JP2007269553A - Method of manufacturing activated carbon - Google Patents

Method of manufacturing activated carbon Download PDF

Info

Publication number
JP2007269553A
JP2007269553A JP2006097412A JP2006097412A JP2007269553A JP 2007269553 A JP2007269553 A JP 2007269553A JP 2006097412 A JP2006097412 A JP 2006097412A JP 2006097412 A JP2006097412 A JP 2006097412A JP 2007269553 A JP2007269553 A JP 2007269553A
Authority
JP
Japan
Prior art keywords
activated carbon
carbon
less
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006097412A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakurai
博志 櫻井
Shigeki Hirata
滋己 平田
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2006097412A priority Critical patent/JP2007269553A/en
Publication of JP2007269553A publication Critical patent/JP2007269553A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon capable of obtaining a high energy density electric double layer capacitor and suitably used as an electrode material. <P>SOLUTION: In the method of manufacturing activated carbon, the activated carbon having 1,200-2,500 m<SP>2</SP>/g specific surface area and suitably used for an active material of an electric double layer capacitor is obtained by activating aggregate of easily graphiting carbon having 5-50 m<SP>2</SP>/g specific surface area. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電気二重層キャパシタの活物質として好適に用いられる活性炭に関する。   The present invention relates to activated carbon that is suitably used as an active material of an electric double layer capacitor.

近年、充放電サイクル特性や急速充電にも優れた小型バックアップ電源として電気二重層キャパシタが検討され、AV機器や通信機器におけるメモリーバックアップ用途を中心に1F以下の小型品が幅広い分野で用いられていた。しかし、用途の広がりにつれて、ハイブリッド自動車、燃料電池車のモーター駆動、回生エネルギーの蓄電等に適したデバイスとして期待されるようになり、電極材料である炭素材料の高容量化、大電流化が課題となっている。   In recent years, electric double layer capacitors have been studied as a compact backup power source with excellent charge / discharge cycle characteristics and rapid charging, and small products of 1F or less have been used in a wide range of fields, mainly for memory backup applications in AV equipment and communication equipment. . However, as the application spreads, it is expected to be a device suitable for driving motors of hybrid vehicles and fuel cell vehicles, storing regenerative energy, etc., and it is a challenge to increase the capacity and current of carbon materials as electrode materials. It has become.

上記を解決する方法として、原料にピッチ、コークスなどの易黒鉛化性原料を用いて活性炭を製造する方法が多数開示(例えば、特許文献1、2,3,4,5等参照)されている。しかし、一般に易黒鉛化性炭素はその高結晶性のため、水蒸気や二酸化炭素のような酸化性ガスを用いた賦活により細孔構造を形成することが難しく、電気二重層キャパシタの容量発現に必要な比表面積を増大させることが困難であった。このため、易黒鉛化性炭素の賦活は水酸化カリウムや水酸化ナトリウム等の薬品を用いる方法が一般的である。しかし、この方法は、賦活で金属カリウムや金属ナトリウム等が生成するためその処理工程が煩雑となること、原料の炭素に対して2〜5倍重量のアルカリを用いるためその中和処理に多大の費用が掛かることなど、多くの問題点を有していた。このため、易黒鉛化性炭素をガスで賦活する方法が求められていた。   As a method for solving the above, many methods for producing activated carbon using a graphitizable raw material such as pitch and coke as a raw material have been disclosed (for example, see Patent Documents 1, 2, 3, 4, 5, etc.). . However, generally graphitizable carbon has high crystallinity, so it is difficult to form a pore structure by activation using an oxidizing gas such as water vapor or carbon dioxide, which is necessary for capacity development of electric double layer capacitors. It was difficult to increase the specific surface area. For this reason, the activation of graphitizable carbon is generally performed using a chemical such as potassium hydroxide or sodium hydroxide. However, since this method is activated, metal potassium, metal sodium, and the like are generated, so that the treatment process becomes complicated, and 2 to 5 times the weight of alkali is used with respect to the carbon of the raw material. There were many problems such as high costs. For this reason, the method of activating easily graphitizable carbon with gas was calculated | required.

