JP4141011B2 - How to install a pendulum type seismic isolation device - Google Patents

How to install a pendulum type seismic isolation device Download PDF

Info

Publication number
JP4141011B2
JP4141011B2 JP19727898A JP19727898A JP4141011B2 JP 4141011 B2 JP4141011 B2 JP 4141011B2 JP 19727898 A JP19727898 A JP 19727898A JP 19727898 A JP19727898 A JP 19727898A JP 4141011 B2 JP4141011 B2 JP 4141011B2
Authority
JP
Japan
Prior art keywords
metal plate
receiving portion
load receiving
grout material
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19727898A
Other languages
Japanese (ja)
Other versions
JP2000027935A (en
Inventor
隆志 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP19727898A priority Critical patent/JP4141011B2/en
Publication of JP2000027935A publication Critical patent/JP2000027935A/en
Application granted granted Critical
Publication of JP4141011B2 publication Critical patent/JP4141011B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築物や美術品展示ケース或いはコンピューター用免震床等に適用可能な振子型免震装置の設置方法に関するものである。
【0002】
【従来の技術】
従来の振子型免震装置の一例として特公平5-62179号公報に開示された技術(第1公知例)は、図36に示すように、地盤上に設けられた支持基礎50に接続され、コンクリートで構成された皿ハウジング51により曲面状の皿52を保持し、該皿52上を滑動して移動可能な荷重伝達体となる関節スライダ53を滑動可能に保持するスライダハウジング54が支持コラム55に接続され、更に支持コラム55が構造物接続板56に接続され、該構造物接続板56がボルト57により支持構造物58に固定されている。
【0003】
また、第2公知例として図37に示す技術は、板厚30mm以上の厚軟鋼板を機械加工して曲面61aを削り出して形成した下沓61を地盤上に設けられた支持基礎60上に載置してボルト止めにより固定し、該曲面61a上を滑動して移動可能な荷重伝達体となる下部スライディングプレート62を同じく荷重伝達体となる上部スライディングプレート63に接着し、該上部スライディングプレート63を滑動可能に保持する柱状部材64がフランジ部材65に接続されて上沓を形成し、該フランジ部材65がボルト止めにより支持構造物66に固定されている。
【0004】
また、実開平5-32505号公報に開示された技術(第3公知例)は、図38に示すように、下部装置71上に円柱状体72を基体として球面部72aを形成した下沓73の下辺の4隅に設けられたアンカーボルト挿通孔73aに下部装置71に埋設されたアンカーボルト74が挿通され、該アンカーボルト74にナット75を締着して下沓73が下部装置71上に固定される。また、上部装置76の下部に円柱状体77を基体として球面部72aと同じ曲率半径を有する球面部77aを形成した上沓78がその上辺に設けられたボルト挿通孔を介してボルト、ナットの締結手段により上部装置76に固定され、下沓73の球面部72aと上沓78の球面部77aとの間に荷重伝達体となる摺動子79が摺動自在に当接されている。
【0005】
しかしながら、前述の各公知例において、図37に示した第2公知例の下沓61及び図38に示した第3公知例の下沓73、上沓78は板厚30mm以上の厚ステンレス鋼板或いは厚軟鋼板等を機械加工して曲面61a、球面部72a,77aを削り出して形成するため加工作業に手間がかかり加工コストが増大する上、原材料として鋼材の厚板を使用するため高価であり材料コストが増大するという問題があった。
【0006】
また、下沓61,73、上沓78の重量が大きくなり、例えば、1m角、30mm厚の厚軟鋼板では236kg程度の重量があるため、起重機械により搬入しなければならず、施工作業が困難であった。
【0007】
上記問題を解決し得る技術として特開平10-37519号公報に開示された技術(第4公知例)が提案されており、その構成は、図39に示すように、上部装置に取り付けられるゴム層81を有する上面板82の下にグラウト材83、円錐型に成形された受皿鉄板84を有し、中心部に補強材85を有する受皿86が荷重伝達体となるボール87を介して下部装置にL型アンカーボルト88により固定されたベースプレート89とボールベアリング押さえ90を有する支承体91により支持されている。
【0008】
上記構成ではボール87が当接する円錐型に成形された受皿鉄板84の上部にグラウト材83が充填固化されて上部受皿86を形成しており、これにより上述のような厚ステンレス鋼板或いは厚軟鋼板等を機械加工する必要がなく、加工コスト及び材料コストを低減すると共に各部材を軽量化して施工作業を容易に出来るものである。
【0009】
そこで、本発明者は上部構造物に固定される上側荷重受部のみならず下部構造物に固定される下側荷重受部をも金属板とグラウト固化層を一体化して構成した技術を開発し、現在、特願平10-111707号及び特願平10-111708号により特許出願中である。
【0010】
【発明が解決しようとする課題】
しかしながら、前述の本発明者が提案した技術においても全く問題がないわけではなく、下側荷重受部を構成する金属板の周辺部を複数の固定部材により支持して固定する際に複数の固定部材の固定高さ位置を個々に調整して金属板全体の高さレベルや水平レベルを調整していたため該金属板の高さレベルや水平レベルの調整作業に手間がかかり、更には金属板の自重により固定部材により該金属板周辺部を固定した平坦部が撓んで高さレベルや水平レベルに誤差が生じるという問題があった。また、金属板と下部構造物との間隙に充填されたグラウト材が固化するまでは金属板上部での作業が行えず、工期が長くなるという問題もあった。
【0011】
また、前述した第1公知例において曲面状の皿52をコンクリートで構成された皿ハウジング51により保持する場合も何らかの支持手段により曲面状の皿52を支持した状態でコンクリートを打設して皿ハウジング51を形成するため曲面状の皿52の高さレベルや水平レベルの調整作業に手間がかかり、皿ハウジング51のコンクリートが固化するまでは曲面状の皿52上部での作業が行えず、工期が長くなるという問題があった。
【0012】
本発明は前記課題を解決するものであり、その目的とするところは、振子型免震装置の少なくとも下側荷重受部の曲面状の受面を金属板とグラウト固化層とを一体化して構成して加工コスト及び材料コストを低減すると共に下側荷重受部を構成する金属板の高さレベルや水平レベルの調整作業が容易に且つ確実に出来、工期を短縮出来る振子型免震装置の設置方法を提供せんとするものである。
【0013】
【課題を解決するための手段】
前記目的を達成するための本発明に係る振子型免震装置の設置方法は、曲面状の受面を有し、且つ上部構造物に固定される上側荷重受部と、曲面状の受面を有し、且つ下部構造物に固定される下側荷重受部と、前記上側荷重受部及び下側荷重受部の両受面間に介在される荷重伝達体を有する振子型免震装置を前記両構造物間に設置する方法において、1つの高さ調整支持部材とそれを取り囲む複数の固定部材を前記下部構造物に立設すると共に、前記下側荷重受部を形成する中央部に曲面状の受面をする金属板を用意し、該金属板の略中央部下面を前記高さ調整支持部材に支持させてその高さレベルを調整し、更にその水平レベルを調整した状態で前記複数の固定部材により該金属板の周辺部を固定し、充填口が前記金属板の中央部付近に位置するように且つ前記下部構造物の上面から露出するように前記下部構造物に予め埋設されたグラウト材充填管を用いて前記下部構造物と前記金属板の間隙に無収縮性のグラウト材を充填固化させることによって前記金属板とグラウト固化層が一体化された下側荷重受部を形成することを特徴とする。
【0014】
上記設置方法によれば、下部構造物に立設された1つの高さ調整支持部材に金属板の略中央部下面を支持させた状態で該金属板の高さレベル及び水平レベルを調整した後、該金属板の周辺部を1つの高さ調整支持部材を取り囲み下部構造物に立設された複数の固定部材に固定することで下側荷重受部を構成する金属板の高さレベルや水平レベルの調整作業が容易に且つ確実に出来る。特に金属板の高さレベル調整が高さ調整支持部材の一箇所で出来るので作業性が良い。
【0015】
また、金属板の略中央部下面を高さ調整支持部材により支持することにより、該金属板の荷重を高さ調整支持部材が受けるため、固定部材により固定される該金属板の周辺部の平坦部が撓むことがなく、金属板の高さレベルや水平レベルに誤差が生じることがない。
【0016】
更には、下部構造物と金属板間の間隙に充填されたグラウト材が固化する前に金属板上に荷重伝達体や上側荷重受部、更には上部構造物等を載置して作業が出来るため、グラウト材の固化時間を待たなくても良く、工期を短縮出来る。
【0017】
また、下側荷重受部を軽量で取り扱い易い金属板と、該金属板と下部構造物との間隙に無収縮性のグラウト材を充填固化させることによって該金属板と一体化されたグラウト固化層により形成したことで施工性が良い。
【0018】
また、前記下部構造物にグラウト材充填管を予め埋設しておき、外部から該グラウト材充填管を通して前記下部構造物と前記金属板の間隙に無収縮性のグラウト材を充填することで、グラウト材充填管の充填口を下部構造物と金属板の間隙の断面が狭くなる中央部に設定しておくことで狭い中央部へのグラウト材の充填が確実に出来る。
【0019】
また、上記振子型免震装置の設置方法によれば、前記上側荷重受部の受面が前記下側荷重受部の受面より小さい曲率半径を有し、前記荷重伝達体が前記上側荷重受部の受面と前記下側荷重受部の受面に夫々整合する曲率半径の上面と下面を有し、前記荷重伝達体が前記上側荷重受部と一体的に移動して前記下側荷重受部の受面上を滑動可能とされる場合や、前記上側荷重受部の受面と前記下側荷重受部の受面が同一曲率半径を有し、該両受面間に介在される前記荷重伝達体が該両受面間を実質的に回転することなく滑動可能とされる場合の振子型免震装置の設置方法に好適である。
【0020】
また、前記下側荷重受部における曲面状の受面を形成する金属板にグラウト材充填孔及びグラウト材確認孔が設けられ、該グラウト材充填孔からグラウト材を充填し、その充填状態をグラウト材確認孔により確認する場合には、下側荷重受部の金属板の上部側から下部構造物と前記金属板の間隙に無収縮性のグラウト材を流し込むことにより容易に充填することが出来、更にはグラウト材確認孔からグラウト材が溢れ出すことを目視確認することで下部構造物と金属板の間隙に隙間なく確実にグラウト材を充填することが出来、金属板とグラウト固化層が強固且つ確実に一体化された下側荷重受部を形成することが出来る。
【0021】
【発明の実施の形態】
図により本発明に係る振子型免震装置の設置方法の一実施形態を具体的に説明する。図1及び図2は本発明に係る振子型免震装置の第1実施形態の構成を示す断面説明図、図3は第1実施形態の下側荷重受部の構成を示す平面図、図4は第1実施形態において荷重伝達体が下側荷重受部の受面上を滑動した様子を示す断面説明図、図5は第1実施形態において荷重伝達体が下側荷重受部の受面上を滑動した様子を示す平面図、図6〜図13は第1実施形態の下側荷重受部の設置方法を示す断面説明図、図14(a)〜(c)及び図15、図16は高さ調整支持部材の他の構成を示す図、図17〜図21は第1実施形態の下部構造物に埋設したグラウト材充填管を通して該下部構造物と金属板との間隙にグラウト材を充填した場合の下側荷重受部の設置方法を示す断面説明図、図22は本発明に係る振子型免震装置の第2実施形態の構成を示す断面説明図、図23は本発明に係る振子型免震装置の第3実施形態の構成を示す断面説明図、図24は第3実施形態の上側荷重受部の構成を示す平面図、図25は第3実施形態の下側荷重受部の構成を示す平面図、図26〜図30は第3実施形態の上側荷重受部の設置方法を示す断面説明図、図31は本発明に係る振子型免震装置の第4実施形態の構成を示す断面説明図、図32は第4実施形態において荷重伝達体が上側及び下側荷重受部の受面上を滑動した様子を示す断面説明図、図33は第4実施形態の上側荷重受部の構成を示す平面図、図34は第4実施形態の下側荷重受部の構成を示す平面図、図35は本発明に係る振子型免震装置の第5実施形態の構成を示す断面説明図である。
【0022】
本発明に係る振子型免震装置の設置方法は住宅やオフィス等の建築物や美術品展示ケース或いはコンピューター用免震床等に適宜適用可能な振子型免震装置の設置方法に関するものであり、以下の説明では、住宅やオフィス等の建築物に適用した場合の一例について説明する。
【0023】
先ず、図1〜図21を用いて本発明に係る振子型免震装置の設置方法の第1実施形態について説明する。図において、1は地盤等にコンクリートを打設して形成された下部構造物であり、該下部構造物1には1つの高さ調整支持部材を構成する上部にボルト4が螺合された長ナット2と、それを取り囲む複数の固定部材となるアンカーボルト3が立設して取り付けられている。
【0024】
長ナット2及びアンカーボルト3を下部構造物1に埋設して立設する場合には、該下部構造物1に穴を形成した後、該穴に長ナット2及びアンカーボルト3を挿入して立設すれば良い。
【0025】
長ナット2は下側荷重受部Aの金属板5の高さレベルの調整代に対応する長さを有する貫通したネジ溝を有しており、該長ナット2の上部側には同じく下側荷重受部Aの金属板5の高さレベルの調整代に対応する長さを有するボルト4が螺合自在に取り付けられている。
【0026】
そして、ボルト4の螺合高さ位置を調整することにより該ボルト4の上部に載置される下側荷重受部Aの金属板5の曲面状の受面5aの高さレベルを調整するようになっている。
【0027】
一方、図6に示すように、アンカーボルト3の高さ方向所定位置にはナット6が螺合され、該ナット6の上面にアンカーボルト3に挿通されたワッシャー7が取り付けられている。尚、ナット6とワッシャー7は一体的に形成された座付きナットで構成することでも良い。
【0028】
下側荷重受部Aの設置方法としては、先ず、図6に示すように、中央部に平面的には円形で下に凸の所定の曲率を有する曲面状の受面5aを形成した金属板5の略中央部下面を載置して支持するボルト4を長ナット2に対して所定方向に螺合回転させて該ボルト4の高さレベルを調整する。
【0029】
具体的には図6に示すようにボルト4の上面にスケール8を当ててその周辺部からレベル測量機械9により測量しながらボルト4を長ナット2に対して所定方向に螺合回転させ、ボルト4の上面に載置される金属板5が予め設定された高さレベルになるように該ボルト4の高さレベルを調整する。
【0030】
金属板5の曲面状の受面5aの外部で4隅にはアンカーボルト挿通孔5bが形成されており、図7及び図8に示すように金属板5のアンカーボルト挿通孔5bを4本のアンカーボルト3に挿通すると共に金属板5の略中央部下面をボルト4上に載置して該金属板5を支持する。
【0031】
そして、図8に示すように金属板5の曲面状の受面5aの周囲の平坦部に水準器10を載置してボルト4により支持された金属板5の水平レベルを調整した状態でナット6をアンカーボルト3に対して螺合して上昇させ、金属板5の下面にワッシャー7が当接する位置にナット6の高さを合わせる。
【0032】
そして、金属板5の上部側からワッシャー7をアンカーボルト3に嵌挿すると共にアンカーボルト3にナット6を螺合締着して金属板5をアンカーボルト3に固定する。
【0033】
前記金属板5は、例えば、板厚が2.3mm以下程度の薄軟鋼板で構成することが出来、該金属板5を曲げ加工することにより曲面状の受面5aを容易に形成することが出来る。従って、プレス加工により大量生産することも出来、少量生産であればヘラ絞り加工等により金属板5を曲げ加工して曲面状の受面5aを容易に形成することが出来るものである。
【0034】
また、金属板5が薄軟鋼板であれば、材料費が安価で、例えば、1m角、2.3mm厚の薄軟鋼板では18kg程度の重量であるので前述の各公知例と比較して超軽量化することが出来、起重機械にたよらずに作業者によって容易に現場に搬入することが出来、施工作業も容易に出来る。
【0035】
下部構造物1から浮いた状態で架設された金属板5は実質的には1つの高さ調整支持部材となる中央部のボルト4により全体荷重が支持される。金属板5が薄板でも曲面状の受面5a部分はその形状から平坦部よりは大きな曲げ剛性が得られ、中央部のボルト4による支持だけでもその形状を維持した状態で金属板5の自重はもとより更に大きな荷重を支えることが出来る。
【0036】
従って、アンカーボルト3、ワッシャー7、ナット6からなる固定部材により固定される金属板5の周辺部の平坦部が撓むことがなく、該金属板5の高さレベルや水平レベルに誤差が生じることがない。更には、下部構造物1と金属板5間の間隙に充填されたグラウト材12が固化する前に金属板5上に荷重伝達体となるシュー13や上側荷重受部となるシューホルダ14、H形鋼15或いはこれに固定される建物の柱等を載置して取り付ける作業が出来るため、グラウト材12の固化時間を待たなくても良く、工期を短縮出来る。
【0037】
