加工して球形凹形滑動面52a、曲面61aを削り出して形成するため加工作業に手間がかかり加工コストが増大する上、原材料として鋼材の厚板を使用するため高価であり材料コストが増大するという問題がある。特に図11に示した第2公知例の下沓61では下沓61の重量が大きくなり、例えば、1m角、30mm厚の厚軟鋼板では236kg程度の重量があるため、起重機械により搬入しなければならず、施工作業が困難であった。
【0011】
また、図11に示した第2公知例の構成では、柱状部材64を支持構造物66に結合するために別途にフランジ部材65が設けられており、該フランジ部材65と柱状部材64との相互を結合するための機械加工が必要となるばかりかフランジ部材65と柱状部材64との結合作業に手間がかかり、軟鋼材からなるフランジ部材65の材料コストもかかるという問題がある。
【0012】
また、図12に示したように荷重伝達体を丸棒71から加工する際の困難さから図13及び図14に示したように、荷重伝達体を2分割して別々に加工した後、両者を接着する場合には荷重伝達体の製造作業に手間がかかり、製造コストが増大するという問題がある。
【0013】
本発明は前記課題を解決するものであり、その目的とするところは、荷重伝達体を保持する柱状部を構造物に直接結合することが出来る摩擦振子型免震装置を提供せんとするものである。
【0014】
【課題を解決するための手段】
前記目的を達成するための本発明に係る摩擦振子型免震装置は、曲面状の受面を有し、且つ一方の構造物に固定される上側荷重受部と、曲面状の受面を有し、且つ他方の構造物に固定される下側荷重受部と、前記上側荷重受部及び前記下側荷重受部の両受面間に介在される荷重伝達体を有する摩擦振子型免震装置において、前記上側荷重受部或いは下側荷重受部は、丸棒からなり一端部に曲面状の受面が切削形成され且つ他端部に前記何れかの構造物の鉄骨材とボルト結合するための結合部が穿設形成された柱状部を有することを特徴とする。
【0015】
上記構成によれば、上側荷重受部或いは下側荷重受部は、丸棒からなり一端部に曲面状の受面が切削形成され且つ他端部に前記何れかの構造物の鉄骨材とボルト結合するための結合部が穿設形成された柱状部を有することで、該結合部を介して柱状部を構造物に直接結合することが出来、従来例のように柱状部と構造物との結合に別途必要であったフランジ部材を省略して該フランジ部材にかかる加工作業や結合作業を削減すると共に材料コストを低減することが出来る。
【0016】
【発明の実施の形態】
図により本発明に係る摩擦振子型免震装置の一実施形態を具体的に説明する。図1は本発明に係る摩擦振子型免震装置の第1実施形態の構成を示す断面説明図、図2は第1実施形態の下側荷重受部の構成を示す平面図、図3(a)〜(c)は第1実施形態の下側荷重受部の設置方法を示す断面説明図、図4は荷重伝達体となるシューの構成を示す図、図5は荷重伝達体となるシューの製造方法を説明する図、図6は荷重伝達体を保持する柱状部となるシューホルダの構成を示す図、図7は摩擦振子型免震装置の参考例の構成を示す断面説明図、図8は参考例の上側荷重受部の構成を示す平面図、図9(a)〜(c)は参考例の上側荷重受部の設置方法を示す断面説明図である。
【0017】
本発明に係る摩擦振子型免震装置は住宅やオフィス等の建築物や美術品展示ケース或いはコンピューター用免震床等に適宜適用可能な摩擦振子型免震装置に関するものであり、以下の説明では、住宅やオフィス等の建築物に適用した場合の一例について説明する。
【0018】
先ず、図1〜図5を用いて本発明に係る摩擦振子型免震装置の第1実施形態について説明する。図1において、1は地盤であり、該地盤1内部には構造物となる杭2が埋設され、該杭2の上端部にはアンカーボルト3が地盤1上部に立設して取り付けられている。
【0019】
アンカーボルト3の高さ方向所定位置にはナット4が螺合されており、図3(a)に示すように、中央部に平面的には円形で下に凸の所定の曲率を有する曲面状の受面5aを形成した金属薄板5の該曲面状の受面5aの外部で4隅に形成された座ぐり部5bが該ナット4の上面に載置され、更に該座ぐり部5bの上面にアンカーボルト3に螺合締着されたナット6が当接して金属薄板5がアンカーボルト3に固定され、地盤1から浮いた状態で架設される。
【0020】
前記金属薄板5は、例えば、板厚が2.3mm以下程度の薄軟鋼板で構成することが出来、該金属薄板5を曲げ加工することにより曲面状の受面5aを容易に形成することが出来る。従って、プレス加工により大量生産することも出来、少量生産であればヘラ絞り加工等により金属薄板5を曲げ加工して曲面状の受面5aを容易に形成することが出来るものである。
【0021】
また、金属薄板5が薄軟鋼板であれば、材料費が安価で、例えば、1m角、2.3mm厚の薄軟鋼板では18kg程度の重量であるので前述の従来例と比較して超軽量化することが出来、起重機械にたよらずに作業員によって容易に現場に搬入することが出来、施工作業も容易に出来る。
【0022】
また、金属薄板5の4隅に設けられた座ぐり部5bもプレス加工等により容易に形成することが出来る。
【0023】
また、金属薄板5の曲面状の受面5aの外部の4隅で座ぐり部5bの近傍内側位置には、図2に示すように、貫通孔5cが形成されている。そして、図3(a)に示すように、アンカーボルト3に金属薄板5を固定して架設し、該アンカーボルト3の外側で金属薄板5の4辺に型枠7を配置した後、図3(b)に示すように、金属薄板5の貫通孔5cの1つから無収縮性のグラウト材8を充填する。
【0024】
無収縮性のグラウト材8は地盤1と型枠7と金属薄板5とにより形成された空間に充填され、他の3つの貫通孔5cから無収縮性のグラウト材8が吹き出したことを確認することで地盤1と型枠7と金属薄板5とにより形成された空間に無収縮性のグラウト材8が満たされたことを確認することが出来る。
【0025】
そして、無収縮性のグラウト材8が固化した段階で、図3(c)に示すように、型枠7を取り除き、無収縮性のグラウト材8が固化したグラウト固化層と金属薄板5とを一体化することにより下側荷重受部Aが形成される。
【0026】
また、通常、摩擦振子型免震装置の設置には、その高さレベル調整や水平度調整のために該摩擦振子型免震装置の下に無収縮性のグラウト材を数mmから数十mm程度の厚さで打設するが、上記構成によれば、金属薄板5と地盤1との間に無収縮性のグラウト材8を充填して固化させたグラウト固化層と該金属薄板5とを一体化して構成されるため、該無収縮性のグラウト材8がそのまま高さレベル調整や水平度調整用を兼ねることが出来るので合理的である。
【0027】
従って、前述の各公知例のように高価で重量のある厚ステンレス鋼板や厚軟鋼板を機械加工する必要がなく、加工作業を省略して加工コストを削減すると共に材料コストを低減し、重量を低減して施工作業を容易にすることが出来る。
【0028】
下側荷重受部Aの上面を構成する金属薄板5の曲面状の受面5a上には荷重伝達体となるシュー9が該曲面状の受面5aに対して滑動して移動自在に配置されている。シュー9は図4に示すように金属薄板5の曲面状の受面5aの曲率に対応して平面的には円形で下に凸の所定の曲率を有する滑動球面部9aと、該滑動球面部9aと同心上で同じく平面的には円形で上に凸の所定の曲率を有する滑動球面部9bとを有する一部品で構成されている。