特開2005−029444号公報JP 2005-029444 A 特開2004−273520号公報JP 2004-273520 A 特開2004−281555号公報JP 2004-281555 A 特開2004−203715号公報JP 2004-203715 A 特開2004−107814号公報JP 2004-107814 A

本発明の目的は、従来技術では達成し得なかった、易黒鉛化性炭素の酸化性ガスによる賦活により、電極材料として好適な活性炭を提供する方法を提供することにある。   An object of the present invention is to provide a method for providing activated carbon suitable as an electrode material by activation of easily graphitizable carbon with an oxidizing gas, which could not be achieved by the prior art.

本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明の電気二重層キャパシタの活物質に好的に用いられる活性炭は、比表面積5〜50m/gの範囲にある易黒鉛化性炭素の集合体を賦活処理することによって、製造することができる。なお、レーザー回折散乱法で評価した易黒鉛化性炭素の集合体が下記要件(A)および(B)を同時に満足すること、
(A)頻度曲線(volume−under曲線の微分)の上限が5μm以下であること。
(B)d(0.9)が4以下、d(0.5)が2以下、d(0.1)が0.1以上を同時に満足すること。
[ここで、d(0.9)はこれ以下の粒子の比率が90%である粒径をμmで表した数字、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒径をμmで表した数字、d(0.1)はこれ以下の粒子の比率が90%である粒径をμmで表した数字を指す。]
As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention. That is, the activated carbon that is preferably used for the active material of the electric double layer capacitor of the present invention is manufactured by activating the aggregate of graphitizable carbon having a specific surface area of 5 to 50 m 2 / g. be able to. The aggregate of graphitizable carbon evaluated by the laser diffraction scattering method satisfies the following requirements (A) and (B) simultaneously:
(A) The upper limit of the frequency curve (the derivative of the volume-under curve) is 5 μm or less.
(B) d (0.9) is 4 or less, d (0.5) is 2 or less, and d (0.1) is 0.1 or more at the same time.
[Where d (0.9) is a numerical value in μm of the particle size at which the ratio of particles below 90% is expressed, and d (0.5) is 50% larger than 50% of the particles, The number of particles smaller than this is expressed in μm, and d (0.1) indicates the number of particles whose particle ratio is 90% or less, expressed in μm. ]

上記方法で得られた活性炭の比表面積が1200〜2500m/gの範囲にあること、易黒鉛化性炭素が繊維状であること、賦活処理が酸化性ガスで実施されることも本願発明に包含される。 In the present invention, the activated carbon obtained by the above method has a specific surface area of 1200 to 2500 m 2 / g, the graphitizable carbon is fibrous, and the activation treatment is performed with an oxidizing gas. Is included.

本発明によれば、従来技術では達成し得なかった、電極材料として好適な活性炭を提供する方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method of providing the activated carbon suitable as an electrode material which was not able to be achieved by the prior art can be provided.

以下、本発明を詳細に説明する。
本発明者らは、上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明の目的は、比表面積5〜50m/gの範囲にある易黒鉛化性炭素の集合体を賦活処理することによって比表面積1200〜2500m/gである活性炭を得ることで達成される。易黒鉛化性炭素の集合体が5m/g未満であると、酸化性ガスによる賦活を実施しても比表面積1200〜2500m/gである活性炭を得ることができず好ましくない。また、50m/gを超えると易黒鉛化性炭素の集合体の嵩密度が非常に大きくなり、ハンドリングが困難であるだけでなく、賦活による著しい炭化収率の低下を引き起こし好ましくない。易黒鉛化性炭素の集合体のより好ましい比表面積の範囲は10〜40m/gである。
Hereinafter, the present invention will be described in detail.
As a result of intensive studies in view of the above prior art, the present inventors have completed the present invention. An object of the present invention is achieved by obtaining the activated carbon is a specific surface area 1200~2500m 2 / g by activation treatment the aggregate of the graphitizable carbon is in a range of specific surface area 5 to 50 m 2 / g Is done. When collection of the graphitizable carbon is less than 5 m 2 / g, undesirably it can not be carried out activation by an oxidizing gas to obtain an activated carbon is a specific surface area 1200~2500m 2 / g. On the other hand, if it exceeds 50 m 2 / g, the bulk density of the graphitizable carbon aggregate becomes very large and not only is difficult to handle, but also a significant reduction in carbonization yield due to activation is not preferable. A more preferable range of the specific surface area of the aggregate of graphitizable carbon is 10 to 40 m 2 / g.