上記構成によれば、下側荷重受部Aを構成する金属板5の高さレベル調整が高さ調整支持部材となるボルト4の一箇所で出来るので作業性が良く、金属板5の高さレベルや水平レベルの調整作業が容易に且つ確実に出来る。
【0038】
次に図9及び図10に示すように、アンカーボルト3の外側で金属板5の4辺に型枠11を配置する。金属板5の曲面状の受面5aよりも外側にはグラウト材充填孔及びグラウト材確認孔となる貫通孔5cが形成されており、図11に示すように該貫通孔5cの1つからなるグラウト材充填孔から無収縮性のグラウト材12を充填する。
【0039】
無収縮性のグラウト材12は下部構造物1と型枠11と金属板5とにより形成された間隙空間に充填され、他の3つの貫通孔5cからなるグラウト材確認孔から無収縮性のグラウト材12が溢れ出したことを確認することで下部構造物1と型枠11と金属板5とにより形成された間隙空間に無収縮性のグラウト材12が満たされたことを確認することが出来る。
【0040】
そして、無収縮性のグラウト材12が固化した段階で、図13に示すように、型枠11を取り除き、無収縮性のグラウト材12が固化したグラウト固化層と金属板5とを一体化することにより下側荷重受部Aが形成される。
【0041】
また、通常、振子型免震装置の設置には、その高さレベル調整や水平度調整のために該振子型免震装置の下に無収縮性のグラウト材を数mmから数十mm程度の厚さで打設するが、上記構成によれば、金属板5と下部構造物1との間に無収縮性のグラウト材12を充填して固化させたグラウト固化層と該金属板5とを一体化して構成されるため、該無収縮性のグラウト材12がそのまま下側荷重受部Aの高さレベル調整や水平度調整用を兼ねることが出来るので合理的である。
【0042】
従って、前述の各公知例のように高価で重量のある厚ステンレス鋼板や厚軟鋼板を機械加工する必要がなく、加工作業を省略して加工コストを削減すると共に材料コストを低減し、重量を低減して施工作業を容易にすることが出来る。
【0043】
下側荷重受部Aの上面を構成する金属板5の曲面状の受面5a上には荷重伝達体となるシュー13が該曲面状の受面5aに対して滑動して移動自在に配置されている。シュー13は図1に示すように金属板5の曲面状の受面5aの曲率に対応して平面的には円形で下に凸の所定の曲率を有する滑動球面部13aと、該滑動球面部13aと同心上で同じく平面的には円形で上に凸の所定の曲率を有する滑動球面部13bとを有する一部品で構成されている。
【0044】
本実施形態では、シュー13を軟鋼材を用いて切削加工して形成しており、例えば、滑動球面部13aの曲率半径が2234mm、滑動球面部13bの曲率半径が50mmに設定したものである。シュー13の表面はリン酸マンガン処理(パーカライジング)により錆止めが施され、更にその表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。
【0045】
図1において、シュー13の上部には該シュー13を滑動自在に保持する柱状部であって上側荷重受部となるシューホルダ14が配置されている。シューホルダ14の上端部には上部構造物の鉄骨材となるH形鋼15の下フランジ15aに形成した貫通孔15bに該下フランジ15aの上面側からボルト16を挿通して該ボルト16を螺合締着することによりボルト結合するための結合部となるネジ孔14aがシューホルダ14の上端面側から厚さ方向に所定の深さで穿設されている。
【0046】
また、シューホルダ14の下端部にはシュー13の滑動球面部13bに対応して平面的には円形で上に凸の下側荷重受部Aの金属板5の曲面状の受面5aよりも小さい曲率半径を有する曲面状の受面14bが形成されている。
【0047】
荷重伝達体となるシュー13の下面及び上面に形成された滑動球面部13a,13bは下側荷重受部Aの金属板5の曲面状の受面5aと上側荷重受部であるシューホルダ14の曲面状の受面14bに夫々整合する曲率半径で構成されており、シュー13がシューホルダ14と一体的に移動して下側荷重受部Aの曲面状の受面5a上を滑動可能に構成されている。
【0048】
本実施形態では、シューホルダ14も前記シュー13と同様に軟鋼材を用いて切削加工して形成しており、例えば、シューホルダ14の外径が110mm、厚さが50mmで、曲面状の受面14bの曲率半径が50mm、ネジ孔14aの径が12mm、深さを15mm、該ネジ孔14aを60mm四方の位置に配置して設定し、曲面状の受面14bの上端部の周部には更に曲率半径が1mmの曲面が形成されている。
【0049】
また、シューホルダ14の表面は前記シュー13と同様にリン酸マンガン処理(パーカライジング)により錆止めが施され、更に曲面状の受面14bの表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。
【0050】
上記構成により、結合部となるネジ孔14aにボルト16を螺合締着して柱状部であるシューホルダ14を構造物となるH形鋼15に直接結合することが出来る。
【0051】
上記構成において、地震等によりH形鋼15上部に構築された建築物等の上部構造物に振動が加わると、図4及び図5に示すように、下側荷重受部Aの金属板5の曲面状の受面5a上に滑動自在に載置して支持されたシュー13がシューホルダ14を介して上部構造物と一体的に該曲面状の受面5a上を滑って移動し、水平方向の揺れを許容して上部構造物にかかる地震荷重を減衰させることが出来るようになっている。
【0052】
尚、シュー13が下側荷重受部Aの金属板5の曲面状の受面5a上を移動する時、シュー13及び該シュー13を保持するシューホルダ14及びH形鋼15等の上部構造物は一体的に図4に示すように曲面状の受面5aに沿ってその高さ位置が上昇し、金属板5の周辺部を固定するアンカーボルト3やナット6等にシュー13と一体的に移動するH形鋼15等の上部構造物が接触しないように設定されている。尚、金属板5の高さレベル調整時にアンカーボルト3の上部先端部が必要な長さよりも長く残った場合には必要に応じてアンカーボルト3を現場にて切断する。
【0053】
尚、建築物等の上部構造物は上記振子型免震装置を少なくとも4基以上を介して下部構造物1に支持されている。そして、夫々の上側荷重受部となるシューホルダ14は上部構造物に固定され、夫々の下側荷重受部Aは下部構造物1に固定されているためシューホルダ14及びこれを固定した上部構造物は下部構造物1及び下側荷重受部Aに対して常時平行に配置される。
【0054】
次に図14(a)〜(c)及び図15、図16を用いて高さ調整支持部材の他の構成について説明する。尚、図14(a)〜(c)は高さ調整支持部材の構成を示す部分拡大図であり、その他の構成及び施工方法は前述した実施形態と同様に構成される。図14(a)では、下部構造物1の所定位置に立設された長ナット2と該長ナット2の上部に螺合されるボルト4との間に該ボルト4に螺合するロックナット21が設けられたものである。
【0055】
上述のようにボルト4の高さレベルを調整する際には、先ず、ロックナット21は予めボルト4の頭部側の上方に螺合されており、該ボルト4の高さレベルの調整をした後、ロックナット21をボルト4に螺合しつつ下降させ、長ナット2の上面に当接させて締着固定することによってボルト4の高さレベルを調整した状態で該ボルト4を長ナット2に対して確実に固定することが出来、これによって作業者が不用意にボルト4に接触等しても調整したボルト4の高さレベルがずれることがないので好ましい。
【0056】
図14(b)は高さ調整支持部材として、下部構造物1の所定位置に立設されたアンカーボルト22と該アンカーボルト22の上部に螺合されるナット23により構成されたものである。上記構成では下側荷重受部Aの金属板5の略中央部下面がナット23の上面に載置され、ナット23をアンカーボルト22に螺合して高さ位置を調整することにより金属板5の高さレベル調整がナット23のネジ溝の図14(b)の上下方向の長さ分だけ可能であり、金属板5の高さレベル調整代が小さくても良い場合に適用出来る。特にこの場合、長ナット2を使用することなくアンカーボルト22と通常のナット23で構成出来るので部品コストが低減出来る。
【0057】
図14(c)では、図14(b)のナット23の下部にアンカーボルト22に螺合するロックナット21を設けたものである。そして、前述と同様にナット23の高さレベルを調整する際には、先ず、ロックナット21はナット23の下方(下部構造物1に近接する位置)に螺合されており、該ナット23の高さレベルの調整をした後、ロックナット21をアンカーボルト22に螺合しつつ上昇させ、ナット23の下面に当接させて締着固定することによってナット23の高さレベルを調整した状態で該ナット23をアンカーボルト22に対して確実に固定することが出来、これによって作業者が不用意にナット23に接触等しても調整したナット23の高さレベルがずれることがないので好ましい。
【0058】
図15に示す高さ調整支持部材は、鉄まんじゅうにボルトやナットによる高さレベル調整部材を設けた市販のスーパーまんS(商品名)と称する高さ調整支持部品により構成し、下部構造物1であるコンクリートが固化する前に施工するように構成したものである。
【0059】
上記高さ調整支持部品は内部に所定長さの空間が形成された埋設容器24と浮き板25とナット26が溶接等により一体的に構成され、該ナット26にボルト27が螺合して埋設容器24の内部空間に収納されるように構成されている。
【0060】
そして、下部構造物1であるコンクリートが固化する前に該コンクリートの内部に埋設容器24を埋設すると共に該コンクリートの上面に浮き板25を浮かせて配置し、コンクリートが完全に固化した後、ボルト27をナット26に螺合させて前述と同様にボルト27の高さレベルを調整し、該ボルト27の上面に金属板5の略中央部下面を載置して該金属板5の水平レベルを調整した後、該金属板5の周辺部を固定部材となるアンカーボルト3及びナット6、ワッシャー7等により固定する。この時、1つの高さ調整支持部材を取り囲むアンカーボルト3は下部構造物1のコンクリート下部に設けられた鉄筋に結合して立設されている。
【0061】
上記構成によれば、まだ固化しないコンクリート内部に埋設容器24を埋設しつつ浮き板25により該浮き板25から上部を浮かせて配置した状態でコンクリートを固化させて下部構造物1に固定することが出来、前述のような長ナット2及びアンカーボルト3を下部構造物1に埋設して立設する場合に該下部構造物1に穴を形成した後、該穴に長ナット2及びアンカーボルト3を挿入して立設するような手間が省略出来、施工性が向上する。
【0062】
図16に示す高さ調整支持部材は、前記図15に示す浮き板25の上面に当接すると共にナット26の外周部に係止し得る爪を有するカップ状のキャップ28を着脱可能に設けたものである。
【0063】
先ず、キャップ28をナット26の外周部に嵌入して浮き板25の上面に当接すると共にナット26の外周部に係止した状態で浮き板25及び埋設容器24を未固化状態のコンクリート内部に埋没させ、キャップ28も側面の途中まで該コンクリート内部に埋没させる。
【0064】
図16に示すように浮き板25及び埋設容器24を図15よりも更にコンクリート内部に沈めても該キャップ28により未固化のコンクリートがキャップ28の内側に配置されたナット26及びボルト27の部位まで流れ込むことがなく、ボルト27のナット26に対する螺合作業が支障なく出来る。
【0065】
そして、下部構造物1のコンクリートが固化した段階でキャップ28をナット26の外周部から引き抜いて除去した後、前述と同様にボルト27の高さレベルを調整して該ボルト27の上面に金属板5の略中央部下面を載置して金属板5の水平レベルを調整し、金属板5の周辺部をアンカーボルト3、ナット6、ワッシャー7等により固定する。
【0066】
上記構成により浮き板25、埋設容器24及びナット26を更にコンクリート内部に沈めることでボルト27の上面に載置される金属板5の高さレベルを低く設定することが出来、これによって下部構造物1と金属板5との間隙に充填されるグラウト材12の量を低減すると共に上部構造物の高さ位置を低く設定することが出来る。
【0067】
また、図16では金属板5の周辺部のアンカーボルト3に対応する位置に所定の深さの陥没部5dが形成されており、該陥没部5dにアンカーボルト3を挿通するアンカーボルト挿通孔5bが形成されている。陥没部5dはプレス加工等により容易に形成することが出来る。そして、この陥没部5dにおいて、前述と同様にアンカーボルト3に螺合するナット6及びワッシャー7により金属板5の周辺部が固定される。
【0068】
上記構成によれば、アンカーボルト3の上部先端高さ位置及びナット6の固定高さ位置を低く設定することが出来、図16に示すようにアンカーボルト3の上部先端及びナット6が陥没部5dの内部に納まるように設定すれば、金属板5の高さよりも低く設定することが出来るので、シュー13と一体的に移動するH形鋼15等の上部構造物がアンカーボルト3やナット6に接触することがなくアンカーボルト3の上部に近接して上部構造物を配置することも出来る。
【0069】
また、図16では下部構造物1と金属板5の間隙にグラウト材12を充填する際に使用される型枠11をアクリル板等の透明型枠により構成しており、これにより透明型枠側からグラウト材12の充填状態を目視して確認することが出来、特に下部構造物1と金属板5の間隙の断面が狭くなる中央部に充填されるグラウト材12の充填状態を目視することで狭い中央部へのグラウト材12の充填確認が確実に出来る。
【0070】
図17〜図21は下部構造物1にグラウト材12を充填するためのグラウト材充填管31を予め埋設しておき、外部から該グラウト材充填管31を通して下部構造物1と金属板5との間隙に無収縮性のグラウト材12を充填するように構成したものである。
【0071】
図17に示すように、グラウト材充填管31はゴム管や薄肉金属管等を用いて、その一端部の充填口が下部構造物1と金属板5の間隙の断面が狭くなる中央部付近に下部構造物1のコンクリート上面から露出して配置され、他端部が型枠11の外部に下部構造物1のコンクリート上面から露出して配置されてその中間部が該コンクリート内部に埋設される。
【0072】
そして、前述のように長ナット2の上部に螺合されたボルト4の高さレベルを調整した後、該ボルト4の上面に金属板5の略中央部下面を載置すると共に該金属板5の水平レベルを調整してアンカーボルト3、ナット6及びワッシャー7を用いて金属板5の周辺部を固定した後、型枠11を金属板5の周囲に配置し、図18及び図19に示すようにグラウト材充填管31の他端部からグラウト材12を供給して該グラウト材充填管31を通して下部構造物1と金属板5の間隙の断面が狭くなる中央部付近からグラウト材12を充填する。
【0073】
そして、図20に示すように、金属板5に形成した貫通孔5cからなるグラウト材確認孔によりグラウト材12が溢れ出すのを確認することにより下部構造物1と金属板5の間隙に隙間なくグラウト材12を確実に充填することが出来、金属板5とグラウト固化層が強固且つ確実に一体化された下側荷重受部Aを形成することが出来る。
【0074】
また、グラウト材充填管31の充填口を下部構造物1と金属板5の間隙の断面が狭くなる中央部に設定しておくことで狭い中央部へのグラウト材12の充填がより確実に出来る。
【0075】
そして、図21に示すように、グラウト材12が固化した段階で型枠11を除去すると共に必要に応じてグラウト材充填管31の他端部を切断除去する。
【0076】
尚、他の施工方法としてグラウト材充填管31により下部構造物1と金属板5の間隙の断面が狭くなる中央部からグラウト材12を充填すると同時に前述したように金属板5の貫通孔5cからなるグラウト材充填孔からグラウト材12を充填すると共に残りの貫通孔5cからなるグラウト材確認孔によりグラウト材12の充填状態を確認するようにしても良い。
【0077】
次に図22を用いて本発明に係る振子型免震装置の設置方法の第2実施形態について説明する。尚、前記第1実施形態と同様に構成したものは同一の符号を付して説明を省略する。
【0078】
本実施形態では、下側荷重受部Aの金属板5の曲面状の受面5aがすり鉢状の円錐面に形成され、且つその中央の底部が球面で構成されている。一方、上部構造物の鉄骨材となるH形鋼15の下フランジ15aには、該下フランジ15aに形成した貫通孔15bに該下フランジ15aの上面側からボルト16を挿通して該ボルト16をネジ孔35aに螺合締着することにより固定されたボールベアリングを有する上側荷重受部となるホルダ35が取り付けられている。
【0079】
ホルダ35のボールベアリング部には荷重伝達体となるボール36が転動自在に支持されており、該ボール36が金属板5の曲面状の受面5a上を転動することによりボール36がホルダ35を介して上部構造物と一体的に該曲面状の受面5a上を転動して移動し、水平方向の揺れを許容して上部構造物にかかる地震荷重を減衰させることが出来るようになっている。
【0080】
本実施形態においても、下側荷重受部Aは前記第1実施形態で示した設置方法と略同様に施工される。即ち、下部構造物1に立設された1つの高さ調整支持部材となる長ナット2に螺合したボルト4の上面に金属板5の略中央部下面を載置して支持させた状態で該金属板5の高さレベル及び水平レベルを調整した後、該金属板5の周辺部を下部構造物1に立設された複数の固定部材となるアンカーボルト3にナット6、ワッシャー7を用いて固定することで下側荷重受部Aを構成する金属板5の高さレベルや水平レベルの調整作業が容易に且つ確実に出来る。特に金属板5の高さレベル調整が高さ調整支持部材となる長ナット2に螺合されたボルト4の一箇所で出来るので作業性が良い。
【0081】
また、金属板5の略中央部下面を高さ調整支持部材である長ナット2に螺合されたボルト4により支持することにより、該金属板5の荷重を高さ調整支持部材が受けるため、該金属板5の周辺部の平坦部が撓むことがなく、金属板5の高さレベルや水平レベルに誤差が生じることがない。更には、下部構造物1と金属板5間の間隙に充填されたグラウト材12が固化する前に金属板5上に荷重伝達体となるボール36やホルダー35、H形鋼15或いはこれに固定される建物の柱等を載置して取り付ける作業が出来るため、グラウト材12の固化時間を待たなくても良く、工期を短縮出来る。
【0082】