【0029】
また、シュー9の滑動球面部9b側には、滑動球面部9a,9bと同心上で該滑動球面部9b側から滑動球面部9a方向に所定の深さで穿設されたネジ孔9cが形成されており、該ネジ孔9cの滑動球面部9b側には面取り部9dが形成されている。
【0030】
本実施形態では、シュー9を軟鋼材を用いて切削加工して形成しており、例えば、滑動球面部9aの曲率半径が2234mm、滑動球面部9bの曲率半径が50mm、ネジ孔9cの径が16mm、深さを20mmに設定したものである。シュー9の表面はリン酸マンガン処理(パーカライジング)により錆止めが施され、更にその表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。
【0031】
次に荷重伝達体となるシュー9の製造方法について図5を用いて説明する。先ず、図5(a)に示す軟鋼材等の金属ブロックとなる例えば外径100mmの丸棒10を加工装置の把持機構11により把持して該丸棒10の一端部に切削工具12により滑動球面部9bを切削して形成する(図5(b)参照)。
【0032】
その後、図5(c)に示すように、穿孔工具13により滑動球面部9bのセンターに丸棒10の軸方向に穿孔した後、タップをかけて該滑動球面部9bに加工装置の把持部として利用するネジ孔9cを形成する。
【0033】
その後、図5(d)に示すように、把持機構11により把持された固定治具14に立設された雄ネジ14aに丸棒10に形成したネジ孔9cを螺合締着して固定して丸棒10の他端部に切削工具12により残りの滑動球面部9aを切削して形成する。
【0034】
上記構成によれば、荷重伝達体となるシュー9を1部品で構成することが出来ると共に該シュー9の加工作業を容易にすることが出来、従来例のように荷重伝達体を2分割して別々に加工して両者を接着する必要もなく荷重伝達体の製造作業が容易で製造コストを低減することが出来る。
【0035】
尚、前記実施形態では、丸棒10に滑動球面部9bを形成した後、ネジ孔9cを形成したが、逆に、先ず丸棒10にネジ孔9cを形成した後、滑動球面部9bを形成するように加工をしても良い。
【0036】
図1において、シュー9の上部には該シュー9を滑動自在に保持する柱状部であって上側荷重受部となるシューホルダ15が配置されている。シューホルダ15の上端部には構造物の鉄骨材となるH形鋼16の下フランジ16aに形成した貫通孔16bに該下フランジ16aの上面側からボルト17を挿通して該ボルト17を螺合締着することによりボルト結合するための結合部となるネジ孔15aがシューホルダ15の上端面側から厚さ方向に所定の深さで穿設されている。
【0037】
また、シューホルダ15の下端部にはシュー9の滑動球面部9bに対応して平面的には円形で上に凸の所定の曲率を有する曲面状の受面15bが形成されている(図6参照)。
【0038】
本実施形態では、シューホルダ15も前記シュー9と同様に軟鋼材を用いて切削加工して形成しており、例えば、シューホルダ15の外径が110mm、厚さが50mmで、曲面状の受面15bの曲率半径が50mm、ネジ孔15aの径が12mm、深さを15mm、該ネジ孔15aを60mm四方の位置に配置して設定し、曲面状の受面15bの上端部の周部には更に曲率半径が1mmの曲面15cが形成されている。
【0039】
また、シューホルダ15の表面は前記シュー9と同様にリン酸マンガン処理(パーカライジング)により錆止めが施され、更に曲面状の受面15bの表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。
【0040】
シューホルダ15の製造方法は前述と同様に図5(a)に示すような外径110mmの丸棒10から機械加工により削り出すが、図6に示したシューホルダ15の場合、高さ寸法が50mmある周側面部15dを図5(b),(c)に示すように加工装置の把持機構11により把持して曲面状の受面15bを切削すると共にネジ孔15aを形成すれば良い。
【0041】
上記構成により、結合部となるネジ孔15aにボルト17を螺合締着して柱状部であるシューホルダ15を構造物となるH形鋼16に直接結合することが出来、前述した第2公知例のように柱状部と構造物との結合に別途必要であったフランジ部材を省略して該フランジ部材にかかる加工作業や結合作業を削減すると共に材料コストを低減することが出来る。
【0042】
上記構成において、地震等によりH形鋼16上部に構築された建築物に振動が加わると下側荷重受部Aの金属薄板5の曲面状の受面5a上に滑動自在に載置して支持されたシュー9が該曲面状の受面5a上を滑って移動し、水平方向の揺れを許容して建築物にかかる地震荷重を減衰させることが出来るようになっている。
【0043】
尚、建築物は上記摩擦振子型免震装置を少なくとも4基以上を介して地盤1側の構造物(杭2)に支持されている。そして、夫々の上側荷重受部となるシューホルダ15は上部構造物に固定され、夫々の下側荷重受部Aは地盤側構造物(杭2)に固定されているため上側荷重受部となるシューホルダ15及びこれを固定した上部構造物は地盤側構造物(杭2)及び下側荷重受部Aに対して常時平行に配置される。
【0044】
次に図7〜図9を用いて摩擦振子型免震装置の参考例について説明する。図7において、地盤1上に円盤状のベース21が設置され、該円盤状のベース21の所定位置には構造物の鉄骨材となるアンカーボルト21aの下部が円盤状のベース21の内部に埋設され、該アンカーボルト21aの上部が露出するように立設されている。
【0045】
22は下側荷重受部を構成する柱状部となるシューホルダであり、図6に示して前述した第1実施形態のシューホルダ15のネジ孔15aの代わりに結合部となる鍔部22aがシューホルダ22本体の下端部外周に溶接して固着され、該鍔部22aの所定位置にはアンカーボルト21aが挿通し得る貫通孔22bが形成されている。尚、シューホルダ22の他の構成は前述した第1実施形態のシューホルダ15と同様に構成される。
【0046】
そして、シューホルダ22の鍔部22aに設けた貫通孔22bを円盤状のベース21に埋設して立設されたアンカーボルト21aに嵌挿して該シューホルダ22を円盤状のベース21上に載置した後、該アンカーボルト21aにナット23を螺合締着してシューホルダ22を円盤状のベース21上に固定する。
【0047】
一方、建築物を支持するH形鋼16の下部には上側荷重受部Bが設けられている。前記上側荷重受部Bの設置方法は、先ず、図9(a)に示すように、中央部に平面的には円形で上に凸の所定の曲率を有する曲面状の受面24aを形成し、外側の4辺に起立した側片24bを有する箱型形状の金属薄板24の上部に貫通孔25a及びネジ孔25bを設けた平板25がビス26を金属薄板24の側片24bの外側から該平板25の側辺部25cに止め付けることによって固定される。
【0048】