また本発明の易黒鉛化性炭素の集合体は下記要件(A)および(B)を同時に満足することが好ましい。
(A)頻度曲線(volume−under曲線の微分)の上限が5μm以下であること。
(B)d(0.9)が4以下、d(0.5)が2以下、d(0.1)が0.1以上を同時に満足すること。
[ここで、d(0.9)はこれ以下の粒子の比率が90%である粒径をμmで表した数字、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒径をμmで表した数字、d(0.1)はこれ以下の粒子の比率が90%である粒径をμmで表した数字を指す。]
Moreover, it is preferable that the aggregate of graphitizable carbon of the present invention satisfies the following requirements (A) and (B) simultaneously.
(A) The upper limit of the frequency curve (the derivative of the volume-under curve) is 5 μm or less.
(B) d (0.9) is 4 or less, d (0.5) is 2 or less, and d (0.1) is 0.1 or more at the same time.
[Where d (0.9) is a numerical value in μm of the particle size at which the ratio of particles below 90% is expressed, and d (0.5) is 50% larger than 50% of the particles, The number of particles smaller than this is expressed in μm, and d (0.1) indicates the number of particles whose particle ratio is 90% or less, expressed in μm. ]

頻度曲線(volume−under曲線の微分)の上限が5μmを超えると、比表面積1200〜2500m/gである活性炭を製造することができず好ましくない。本発明では上記条件に加えて、d(0.9)が4以下、d(0.5)が2以下、d(0.1)が0.1以上を同時に満足することが必要である。この条件から外れる範囲の易黒鉛化性炭素の集合体を賦活しても、比表面積1200〜2500m/gである活性炭を製造することができず好ましくない。条件(B)のより好ましい値は、d(0.9)が0.1〜3以下、d(0.5)が0.1〜1以下、d(0.1)が0.1以上である。易黒鉛化性炭素を賦活して比表面積1200〜2500m/gである活性炭を得るためには、粒径が小さいほど好ましいが、d(0.9)、d(0.5)およびd(0.1)のいずれもが0.1未満であると、最終的に得られる活性炭の嵩密度が大きくなり、結果として単位体積当りに詰め込める活性炭重量が低下するため、エネルギー密度の低下を引き起こし好ましくない。 If the upper limit of the frequency curve (derivative of the volume-under curve) exceeds 5 μm, it is not preferable because activated carbon having a specific surface area of 1200 to 2500 m 2 / g cannot be produced. In the present invention, in addition to the above conditions, it is necessary that d (0.9) is 4 or less, d (0.5) is 2 or less, and d (0.1) is 0.1 or more at the same time. Even if an aggregate of graphitizable carbon in a range deviating from this condition is activated, activated carbon having a specific surface area of 1200 to 2500 m 2 / g cannot be produced, which is not preferable. More preferable values for the condition (B) include d (0.9) of 0.1 to 3 or less, d (0.5) of 0.1 to 1 or less, and d (0.1) of 0.1 or more. is there. In order to activate the graphitizable carbon to obtain activated carbon having a specific surface area of 1200 to 2500 m 2 / g, the smaller the particle size, the better, but d (0.9), d (0.5) and d ( If any of 0.1) is less than 0.1, the bulk density of the activated carbon finally obtained increases, and as a result, the weight of the activated carbon that can be packed per unit volume decreases. Absent.

本発明の方法では、易黒鉛化性炭素の集合体を、窒素吸着量から見積もったBET比表面積が1200〜2500m/gの範囲になるまで賦活処理するのが好ましい。得られた活性炭の比表面積が1200m/g未満であると、電気二重層キャパシタの活物質として十分な二重層容量を持たせることができず好ましくない。一方、2500m/g以上であると単位体積当りに詰め込める活性炭の重量が低下するために、体積あたりの二重層容量の低下を引き起こし好ましくない。比表面積の好ましい範囲は1500〜2300m/gの範囲である。 In the method of the present invention, it is preferable to activate the aggregate of graphitizable carbon until the BET specific surface area estimated from the nitrogen adsorption amount is in the range of 1200 to 2500 m 2 / g. If the specific surface area of the obtained activated carbon is less than 1200 m 2 / g, the double layer capacity sufficient as the active material of the electric double layer capacitor cannot be provided, which is not preferable. On the other hand, if it is 2500 m 2 / g or more, the weight of the activated carbon that can be packed per unit volume is lowered, which causes a decrease in the double layer capacity per volume, which is not preferable. A preferable range of the specific surface area is in the range of 1500 to 2300 m 2 / g.