また、下側荷重受部Aを軽量で取り扱い易い金属板5と、該金属板5と下部構造物1との間隙に無収縮性のグラウト材12を充填固化させることによって該金属板5と一体化されたグラウト固化層により形成したことで施工性が良い。他の構成及び施工方法は前記第1実施形態と同様に構成され、同様な効果を得ることが出来る。
【0083】
尚、本実施形態及び後述する各実施形態においても前記第1実施形態の他の構成で説明した種々の構成を適宜採用することが出来、これ等についても同様な効果を得ることが出来る。
【0084】
次に図23〜図30を用いて本発明に係る振子型免震装置の設置方法の第3実施形態について説明する。尚前記各実施形態と同様に構成したものは同一の符号を付して説明を省略する。
【0085】
本実施形態の下側荷重受部Aは前記第1実施形態と略同様に構成され、金属板5の周辺部でアンカーボルト3、ナット6及びワッシャー7を用いて固定される部位には前記第1実施形態の図16に示した陥没部5dが形成されている。
【0086】
下側荷重受部Aの金属板5の曲面状の受面5a上には荷重伝達体となるシュー41が該曲面状の受面5aに対して滑動して移動自在に配置されている。シュー41は図23に示すように高さ方向に所定の寸法を有する柱状部材により構成され、金属板5の曲面状の受面5aの曲率に対応して平面的には円形で下に凸の所定の曲率を有する滑動球面部41aと、該滑動球面部41aと同心上で同じく平面的には円形で上に凸の前記滑動球面部41aと同一の曲率を有する滑動球面部41bとを有して構成されている。
【0087】
本実施形態では、シュー41を軟鋼材を用いて切削加工して形成しており、例えば、その外径を100mmに設定したものである。シュー41の表面はリン酸マンガン処理(パーカライジング)により錆止めが施され、更にその表面には二硫化モリブデンを焼き付け等により被覆することにより潤滑処理が施されている。
【0088】
一方、建築物等の上部構造物を支持するH形鋼15の下部には上側荷重受部Bが設けられている。前記上側荷重受部Bの設置方法は、先ず、図26に示すように、中央部に平面的には円形で上に凸の前記金属板5の曲面状の受面5aの曲率半径と等しい曲率半径を有する曲面状の受面42aを形成し、その周辺部から上方に延長した側板42bを有する箱体となる箱型形状の金属板42の上部にグラウト材充填孔或いはグラウト材確認孔となる貫通孔43a及びネジ孔43bを設けた荷重伝達板43がビス44を金属板42の側板42bの外側から該荷重伝達板43の側辺部43cに止め付けることによって固定される。
【0089】
前記金属板42は、前記金属板5と同様に、例えば、板厚が2.3mm以下程度の薄軟鋼板で構成することが出来、該金属板42を曲げ加工することにより曲面状の受面42aを容易に形成することが出来る。また、金属板42の外側の4辺に起立して設けられた側板42bもプレス加工等により容易に形成することが出来る。また、荷重伝達板43も市販の軟鋼厚板等で構成することが出来る。
【0090】
そして、図27に示すように、荷重伝達板43に形成した貫通孔43aの1つ(例えば中央部に設けた貫通孔43a)から無収縮性のグラウト材12を充填する。
【0091】
無収縮性のグラウト材12は箱型形状の金属板42と荷重伝達板43とにより形成された空間に充填され、他の4つの貫通孔43aから無収縮性のグラウト材12が溢れ出したことを確認することで金属板42と荷重伝達板43とにより形成された空間に無収縮性のグラウト材12が満たされたことを確認することが出来る(図28参照)。
【0092】
特に荷重伝達板43の中央部に設けた貫通孔43aから無収縮性のグラウト材12を充填することで、断面が狭い中央部へのグラウト材12の充填が確実に出来る。
【0093】
本実施形態では図24に示すように荷重伝達板43の中央部に設けた貫通孔43aがH形鋼15の直下に配置されるため該貫通孔43aからグラウト材12が溢れ出した状態のまま固化すると荷重伝達板43をH形鋼15に密着して固定することが困難になるため図29に示すように少なくとも荷重伝達板43の中央部の貫通孔43aから溢れ出したグラウト材12をウエス45等により拭き取った後、グラウト材12が再度貫通孔43aから溢れ出さないように板46により貫通孔43aの上部を覆ってガムテープ47により貼着する。
【0094】
そして、無収縮性のグラウト材12が固化した段階で、該グラウト材12が固化したグラウト固化層と金属板42とを一体化することにより上側荷重受部Bが形成され、図30に示すように荷重伝達板43の中央部の貫通孔43aの上部に貼着した板46とガムテープ47を除去する。板46及びガムテープ47を貼着した荷重伝達板43の中央部の貫通孔43aからはグラウト材12が溢れ出すことなくH形鋼15の下フランジ15aの下面に密着し得る平面が形成される。尚、上側荷重受部Bは工場で製造して現場に輸送しても良いし、現場で製造しても良い。
【0095】
次に図23に示すように、金属板5の曲面状の受面5a上にシュー41の滑動球面部41aを滑動自在に載置し、該シュー41の滑動球面部41bに対して金属板42の曲面状の受面42aが滑動自在に接触し得るように上側荷重受部BをH形鋼15の下部に固定する。
【0096】
上側荷重受部BをH形鋼15の下部に固定する際には、H形鋼15の下フランジ15aに設けた貫通孔15bに該下フランジ15aの上面側からボルト16を挿入して荷重伝達板43のネジ孔43bに螺合締着して固定することで上側荷重受部BがH形鋼15に固定されて支持される。
【0097】
尚、他の設置方法として、先ず、荷重伝達板43をH形鋼15に取り付けた後、荷重伝達板43に金属板42を固定してH形鋼15を避けて形成された貫通孔43aから無収縮性のグラウト材12を充填しても良いし、先ず、金属板42に荷重伝達板43を取り付けた後、該荷重伝達板43を金属板42と一体的にH形鋼15に固定して同じく該H形鋼15を避けて形成された貫通孔43aから無収縮性のグラウト材12を充填しても良い。
【0098】
前記荷重伝達板43は上側荷重受部Bと下側荷重受部Aとの間に許容される水平方向の相対的移動範囲内ではその垂直投影位置から荷重伝達体となるシュー41が外れない大きさを有して構成されている。
【0099】
即ち、本実施形態では、図24に示すように上側荷重受部Bが交差するH形鋼15等の梁を介して上部構造物に固定されており、上側荷重受部Bの上部全面がH形鋼15の下フランジ15aの下面に密着して接触出来ない場合であって、この場合、交差するH形鋼15の下面から外れた位置にある上側荷重受部Bの部位にシュー41が移動した場合、金属板42とこれに一体的に固化したグラウト固化層に上部構造物の荷重に応じた剪断力が作用する。
【0100】
そこで、上部構造物の荷重に応じた剪断力に十分耐え得る所定の剛性と強度を有する厚板で構成された荷重伝達板43を少なくとも上側荷重受部Bと下側荷重受部Aとの間に許容される水平方向の相対的移動範囲内で、その垂直投影位置からシュー41が外れない大きさを有して構成することで、シュー41がH形鋼15の下面から外れた位置に移動して金属板42とこれに一体的に固化したグラウト固化層に上部構造物の荷重に応じた剪断力が作用してもこの剪断力を荷重伝達板43により受けて上側荷重受部Bの保全を確保することが出来る。
【0101】
尚、建築物は上記振子型免震装置を少なくとも4基以上を介して下部構造物1に支持されている。そして、夫々の上側荷重受部Bは上部構造物に固定され、夫々の下側荷重受部Aは下部構造物1に固定されているため上側荷重受部B及びこれに固定された上部構造物は下部構造物1及び下側荷重受部Aに対して常時平行に配置される。
【0102】
上記構成において、地震等によりH形鋼15上部に構築された建築物等の上部構造物に振動が加わると下側荷重受部Aの金属板5の曲面状の受面5aと上側荷重受部Bの金属板42の曲面状の受面42aとの間に介在して滑動自在に設けられたシュー41が実質的に回転することなく曲面状の受面5a,24a上を滑動してH形鋼15及び上側荷重受部Bが一体的に移動し、水平方向の揺れを許容して建築物にかかる地震荷重を減衰させることが出来るようになっている。
【0103】
上記構成によれば、地盤等に設置された下部構造物1に固定された下側荷重受部Aと建物等の上部構造部側に設けられたH形鋼15に固定された上側荷重受部Bとが下側荷重受部Aの金属板5の曲面状の受面5aと上側荷重受部Bの金属板42の曲面状の受面42aとの間に滑動自在に設けられたシュー41に当接して配置され、実質的には上部構造物を下部構造物1から遊離させて地震力が上部構造物に伝わらないようにする絶縁機能を有している。
【0104】
また、地震により上部構造物が水平変移を起こした際、上側荷重受部B及びシュー41は曲面状の受面5a,42aのカーブに沿って夫々上方向にも変移するので、重力の作用により下部構造物1と別々に動いて該下部構造物1と相対的にずれた位置にある上部構造物を地震が収まった後に地震前と同じ位置に復元させる復元機能が働く。
【0105】
また、下側荷重受部Aの金属板5の曲面状の受面5a及び上側荷重受部Bの金属板42の曲面状の受面42a及びシュー41の滑動球面部41a,41bは所定の動摩擦係数を有しており、該曲面状の受面5a,42aと滑動球面部41a,41bとの間に作用する動摩擦力により地震が収まってから上部構造物の往復運動を短時間で収束させる減衰機能が働く。
【0106】
また、同様に下側荷重受部Aの金属板5の曲面状の受面5a及び上側荷重受部Bの金属板42の曲面状の受面42a及びシュー41の滑動球面部41a,42bは所定の静止摩擦係数を有しており、地震がない時の平常状態において該曲面状の受面5a,42aと滑動球面部41a,41bとの間に作用する静止摩擦力により住宅建築等の比較的軽量で風を受け易い上部構造物が風で動かないようにする風ロック機能が働く。
【0107】
従って、上記振子型免震装置は、一般に免震装置に必要とされる絶縁機能、復元機能、減衰機能、風ロック機能の4機能を兼ね備えている。
【0108】
前記上側荷重受部Bでは、例えば、グラウト材12を打設する前の重量で約40kg、グラウト材12の打設後の重量で約60kgのように軽量であるため、作業者が一人でも上側荷重受部Bを持ち上げて取り付けることが出来、作業性に優れる。また、荷重伝達板43は市販された厚板を孔開けやネジ切り等の単純な加工により製造することが出来るので安価で量産出来る。また、上側荷重受部Bの組み立てやグラウト材12の充填施工は現場でも工場でも出来るので好ましい。
【0109】
次に図31〜図34を用いて本発明に係る振子型免震装置の設置方法の第4実施形態について説明する。尚、前記各実施形態と同様に構成したものは同一の符号を付して説明を省略する。
【0110】
前記第3実施形態では、図23に示すように、上側荷重受部Bが下側荷重受部Aと略同じ大きさで構成された場合について説明したが、本実施形態では図31に示すように、上側荷重受部Bが下側荷重受部Aよりも小さく構成された場合の一例を示す。
【0111】
図31〜図33に示すように、上側荷重受部Bの金属板42は側板42bが上方向に絞られた略台形箱型形状で構成されており、前述と同様に金属板42の上部にグラウト材充填孔或いはグラウト材確認孔となる貫通孔43a及びネジ孔43bを設けた荷重伝達板43がビス44を金属板42の側板42bの外側から該荷重伝達板43の側辺部43cに止め付けることによって固定されている。
【0112】
本実施形態の荷重伝達板43においても図32に示すように、少なくとも上側荷重受部Bと下側荷重受部Aとの間に許容される水平方向の相対的移動範囲内で、その垂直投影位置からシュー41が外れない大きさを有して構成されており、シュー41がH形鋼15の下面から外れた位置に移動して金属板42とこれに一体的に固化したグラウト固化層に上部構造物の荷重に応じた剪断力が作用してもこの剪断力を荷重伝達板43により受けて上側荷重受部Bの保全を確保することが出来る。
【0113】
他の構成及び設置方法は前記各実施形態と同様に構成され、同様の効果を得ることが出来る。
【0114】
次に図35を用いて本発明に係る振子型免震装置の設置方法の第5実施形態について説明する。尚、前記各実施形態と同様に構成したものは同一の符号を付して説明を省略する。
【0115】
本実施形態では図23に示す第3実施形態において、下側荷重受部Aの金属板5の曲面状の受面5a及び上側荷重受部Bの金属板42の曲面状の受面42aがコサインカーブにより形成されており、両曲面状の受面5a,42aの間には荷重伝達体となるボール36が転動自在に介在して構成されたものである。
【0116】
本実施形態の荷重伝達板43においても、少なくとも上側荷重受部Bと下側荷重受部Aとの間に許容される水平方向の相対的移動範囲内で、その垂直投影位置からボール36が外れない大きさを有して構成されており、ボール36がH形鋼15の下面から外れた位置に移動して金属板42とこれに一体的に固化したグラウト固化層に上部構造物の荷重に応じた剪断力が作用してもこの剪断力を荷重伝達板43により受けて上側荷重受部Bの保全を確保することが出来る。
【0117】
他の構成及び設置方法は前記各実施形態と同様に構成され、同様の効果を得ることが出来る。
【0118】
また、金属板5,42の曲面状の受面5a,42aは前述した球面や円錐面或いはコサインカーブの他にも種々の曲面で構成することが出来る。
【0119】
【発明の効果】
本発明は、上述の如き構成と作用とを有するので、下部構造物に立設された1つの高さ調整支持部材に金属板の略中央部下面を支持させた状態で該金属板の高さレベル及び水平レベルを調整した後、該金属板の周辺部を1つの高さ調整支持部材を取り囲み下部構造物に立設された複数の固定部材に固定することで下側荷重受部を構成する金属板の高さレベルや水平レベルの調整作業が容易に且つ確実に出来る。特に金属板の高さレベル調整が高さ調整支持部材の一箇所で出来るので作業性が良い。
【0120】
また、金属板の略中央部下面を高さ調整支持部材により支持することにより、該金属板の荷重を高さ調整支持部材が受けるため、固定部材により固定される該金属板の周辺部の平坦部が撓むことがなく、金属板の高さレベルや水平レベルに誤差が生じることがない。
【0121】
更には、下部構造物と金属板間の間隙に充填されたグラウト材が固化する前に金属板上に荷重伝達体や上側荷重受部、更には上部構造物等を載置して作業が出来るため、グラウト材の固化時間を待たなくても良く、工期を短縮出来る。
【0122】
また、下側荷重受部を軽量で取り扱い易い金属板と、該金属板と下部構造物との間隙に無収縮性のグラウト材を充填固化させることによって該金属板と一体化されたグラウト固化層により形成したことで施工性が良い。
【0123】
また、上記振子型免震装置の設置方法によれば、前記上側荷重受部の受面が前記下側荷重受部の受面より小さい曲率半径を有し、前記荷重伝達体が前記上側荷重受部の受面と前記下側荷重受部の受面に夫々整合する曲率半径の上面と下面を有し、前記荷重伝達体が前記上側荷重受部と一体的に移動して前記下側荷重受部の受面上を滑動可能とされる場合や、前記上側荷重受部の受面と前記下側荷重受部の受面が同一曲率半径を有し、該両受面間に介在される前記荷重伝達体が該両受面間を実質的に回転することなく滑動可能とされる場合の振子型免震装置の設置方法に好適である。
【0124】
また、前記下側荷重受部における曲面状の受面を形成する金属板にグラウト材充填孔及びグラウト材確認孔が設けられ、該グラウト材充填孔からグラウト材を充填し、その充填状態をグラウト材確認孔により確認する場合には、下側荷重受部の金属板の上部側から下部構造物と前記金属板の間隙に無収縮性のグラウト材を流し込むことにより容易に充填することが出来、更にはグラウト材確認孔からグラウト材が溢れ出すことを目視確認することで下部構造物と金属板の間隙に隙間なく確実に充填することが出来、金属板とグラウト固化層が強固且つ確実に一体化された下側荷重受部を形成することが出来る。
【0125】
また、前記下部構造物にグラウト材充填管を予め埋設しておき、外部から該グラウト材充填管を通して前記下部構造物と前記金属板の間隙に無収縮性のグラウト材を充填するに際して、グラウト材充填管の充填口を下部構造物と金属板の間隙の断面が狭くなる中央部に設定しておくことで狭い中央部へのグラウト材の充填が確実に出来る。
【0126】
また、振子型免震装置の上部構造物に固定される上側荷重受部や下部構造物に固定される下側荷重受部の曲面状の受面を金属板で構成し、該金属板と各構造物との間に無収縮性のグラウト材を充填して固化させたグラウト固化層と前記金属板とを一体化して構成したことで、高価で重量のある厚ステンレス鋼板や厚軟鋼板を機械加工する必要がなく、加工作業を省略して加工コストを削減すると共に材料コストを低減し、重量を低減して施工作業を容易にした振子型免震装置の設置方法を提供することが出来る。
【図面の簡単な説明】
【図1】 本発明に係る振子型免震装置の第1実施形態の構成を示す断面説明図である。
【図2】 本発明に係る振子型免震装置の第1実施形態の構成を示す断面説明図である。
【図3】 第1実施形態の下側荷重受部の構成を示す平面図である。
【図4】 第1実施形態において荷重伝達体が下側荷重受部の受面上を滑動した様子を示す断面説明図である。
【図5】 第1実施形態において荷重伝達体が下側荷重受部の受面上を滑動した様子を示す平面図である。
【図6】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図7】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図8】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図9】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図10】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図11】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図12】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図13】 第1実施形態の下側荷重受部の設置方法を示す断面説明図である。
【図14】 (a)〜(c)は高さ調整支持部材の他の構成を示す図である。