前記金属薄板24は、前記第1実施形態の金属薄板5と同様に、例えば、板厚が2.3mm以下程度の薄軟鋼板で構成することが出来、該金属薄板24を曲げ加工することにより曲面状の受面24aを容易に形成することが出来る。また、金属薄板24の外側の4辺に起立して設けられた側片24bもプレス加工等により容易に形成することが出来、前述した第1実施形態の金属薄板5と略同様な効果を得ることが出来る。また、金属薄板24と略同じ大きさを有する平板25も軟鋼板等で構成することが出来る。
【0049】
そして、図9(b)に示すように、平板25に形成した貫通孔25aの1つ(例えば中央部に設けた貫通孔25a)から無収縮性のグラウト材8を充填する。
【0050】
無収縮性のグラウト材8は箱型形状の金属薄板24と平板25とにより形成された空間に充填され、他の4つの貫通孔25aから無収縮性のグラウト材8が吹き出したことを確認することで金属薄板24と平板25とにより形成された空間に無収縮性のグラウト材8が満たされたことを確認することが出来る。
【0051】
そして、無収縮性のグラウト材8が固化した段階で、該無収縮性のグラウト材8が固化したグラウト固化層と金属薄板24とを一体化することにより上側荷重受部Bが形成される。
【0052】
そして、図7に示すように、円盤状のベース21上に設置したシューホルダ22の滑動球面部22c上に前述した第1実施形態のシュー9の滑動球面部9bを滑動自在に載置し、該シュー9の滑動球面部9aに対して金属薄板24の曲面状の受面24aが滑動自在に接触し得るように上側荷重受部BをH形鋼16の下部に固定する。
【0053】
上側荷重受部BをH形鋼16の下部に固定する際には、H形鋼16の下フランジ16aに設けた貫通孔16bに該下フランジ16aの上面側からボルト27を挿入して平板25のネジ孔25bに螺合締着して固定することで上側荷重受部BがH形鋼16に固定されて支持される。
【0054】
尚、他の設置方法として、先ず、平板25をH形鋼16に取り付けた後、平板25に金属薄板24を固定してH形鋼16を避けて形成された貫通孔25aから無収縮性のグラウト材8を充填しても良いし、先ず、金属薄板24に平板25を取り付けた後、該平板25を金属薄板24と一体的にH形鋼16に固定して同じく該H形鋼16を避けて形成された貫通孔25aから無収縮性のグラウト材8を充填しても良い。
【0055】
上記構成により、結合部となる鍔部22aの貫通孔22bに円盤状のベース21に埋設されて立設されたアンカーボルト21aを嵌挿してナット23を該アンカーボルト21aに螺合締着して柱状部であるシューホルダ22を構造物となる円盤状のベース21に直接結合することが出来、前述した第2公知例のように柱状部と構造物との結合に別途必要であったフランジ部材を省略して該フランジ部材にかかる加工作業や結合作業を削減すると共に材料コストを低減することが出来る。他の構成は前記第1実施形態と略同様に構成され、同様の効果を得ることが出来る。
【0056】
上記構成において、地震等によりH形鋼16上部に構築された建築物に振動が加わるとシューホルダ22の滑動球面部22c上に滑動自在に保持されたシュー9が上側荷重受部Bの金属薄板24の曲面状の受面24a上を滑動してH形鋼16及び上側荷重受部Bが一体的に移動し、水平方向の揺れを許容して建築物にかかる地震荷重を減衰させることが出来るようになっている。
【0057】
また、金属薄板5,24の曲面状の受面5a,24a、シュー9の滑動球面部9a,9b及びシューホルダ15,22の曲面状の受面15b、滑動球面部22cは球面で形成しても良いし、他の曲面で形成しても良い。
【0058】
尚、前記実施形態では、下側荷重受部A或いは上側荷重受部Bの一方を曲面状の受面5a,24aを形成した金属薄板5,24と構造物との間に無収縮性のグラウト材8を充填して固化させたグラウト固化層と金属薄板5,24とを一体化して構成したが、他の構成として、下側荷重受部A及び上側荷重受部Bの両方を曲面状の受面5a,24aを形成した金属薄板5,24と構造物との間に無収縮性のグラウト材8を充填して固化させたグラウト固化層と金属薄板5,24とを一体化して構成し、該曲面状の受面5a,24a間に滑動自在な荷重伝達体を配置して構成しても良い。
【0059】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、上側荷重受部或いは下側荷重受部は、丸棒からなり一端部に曲面状の受面が切削形成され且つ他端部に前記何れかの構造物の鉄骨材とボルト結合するための結合部が穿設形成された柱状部を有することで、該結合部を介して柱状部を構造物に直接結合して別途必要であったフランジ部材を省略して該フランジ部材にかかる加工作業や結合作業を削減すると共に材料コストを低減することが出来る摩擦振子型免震装置を提供することが出来る。
【図面の簡単な説明】
【図1】 本発明に係る摩擦振子型免震装置の第1実施形態の構成を示す断面説明図である。
【図2】 第1実施形態の下側荷重受部の構成を示す平面図である。
【図3】 (a)〜(c)は第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図4】 荷重伝達体となるシューの構成を示す図である。
【図5】 荷重伝達体となるシューの製造方法を説明する図である。
【図6】 荷重伝達体を保持する柱状部となるシューホルダの構成を示す図である。
【図7】 擦振子型免震装置の参考例の構成を示す断面説明図である。
【図8】 参考例の上側荷重受部の構成を示す平面図である。
【図9】 (a)〜(c)は参考例の上側荷重受部の設置方法を示す断面説明図である。
【図10】 第1公知例を説明する図である。
【図11】 第2公知例を説明する図である。
【図12】 従来例の課題を説明する図である。
【図13】 従来例の荷重伝達体の製造方法を示す図である。
【図14】 従来例の荷重伝達体の他の製造方法を示す図である。
【符号の説明】
A…下側荷重受部
B…上側荷重受部
1…地盤
2…杭
3…アンカーボルト
4…ナット
5…金属薄板
5a…曲面状の受面
5b…座ぐり部
5c…貫通孔
6…ナット
7…型枠
8…無収縮性のグラウト材
9…シュー
9a,9b…滑動球面部
9c…ネジ孔
9d…面取り部
10…丸棒
11…把持機構
12…切削工具
13…穿孔工具
14…固定治具
14a…雄ねじ
15…シューホルダ
15a…ネジ孔
15b…曲面状の受面
15c…曲面
16…H形鋼
16a…下フランジ
16b…貫通孔
17…ボルト
21…円盤状のベース
21a…アンカーボルト
22…シューホルダ
22a…鍔部
22b…貫通孔
22c…滑動球面部
23…ナット
24…金属薄板
24a…曲面状の受面
24b…側片
25…平板
25a…貫通孔
25b…ネジ孔
25c…側辺部
26…ビス
27…ボルト
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the applicable friction pendulum type immune ShinSo location to buildings and works of art exhibition case or computer for MenShinyuka like.