本発明で使用する易黒鉛化性炭素の集合体の原料としては、ピッチ、コークス、ポリカルボジイミド、ポリイミド、ポリエーテルイミド、ポリベンゾアゾール、およびアラミド類など炭素前駆体となりうるものであれば特に限定されるものではないが、電気二重層キャパシタの高容量化、大電流化という要求特性の観点から、ピッチ、コークス、アラミドを用いるのが好ましい。特に易黒鉛化性炭素の中でもメソフェーズピッチを用いることが特に好ましい。なお、ここで言う易黒鉛化性炭素とは六角網面層が異方性を持って一方向に適度に配列した構造を有した炭素であり、2000℃以上で処理した際に広角X線から見積もられるd002値が0.350nm以下である物質をさす。また、本発明で使用する易黒鉛化性炭素の集合体は、比表面積5〜50m/gの範囲において繊維状のナノファイバーであっても良い。繊維の繊維平均直径は10〜1000nm、繊維平均長は200nm〜5000μmの範囲、更に好ましくは繊維直径50〜800nm、繊維平均長は500nm〜3000μmの範囲にあるのが好ましい。 The raw material of the aggregate of graphitizable carbon used in the present invention is particularly limited as long as it can be a carbon precursor such as pitch, coke, polycarbodiimide, polyimide, polyetherimide, polybenzoazole, and aramids. However, it is preferable to use pitch, coke, and aramid from the viewpoint of required characteristics such as higher capacity and higher current of the electric double layer capacitor. It is particularly preferable to use mesophase pitch among graphitizable carbons. The graphitizable carbon referred to here is carbon having a structure in which the hexagonal network layer has anisotropy and is appropriately arranged in one direction. A substance having an estimated d002 value of 0.350 nm or less. Further, the aggregate of graphitizable carbon used in the present invention may be a fibrous nanofiber in the range of a specific surface area of 5 to 50 m 2 / g. The fiber has an average fiber diameter of 10 to 1000 nm, an average fiber length of 200 nm to 5000 μm, more preferably a fiber diameter of 50 to 800 nm, and an average fiber length of 500 nm to 3000 μm.