【図15】 高さ調整支持部材の他の構成を示す図である。
【図16】 高さ調整支持部材の他の構成を示す図である。
【図17】 第1実施形態の下部構造物に埋設したグラウト材充填管を通して該下部構造物と金属板との間隙にグラウト材を充填した場合の下側荷重受部の設置方法を示す断面説明図である。
【図18】 第1実施形態の下部構造物に埋設したグラウト材充填管を通して該下部構造物と金属板との間隙にグラウト材を充填した場合の下側荷重受部の設置方法を示す断面説明図である。
【図19】 第1実施形態の下部構造物に埋設したグラウト材充填管を通して該下部構造物と金属板との間隙にグラウト材を充填した場合の下側荷重受部の設置方法を示す断面説明図である。
【図20】 第1実施形態の下部構造物に埋設したグラウト材充填管を通して該下部構造物と金属板との間隙にグラウト材を充填した場合の下側荷重受部の設置方法を示す断面説明図である。
【図21】 第1実施形態の下部構造物に埋設したグラウト材充填管を通して該下部構造物と金属板との間隙にグラウト材を充填した場合の下側荷重受部の設置方法を示す断面説明図である。
【図22】 本発明に係る振子型免震装置の第2実施形態の構成を示す断面説明図である。
【図23】 本発明に係る振子型免震装置の第3実施形態の構成を示す断面説明図である。
【図24】 第3実施形態の上側荷重受部の構成を示す平面図である。
【図25】 第3実施形態の下側荷重受部の構成を示す平面図である。
【図26】 第3実施形態の上側荷重受部の設置方法を示す断面説明図である。
【図27】 第3実施形態の上側荷重受部の設置方法を示す断面説明図である。
【図28】 第3実施形態の上側荷重受部の設置方法を示す断面説明図である。
【図29】 第3実施形態の上側荷重受部の設置方法を示す断面説明図である。
【図30】 第3実施形態の上側荷重受部の設置方法を示す断面説明図である。
【図31】 本発明に係る振子型免震装置の第4実施形態の構成を示す断面説明図である。
【図32】 第4実施形態において荷重伝達体が上側及び下側荷重受部の受面上を滑動した様子を示す断面説明図である。
【図33】 第4実施形態の上側荷重受部の構成を示す平面図である。
【図34】 第4実施形態の下側荷重受部の構成を示す平面図である。
【図35】 本発明に係る振子型免震装置の第5実施形態の構成を示す断面説明図である。
【図36】 第1公知例を説明する図である。
【図37】 第2公知例を説明する図である。
【図38】 第3公知例を説明する図である。
【図39】 第4公知例を説明する図である。
【符号の説明】
A…下側荷重受部
B…上側荷重受部
1…下部構造物
2…長ナット
3…アンカーボルト
4…ボルト
5…金属板
5a…曲面状の受面
5b…アンカーボルト挿通孔
5c…貫通孔
5d…陥没部
6…ナット
7…ワッシャー
8…スケール
9…レベル測量機械
10…水準器
11…型枠
12…無収縮性のグラウト材
13…シュー
13a,13b…滑動球面部
14…シューホルダ
14a…ネジ孔
14b…曲面状の受面
15…H形鋼
15a…下フランジ
15b…貫通孔
16…ボルト
21…ロックナット
22…アンカーボルト
23…ナット
24…埋設容器
25…浮き板
26…ナット
27…ボルト
28…キャップ
31…グラウト材充填管
35…ホルダ
35a…ネジ孔
36…ボール
41…シュー
41a,41b…滑動球面部
42…金属板
42a…曲面状の受面
42b…側板
43…荷重伝達板
43a…貫通孔
43b…ネジ孔
43c…側辺部
44…ビス
45…ウエス
46…板
47…ガムテープ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for installing a pendulum type seismic isolation device that can be applied to a building or art display case or a seismic isolation floor for a computer.
[0002]
[Prior art]
As an example of a conventional pendulum type seismic isolation device, the technology (first known example) disclosed in Japanese Patent Publication No. 5-62179 is connected to a support base 50 provided on the ground, as shown in FIG. A curved housing 52 is held by a tray housing 51 made of concrete, and a slider housing 54 that slidably holds a joint slider 53 serving as a load transmitting body that is slidable on the tray 52 is a support column 55. Further, the support column 55 is connected to the structure connection plate 56, and the structure connection plate 56 is fixed to the support structure 58 by bolts 57.
[0003]
As a second known example, the technique shown in FIG. 37 is a technique in which a lower iron 61 formed by machining a soft steel plate having a thickness of 30 mm or more and machining a curved surface 61a is formed on a support base 60 provided on the ground. The lower sliding plate 62, which is mounted and fixed by bolting, is slidable on the curved surface 61a and becomes a movable load transmission body, is bonded to the upper sliding plate 63, which is also the load transmission body, and the upper sliding plate 63 A columnar member 64 that slidably holds is connected to a flange member 65 to form an upper collar, and the flange member 65 is fixed to the support structure 66 by bolting.
[0004]
Further, the technique (third known example) disclosed in Japanese Utility Model Laid-Open No. 5-32505 has a lower collar 73 in which a spherical portion 72a is formed on a lower device 71 with a cylindrical body 72 as a base, as shown in FIG. Anchor bolts 74 embedded in the lower device 71 are inserted into anchor bolt insertion holes 73a provided at the four corners of the lower side of the lower side, and a nut 75 is fastened to the anchor bolt 74 so that the lower rod 73 is placed on the lower device 71. Fixed. In addition, an upper rod 78 having a spherical portion 77a having the same radius of curvature as the spherical portion 72a with a cylindrical body 77 as a base is formed in the lower portion of the upper device 76 through bolt insertion holes provided on the upper side thereof. The slider 79 is fixed to the upper device 76 by fastening means, and a slider 79 serving as a load transmitting member is slidably contacted between the spherical surface portion 72a of the lower rod 73 and the spherical surface portion 77a of the upper rod 78.
[0005]
However, in each of the above-described known examples, the lower iron 61 of the second known example shown in FIG. 37 and the lower iron 73 and the upper iron 78 of the third known example shown in FIG. Machining thick soft steel plates and the like to cut and form the curved surfaces 61a and the spherical portions 72a and 77a, which increases the processing cost and processing costs, and is expensive because steel plates are used as raw materials. There was a problem that the material cost increased.
[0006]
In addition, the weight of the lower rods 61 and 73 and the upper rod 78 increases. For example, a 1m square, 30 mm thick thick steel plate has a weight of about 236 kg, so it must be carried by a hoisting machine, It was difficult.
[0007]
As a technique capable of solving the above problem, a technique (fourth known example) disclosed in Japanese Patent Laid-Open No. 10-37519 has been proposed, and the configuration thereof is a rubber layer attached to the upper device as shown in FIG. Under the top plate 82 having 81, there is a grout material 83, a saucer iron plate 84 formed in a conical shape, and a saucer 86 having a reinforcing material 85 in the center is attached to the lower device via a ball 87 serving as a load transmission body. A base plate 89 fixed by an L-shaped anchor bolt 88 and a support body 91 having a ball bearing retainer 90 are supported.
[0008]
In the above-described configuration, the grout material 83 is filled and solidified on the upper part of the saucer iron plate 84 formed into a conical shape with which the ball 87 abuts to form the upper saucer 86, whereby the thick stainless steel plate or the thick soft steel plate as described above. It is not necessary to machine, etc., and it is possible to reduce the processing cost and material cost and reduce the weight of each member to facilitate the construction work.
[0009]
Therefore, the present inventor has developed a technique in which not only the upper load receiving portion fixed to the upper structure but also the lower load receiving portion fixed to the lower structure is formed by integrating the metal plate and the grout solidified layer. Currently, patent applications are being filed in Japanese Patent Application No. 10-111707 and Japanese Patent Application No. 10-111708.
[0010]
[Problems to be solved by the invention]
However, the technique proposed by the present inventor is not completely free of problems. When the peripheral portion of the metal plate constituting the lower load receiving portion is supported and fixed by a plurality of fixing members, a plurality of fixings are performed. Since the height level and horizontal level of the entire metal plate were adjusted by individually adjusting the fixed height position of the member, it took time to adjust the height level and horizontal level of the metal plate. There is a problem in that the flat portion where the peripheral portion of the metal plate is fixed by the fixing member due to its own weight is bent and an error occurs in the height level and the horizontal level. Further, there is a problem that the work on the upper part of the metal plate cannot be performed until the grout material filled in the gap between the metal plate and the lower structure is solidified, resulting in a longer construction period.
[0011]
Also, in the first known example described above, when the curved dish 52 is held by the dish housing 51 made of concrete, the concrete is cast in a state where the curved dish 52 is supported by some support means. It takes time to adjust the height level and horizontal level of the curved dish 52 to form 51, and work on the upper part of the curved dish 52 cannot be performed until the concrete of the dish housing 51 is solidified. There was a problem of becoming longer.