[0002]
[Prior art]
As an example of a conventional friction pendulum type seismic isolation device, the technology (first known example) disclosed in Japanese Patent Publication No. 5-62179 is connected to a support base 50 provided on the ground as shown in FIG. The curved plate 52 produced by machining and machining a thick plate made of stainless steel with a plate thickness of 30 mm or more is held by the plate housing 51 made of concrete, and is slid and moved on the plate 52 A slider housing 54 that slidably holds a joint slider 53 serving as a possible load transmission body is connected to a support column 55, and the support column 55 is further connected to a structure connection plate 56, and the structure connection plate 56 is connected to a bolt 57. Thus, the support structure 58 is fixed. The joint slider 53 is manufactured by machining a steel material, and a convex joint surface 53a and a convex sliding surface 53b each having a spherical surface are formed on the upper and lower sides thereof.
[0003]
Further, as a second known example, the technique shown in FIG. 11 is a technique in which a lower iron 61 formed by machining a soft steel plate having a thickness of 30 mm or more and machining a curved surface 61a is formed on a support base 60 provided on the ground. The lower sliding plate 62, which is mounted and fixed by bolting, is slidable on the curved surface 61a and becomes a movable load transmission body, is bonded to the upper sliding plate 63, which is also the load transmission body, and the upper sliding plate 63 A columnar member 64 that slidably holds is connected to a flange member 65 to form an upper collar, and the flange member 65 is fixed to the support structure 66 by bolting. The upper and lower sliding plates 63, 62 and the columnar member 64 are each formed by machining a mild steel material to cut out the curved surfaces 63a, 62a, 64a, and the flange member 65 is also formed by a mild steel material.
[0004]
On the other hand, the joint slider 53 and the upper and lower sliding plates 63 and 62 serving as the load transmission body have spherical surfaces on both upper and lower sides, and these are usually manufactured by machining. When performing this machining, the material to be machined must be firmly fixed to the processing device.
[0005]
Further, when the height dimension of the joint slider 53 and the upper and lower sliding plates 63 and 62 serving as the load transmitting body is large, the load transmitting body may fall down and be detached from the slider housing 54 and the columnar member 64. Therefore, it is desirable that the dimension of the load transmission body in the height direction be as small as possible.
[0006]
Since the load transmission body composed of the joint slider 53 and the upper and lower sliding plates 63 and 62 is circular in plan view, it is usually manufactured by cutting out from a cylindrical round bar 71 as shown in FIG. Has been. At this time, when cutting one spherical surface 71a of the two spherical surfaces, the round bar 71 is firmly fixed by gripping the side surface portion opposite to the cutting side of the round bar 71 with the gripping mechanism 72 of the processing apparatus (FIG. 12). The spherical surface 71a is easily formed by cutting with the cutting tool 73 (see FIG. 12C).
[0007]
However, when the remaining spherical portion is cut, the portion on the side opposite to the cutting side has already been formed with the spherical surface 71a, so that it cannot be gripped by the gripping mechanism 72 as shown in FIG. The remaining spherical portion was difficult to cut.
[0008]
Therefore, as shown in the second known example shown in FIG. 11, there is one in which the load transmitting body is composed of two members, upper and lower sliding plates 63 and 62. At this time, for example, as shown in FIG. 13A, a gripping portion 71b for gripping the round bar 71 is formed in advance on the end of the round bar 71 gripped by the gripping mechanism 72 on the opposite side to the cutting side. Then, the gripping portion 71b is gripped by the gripping mechanism 74 to form a spherical surface 71a (see FIG. 13B). Similarly, the other round bar 71 is formed with a gripping portion 71b, and the gripping portion 71b is gripped by the gripping mechanism 74 to form a spherical surface 71c, as shown in FIGS. 13 (c) and 13 (d). Is bonded to form a load transmission body.
[0009]
As another configuration, for example, as shown in FIG. 14A, a female screw 71d for previously holding the round bar 71 at the end opposite to the cutting side of the round bar 71 held by the holding mechanism 72 is provided. The spherical surface 71a is formed by screwing and fastening the female screw 71d formed on the round bar 71 to the male screw 75a standing on the fixing jig 75 held by the holding mechanism 72. (See FIG. 14 (b)). Similarly, the other round bar 71 is also formed with a female screw 71d, and the male screw 71d formed on the round bar 71 is screwed onto the male screw 75a standing on the fixing jig 75 held by the holding mechanism 72. The spherical surface 71c is formed by fastening and fixing, and as shown in FIGS. 14 (c) and 14 (d), both are bonded to form a load transmission body.
[0010]
[Problems to be solved by the invention]
However, in each of the above-mentioned known examples, the first known example plate 52 shown in FIG. 10 and the lower known example 61 shown in FIG. 11 are made of a thick stainless steel plate or a mild steel plate having a thickness of 30 mm or more. The spherical concave sliding surface 52a and the curved surface 61a are formed by machining to increase the processing cost and increase the processing cost, and the use of a thick steel plate as a raw material increases the cost and material cost. There is a problem. In particular, the lower iron 61 in the second known example shown in FIG. 11 is heavier. For example, a 1 mm square, 30 mm thick thick steel plate has a weight of about 236 kg. The construction work was difficult.
[0011]
In the configuration of the second known example shown in FIG. 11, a flange member 65 is separately provided for coupling the columnar member 64 to the support structure 66, and the flange member 65 and the columnar member 64 are mutually connected. There is a problem that not only the machining for connecting the flange members 65 and the columnar members 64 is required, but also the work of joining the flange members 65 and the columnar members 64 is troublesome, and the material cost of the flange members 65 made of mild steel is also increased.
[0012]
Also, as shown in FIG. 12, due to the difficulty in processing the load transmission body from the round bar 71, as shown in FIGS. 13 and 14, the load transmission body is divided into two parts and processed separately. In the case of bonding, there is a problem that the manufacturing work of the load transmission body takes time and the manufacturing cost increases.