本発明の易黒鉛化性炭素の集合体は、賦活処理を施す前に不融化、焼成処理を施しておくことが好ましい。不融化は、易黒鉛化性炭素の集合体の焼成・賦活によるメルトを抑えるために必要な工程である。不融化処理の方法としては、例えば易黒鉛化性炭素の集合体の融点未満で熱処理する方法が好ましい。易黒鉛化性炭素の集合体の融点はその構造に依存するが、一般的には100℃以上500℃未満である。易黒鉛化性炭素の構造によっては融点を有さないものもあるが、このような場合軟化点温度未満で不融化処理を施すことが好ましい。また、不融化処理の際、酸素または酸素/ハロゲン混合ガス雰囲気下で処理することが好ましい。ハロゲンガスとしては臭素、沃素を用いるのが好ましく、特に沃素が好ましい。不融化処理の時間としては10分から24時間未満である。不融化処理時間が10分未満であると、不融化が不十分であり焼成・賦活により活性炭前駆体の集合体のメルトが進行し好ましくない。一方、不融化処理時間が24時間を超える場合、生産性を著しく低減させるために好ましくない。不融化処理に要する時間としては、好ましくは10分以上20時間以下である。上記不融化処理は、焼成または賦活の際に易黒鉛化性炭素の集合体がメルトする場合、必要な工程であるが、この処理を施しておかなくても焼成または賦活の際にメルトを伴わない易黒鉛化性炭素の集合体に関しては必ずしも必要ではない。焼成処理は、不融化処理を終えた易黒鉛化性炭素の集合体をさらに不活性ガス雰囲気下、300〜1000℃程度で事前に熱処理して、賦活による収率を向上させるのに必要な工程である。焼成温度が300℃未満であると、易黒鉛化性炭素の集合体の賦活による収率が著しく低下し好ましくない。一方、1000℃を越えると賦活に多大の時間を要し、生産性の観点から好ましくない。焼成温度のより好ましい範囲としては350〜800℃である。   The aggregate of graphitizable carbon of the present invention is preferably subjected to infusibilization and firing treatment before the activation treatment. Infusibilization is a process necessary to suppress melt due to firing and activation of an aggregate of graphitizable carbon. As a method for infusibilization treatment, for example, a method of performing heat treatment at a temperature lower than the melting point of the graphitizable carbon aggregate is preferable. Although the melting point of the graphitizable carbon aggregate depends on its structure, it is generally 100 ° C. or higher and lower than 500 ° C. Some graphitizable carbon structures do not have a melting point. In such a case, it is preferable to perform an infusibilization treatment at a temperature lower than the softening point temperature. In the infusible treatment, the treatment is preferably performed in an oxygen or oxygen / halogen mixed gas atmosphere. As the halogen gas, bromine or iodine is preferably used, and iodine is particularly preferable. The infusibilization time is 10 minutes to less than 24 hours. When the infusibilization time is less than 10 minutes, the infusibilization is insufficient, and the melt of the activated carbon precursor aggregate proceeds by firing and activation, which is not preferable. On the other hand, when the infusibilization treatment time exceeds 24 hours, it is not preferable because the productivity is remarkably reduced. The time required for the infusibilization treatment is preferably 10 minutes or more and 20 hours or less. The infusibilization treatment is a necessary step when the aggregate of graphitizable carbon melts during firing or activation, but is accompanied by melt during firing or activation even if this treatment is not performed. There is no need for a graphitizable carbon aggregate. The firing process is a process necessary for improving the yield by activation by further heat treating the aggregate of graphitizable carbon that has been infusibilized in advance at about 300 to 1000 ° C. in an inert gas atmosphere. It is. When the firing temperature is less than 300 ° C., the yield due to the activation of the graphitizable carbon aggregate is remarkably lowered, which is not preferable. On the other hand, if it exceeds 1000 ° C., it takes a lot of time for activation, which is not preferable from the viewpoint of productivity. A more preferable range of the firing temperature is 350 to 800 ° C.

上述の易黒鉛化性炭素の集合体は、例えばピッチ、コークス、ポリカルボジイミド、ポリイミド、ポリエーテルイミド、ポリベンゾアゾール、およびアラミド類などの炭素前駆体を300〜1000℃で焼成した後に、粉砕処理することで得ることができる。粉砕の方法は特に限定されるものではないが、乾式法では例えばボールミルを用いた方法、粉砕室に送られた原料が衝撃爪(ピン)と蓋に取り付けられた爪状のステータ(固定盤)との回転の結果、衝撃、せん断作用により微粉化する方法(インパクトミル)、圧縮空気で粉体の相互衝突、相互摩擦により粉砕を行う方法(ジェットミル)などを例示することができる。一方、湿式法としては、例えば水またはN−メチルピロリドン、ジメチルアセトアミドなどの有機溶剤中でジルコニアボールなどと一緒に仕込み、衝突・せん断などにより焼成炭を粉砕する方法などを例示することができる。   The above-mentioned graphitizable carbon aggregates are pulverized after firing carbon precursors such as pitch, coke, polycarbodiimide, polyimide, polyetherimide, polybenzoazole, and aramids at 300 to 1000 ° C. You can get it. The method of pulverization is not particularly limited, but in the dry method, for example, a method using a ball mill, a claw-shaped stator (fixed platen) in which the raw material sent to the pulverization chamber is attached to an impact claw (pin) and a lid As a result of the rotation, a method of pulverizing by impact and shearing action (impact mill), a method of powder colliding with compressed air, and a method of pulverizing by mutual friction (jet mill) can be exemplified. On the other hand, examples of the wet method include a method of charging together with zirconia balls and the like in water or an organic solvent such as N-methylpyrrolidone and dimethylacetamide, and pulverizing the burned charcoal by collision and shearing.