[0012]
The present invention solves the above-mentioned problems, and an object of the present invention is to form a curved receiving surface of at least a lower load receiving portion of a pendulum type seismic isolation device by integrating a metal plate and a grout solidified layer. Installation of a pendulum type seismic isolation device that can easily and reliably adjust the height level and horizontal level of the metal plate that constitutes the lower load receiving part, and shorten the work period, while reducing processing costs and material costs It is intended to provide a method.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a pendulum type seismic isolation device installation method according to the present invention includes a curved receiving surface, an upper load receiving portion fixed to the upper structure, and a curved receiving surface. And a pendulum type seismic isolation device having a lower load receiving portion fixed to the lower structure and a load transmitting body interposed between both receiving surfaces of the upper load receiving portion and the lower load receiving portion. In the method of installing between both structures, one height adjustment support member and a plurality of fixing members surrounding it are erected on the lower structure, and the lower load receiving portion In the middle to form Curved receiving surface Yes A metal plate to be prepared, the lower surface of the central portion of the metal plate is supported by the height adjustment support member, the height level thereof is adjusted, and the horizontal level is further adjusted by the plurality of fixing members. Fix the periphery of the metal plate, Using a grout material filling pipe embedded in the lower structure in advance so that the filling port is located near the center of the metal plate and exposed from the upper surface of the lower structure. A lower load receiving portion in which the metal plate and the grout solidified layer are integrated is formed by filling and solidifying a non-shrinkable grout material in a gap between the lower structure and the metal plate.
[0014]
According to the above installation method, after the height level and the horizontal level of the metal plate are adjusted in a state in which the lower surface of the substantially central portion of the metal plate is supported by one height adjustment support member erected on the lower structure. The height of the metal plate constituting the lower load receiving portion or the horizontal level is fixed by fixing the peripheral portion of the metal plate to a plurality of fixing members surrounding one height adjusting support member and standing on the lower structure. Level adjustment work can be done easily and reliably. In particular, workability is good because the height level of the metal plate can be adjusted at one location of the height adjustment support member.
[0015]
In addition, since the height adjustment support member receives the load of the metal plate by supporting the lower surface of the substantially central portion of the metal plate by the height adjustment support member, the peripheral portion of the metal plate fixed by the fixing member is flat. The portion does not bend, and no error occurs in the height level or horizontal level of the metal plate.
[0016]
Furthermore, before the grout material filled in the gap between the lower structure and the metal plate is solidified, the load transmitting body, the upper load receiving portion, and the upper structure can be placed on the metal plate for work. Therefore, it is not necessary to wait for the solidification time of the grout material, and the construction period can be shortened.
[0017]
Also, a lightweight and easy-to-handle metal plate for the lower load receiving portion, and a grout solidified layer integrated with the metal plate by filling and solidifying a non-shrinkable grout material in the gap between the metal plate and the lower structure The workability is good due to the formation.
[0018]
Further, a grout material filling pipe is embedded in the lower structure in advance, and a non-shrinkable grout material is filled into the gap between the lower structure and the metal plate from the outside through the grout material filling pipe. By By setting the filling port of the grout material filling tube at the central portion where the cross section of the gap between the lower structure and the metal plate is narrowed, filling of the grout material into the narrow central portion can be ensured.
[0019]
Further, according to the installation method of the pendulum type seismic isolation device, the receiving surface of the upper load receiving portion has a smaller radius of curvature than the receiving surface of the lower load receiving portion, and the load transmitting body is the upper load receiving portion. An upper surface and a lower surface of a radius of curvature that match the receiving surface of the lower portion and the receiving surface of the lower load receiving portion, respectively, and the load transmitting body moves integrally with the upper load receiving portion to When it is possible to slide on the receiving surface of the part, the receiving surface of the upper load receiving portion and the receiving surface of the lower load receiving portion have the same radius of curvature, and are interposed between the receiving surfaces This is suitable for the installation method of the pendulum type seismic isolation device when the load transmitting body is allowed to slide without substantially rotating between the two receiving surfaces.
[0020]
Further, a grout material filling hole and a grout material confirmation hole are provided in the metal plate forming the curved receiving surface in the lower load receiving portion, and the grout material is filled from the grout material filling hole, and the filled state is grouted. When confirming with the material confirmation hole, it can be easily filled by pouring a non-shrinkable grout material from the upper side of the metal plate of the lower load receiving portion into the gap between the lower structure and the metal plate, Furthermore, by visually confirming that the grout material overflows from the grout material confirmation hole, it is possible to reliably fill the grout material with no gap between the lower structure and the metal plate, and the metal plate and the grout solidified layer are strong and A lower load receiving portion that is reliably integrated can be formed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the installation method of the pendulum type seismic isolation device according to the present invention will be specifically described with reference to the drawings. 1 and 2 are cross-sectional explanatory views showing the configuration of the first embodiment of the pendulum type seismic isolation device according to the present invention, FIG. 3 is a plan view showing the configuration of the lower load receiving portion of the first embodiment, and FIG. FIG. 5 is a cross-sectional explanatory view showing a state in which the load transmitting body slides on the receiving surface of the lower load receiving portion in the first embodiment, and FIG. 5 shows the load transmitting body on the receiving surface of the lower load receiving portion in the first embodiment. FIG. 6 to FIG. 13 are cross-sectional explanatory views showing the installation method of the lower load receiving portion of the first embodiment, FIG. 14 (a) to (c), FIG. 15 and FIG. FIGS. 17 to 21 are views showing other configurations of the height adjusting support member, and FIGS. 17 to 21 fill the gap between the lower structure and the metal plate through the grout material filling pipe embedded in the lower structure of the first embodiment. FIG. 22 is a sectional view showing the configuration of the second embodiment of the pendulum type seismic isolation device according to the present invention. FIG. 23 is an explanatory sectional view showing the configuration of the third embodiment of the pendulum type seismic isolation device according to the present invention, FIG. 24 is a plan view showing the configuration of the upper load receiving portion of the third embodiment, and FIG. FIG. 26 to FIG. 30 are cross-sectional explanatory views showing the installation method of the upper load receiving portion of the third embodiment, and FIG. 31 is a pendulum type according to the present invention. Cross-sectional explanatory view showing the configuration of the fourth embodiment of the seismic isolation device, FIG. 32 is a cross-sectional explanatory view showing how the load transmitting body slides on the receiving surfaces of the upper and lower load receiving portions in the fourth embodiment, FIG. 33 is a plan view showing the configuration of the upper load receiving portion of the fourth embodiment, FIG. 34 is a plan view showing the configuration of the lower load receiving portion of the fourth embodiment, and FIG. 35 is a pendulum type seismic isolation device according to the present invention. It is a section explanatory view showing the composition of a 5th embodiment.
[0022]
The installation method of the pendulum type seismic isolation device according to the present invention relates to the installation method of the pendulum type seismic isolation device that can be suitably applied to buildings such as houses and offices, art display cases or seismic isolation floors for computers, In the following description, an example when applied to a building such as a house or an office will be described.
[0023]
First, a first embodiment of the installation method of the pendulum type seismic isolation device according to the present invention will be described with reference to FIGS. In the figure, reference numeral 1 denotes a lower structure formed by placing concrete on the ground or the like, and the lower structure 1 is a length in which a bolt 4 is screwed onto an upper portion constituting one height adjustment support member. A nut 2 and anchor bolts 3 serving as a plurality of fixing members surrounding the nut 2 are erected and attached.
[0024]
When the long nut 2 and the anchor bolt 3 are embedded in the lower structure 1 and are erected, a hole is formed in the lower structure 1 and then the long nut 2 and the anchor bolt 3 are inserted into the hole to stand. Just set up.
[0025]
The long nut 2 has a through thread groove having a length corresponding to the adjustment amount of the height level of the metal plate 5 of the lower load receiving portion A. A bolt 4 having a length corresponding to an adjustment allowance for the height level of the metal plate 5 of the load receiving portion A is attached to be freely screwed.
[0026]
Then, the height level of the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A placed on the upper portion of the bolt 4 is adjusted by adjusting the screwing height position of the bolt 4. It has become.
[0027]
On the other hand, as shown in FIG. 6, a nut 6 is screwed at a predetermined position in the height direction of the anchor bolt 3, and a washer 7 inserted through the anchor bolt 3 is attached to the upper surface of the nut 6. Note that the nut 6 and the washer 7 may be constituted by a nut with a seat formed integrally.
[0028]
As a method for installing the lower load receiving portion A, first, as shown in FIG. 6, a metal plate in which a curved receiving surface 5a having a predetermined curvature that is circular in a plan view and is convex downward is formed in the center portion. The height level of the bolt 4 is adjusted by screwing and rotating the bolt 4 for placing and supporting the lower surface of the substantially central portion 5 in a predetermined direction with respect to the long nut 2.
[0029]
Specifically, as shown in FIG. 6, the scale 4 is applied to the upper surface of the bolt 4, and the bolt 4 is screwed and rotated in a predetermined direction with respect to the long nut 2 while measuring with a level surveying machine 9 from the periphery thereof. The height level of the bolt 4 is adjusted so that the metal plate 5 placed on the upper surface of the plate 4 has a preset height level.
[0030]
Anchor bolt insertion holes 5b are formed at four corners outside the curved receiving surface 5a of the metal plate 5, and four anchor bolt insertion holes 5b of the metal plate 5 are provided as shown in FIGS. The metal plate 5 is supported by being inserted into the anchor bolt 3 and placing the lower surface of the substantially central portion of the metal plate 5 on the bolt 4.
[0031]
Then, as shown in FIG. 8, the level 10 is placed on the flat portion around the curved receiving surface 5a of the metal plate 5, and the horizontal level of the metal plate 5 supported by the bolt 4 is adjusted. 6 is screwed and raised with respect to the anchor bolt 3, and the height of the nut 6 is adjusted to a position where the washer 7 contacts the lower surface of the metal plate 5.
[0032]
Then, the washer 7 is fitted into the anchor bolt 3 from the upper side of the metal plate 5 and the nut 6 is screwed and fastened to the anchor bolt 3 to fix the metal plate 5 to the anchor bolt 3.
[0033]
The metal plate 5 can be made of, for example, a thin soft steel plate having a thickness of about 2.3 mm or less, and the curved receiving surface 5a can be easily formed by bending the metal plate 5. I can do it. Therefore, mass production can be performed by press working, and if it is small production, the metal plate 5 can be bent by spatula drawing or the like to easily form the curved receiving surface 5a.
[0034]
Further, if the metal plate 5 is a thin mild steel plate, the material cost is low. For example, a 1 m square, 2.3 mm thick thin mild steel plate has a weight of about 18 kg. It can be reduced in weight, can be easily brought into the site by an operator without relying on a hoisting machine, and construction work can also be facilitated.
[0035]
The metal plate 5 erected from the lower structure 1 is substantially supported by the central bolt 4 serving as one height adjustment support member. Even if the metal plate 5 is a thin plate, the curved receiving surface 5a portion has a bending rigidity larger than that of the flat portion due to its shape, and the weight of the metal plate 5 is maintained even when supported by the bolt 4 at the center. It can support a larger load than the original.
[0036]
Accordingly, the flat portion of the peripheral portion of the metal plate 5 fixed by the fixing member including the anchor bolt 3, the washer 7, and the nut 6 is not bent, and an error occurs in the height level and the horizontal level of the metal plate 5. There is nothing. Further, before the grout material 12 filled in the gap between the lower structure 1 and the metal plate 5 is solidified, a shoe 13 serving as a load transmitting body and a shoe holder 14 serving as an upper load receiving portion are formed on the metal plate 5. Since it is possible to mount and attach the shape steel 15 or a pillar of a building fixed to the shape steel 15, it is not necessary to wait for the grout material 12 to be solidified, and the construction period can be shortened.
[0037]
According to the said structure, since the height level adjustment of the metal plate 5 which comprises the lower side load receiving part A can be performed in one place of the volt | bolt 4 used as a height adjustment support member, workability | operativity is good and the height of the metal plate 5 is sufficient. Level and horizontal level adjustment work can be done easily and reliably.
[0038]
Next, as shown in FIGS. 9 and 10, the mold 11 is arranged on the four sides of the metal plate 5 outside the anchor bolt 3. A through hole 5c serving as a grout material filling hole and a grout material confirmation hole is formed outside the curved receiving surface 5a of the metal plate 5, and is formed of one of the through holes 5c as shown in FIG. Non-shrinkable grout material 12 is filled from the grout material filling hole.
[0039]
The non-shrinkable grout material 12 is filled in the gap space formed by the lower structure 1, the mold 11 and the metal plate 5, and the non-shrinkable grout is formed from the grout material confirmation hole including the other three through holes 5c. By confirming that the material 12 overflows, it is possible to confirm that the non-shrinkable grout material 12 is filled in the gap space formed by the lower structure 1, the mold 11 and the metal plate 5. .
[0040]
Then, at the stage where the non-shrinkable grout material 12 is solidified, as shown in FIG. 13, the mold 11 is removed, and the grout solidified layer obtained by solidifying the non-shrinkable grout material 12 and the metal plate 5 are integrated. Thus, the lower load receiving portion A is formed.
[0041]
Also, normally, for the installation of a pendulum type seismic isolation device, a non-shrinkable grout material is several millimeters to several tens of millimeters under the pendulum type seismic isolation device in order to adjust its height level and levelness. According to the above configuration, the grout solidified layer filled with a non-shrinkable grout material 12 between the metal plate 5 and the lower structure 1 and solidified, and the metal plate 5 are placed. Since the non-shrinkable grout material 12 can be used for height level adjustment and leveling adjustment of the lower load receiving portion A as it is, it is reasonable.
[0042]
Therefore, there is no need to machine expensive and heavy thick stainless steel plates and thick mild steel plates as in the above-mentioned known examples, and processing costs are reduced by omitting processing operations, material costs are reduced, and weight is reduced. It can be reduced and the construction work can be facilitated.
[0043]
On the curved receiving surface 5a of the metal plate 5 constituting the upper surface of the lower load receiving portion A, a shoe 13 serving as a load transmission body is slidably disposed on the curved receiving surface 5a. ing. As shown in FIG. 1, the shoe 13 has a sliding spherical surface portion 13 a having a predetermined curvature that is circular and convex downward corresponding to the curvature of the curved receiving surface 5 a of the metal plate 5, and the sliding spherical surface portion. 13a is formed of a single part having a sliding spherical surface portion 13b having a predetermined curvature that is concentrically and circular in a plan view.
[0044]
In this embodiment, the shoe 13 is formed by cutting using a mild steel material. For example, the radius of curvature of the sliding spherical surface portion 13a is set to 2234 mm and the radius of curvature of the sliding spherical surface portion 13b is set to 50 mm. The surface of the shoe 13 is rust-prevented by manganese phosphate treatment (parkarizing), and the surface is lubricated by coating molybdenum disulfide by baking or the like.
[0045]
In FIG. 1, a shoe holder 14 that is a columnar portion that holds the shoe 13 slidably and serves as an upper load receiving portion is disposed on the shoe 13. At the upper end of the shoe holder 14, a bolt 16 is inserted from a top surface of the lower flange 15a into a through hole 15b formed in a lower flange 15a of an H-shaped steel 15 serving as a steel frame of an upper structure, and the bolt 16 is screwed. A screw hole 14a serving as a coupling portion for bolt coupling by fastening is formed from the upper end surface side of the shoe holder 14 at a predetermined depth in the thickness direction.