[0013]
The present invention is made to solve the above problems, it is an object of the do subjected Hisage friction pendulum seismic isolator capable of binding directly columnar portion for holding a load weight transmitting member to the structure To do.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a friction pendulum type seismic isolation device according to the present invention has a curved receiving surface, an upper load receiving portion fixed to one structure, and a curved receiving surface. In addition, a friction pendulum type seismic isolation device having a lower load receiving portion fixed to the other structure, and a load transmitting body interposed between both receiving surfaces of the upper load receiving portion and the lower load receiving portion. The upper load receiving portion or the lower load receiving portion is formed of a round bar, and a curved receiving surface is formed by cutting at one end portion, and the other end portion is connected to the steel frame of any of the structures by bolts. The coupling part has a columnar part formed by drilling .
[0015]
According to the above configuration, the upper load receiving portion or the lower load receiving portion is formed of a round bar, and a curved receiving surface is cut and formed at one end, and the steel frame material and bolt of any one of the structures are formed at the other end. By having the columnar part formed by drilling the coupling part for coupling, the columnar part can be directly coupled to the structure through the coupling part, and the columnar part and the structure can be connected as in the conventional example. By omitting a flange member that is separately required for the coupling, it is possible to reduce processing work and coupling work applied to the flange member and reduce material costs.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Specifically described an embodiment of a friction pendulum seismic ShinSo location according to the present invention with reference to FIG. FIG. 1 is a cross-sectional explanatory view showing the configuration of the first embodiment of the friction pendulum type seismic isolation device according to the present invention, FIG. 2 is a plan view showing the configuration of the lower load receiving portion of the first embodiment, and FIG. ) To (c) are cross-sectional explanatory views showing the installation method of the lower load receiving portion of the first embodiment, FIG. 4 is a diagram showing the configuration of a shoe that becomes a load transmission body, and FIG. diagram for explaining a manufacturing method, FIG. 6 shows the configuration of a shoe holder to be columnar portion for holding the load transmission body figure 7 is a sectional explanatory view showing a configuration of a reference example of friction pendulum seismic isolator, FIG. 8 is a plan view showing the structure of the upper load receiving portion of the reference example, FIG. 9 (a) ~ (c) is a sectional view showing an installation method of the upper load receiving portion of the reference example.
[0017]
Friction pendulum seismic ShinSo location according to the present invention relates to appropriately applicable friction pendulum isolator in homes and buildings such as offices and art display cases or computer for MenShinyuka like, the following description Then, an example at the time of applying to buildings, such as a house and an office, is demonstrated.
[0018]
First, a first embodiment of a friction pendulum type seismic isolation device according to the present invention will be described with reference to FIGS. In FIG. 1, reference numeral 1 denotes a ground, and a pile 2 serving as a structure is embedded in the ground 1, and an anchor bolt 3 is erected on the top of the ground 1 and attached to an upper end portion of the pile 2. .
[0019]
A nut 4 is screwed into a predetermined position in the height direction of the anchor bolt 3, and as shown in FIG. 3 (a), a curved surface having a predetermined curvature that is circular in a plan view and convex downward in the center. Countersunk portions 5b formed at the four corners outside the curved receiving surface 5a of the thin metal plate 5 on which the receiving surface 5a is formed are placed on the upper surface of the nut 4, and further the upper surface of the counterbore portion 5b. Then, the nut 6 screwed and fastened to the anchor bolt 3 comes into contact with the metal thin plate 5 and is fixed to the anchor bolt 3 so as to be suspended from the ground 1.
[0020]
The metal thin plate 5 can be composed of, for example, a thin mild steel plate having a plate thickness of about 2.3 mm or less, and a curved receiving surface 5a can be easily formed by bending the metal thin plate 5. I can do it. Therefore, mass production can be performed by press working, and if it is small production, the metal sheet 5 can be bent by spatula drawing or the like to easily form the curved receiving surface 5a.
[0021]
Further, if the metal thin plate 5 is a thin mild steel plate, the material cost is low. For example, a 1 m square, 2.3 mm thick thin mild steel plate has a weight of about 18 kg. It can be easily carried on site by workers without relying on a hoisting machine, and construction work can also be facilitated.
[0022]
Also, spot facings 5b provided at the four corners of the thin metal plate 5 can be easily formed by press working or the like.
[0023]
Further, as shown in FIG. 2, through-holes 5c are formed at four corners outside the curved receiving surface 5a of the thin metal plate 5 and in the vicinity of the spot facing portion 5b. Then, as shown in FIG. 3A, the metal thin plate 5 is fixed to the anchor bolt 3 and installed, and the mold 7 is arranged on the four sides of the metal thin plate 5 outside the anchor bolt 3. As shown in (b), the non-shrinkable grout material 8 is filled from one of the through holes 5c of the thin metal plate 5.
[0024]
The non-shrinkable grout material 8 is filled in the space formed by the ground 1, the mold 7 and the metal thin plate 5, and it is confirmed that the non-shrinkable grout material 8 is blown out from the other three through holes 5c. Thus, it can be confirmed that the space formed by the ground 1, the mold 7 and the metal thin plate 5 is filled with the non-shrinkable grout material 8.
[0025]
Then, at the stage where the non-shrinkable grout material 8 is solidified, as shown in FIG. 3C, the mold 7 is removed, and the grout solidified layer and the metal thin plate 5 obtained by solidifying the non-shrinkable grout material 8 are obtained. By integrating, the lower load receiving portion A is formed.
[0026]
Usually, for installation of a friction pendulum type seismic isolation device, a non-shrinkable grout material is placed under the friction pendulum type seismic isolation device for adjusting the height level and levelness of several to several tens of mm. According to the above configuration, the grout solidified layer filled with the non-shrinkable grout material 8 between the metal thin plate 5 and the ground 1 and solidified, and the metal thin plate 5 are placed. Since it is constructed integrally, the non-shrinkable grout material 8 can be used for height level adjustment and horizontality adjustment as it is, which is reasonable.
[0027]
Therefore, there is no need to machine expensive and heavy thick stainless steel plates and thick mild steel plates as in the above-mentioned known examples, and processing costs are reduced by omitting processing operations, material costs are reduced, and weight is reduced. It can be reduced and the construction work can be facilitated.
[0028]
On the curved receiving surface 5a of the thin metal plate 5 constituting the upper surface of the lower load receiving portion A, a shoe 9 serving as a load transmitting body is slidably disposed on the curved receiving surface 5a. ing. As shown in FIG. 4, the shoe 9 has a sliding spherical surface portion 9a having a predetermined curvature that is circular and convex downward corresponding to the curvature of the curved receiving surface 5a of the thin metal plate 5, and the sliding spherical surface portion. It is composed of a single part having a sliding spherical surface portion 9b having a predetermined curvature that is concentric with 9a and is also circular in plan and convex upward.