本発明の電気二重層キャパシタの活物質に好的に用いられる活性炭は、上記で得た炭素粒子の集合体を賦活処理することにより製造することができる。賦活の方法としては、塩化亜鉛、水酸化カリウム、水酸化ナトリウムなどの薬品を用いる方法、水蒸気や二酸化炭素などの酸化性ガスを用いる方法、またはそれらの組み合わせた方法などを例示することができる。   The activated carbon preferably used for the active material of the electric double layer capacitor of the present invention can be produced by activating the aggregate of carbon particles obtained above. Examples of the activation method include a method using a chemical such as zinc chloride, potassium hydroxide, and sodium hydroxide, a method using an oxidizing gas such as water vapor and carbon dioxide, or a combination thereof.

薬品を用いた賦活は、薬品を炭素材料と一緒に熱処理することで炭素粒子を賦活する方法である。例えば、薬品賦活の一例としてアルカリ賦活がある。アルカリ賦活法とは、原料に水酸化アルカリや炭酸アルカリを含浸させ、所定の温度域で賦活を行うことで活性炭を得る方法である。アルカリ賦活で用いられる賦活剤としては、例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物、水酸化バリウム等のアルカリ土類金属の水酸化物等が挙げられるが、これらの中でも水酸化カリウム、水酸化ナトリウムが好ましい。アルカリ賦活する時の条件は、用いる賦活剤により異なるため一概に言えないが、例えば水酸化カリウムを用いた場合、温度300〜1000℃、好ましくは350〜900℃の温度領域で反応させることが好ましい。アルカリ賦活の処理時間も昇温速度、処理温度に応じて適宜選定すればよい。賦活剤は通常水溶液の状態として用いられ、濃度としては0.1〜90wt%程度が採用される。賦活剤の水溶液濃度が0.1wt%未満であると、高比表面積の活性炭を製造することができず好ましくない。また、90wt%を超えると、高比表面積の活性炭を製造することができないだけでなく、炭化収率を低減させるため好ましくない。より好ましくは1〜50wt%である。上記の方法で得た活性炭の材料表面には、アルカリ金属やアルカリ塩、水酸化物などが存在することがある。それゆえ、水洗、乾燥などの処理を行っても良い。   Activation using a chemical is a method of activating carbon particles by heat treating the chemical with a carbon material. For example, alkali activation is an example of chemical activation. The alkali activation method is a method of obtaining activated carbon by impregnating a raw material with an alkali hydroxide or an alkali carbonate and activating in a predetermined temperature range. Examples of the activator used in the alkali activation include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkaline earth metal hydroxides such as barium hydroxide, and the like. Potassium oxide and sodium hydroxide are preferred. The conditions for alkali activation differ depending on the activator to be used, and thus cannot be generally stated. For example, when potassium hydroxide is used, the reaction is preferably performed at a temperature of 300 to 1000 ° C, preferably 350 to 900 ° C. . What is necessary is just to select the process time of alkali activation suitably according to a temperature increase rate and process temperature. The activator is usually used in the form of an aqueous solution, and a concentration of about 0.1 to 90 wt% is employed. When the concentration of the aqueous solution of the activator is less than 0.1 wt%, it is not preferable because activated carbon having a high specific surface area cannot be produced. On the other hand, if it exceeds 90 wt%, it is not preferable because activated carbon having a high specific surface area cannot be produced and the carbonization yield is reduced. More preferably, it is 1-50 wt%. Alkali metals, alkali salts, hydroxides, and the like may be present on the surface of the activated carbon material obtained by the above method. Therefore, treatments such as washing with water and drying may be performed.