[0046]
Further, the lower end portion of the shoe holder 14 corresponds to the sliding spherical surface portion 13b of the shoe 13 in a plan view and is more curved than the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A which is convex upward. A curved receiving surface 14b having a small radius of curvature is formed.
[0047]
Sliding spherical surface portions 13a and 13b formed on the lower surface and the upper surface of the shoe 13 serving as a load transmitting body are provided on the curved load receiving surface 5a of the metal plate 5 of the lower load receiving portion A and the shoe holder 14 serving as the upper load receiving portion. It is configured with a radius of curvature that aligns with the curved receiving surface 14b, and the shoe 13 moves integrally with the shoe holder 14 so that it can slide on the curved receiving surface 5a of the lower load receiving portion A. Has been.
[0048]
In the present embodiment, the shoe holder 14 is also formed by cutting using a mild steel material in the same manner as the shoe 13. For example, the shoe holder 14 has an outer diameter of 110 mm and a thickness of 50 mm, and has a curved surface. The radius of curvature of the surface 14b is 50mm, the diameter of the screw hole 14a is 12mm, the depth is 15mm, and the screw hole 14a is arranged at a position of 60mm square, and is set on the periphery of the upper end of the curved receiving surface 14b. Further, a curved surface having a curvature radius of 1 mm is formed.
[0049]
Further, the surface of the shoe holder 14 is rust-prevented by manganese phosphate treatment (parkerizing) in the same manner as the shoe 13, and the surface of the curved receiving surface 14b is covered with molybdenum disulfide by baking or the like. Processing has been applied.
[0050]
With the above configuration, the shoe 16 as the columnar portion can be directly coupled to the H-shaped steel 15 as the structure by screwing and tightening the bolt 16 into the screw hole 14a as the coupling portion.
[0051]
In the above configuration, when vibration is applied to an upper structure such as a building constructed on the upper part of the H-shaped steel 15 due to an earthquake or the like, the metal plate 5 of the lower load receiving portion A, as shown in FIGS. The shoe 13 slidably mounted on and supported by the curved receiving surface 5a slides on the curved receiving surface 5a integrally with the upper structure via the shoe holder 14, and moves horizontally. The seismic load applied to the superstructure can be attenuated by allowing the shaking of the upper structure.
[0052]
When the shoe 13 moves on the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A, the upper structure such as the shoe 13, the shoe holder 14 holding the shoe 13, and the H-shaped steel 15 is provided. As shown in FIG. 4, the height rises along the curved receiving surface 5a, and the shoe 13 is integrated with the anchor bolt 3 and the nut 6 for fixing the peripheral portion of the metal plate 5. It is set so that the superstructure such as the moving H-shaped steel 15 does not come into contact. If the upper end of the anchor bolt 3 remains longer than necessary when the height level of the metal plate 5 is adjusted, the anchor bolt 3 is cut at the site as necessary.
[0053]
Note that an upper structure such as a building is supported by the lower structure 1 through at least four or more pendulum type seismic isolation devices. Each shoe holder 14 serving as an upper load receiving portion is fixed to the upper structure, and each lower load receiving portion A is fixed to the lower structure 1, so the shoe holder 14 and the upper structure to which the shoe holder 14 is fixed. The object is always arranged parallel to the lower structure 1 and the lower load receiving portion A.
[0054]
Next, another configuration of the height adjustment support member will be described with reference to FIGS. 14 (a) to 14 (c), FIG. 15, and FIG. 14A to 14C are partial enlarged views showing the configuration of the height adjustment support member, and other configurations and construction methods are configured in the same manner as in the above-described embodiment. In FIG. 14 (a), a lock nut 21 screwed into the bolt 4 between a long nut 2 standing at a predetermined position of the lower structure 1 and a bolt 4 screwed into the upper portion of the long nut 2 is shown. Is provided.
[0055]
When adjusting the height level of the bolt 4 as described above, first, the lock nut 21 is screwed in advance above the head side of the bolt 4 and the height level of the bolt 4 is adjusted. Thereafter, the lock nut 21 is lowered while being screwed onto the bolt 4, and is brought into contact with the upper surface of the long nut 2 to be fastened and fixed. It is preferable that the height level of the adjusted bolt 4 does not shift even if the operator carelessly touches the bolt 4 or the like.
[0056]
FIG. 14 (b) shows a height adjustment support member which is composed of an anchor bolt 22 erected at a predetermined position of the lower structure 1 and a nut 23 screwed onto the upper portion of the anchor bolt 22. In the above configuration, the lower surface of the substantially central portion of the metal plate 5 of the lower load receiving portion A is placed on the upper surface of the nut 23, and the height of the metal plate 5 is adjusted by screwing the nut 23 to the anchor bolt 22. The height level can be adjusted by the length of the screw groove of the nut 23 in the vertical direction in FIG. 14B, and the height level adjustment allowance of the metal plate 5 can be small. In particular, in this case, since the anchor bolt 22 and the normal nut 23 can be used without using the long nut 2, the component cost can be reduced.
[0057]
In FIG. 14C, a lock nut 21 that is screwed into the anchor bolt 22 is provided below the nut 23 in FIG. 14B. When the height level of the nut 23 is adjusted in the same manner as described above, first, the lock nut 21 is screwed below the nut 23 (position close to the lower structure 1). After adjusting the height level, the lock nut 21 is raised while being screwed to the anchor bolt 22, and the height level of the nut 23 is adjusted by contacting the lower surface of the nut 23 and fastening and fixing it. The nut 23 can be securely fixed to the anchor bolt 22, so that the height level of the adjusted nut 23 does not shift even if the operator carelessly contacts the nut 23.
[0058]
The height adjustment support member shown in FIG. 15 is constituted by a commercially available height adjustment support component called super bun S (trade name) provided with a height level adjustment member using bolts and nuts on iron buns, and is provided with a lower structure 1 It is constructed so that it is constructed before the concrete is solidified.
[0059]
The height adjustment support component is integrally formed by welding, for example, an embedded container 24, a floating plate 25, and a nut 26 each having a space of a predetermined length, and a bolt 27 is screwed into the nut 26 to be embedded. The container 24 is configured to be stored in the internal space.
[0060]
Then, before the concrete which is the lower structure 1 is solidified, an embedding container 24 is buried inside the concrete and a floating plate 25 is floated on the upper surface of the concrete. After the concrete is completely solidified, the bolt 27 Is screwed onto the nut 26 to adjust the height level of the bolt 27 in the same manner as described above, and the lower surface of the substantially central portion of the metal plate 5 is placed on the upper surface of the bolt 27 to adjust the horizontal level of the metal plate 5. After that, the peripheral portion of the metal plate 5 is fixed by the anchor bolt 3 and the nut 6 and the washer 7 as the fixing members. At this time, the anchor bolt 3 surrounding one height adjusting support member is erected in combination with a reinforcing bar provided under the concrete of the lower structure 1.
[0061]
According to the above configuration, the concrete can be solidified and fixed to the lower structure 1 in a state where the upper part is floated from the floating plate 25 by the floating plate 25 while the buried container 24 is buried in the concrete that has not yet solidified. In the case where the long nut 2 and the anchor bolt 3 are embedded in the lower structure 1 as described above, a hole is formed in the lower structure 1, and then the long nut 2 and the anchor bolt 3 are installed in the hole. The trouble of inserting and standing up can be omitted, and workability is improved.
[0062]
The height adjustment support member shown in FIG. 16 is provided with a cup-shaped cap 28 that has a claw that contacts the upper surface of the floating plate 25 shown in FIG. It is.
[0063]
First, the cap 28 is inserted into the outer peripheral portion of the nut 26 so as to contact the upper surface of the floating plate 25, and the floating plate 25 and the embedded container 24 are buried in the unsolidified concrete while being locked to the outer peripheral portion of the nut 26. The cap 28 is also buried in the concrete partway along the side.
[0064]
As shown in FIG. 16, even if the floating plate 25 and the buried container 24 are further submerged in the concrete than in FIG. 15, the cap 28 is used to reach the portion of the nut 26 and the bolt 27 where the unsolidified concrete is disposed inside the cap 28. The screw 27 can be screwed into the nut 26 without any trouble.
[0065]
Then, after the concrete of the lower structure 1 is solidified, the cap 28 is pulled out from the outer periphery of the nut 26 and removed, and then the height level of the bolt 27 is adjusted in the same manner as described above to place a metal plate on the upper surface of the bolt 27. 5, the horizontal level of the metal plate 5 is adjusted, and the periphery of the metal plate 5 is fixed by the anchor bolt 3, the nut 6, the washer 7, and the like.
[0066]
With the above configuration, the floating plate 25, the buried container 24, and the nut 26 are further submerged in the concrete, so that the height level of the metal plate 5 placed on the upper surface of the bolt 27 can be set low. The amount of the grout material 12 filled in the gap between the metal plate 5 and the metal plate 5 can be reduced and the height position of the upper structure can be set low.
[0067]
In FIG. 16, a recessed portion 5d having a predetermined depth is formed at a position corresponding to the anchor bolt 3 in the peripheral portion of the metal plate 5, and an anchor bolt insertion hole 5b through which the anchor bolt 3 is inserted into the recessed portion 5d. Is formed. The depressed portion 5d can be easily formed by press working or the like. In the depressed portion 5d, the peripheral portion of the metal plate 5 is fixed by the nut 6 and the washer 7 that are screwed into the anchor bolt 3 in the same manner as described above.
[0068]
According to the above configuration, the upper tip height position of the anchor bolt 3 and the fixed height position of the nut 6 can be set low. As shown in FIG. 16, the upper tip end of the anchor bolt 3 and the nut 6 are depressed 5d. Can be set lower than the height of the metal plate 5, the upper structure such as the H-shaped steel 15 that moves integrally with the shoe 13 is attached to the anchor bolt 3 and the nut 6. The upper structure can also be arranged in the vicinity of the upper portion of the anchor bolt 3 without contact.
[0069]
In FIG. 16, the mold 11 used when the grout material 12 is filled in the gap between the lower structure 1 and the metal plate 5 is constituted by a transparent mold such as an acrylic plate. It is possible to visually check the filling state of the grout material 12, and in particular, by visually checking the filling state of the grout material 12 filled in the central portion where the cross section of the gap between the lower structure 1 and the metal plate 5 is narrowed. It is possible to reliably check the filling of the grout material 12 in the narrow central part.
[0070]
17 to 21, a grout material filling pipe 31 for filling the grout material 12 in the lower structure 1 is embedded in advance, and the lower structure 1 and the metal plate 5 are externally passed through the grout material filling pipe 31. The gap is filled with a non-shrinkable grout material 12.
[0071]
As shown in FIG. 17, the grout filling tube 31 uses a rubber tube, a thin metal tube, or the like, and the filling port at one end thereof is near the center where the gap between the lower structure 1 and the metal plate 5 becomes narrow. The lower structure 1 is disposed so as to be exposed from the upper surface of the concrete, and the other end portion is disposed outside the formwork 11 so as to be exposed from the upper surface of the concrete of the lower structure 1 and an intermediate portion thereof is embedded in the concrete.
[0072]
And after adjusting the height level of the volt | bolt 4 screwed together by the upper part of the long nut 2 as mentioned above, the substantially center part lower surface of the metal plate 5 is mounted on the upper surface of this volt | bolt 4, and this metal plate 5 After the horizontal level of the metal plate 5 is adjusted and the peripheral portion of the metal plate 5 is fixed using the anchor bolt 3, the nut 6 and the washer 7, the mold frame 11 is arranged around the metal plate 5 and shown in FIGS. In this way, the grout material 12 is supplied from the other end of the grout material filling pipe 31 and the grout material 12 is filled from the central part through which the cross section of the gap between the lower structure 1 and the metal plate 5 becomes narrower. To do.
[0073]
Then, as shown in FIG. 20, by confirming that the grout material 12 overflows through the grout material confirmation hole formed of the through hole 5c formed in the metal plate 5, there is no gap in the gap between the lower structure 1 and the metal plate 5. The grout material 12 can be reliably filled, and the lower load receiving portion A in which the metal plate 5 and the grout solidified layer are firmly and reliably integrated can be formed.
[0074]
Further, by setting the filling port of the grout material filling pipe 31 at the center part where the cross section of the gap between the lower structure 1 and the metal plate 5 is narrowed, the grout material 12 can be more reliably filled into the narrow center part. .
[0075]
Then, as shown in FIG. 21, the mold 11 is removed when the grout material 12 is solidified, and the other end portion of the grout material filling tube 31 is cut and removed as necessary.
[0076]
As another construction method, the grout material 12 is filled with the grout material filling pipe 31 from the central portion where the cross section of the gap between the lower structure 1 and the metal plate 5 becomes narrow, and at the same time, from the through hole 5c of the metal plate 5 as described above. The grout material 12 may be filled from the grout material filling hole, and the grout material 12 may be confirmed by the grout material confirmation hole including the remaining through holes 5c.
[0077]
Next, a second embodiment of the installation method of the pendulum type seismic isolation device according to the present invention will be described with reference to FIG. In addition, what was comprised similarly to the said 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.
[0078]
In the present embodiment, the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A is formed as a mortar-shaped conical surface, and the center bottom is formed of a spherical surface. On the other hand, the bolt 16 is inserted into the lower flange 15a of the H-shaped steel 15 serving as the steel structure of the upper structure by inserting the bolt 16 from the upper surface side of the lower flange 15a into the through hole 15b formed in the lower flange 15a. A holder 35 serving as an upper load receiving portion having a ball bearing fixed by screwing into the screw hole 35a is attached.
[0079]
A ball 36 serving as a load transmission body is supported on the ball bearing portion of the holder 35 so as to be able to roll. The ball 36 rolls on the curved receiving surface 5a of the metal plate 5, whereby the ball 36 is held in the holder. It is possible to roll and move on the curved receiving surface 5a integrally with the upper structure via 35, and to allow the horizontal vibration to be attenuated so that the seismic load applied to the upper structure can be attenuated. It has become.
[0080]
Also in the present embodiment, the lower load receiving portion A is constructed in substantially the same manner as the installation method shown in the first embodiment. That is, in a state where the lower surface of the substantially central portion of the metal plate 5 is placed and supported on the upper surface of the bolt 4 that is screwed into the long nut 2 that is one height adjustment support member that is erected on the lower structure 1. After adjusting the height level and the horizontal level of the metal plate 5, the nut 6 and the washer 7 are used for the anchor bolts 3 that serve as a plurality of fixing members erected on the lower structure 1 around the metal plate 5. The height level and the horizontal level of the metal plate 5 constituting the lower load receiving portion A can be adjusted easily and reliably. In particular, since the height level of the metal plate 5 can be adjusted at one place of the bolt 4 screwed into the long nut 2 serving as a height adjustment support member, workability is good.
[0081]
Further, since the bottom surface of the substantially central portion of the metal plate 5 is supported by the bolt 4 screwed into the long nut 2 that is the height adjustment support member, the height adjustment support member receives the load of the metal plate 5. The flat part around the metal plate 5 does not bend, and no error occurs in the height level or horizontal level of the metal plate 5. Further, before the grout material 12 filled in the gap between the substructure 1 and the metal plate 5 is solidified, the ball 36 or the holder 35, the H-shaped steel 15 or the H-shaped steel 15 or the like serving as a load transmission body is fixed on the metal plate 5. Since it is possible to mount and attach the pillars of the building to be built, it is not necessary to wait for the setting time of the grout material 12, and the construction period can be shortened.