[0029]
Further, on the sliding spherical surface portion 9b side of the shoe 9, there is formed a screw hole 9c that is concentric with the sliding spherical surface portions 9a and 9b and is drilled at a predetermined depth from the sliding spherical surface portion 9b side toward the sliding spherical surface portion 9a. A chamfered portion 9d is formed on the sliding spherical surface portion 9b side of the screw hole 9c.
[0030]
In this embodiment, the shoe 9 is formed by cutting using a mild steel material. For example, the radius of curvature of the sliding spherical surface portion 9a is 2234 mm, the radius of curvature of the sliding spherical surface portion 9b is 50 mm, and the diameter of the screw hole 9c is the same. 16mm and depth are set to 20mm. The surface of the shoe 9 is rust-prevented by manganese phosphate treatment (parkarizing), and the surface is lubricated by coating molybdenum disulfide by baking or the like.
[0031]
Next, a manufacturing method of the shoe 9 serving as a load transmission body will be described with reference to FIG. First, for example, a round bar 10 having an outer diameter of 100 mm, which becomes a metal block such as a mild steel material shown in FIG. 5A, is gripped by a gripping mechanism 11 of a processing apparatus, and a sliding spherical surface is formed on one end of the round bar 10 by a cutting tool 12. The part 9b is cut and formed (see FIG. 5B).
[0032]
Thereafter, as shown in FIG. 5 (c), after drilling in the axial direction of the round bar 10 at the center of the sliding spherical surface portion 9b with the drilling tool 13, the tap is applied to the sliding spherical surface portion 9b as a gripping portion of the processing apparatus. A screw hole 9c to be used is formed.
[0033]
Thereafter, as shown in FIG. 5 (d), the screw hole 9c formed in the round bar 10 is screwed and fastened to the male screw 14a erected on the fixing jig 14 held by the holding mechanism 11, and fixed. Then, the remaining sliding spherical surface portion 9 a is cut and formed on the other end portion of the round bar 10 by the cutting tool 12.
[0034]
According to the above configuration, the shoe 9 serving as a load transmission body can be constituted by one part and the processing work of the shoe 9 can be facilitated. The load transmission body is divided into two as in the conventional example. There is no need to process them separately and bond them together, making it easy to manufacture the load transmission body and reducing the manufacturing cost.
[0035]
In the above embodiment, the threaded spherical portion 9b is formed in the round bar 10, and then the screw hole 9c is formed. Conversely, the threaded hole 9c is first formed in the round bar 10, and then the sliding spherical portion 9b is formed. You may process so that it does.
[0036]
In FIG. 1, a shoe holder 15 that is a columnar portion that slidably holds the shoe 9 and that serves as an upper load receiving portion is disposed on the upper portion of the shoe 9. At the upper end of the shoe holder 15, a bolt 17 is inserted from the upper surface side of the lower flange 16a into a through hole 16b formed in the lower flange 16a of the H-shaped steel 16 which is a steel frame of the structure, and the bolt 17 is screwed together. A screw hole 15a serving as a coupling portion for bolt coupling by fastening is drilled from the upper end surface side of the shoe holder 15 at a predetermined depth in the thickness direction.
[0037]
Further, a curved receiving surface 15b having a predetermined curvature that is circular in plan and has an upward convex is formed on the lower end portion of the shoe holder 15 in correspondence with the sliding spherical surface portion 9b of the shoe 9 (FIG. 6). reference).
[0038]
In the present embodiment, the shoe holder 15 is also formed by cutting using a mild steel material in the same manner as the shoe 9. For example, the shoe holder 15 has an outer diameter of 110 mm and a thickness of 50 mm, and is a curved receiving member. The radius of curvature of the surface 15b is 50mm, the diameter of the screw hole 15a is 12mm, the depth is 15mm, and the screw hole 15a is arranged at a position of 60mm square, and is set on the periphery of the upper end of the curved receiving surface 15b. Further, a curved surface 15c having a curvature radius of 1 mm is formed.
[0039]
The surface of the shoe holder 15 is rust-prevented by manganese phosphate treatment (parkerizing) in the same manner as the shoe 9, and the surface of the curved receiving surface 15b is covered with molybdenum disulfide by baking or the like. Processing has been applied.
[0040]
The shoe holder 15 is manufactured by machining from a round bar 10 having an outer diameter of 110 mm as shown in FIG. 5A in the same manner as described above. In the case of the shoe holder 15 shown in FIG. As shown in FIGS. 5B and 5C, the circumferential side surface portion 15d having a diameter of 50 mm is gripped by the gripping mechanism 11 of the processing apparatus to cut the curved receiving surface 15b and to form the screw hole 15a.
[0041]
With the above configuration, the bolt 17 is screwed and fastened to the screw hole 15a serving as the coupling portion, so that the shoe holder 15 serving as the columnar portion can be directly coupled to the H-section steel 16 serving as the structure. As in the example, the flange member that is separately required for the coupling between the columnar part and the structure can be omitted, so that the processing work and the coupling work for the flange member can be reduced and the material cost can be reduced.
[0042]
In the above configuration, when vibration is applied to the building constructed above the H-shaped steel 16 due to an earthquake or the like, it is slidably placed and supported on the curved receiving surface 5a of the thin metal plate 5 of the lower load receiving portion A. The made shoe 9 slides and moves on the curved receiving surface 5a to allow horizontal vibration to be damped and to attenuate the seismic load applied to the building.
[0043]
In addition, the building is supported by the structure (pile 2) on the ground 1 side through at least four or more friction pendulum type seismic isolation devices. And the shoe holder 15 used as each upper load receiving part is fixed to an upper structure, and since each lower load receiving part A is fixed to the ground side structure (pile 2), it becomes an upper load receiving part. The shoe holder 15 and the upper structure to which the shoe holder 15 is fixed are always arranged in parallel with the ground side structure (pile 2) and the lower load receiving portion A.
[0044]
Next, a reference example of friction pendulum isolator will be described with reference to FIGS. In FIG. 7, a disk-shaped base 21 is installed on the ground 1, and a lower portion of an anchor bolt 21 a serving as a steel frame of a structure is embedded in the disk-shaped base 21 at a predetermined position of the disk-shaped base 21. The anchor bolt 21a is erected so that the upper part of the anchor bolt 21a is exposed.
[0045]
Reference numeral 22 denotes a shoe holder serving as a columnar portion constituting the lower load receiving portion. A brim portion 22a serving as a coupling portion instead of the screw hole 15a of the shoe holder 15 of the first embodiment shown in FIG. A through hole 22b into which the anchor bolt 21a can be inserted is formed at a predetermined position of the flange 22a. The other structure of the shoe holder 22 is the same as that of the shoe holder 15 of the first embodiment described above.
[0046]
Then, the through hole 22b provided in the flange portion 22a of the shoe holder 22 is inserted into an anchor bolt 21a that is embedded in the disc-like base 21 and the shoe holder 22 is placed on the disc-like base 21. After that, the nut 23 is screwed and fastened to the anchor bolt 21a to fix the shoe holder 22 on the disk-shaped base 21.