酸化性ガスを用いた賦活は、通常の粒状活性炭のガス賦活方法であり、水蒸気または二酸化炭素、空気などの酸化性ガスの存在下、700℃〜1500℃の温度で行なわれる。より好ましい温度範囲は、800℃〜1200℃である。賦活処理の時間としては、3〜500分間実施するのが良い。該賦活処理の時間が3分未満であると、得られた活性炭の比表面積が著しく低下し好ましくない。一方、500分より長時間であると、生産性の低下を引起こすだけでなく、炭化収率を著しく低下させるため好ましくない。   Activation using an oxidizing gas is a gas activation method for ordinary granular activated carbon, and is performed at a temperature of 700 ° C. to 1500 ° C. in the presence of an oxidizing gas such as water vapor, carbon dioxide, or air. A more preferable temperature range is 800 ° C to 1200 ° C. The activation treatment time is preferably 3 to 500 minutes. When the activation treatment time is less than 3 minutes, the specific surface area of the obtained activated carbon is remarkably lowered, which is not preferable. On the other hand, when the time is longer than 500 minutes, not only the productivity is lowered, but also the carbonization yield is remarkably lowered.

薬品を用いた賦活、とくにアルカリを用いた賦活では、金属カリウムや金属ナトリウム等が生成するためその処理工程が煩雑となること、原料炭素に対して2〜5倍重量のアルカリを用いるためその中和処理に多大の費用が掛かることなど、多くの問題点を有している。このため、酸化性ガスによる賦活がより好ましい。本発明では、賦活処理で得た活性炭を更に粉砕、分級することが好ましい。   In the activation using chemicals, especially the activation using alkali, metal potassium, metal sodium, and the like are generated, so that the treatment process becomes complicated, and the alkali used is 2 to 5 times the weight of the raw material carbon. There are many problems such as the fact that the sum processing is very expensive. For this reason, activation with an oxidizing gas is more preferable. In the present invention, the activated carbon obtained by the activation treatment is preferably further pulverized and classified.

以下、実施例により本発明を具体的に説明するが、これにより本発明が何等限定を受けるものでは無い。
活性炭の比表面積は、NOVA1200(ユアサイオニックス製)で評価した窒素吸着量から求めた。また、炭素粒子または活性炭の粒度分布はレーザー回折・散乱装置(シスメックス株式会社MASTERSIZER2000)を用い評価した。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention does not receive any limitation by this.
The specific surface area of the activated carbon was determined from the amount of nitrogen adsorbed evaluated with NOVA1200 (manufactured by Yua Sionics). The particle size distribution of carbon particles or activated carbon was evaluated using a laser diffraction / scattering device (SYSMEX 2000).

[実施例1]
炭素粒子の原料としてメソフェーズピッチAR−MP(三菱ガス化学(株)製)を乳鉢で粉砕した後、篩により300μm未満のAR−MPの粒子を得た。この粒子10重量部と10重量部の水を500ccのステンレス容器に1mmのジルコニアボール350重量部と共に仕込み、200rpmで10時間遊星ボールミル装置を用い粉砕処理を施した。得られた炭素粒子を空気中200℃まで1時間で昇温した後、200℃から400℃まで3時間で昇温することで400℃焼成炭を得た。得られた焼成炭の窒素吸着法によるBET比表面積は12m/gであった。また、レーザー回折・散乱装置を用い、この炭素粒子の測定を実施したところ、頻度曲線(volume−under曲線の微分)の上限が3.3μmであり、d(0.9)が2.7、d(0.5)が1.2以下、d(0.1)が0.3であった。上記炭素粒子を炭酸ガスを2L/分で流通した管状炉内に2時間導入することで活性炭を得た。得られた活性炭の比表面積は1480m/gであった。
[Example 1]
After pulverizing mesophase pitch AR-MP (manufactured by Mitsubishi Gas Chemical Co., Inc.) as a raw material for carbon particles with a mortar, AR-MP particles of less than 300 μm were obtained with a sieve. 10 parts by weight of these particles and 10 parts by weight of water were charged into a 500 cc stainless steel container together with 350 parts by weight of 1 mm zirconia balls, and pulverized using a planetary ball mill apparatus at 200 rpm for 10 hours. The obtained carbon particles were heated in air to 200 ° C. over 1 hour, and then heated from 200 ° C. to 400 ° C. over 3 hours to obtain 400 ° C. calcined charcoal. The obtained calcined charcoal had a BET specific surface area of 12 m 2 / g according to the nitrogen adsorption method. Further, when the carbon particles were measured using a laser diffraction / scattering apparatus, the upper limit of the frequency curve (differentiation of the volume-under curve) was 3.3 μm, and d (0.9) was 2.7. d (0.5) was 1.2 or less, and d (0.1) was 0.3. Activated carbon was obtained by introducing the carbon particles into a tubular furnace in which carbon dioxide gas was circulated at 2 L / min for 2 hours. The specific surface area of the obtained activated carbon was 1480 m 2 / g.