[0082]
Also, the lower load receiving part A is integrated with the metal plate 5 by filling and solidifying the light-weight metal plate 5 and the gap between the metal plate 5 and the lower structure 1 with a non-shrinkable grout material 12. The workability is good because it is formed by the solidified grout solidified layer. Other configurations and construction methods are configured in the same manner as in the first embodiment, and similar effects can be obtained.
[0083]
In the present embodiment and each of the embodiments described later, various configurations described in the other configurations of the first embodiment can be adopted as appropriate, and similar effects can be obtained for these configurations.
[0084]
Next, a third embodiment of the installation method of the pendulum type seismic isolation device according to the present invention will be described with reference to FIGS. In addition, what was comprised similarly to each said embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.
[0085]
The lower load receiving portion A of the present embodiment is configured in substantially the same manner as in the first embodiment, and the portion fixed to the periphery of the metal plate 5 using the anchor bolt 3, the nut 6, and the washer 7 is the first portion. The depressed portion 5d shown in FIG. 16 of one embodiment is formed.
[0086]
On the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A, a shoe 41 serving as a load transmitting body is slidably arranged with respect to the curved receiving surface 5a. As shown in FIG. 23, the shoe 41 is formed of a columnar member having a predetermined dimension in the height direction, and is circular in a plan view and convex downward corresponding to the curvature of the curved receiving surface 5a of the metal plate 5. A sliding spherical surface portion 41a having a predetermined curvature, and a sliding spherical surface portion 41b having the same curvature as the sliding spherical surface portion 41a that is concentric with the sliding spherical surface portion 41a and that is also circular and convex upward. Configured.
[0087]
In the present embodiment, the shoe 41 is formed by cutting using a mild steel material. For example, the outer diameter is set to 100 mm. The surface of the shoe 41 is rust-prevented by manganese phosphate treatment (parkarizing), and the surface is lubricated by coating molybdenum disulfide by baking or the like.
[0088]
On the other hand, an upper load receiving portion B is provided at the lower portion of the H-section steel 15 that supports an upper structure such as a building. First, as shown in FIG. 26, the upper load receiving portion B is installed with a curvature equal to the radius of curvature of the curved receiving surface 5a of the metal plate 5 that is circular in the center and is convex upward. A curved receiving surface 42a having a radius is formed, and a grout material filling hole or a grout material confirmation hole is formed in an upper portion of a box-shaped metal plate 42 which is a box having a side plate 42b extending upward from the peripheral portion thereof. The load transmission plate 43 provided with the through hole 43a and the screw hole 43b is fixed by fastening the screw 44 to the side portion 43c of the load transmission plate 43 from the outside of the side plate 42b of the metal plate 42.
[0089]
Similar to the metal plate 5, the metal plate 42 can be composed of, for example, a thin soft steel plate having a thickness of about 2.3 mm or less, and the curved surface of the metal plate 42 is obtained by bending the metal plate 42. 42a can be formed easily. Further, the side plate 42b provided upright on the four outer sides of the metal plate 42 can be easily formed by press working or the like. Further, the load transmission plate 43 can also be made of a commercially available mild steel thick plate or the like.
[0090]
Then, as shown in FIG. 27, the non-shrinkable grout material 12 is filled from one of the through holes 43a formed in the load transmission plate 43 (for example, the through hole 43a provided in the central portion).
[0091]
The non-shrinkable grout material 12 was filled in the space formed by the box-shaped metal plate 42 and the load transmitting plate 43, and the non-shrinkable grout material 12 overflowed from the other four through holes 43a. It can be confirmed that the space formed by the metal plate 42 and the load transmission plate 43 is filled with the non-shrinkable grout material 12 (see FIG. 28).
[0092]
In particular, by filling the non-shrinkable grout material 12 from the through-hole 43a provided in the central portion of the load transmitting plate 43, the grout material 12 can be reliably filled into the central portion having a narrow cross section.
[0093]
In the present embodiment, as shown in FIG. 24, the through hole 43a provided in the central portion of the load transmitting plate 43 is disposed directly below the H-shaped steel 15, so that the grout material 12 overflows from the through hole 43a. When solidified, it becomes difficult to fix the load transmission plate 43 in close contact with the H-shaped steel 15, and as shown in FIG. 29, at least the grout material 12 overflowing from the through hole 43 a in the center of the load transmission plate 43 is waste. After wiping with 45 or the like, the upper part of the through-hole 43a is covered with a plate 46 so that the grout material 12 does not overflow from the through-hole 43a again, and is adhered with a gum tape 47.
[0094]
Then, when the non-shrinkable grout material 12 is solidified, the upper load receiving portion B is formed by integrating the grout solidified layer obtained by solidifying the grout material 12 and the metal plate 42, as shown in FIG. Then, the plate 46 and the gummed tape 47 adhered to the upper part of the through hole 43a at the center of the load transmitting plate 43 are removed. From the through hole 43a at the center of the load transmitting plate 43 to which the plate 46 and the gum tape 47 are adhered, a flat surface that can be in close contact with the lower surface of the lower flange 15a of the H-shaped steel 15 without overflowing the grout material 12 is formed. The upper load receiver B may be manufactured at a factory and transported to the site, or may be manufactured at the site.
[0095]
Next, as shown in FIG. 23, the sliding spherical surface portion 41a of the shoe 41 is slidably mounted on the curved receiving surface 5a of the metal plate 5, and the metal plate 42 is placed against the sliding spherical surface portion 41b of the shoe 41. The upper load receiving portion B is fixed to the lower portion of the H-shaped steel 15 so that the curved receiving surface 42a can be slidably contacted.
[0096]
When the upper load receiving portion B is fixed to the lower part of the H-shaped steel 15, the bolt 16 is inserted into the through hole 15b provided in the lower flange 15a of the H-shaped steel 15 from the upper surface side of the lower flange 15a to transmit the load. The upper load receiving portion B is fixed to and supported by the H-shaped steel 15 by being screwed into the screw hole 43b of the plate 43 and fixed.
[0097]
As another installation method, first, after attaching the load transmission plate 43 to the H-shaped steel 15, the metal plate 42 is fixed to the load transmission plate 43 to avoid the H-shaped steel 15. The non-shrinkable grout material 12 may be filled. First, after the load transmission plate 43 is attached to the metal plate 42, the load transmission plate 43 is fixed to the H-shaped steel 15 integrally with the metal plate 42. Similarly, the non-shrinkable grout material 12 may be filled from the through hole 43a formed avoiding the H-shaped steel 15.
[0098]
The load transmitting plate 43 is large enough to prevent the shoe 41 serving as a load transmitting member from being removed from its vertical projection position within the horizontal relative movement range allowed between the upper load receiving portion B and the lower load receiving portion A. It is comprised with thickness.
[0099]
That is, in the present embodiment, as shown in FIG. 24, the upper load receiving portion B is fixed to the upper structure via a crossed beam such as H-section steel 15 or the like, and the entire upper surface of the upper load receiving portion B is H In this case, the shoe 41 moves to the portion of the upper load receiving portion B located at a position deviating from the lower surface of the intersecting H-shaped steel 15. In this case, a shearing force according to the load of the upper structure acts on the metal plate 42 and the grout solidified layer solidified integrally therewith.
[0100]
Therefore, a load transmission plate 43 composed of a thick plate having a predetermined rigidity and strength that can sufficiently withstand the shearing force according to the load of the upper structure is provided between at least the upper load receiving portion B and the lower load receiving portion A. The shoe 41 moves to a position deviated from the lower surface of the H-section steel 15 by having a size that prevents the shoe 41 from being removed from the vertical projection position within the horizontal relative movement range permitted by the Even if a shearing force corresponding to the load of the superstructure acts on the metal plate 42 and the grout solidified layer solidified integrally therewith, the shearing force is received by the load transmitting plate 43 to maintain the upper load receiving portion B. Can be secured.
[0101]
The building is supported by the lower structure 1 through at least four or more pendulum type seismic isolation devices. Since each upper load receiving portion B is fixed to the upper structure, and each lower load receiving portion A is fixed to the lower structure 1, the upper load receiving portion B and the upper structure fixed to this are received. Are always arranged parallel to the lower structure 1 and the lower load receiving portion A.
[0102]
In the above configuration, when a vibration is applied to an upper structure such as a building constructed on the top of the H-shaped steel 15 due to an earthquake or the like, the curved receiving surface 5a and the upper load receiving portion of the metal plate 5 of the lower load receiving portion A The shoe 41, which is slidably provided between the B-shaped metal plate 42 and the curved receiving surface 42a, slides on the curved receiving surfaces 5a and 24a without substantially rotating to form an H shape. The steel 15 and the upper load receiving part B move integrally, and the horizontal load can be allowed to be damped and the seismic load applied to the building can be attenuated.
[0103]
According to the above configuration, the lower load receiving portion A fixed to the lower structure 1 installed on the ground and the upper load receiving portion fixed to the H-section steel 15 provided on the upper structure portion side such as a building. B is attached to a shoe 41 slidably provided between a curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A and a curved receiving surface 42a of the metal plate 42 of the upper load receiving portion B. It is disposed in contact with each other and has an insulating function that substantially separates the upper structure from the lower structure 1 and prevents the seismic force from being transmitted to the upper structure.
[0104]
Further, when the upper structure undergoes a horizontal shift due to the earthquake, the upper load receiving portion B and the shoe 41 are also shifted upward along the curves of the curved receiving surfaces 5a and 42a, respectively. A restoration function that moves separately from the lower structure 1 and restores the upper structure at a position relatively shifted from the lower structure 1 to the same position as before the earthquake after the earthquake has stopped works.
[0105]
Further, the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A, the curved receiving surface 42a of the metal plate 42 of the upper load receiving portion B, and the sliding spherical surface portions 41a and 41b of the shoe 41 have predetermined dynamic friction. Damping that has a coefficient and converges the reciprocating motion of the upper structure in a short time after the earthquake is settled by the dynamic friction force acting between the curved receiving surfaces 5a and 42a and the sliding spherical surface portions 41a and 41b. Function works.
[0106]
Similarly, the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A, the curved receiving surface 42a of the metal plate 42 of the upper load receiving portion B, and the sliding spherical surface portions 41a and 42b of the shoe 41 are predetermined. The coefficient of static friction is relatively high, and it is comparatively relatively difficult for residential buildings and the like due to the static friction force acting between the curved receiving surfaces 5a and 42a and the sliding spherical surface portions 41a and 41b in a normal state when there is no earthquake. The wind lock function prevents the superstructure, which is light and easy to receive wind, from moving with the wind.
[0107]
Therefore, the above-mentioned pendulum type seismic isolation device has four functions of an insulation function, a restoration function, a damping function, and a wind lock function that are generally required for the seismic isolation device.
[0108]
The upper load receiving portion B is light, for example, about 40 kg in weight before placing the grout material 12 and about 60 kg in weight after placing the grout material 12. The load receiving part B can be lifted and attached, and the workability is excellent. The load transmission plate 43 can be manufactured at a low cost because a commercially available thick plate can be manufactured by a simple process such as drilling or threading. Further, the assembly of the upper load receiving part B and the filling work of the grout material 12 can be performed at the site or at the factory, which is preferable.
[0109]
Next, a fourth embodiment of the installation method of the pendulum type seismic isolation device according to the present invention will be described with reference to FIGS. In addition, what was comprised similarly to each said embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.
[0110]
In the third embodiment, as shown in FIG. 23, the case has been described in which the upper load receiving portion B is configured to have substantially the same size as the lower load receiving portion A. However, in the present embodiment, as shown in FIG. An example when the upper load receiving part B is configured to be smaller than the lower load receiving part A is shown.
[0111]
As shown in FIGS. 31 to 33, the metal plate 42 of the upper load receiving portion B is formed in a substantially trapezoidal box shape with the side plate 42b squeezed upward. A load transmission plate 43 provided with a through hole 43a and a screw hole 43b serving as a grout material filling hole or a grout material confirmation hole stops screws 44 from the outside of the side plate 42b of the metal plate 42 to the side portion 43c of the load transmission plate 43. It is fixed by attaching.
[0112]
Also in the load transmission plate 43 of the present embodiment, as shown in FIG. 32, the vertical projection is performed at least within the horizontal relative movement range allowed between the upper load receiving portion B and the lower load receiving portion A. The shoe 41 has a size that prevents the shoe 41 from being removed from the position, and the shoe 41 moves to a position removed from the lower surface of the H-shaped steel 15 to form a grout solidified layer solidified integrally with the metal plate 42. Even if a shearing force according to the load of the superstructure is applied, the shearing force is received by the load transmission plate 43 and the maintenance of the upper load receiving portion B can be ensured.
[0113]
Other configurations and installation methods are configured in the same manner as the above embodiments, and the same effects can be obtained.
[0114]
Next, a fifth embodiment of the installation method of the pendulum type seismic isolation device according to the present invention will be described with reference to FIG. In addition, what was comprised similarly to each said embodiment attaches | subjects the same code | symbol, and abbreviate | omits description.
[0115]
In this embodiment, in the third embodiment shown in FIG. 23, the curved receiving surface 5a of the metal plate 5 of the lower load receiving portion A and the curved receiving surface 42a of the metal plate 42 of the upper load receiving portion B are cosine. It is formed by a curve, and a ball 36 serving as a load transmission body is interposed between both curved receiving surfaces 5a and 42a so as to be able to roll.
[0116]
Also in the load transmission plate 43 of the present embodiment, the ball 36 deviates from its vertical projection position within at least a horizontal relative movement range allowed between the upper load receiving portion B and the lower load receiving portion A. The ball 36 moves to a position deviated from the lower surface of the H-shaped steel 15 and the metal plate 42 and the grout solidified layer solidified integrally with the metal plate 42 are used to load the upper structure. Even if a corresponding shearing force is applied, the shearing force can be received by the load transmission plate 43 to ensure the maintenance of the upper load receiving portion B.
[0117]
Other configurations and installation methods are configured in the same manner as the above embodiments, and the same effects can be obtained.
[0118]
The curved receiving surfaces 5a and 42a of the metal plates 5 and 42 can be formed of various curved surfaces in addition to the above-described spherical surface, conical surface, or cosine curve.
[0119]
【The invention's effect】
Since the present invention has the above-described configuration and operation, the height of the metal plate is supported in a state where the lower surface of the metal plate is supported by one height adjustment support member provided upright on the lower structure. After adjusting the level and the horizontal level, the lower portion of the metal plate is fixed to a plurality of fixing members that surround the single height adjustment support member and are erected on the lower structure. The metal plate height level and horizontal level can be adjusted easily and reliably. In particular, workability is good because the height level of the metal plate can be adjusted at one location of the height adjustment support member.
[0120]
In addition, since the height adjustment support member receives the load of the metal plate by supporting the lower surface of the substantially central portion of the metal plate by the height adjustment support member, the peripheral portion of the metal plate fixed by the fixing member is flat. The portion does not bend, and no error occurs in the height level or horizontal level of the metal plate.
[0121]
Furthermore, before the grout material filled in the gap between the lower structure and the metal plate is solidified, the load transmitting body, the upper load receiving portion, and the upper structure can be placed on the metal plate for work. Therefore, it is not necessary to wait for the solidification time of the grout material, and the construction period can be shortened.