[0047]
On the other hand, an upper load receiving portion B is provided at the lower portion of the H-section steel 16 that supports the building. As shown in FIG. 9 (a), first, the upper load receiving portion B is formed by forming a curved receiving surface 24a having a predetermined curvature that is circular in a plan view and convex upward in the center portion. A flat plate 25 provided with a through hole 25a and a screw hole 25b in the upper part of a box-shaped thin metal plate 24 having side pieces 24b erected on the outer four sides is connected to the screw 26 from the outside of the side piece 24b of the thin metal plate 24. The flat plate 25 is fixed by being fastened to the side portion 25c.
[0048]
The metal thin plate 24 can be composed of, for example, a thin soft steel plate having a thickness of about 2.3 mm or less, like the metal thin plate 5 of the first embodiment, and by bending the metal thin plate 24, The curved receiving surface 24a can be easily formed. Further, the side pieces 24b provided upright on the outer four sides of the thin metal plate 24 can be easily formed by pressing or the like, and the substantially same effect as the thin metal plate 5 of the first embodiment described above is obtained. I can do it. Further, the flat plate 25 having substantially the same size as the metal thin plate 24 can also be constituted by a mild steel plate or the like.
[0049]
Then, as shown in FIG. 9B, the non-shrinkable grout material 8 is filled from one of the through holes 25a formed in the flat plate 25 (for example, the through hole 25a provided in the central portion).
[0050]
The non-shrinkable grout material 8 is filled in the space formed by the box-shaped thin metal plate 24 and the flat plate 25, and it is confirmed that the non-shrinkable grout material 8 is blown out from the other four through holes 25a. Thus, it can be confirmed that the space formed by the metal thin plate 24 and the flat plate 25 is filled with the non-shrinkable grout material 8.
[0051]
When the non-shrinkable grout material 8 is solidified, the upper load receiving portion B is formed by integrating the grout solidified layer obtained by solidifying the non-shrinkable grout material 8 and the metal thin plate 24.
[0052]
Then, as shown in FIG. 7, the sliding spherical surface portion 9b of the shoe 9 of the first embodiment described above is slidably placed on the sliding spherical surface portion 22c of the shoe holder 22 installed on the disk-shaped base 21, The upper load receiving portion B is fixed to the lower portion of the H-shaped steel 16 so that the curved receiving surface 24a of the thin metal plate 24 can slidably contact the sliding spherical portion 9a of the shoe 9.
[0053]
When the upper load receiving portion B is fixed to the lower part of the H-shaped steel 16, a bolt 27 is inserted into the through-hole 16b provided in the lower flange 16a of the H-shaped steel 16 from the upper surface side of the lower flange 16a to form a flat plate 25. The upper load receiving portion B is fixed to and supported by the H-section steel 16 by being screwed and fixed to the screw hole 25b.
[0054]
As another installation method, first, the flat plate 25 is attached to the H-shaped steel 16, and then the metal thin plate 24 is fixed to the flat plate 25 so as to avoid the H-shaped steel 16. The grout material 8 may be filled. First, after attaching the flat plate 25 to the metal thin plate 24, the flat plate 25 is fixed to the H-shaped steel 16 integrally with the metal thin plate 24, and the H-shaped steel 16 is also fixed. The non-shrinkable grout material 8 may be filled from the through hole 25a formed so as to be avoided.
[0055]
With the above configuration, the anchor bolt 21a embedded in the disk-like base 21 is fitted into the through hole 22b of the flange portion 22a serving as the coupling portion, and the nut 23 is screwed and fastened to the anchor bolt 21a. A flange member that can directly connect the shoe holder 22 that is a columnar part to the disk-shaped base 21 that is a structure, and is separately required for coupling the columnar part and the structure as in the second known example described above. Can be omitted, and the processing work and coupling work applied to the flange member can be reduced and the material cost can be reduced. Other configurations are substantially the same as those of the first embodiment, and the same effects can be obtained.
[0056]
In the above configuration, the shoe 9 slidably held on the sliding spherical surface portion 22c of the shoe holder 22 is slidably held on the sliding spherical portion 22c of the shoe holder 22 when vibration is applied to the building constructed above the H-shaped steel 16 due to an earthquake or the like. The H-section steel 16 and the upper load receiving part B move integrally by sliding on the 24 curved receiving surfaces 24a, and the seismic load applied to the building can be attenuated by allowing horizontal shaking. It is like that.
[0057]
The curved receiving surfaces 5a and 24a of the thin metal plates 5 and 24, the sliding spherical surface portions 9a and 9b of the shoe 9, the curved receiving surfaces 15b of the shoe holders 15 and 22, and the sliding spherical surface portion 22c are formed as spherical surfaces. Alternatively, it may be formed with other curved surfaces.
[0058]
Incidentally, before the you facilities embodiment, non-shrink properties between one of the curved receiving surfaces 5a, the sheet metal 5 and 24 and the structure forming a 24a of the lower load receiving section A or the upper load receiving section B The grout solidified layer filled with solidified grout material 8 and the metal thin plates 5 and 24 are integrated, but as another configuration, both the lower load receiving portion A and the upper load receiving portion B are curved. The metal thin plates 5 and 24 are formed by integrating the non-shrinkable grout material 8 between the metal thin plates 5 and 24 having the shape receiving surfaces 5a and 24a and the structure and solidifying them. It is also possible to configure and arrange a slidable load transmitting body between the curved receiving surfaces 5a and 24a.
[0059]
【The invention's effect】
The present invention is, of having a working and such the above-described structure, the upper side load receiving portion or the lower side load receiving portion is in and a second end curved receiving surface is formed cut on one end portion made of a round bar By having a columnar portion in which a coupling portion for bolting the steel frame of any one of the structures is formed, the columnar portion is directly coupled to the structure via the coupling portion, which is separately necessary. Thus, it is possible to provide a friction pendulum type seismic isolation device which can omit the flange member and reduce processing work and coupling work on the flange member and reduce the material cost.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view showing the configuration of a first embodiment of a friction pendulum type seismic isolation device according to the present invention.
FIG. 2 is a plan view showing a configuration of a lower load receiving portion of the first embodiment.
FIGS. 3A to 3C are cross-sectional explanatory views showing a method of installing the lower load receiving portion of the first embodiment. FIGS.
FIG. 4 is a diagram showing a configuration of a shoe that becomes a load transmission body.
FIG. 5 is a diagram illustrating a method for manufacturing a shoe that becomes a load transmission body.
FIG. 6 is a diagram illustrating a configuration of a shoe holder that is a columnar portion that holds a load transmission body.
7 is a cross-sectional view showing a configuration of a reference example of friction pendulum seismic isolator.
FIG. 8 is a plan view showing a configuration of an upper load receiving portion of a reference example .
9A to 9C are cross-sectional explanatory views showing a method of installing the upper load receiving portion of the reference example .
FIG. 10 is a diagram illustrating a first known example.
FIG. 11 is a diagram illustrating a second known example.
FIG. 12 is a diagram illustrating a problem of a conventional example.
FIG. 13 is a diagram illustrating a conventional method for manufacturing a load transmission body.
FIG. 14 is a diagram illustrating another method for manufacturing a load transmission body of a conventional example.
[Explanation of symbols]
A ... Lower load receiving portion B ... Upper load receiving portion 1 ... Ground 2 ... Pile 3 ... Anchor bolt 4 ... Nut 5 ... Metal sheet 5a ... Curved receiving surface 5b ... Counterbore portion 5c ... Through hole 6 ... Nut 7 ... Formwork 8 ... Non-shrinkable grout material 9 ... Shoe 9a, 9b ... Sliding spherical surface part 9c ... Screw hole 9d ... Chamfered part
10 ... Round bar
11 ... Grip mechanism
12 ... Cutting tools
13 ... Drilling tool
14 ... Fixing jig
14a ... Male thread
15 ... Shoe holder
15a ... Screw hole
15b ... Curved receiving surface
15c ... curved surface
16 ... H-section steel
16a ... Lower flange
16b ... through hole
17 ... Bolt
21 ... Disc-shaped base
21a ... Anchor bolt
22… Shoe holder
22a ... Buttocks
22b ... through hole
22c ... Sliding spherical surface
23 ... Nut
24 ... metal sheet
24a ... Curved surface
24b ... side piece
25 ... Flat plate
25a ... through hole
25b ... Screw hole
25c ... side
26 ... screw
27 ... Bolt

Claims (1)

曲面状の受面を有し、且つ一方の構造物に固定される上側荷重受部と、曲面状の受面を有し、且つ他方の構造物に固定される下側荷重受部と、前記上側荷重受部及び前記下側荷重受部の両受面間に介在される荷重伝達体を有する摩擦振子型免震装置において、
前記上側荷重受部或いは下側荷重受部は、丸棒からなり一端部に曲面状の受面が切削形成され且つ他端部に前記何れかの構造物の鉄骨材とボルト結合するための結合部が穿設形成された柱状部を有することを特徴とする摩擦振子型免震装置。
An upper load receiving portion having a curved receiving surface and fixed to one structure; a lower load receiving portion having a curved receiving surface and fixed to the other structure; In the friction pendulum type seismic isolation device having a load transmitting body interposed between both receiving surfaces of the upper load receiving portion and the lower load receiving portion,
The upper load receiving portion or the lower load receiving portion is formed of a round bar, and a curved receiving surface is cut and formed at one end, and the other end is coupled to be bolted to the steel structure of any of the structures. A friction pendulum type seismic isolation device characterized by having a columnar part in which the part is drilled .
JP11170798A 1998-04-22 1998-04-22 Friction pendulum type seismic isolation device Expired - Lifetime JP3963567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11170798A JP3963567B2 (en) 1998-04-22 1998-04-22 Friction pendulum type seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11170798A JP3963567B2 (en) 1998-04-22 1998-04-22 Friction pendulum type seismic isolation device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2007107667A Division JP2007271085A (en) 2007-04-17 2007-04-17 Method of installing friction pendulum type base isolation device
JP2007107668A Division JP2007216382A (en) 2007-04-17 2007-04-17 Load transmitting body manufacturing method

Publications (2)

Publication Number Publication Date
JPH11303453A JPH11303453A (en) 1999-11-02
JP3963567B2 true JP3963567B2 (en) 2007-08-22

Family

ID=14568126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11170798A Expired - Lifetime JP3963567B2 (en) 1998-04-22 1998-04-22 Friction pendulum type seismic isolation device

Country Status (1)

Country Link
JP (1) JP3963567B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438704B1 (en) 2013-11-08 2014-09-05 주식회사 아이솔테크 Isolator having conical friction surface
CN106381934A (en) * 2016-10-26 2017-02-08 清华大学 Three-dimensional shock insulation supporting seat

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835384A (en) * 2013-12-30 2014-06-04 同济大学 Mass resonance regulating and vibration damping device
CN105064508A (en) * 2015-07-24 2015-11-18 上海市政工程设计研究总院(集团)有限公司 Friction pendulum type seismic mitigation and absorption bearing with variable friction coefficient
CN112282093B (en) * 2020-09-30 2022-03-29 株洲时代新材料科技股份有限公司 Friction pendulum support

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438704B1 (en) 2013-11-08 2014-09-05 주식회사 아이솔테크 Isolator having conical friction surface
WO2015068964A1 (en) * 2013-11-08 2015-05-14 주식회사 아이솔테크 Conical sliding-friction seismic isolation device
CN106381934A (en) * 2016-10-26 2017-02-08 清华大学 Three-dimensional shock insulation supporting seat
CN106381934B (en) * 2016-10-26 2019-01-04 清华大学 Three-dimensional shock isolation support

Also Published As

Publication number Publication date
JPH11303453A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US9249591B2 (en) Seismic isolation structure for equipment, and seismic isolation method
JP2007271085A (en) Method of installing friction pendulum type base isolation device
JP6457141B1 (en) Sliding seismic isolation structure during construction and construction method of seismic isolation building
JP3963567B2 (en) Friction pendulum type seismic isolation device
JPH09250193A (en) Support device of external wall body for building and base isolation method therefor
JP2017180058A (en) Suspension structure with insert fitted on deck plate with reinforcement truss and ceiling equipment hung and supported underneath on lower floor, and fitting method for ceiling equipment underneath deck plate with reinforcement truss using insert
JP2007216382A (en) Load transmitting body manufacturing method
JP5227519B2 (en) Seismic isolation building
JPS6310013Y2 (en)
JPH11303929A (en) Friction pendulum-type base isolation device and installing method for it
JPH1181737A (en) Vibration control construction for reinforced concrete building and constructing method therefor
JP4141011B2 (en) How to install a pendulum type seismic isolation device
JP3093059B2 (en) Seismic isolation installation of building unit and unit building
JP2003278407A (en) Temporary restraining tool for seismic isolator and restraining method
JPH10280330A (en) Installation method of bridge girder and bearing and bridge girder used therefor and bridge laid by this method
JPH0547343Y2 (en)
JP2001027282A5 (en)
JP7397700B2 (en) Anchor bolt vertical installation method
JPH01178682A (en) Earthquake-proof wall
JPS6131564A (en) Body finishing wall and its support apparatus
JPH0536585B2 (en)
JPH0497051A (en) Flooring bearing member
JPH06108535A (en) Connecting method of upper pedestal
JP2808228B2 (en) Wood joints made of steel
JP2837073B2 (en) Building unit joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

EXPY Cancellation because of completion of term