[0122]
Also, a lightweight and easy-to-handle metal plate for the lower load receiving portion, and a grout solidified layer integrated with the metal plate by filling and solidifying a non-shrinkable grout material in the gap between the metal plate and the lower structure The workability is good due to the formation.
[0123]
Further, according to the installation method of the pendulum type seismic isolation device, the receiving surface of the upper load receiving portion has a smaller radius of curvature than the receiving surface of the lower load receiving portion, and the load transmitting body is the upper load receiving portion. An upper surface and a lower surface of a radius of curvature that match the receiving surface of the lower portion and the receiving surface of the lower load receiving portion, respectively, and the load transmitting body moves integrally with the upper load receiving portion to When it is possible to slide on the receiving surface of the part, the receiving surface of the upper load receiving portion and the receiving surface of the lower load receiving portion have the same radius of curvature, and are interposed between the receiving surfaces This is suitable for the installation method of the pendulum type seismic isolation device when the load transmitting body is allowed to slide without substantially rotating between the two receiving surfaces.
[0124]
Further, a grout material filling hole and a grout material confirmation hole are provided in the metal plate forming the curved receiving surface in the lower load receiving portion, and the grout material is filled from the grout material filling hole, and the filled state is grouted. When confirming with the material confirmation hole, it can be easily filled by pouring a non-shrinkable grout material from the upper side of the metal plate of the lower load receiving portion into the gap between the lower structure and the metal plate, Furthermore, by visually confirming that the grout material overflows from the grout material confirmation hole, it is possible to reliably fill the gap between the lower structure and the metal plate without gaps, and the metal plate and the grout solidified layer are firmly and reliably integrated. A lower load receiving portion can be formed.
[0125]
Further, a grout material filling pipe is embedded in the lower structure in advance, and a non-shrinkable grout material is filled into the gap between the lower structure and the metal plate from the outside through the grout material filling pipe. On the occasion By setting the filling port of the grout material filling tube at the central portion where the cross section of the gap between the lower structure and the metal plate is narrowed, filling of the grout material into the narrow central portion can be ensured.
[0126]
Further, the curved load receiving surface of the upper load receiving portion fixed to the upper structure of the pendulum type seismic isolation device and the lower load receiving portion fixed to the lower structure is constituted by a metal plate, By making the grout solidified layer filled with a non-shrinkable grout material between the structure and solidifying it, and the metal plate, the expensive and heavy thick stainless steel plate and thick mild steel plate can be machined. It is possible to provide a pendulum type seismic isolation device installation method that eliminates the need for processing, reduces processing costs by reducing processing costs, reduces material costs, reduces weight, and facilitates construction work.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view showing a configuration of a first embodiment of a pendulum type seismic isolation device according to the present invention.
FIG. 2 is an explanatory cross-sectional view showing the configuration of the first embodiment of the pendulum type seismic isolation device according to the present invention.
FIG. 3 is a plan view showing a configuration of a lower load receiving portion of the first embodiment.
FIG. 4 is an explanatory cross-sectional view showing a state in which the load transmitting body slides on the receiving surface of the lower load receiving portion in the first embodiment.
FIG. 5 is a plan view showing a state in which the load transmitting body slides on the receiving surface of the lower load receiving portion in the first embodiment.
FIG. 6 is an explanatory cross-sectional view showing a method for installing the lower load receiving portion of the first embodiment.
FIG. 7 is an explanatory cross-sectional view showing a method for installing the lower load receiving portion of the first embodiment.
FIG. 8 is an explanatory cross-sectional view illustrating a method for installing the lower load receiving portion of the first embodiment.
FIG. 9 is an explanatory cross-sectional view showing a method for installing the lower load receiving portion of the first embodiment.
FIG. 10 is an explanatory cross-sectional view illustrating a method for installing the lower load receiving portion of the first embodiment.
FIG. 11 is an explanatory cross-sectional view illustrating a method for installing the lower load receiving portion of the first embodiment.
FIG. 12 is an explanatory cross-sectional view illustrating a method for installing the lower load receiving portion of the first embodiment.
FIG. 13 is an explanatory cross-sectional view illustrating a method for installing the lower load receiving portion of the first embodiment.
FIGS. 14A to 14C are diagrams showing another configuration of the height adjustment support member.
FIG. 15 is a view showing another configuration of the height adjustment support member.
FIG. 16 is a diagram showing another configuration of the height adjustment support member.
FIG. 17 is a cross-sectional view illustrating a method for installing a lower load receiving portion when a grout material is filled in a gap between the lower structure and a metal plate through a grout material filling pipe embedded in the lower structure according to the first embodiment. FIG.
FIG. 18 is a cross-sectional view illustrating a method for installing a lower load receiving portion when a grout material is filled in a gap between the lower structure and a metal plate through a grout material filling pipe embedded in the lower structure according to the first embodiment. FIG.
FIG. 19 is a cross-sectional view illustrating a method for installing a lower load receiving portion when a grout material is filled in a gap between the lower structure and a metal plate through a grout material filling pipe embedded in the lower structure according to the first embodiment. FIG.
FIG. 20 is a cross-sectional view illustrating a method for installing a lower load receiving portion when a grout material is filled in a gap between the lower structure and a metal plate through a grout material filling pipe embedded in the lower structure according to the first embodiment. FIG.
FIG. 21 is a cross-sectional view illustrating a method for installing a lower load receiving portion when a grout material is filled in a gap between the lower structure and a metal plate through a grout material filling pipe embedded in the lower structure according to the first embodiment. FIG.
FIG. 22 is a cross-sectional explanatory view showing a configuration of a second embodiment of the pendulum type seismic isolation device according to the present invention.
FIG. 23 is a cross-sectional explanatory view showing a configuration of a third embodiment of the pendulum type seismic isolation device according to the present invention.
FIG. 24 is a plan view illustrating a configuration of an upper load receiver according to a third embodiment.
FIG. 25 is a plan view showing a configuration of a lower load receiving portion of the third embodiment.
FIG. 26 is an explanatory cross-sectional view showing a method for installing the upper load receiving portion of the third embodiment.
FIG. 27 is an explanatory cross-sectional view illustrating a method of installing the upper load receiving portion of the third embodiment.
FIG. 28 is a cross-sectional explanatory view showing a method for installing the upper load receiving portion of the third embodiment.
FIG. 29 is a cross-sectional explanatory view showing a method of installing the upper load receiving portion of the third embodiment.
30 is an explanatory cross-sectional view illustrating a method of installing the upper load receiving portion of the third embodiment. FIG.
FIG. 31 is a cross-sectional explanatory view showing a configuration of a fourth embodiment of the pendulum type seismic isolation device according to the present invention.
FIG. 32 is a cross-sectional explanatory view showing a state in which the load transmitting body slides on the receiving surfaces of the upper and lower load receiving portions in the fourth embodiment.
FIG. 33 is a plan view showing a configuration of an upper load receiver according to a fourth embodiment.
FIG. 34 is a plan view showing a configuration of a lower load receiving portion of the fourth embodiment.
FIG. 35 is a cross-sectional explanatory view showing a configuration of a fifth embodiment of the pendulum type seismic isolation device according to the present invention.
FIG. 36 is a diagram illustrating a first known example.
FIG. 37 is a diagram illustrating a second known example.
Fig. 38 is a diagram illustrating a third known example.
FIG. 39 is a diagram illustrating a fourth known example.
[Explanation of symbols]
A ... Lower load receiving part
B ... Upper load receiving part
1 ... Substructure
2. Long nut
3 ... Anchor bolt
4 ... Bolt
5 ... Metal plate
5a: curved receiving surface
5b ... Anchor bolt insertion hole
5c ... through hole
5d ... depression
6 ... Nut
7 ... Washer
8 ... Scale
9 ... Level surveying machine
10… Level
11 ... Formwork
12 ... Non-shrink grout
13 ... Shoe
13a, 13b ... Sliding spherical surface
14 ... Shoe holder
14a ... Screw hole
14b ... Curved receiving surface
15 ... H-section steel
15a ... Lower flange
15b ... through hole
16 ... Bolt
21 ... Lock nut
22 ... Anchor bolt
23 ... Nut
24 ... buried container
25 ... Floating board
26 ... Nut
27 ... Bolt
28… Cap
31 ... Grout filling tube
35 ... Holder
35a ... Screw hole
36… Ball
41 ... Shoe
41a, 41b ... Sliding spherical surface
42… Metal plate
42a ... Curved receiving surface
42b ... side plate
43… Load transmission plate
43a ... Through hole
43b ... Screw hole
43c ... side
44 ... Screw
45 ... Wes
46 ... board
47 ... Gum tape

Claims (4)

曲面状の受面を有し、且つ上部構造物に固定される上側荷重受部と、曲面状の受面を有し、且つ下部構造物に固定される下側荷重受部と、前記上側荷重受部及び下側荷重受部の両受面間に介在される荷重伝達体を有する振子型免震装置を前記両構造物間に設置する方法において、
1つの高さ調整支持部材とそれを取り囲む複数の固定部材を前記下部構造物に立設すると共に、前記下側荷重受部を形成する中央部に曲面状の受面をする金属板を用意し、該金属板の略中央部下面を前記高さ調整支持部材に支持させてその高さレベルを調整し、更にその水平レベルを調整した状態で前記複数の固定部材により該金属板の周辺部を固定し、
充填口が前記金属板の中央部付近に位置するように且つ前記下部構造物の上面から露出するように前記下部構造物に予め埋設されたグラウト材充填管を用いて前記下部構造物と前記金属板の間隙に無収縮性のグラウト材を充填固化させることによって前記金属板とグラウト固化層が一体化された下側荷重受部を形成することを特徴とする振子型免震装置の設置方法。
An upper load receiving portion having a curved receiving surface and fixed to the upper structure, a lower load receiving portion having a curved receiving surface and fixed to the lower structure, and the upper load In a method of installing a pendulum type seismic isolation device having a load transmission body interposed between both receiving surfaces of the receiving portion and the lower load receiving portion between the two structures,
With one height adjustment support member and a plurality of fixing members surrounding the upright to the lower structure, providing a metal plate have a curved receiving surface in the central portion forming the lower load receiving section The height of the metal plate is supported by the height adjustment support member to adjust its height level, and the horizontal level of the metal plate is adjusted by the plurality of fixing members in the periphery of the metal plate. Fixed,
Using the grout material filling pipe embedded in the lower structure in advance so that the filling port is located near the center of the metal plate and exposed from the upper surface of the lower structure, the lower structure and the metal An installation method for a pendulum type seismic isolation device, wherein a lower load receiving portion in which the metal plate and the grout solidified layer are integrated is formed by filling and solidifying a non-shrinkable grout material in a gap between the plates.
前記上側荷重受部の受面が前記下側荷重受部の受面より小さい曲率半径を有し、前記荷重伝達体が前記上側荷重受部の受面と前記下側荷重受部の受面に夫々整合する曲率半径の上面と下面を有し、前記荷重伝達体が前記上側荷重受部と一体的に移動して前記下側荷重受部の受面上を滑動可能とされる請求項1に記載の振子型免震装置の設置方法。  The receiving surface of the upper load receiving portion has a smaller radius of curvature than the receiving surface of the lower load receiving portion, and the load transmitting body is provided on the receiving surface of the upper load receiving portion and the receiving surface of the lower load receiving portion. The upper surface and the lower surface of each of the curvature radii that are aligned with each other, and the load transmitting body is moved integrally with the upper load receiving portion to be slidable on the receiving surface of the lower load receiving portion. Installation method of the pendulum type seismic isolation device described. 前記上側荷重受部の受面と前記下側荷重受部の受面が同一曲率半径を有し、該両受面間に介在される前記荷重伝達体が該両受面間を実質的に回転することなく滑動可能とされる請求項1に記載の振子型免震装置の設置方法。  The receiving surface of the upper load receiving portion and the receiving surface of the lower load receiving portion have the same radius of curvature, and the load transmitting body interposed between the receiving surfaces substantially rotates between the receiving surfaces. The installation method of the pendulum type seismic isolation device according to claim 1, which can be slid without being performed. 前記下側荷重受部における曲面状の受面を形成する金属板にグラウト材充填孔及びグラウト材確認孔が設けられ、該グラウト材充填孔からグラウト材を充填し、その充填状態をグラウト材確認孔により確認することを特徴とする請求項1〜3のいずれか1項に記載の振子型免震装置の設置方法。  A grout material filling hole and a grout material confirmation hole are provided in the metal plate forming the curved receiving surface in the lower load receiving portion, and the grout material is filled from the grout material filling hole, and the filling state is confirmed. It confirms with a hole, The installation method of the pendulum type seismic isolation apparatus of any one of Claims 1-3 characterized by the above-mentioned.
JP19727898A 1998-07-13 1998-07-13 How to install a pendulum type seismic isolation device Expired - Lifetime JP4141011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19727898A JP4141011B2 (en) 1998-07-13 1998-07-13 How to install a pendulum type seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19727898A JP4141011B2 (en) 1998-07-13 1998-07-13 How to install a pendulum type seismic isolation device

Publications (2)

Publication Number Publication Date
JP2000027935A JP2000027935A (en) 2000-01-25
JP4141011B2 true JP4141011B2 (en) 2008-08-27

Family

ID=16371813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19727898A Expired - Lifetime JP4141011B2 (en) 1998-07-13 1998-07-13 How to install a pendulum type seismic isolation device

Country Status (1)

Country Link
JP (1) JP4141011B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665796B2 (en) * 2006-02-28 2011-04-06 オイレス工業株式会社 Seismic isolation device and casket used for this
CN111786532B (en) * 2020-06-02 2022-06-24 大族激光科技产业集团股份有限公司 Concatenation formula linear electric motor module

Also Published As

Publication number Publication date
JP2000027935A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
CN103206064B (en) Earthquake-resistant apparatus
JP4702862B1 (en) Height adjustment support device for structure and height adjustment method for structure support device
JP2014074278A (en) Foundation for structure
CN106758787A (en) A kind of Precast Pier Columns mounting and positioning device
JP4141011B2 (en) How to install a pendulum type seismic isolation device
CN207244435U (en) A kind of anchor and height-adjustable supports suitable for beam bridge
JP2007271085A (en) Method of installing friction pendulum type base isolation device
JP2000027938A (en) Pendulum type base isolation structure and work executing method
CN113174986B (en) Base structure of steel structure building
JP3963567B2 (en) Friction pendulum type seismic isolation device
JP3161082U (en) Panel mounting structure
JPS5839277B2 (en) How to make a mounting device on the installation stand and its device
CN106638650B (en) Fabricated concrete foundation structure
JP7290940B2 (en) Seismic isolation device installation member, seismic isolation device stand structure, and construction method for seismic isolation device stand
JP3858337B2 (en) Bridge girder erection method, support and bridge girder used therein, and bridge erected by the method
JPH11303929A (en) Friction pendulum-type base isolation device and installing method for it
CN219887178U (en) Novel foundation leveling structure for bottom building
JP4312658B2 (en) Foundation frame and foundation formation method
JP2004183410A (en) Pull-out force resistance mechanism for base isolation device, and base isolation device using the same
CN220450871U (en) Device is pour to trade fagging area
CN217580582U (en) Building shock insulation support mounting structure
JPH0415800Y2 (en)
JP2007216382A (en) Load transmitting body manufacturing method
JPS61134437A (en) Mounting metal for retaining wall
JP2022156585A (en) Movement and installation building and movement and installation method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

EXPY Cancellation because of completion of term