[実施例2]
熱可塑性樹脂としてポリ−4−メチルペンテン−1(TPX:グレードRT-18[三井化学株式会社製])100重量部と熱可塑性炭素前駆体としてメソフェーズピッチAR−HP(三菱ガス化学株式会社製)11.1部を同方向二軸押出機(株式会社日本製鋼所製TEX−30、バレル温度320℃、窒素気流下)で溶融混練して混合物を作成した。この条件で得られた混合物の、熱可塑性炭素前駆体の熱可塑性樹脂中への分散径は0.05〜2μmであった。また、この混合物を300℃で10分間保持したが、熱可塑性炭素前駆体の凝集は認められず、分散径は0.05〜2μmであった。
[Example 2]
100 parts by weight of poly-4-methylpentene-1 (TPX: Grade RT-18 [manufactured by Mitsui Chemicals, Inc.) as a thermoplastic resin and mesophase pitch AR-HP (manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a thermoplastic carbon precursor 11.1 parts were melt-kneaded with the same direction twin screw extruder (TEX-30 manufactured by Nippon Steel Works, barrel temperature 320 ° C., under nitrogen stream) to prepare a mixture. The dispersion diameter of the mixture obtained under these conditions into the thermoplastic resin of the thermoplastic carbon precursor was 0.05 to 2 μm. Further, this mixture was held at 300 ° C. for 10 minutes, but aggregation of the thermoplastic carbon precursor was not observed, and the dispersion diameter was 0.05 to 2 μm.

次いで、上記混合物を330℃で吐出孔より吐出紡糸し、繊維径15μmの前駆体繊維を作成した。この前駆体繊維1重量部を150℃に加熱した200重量部のデカリンに浸漬させ、熱可塑性樹脂の溶解を行った。次いで、ろ過により熱可塑性樹脂の除去を行い、カーボンナノファイバー前駆体を得た。カーボンナノファイバー前駆体をアセトンで数回洗浄して乾燥後、室温から空気中200℃まで1時間で昇温した後、200℃から400℃まで3時間で昇温することで400℃焼成カーボンナノファイバーを得た。得られたカーボンナノファイバーは見た目粉末状であるが、電子顕微鏡観察から平均繊維径が200nm、平均繊維長が2μmであることを確認した(図1参照)。   Next, the mixture was discharged and spun from a discharge hole at 330 ° C. to prepare a precursor fiber having a fiber diameter of 15 μm. 1 part by weight of this precursor fiber was immersed in 200 parts by weight of decalin heated to 150 ° C. to dissolve the thermoplastic resin. Subsequently, the thermoplastic resin was removed by filtration to obtain a carbon nanofiber precursor. After the carbon nanofiber precursor is washed several times with acetone and dried, the temperature is raised from room temperature to 200 ° C. in air for 1 hour, and then heated from 200 ° C. to 400 ° C. in 3 hours, so that the carbon nanofiber precursor is heated at 400 ° C. I got a fiber. The obtained carbon nanofibers were in an apparent powder form, but it was confirmed by electron microscope observation that the average fiber diameter was 200 nm and the average fiber length was 2 μm (see FIG. 1).

また、窒素吸着法によるBET比表面積は23m/gであり、レーザー回折・散乱装置で評価した頻度曲線(volume−under曲線の微分)の上限が4.2μmであり、d(0.9)が3.8、d(0.5)が0.8以下、d(0.1)が0.2であった。上記炭素粒子を炭酸ガスを2L/分で流通した管状炉内に2時間導入することで活性炭を得た。得られた活性炭の比表面積は1856m/gであった。 Moreover, the BET specific surface area by a nitrogen adsorption method is 23 m < 2 > / g, The upper limit of the frequency curve (Volume-under curve derivative) evaluated with the laser diffraction / scattering apparatus is 4.2 micrometers, d (0.9) Was 3.8, d (0.5) was 0.8 or less, and d (0.1) was 0.2. Activated carbon was obtained by introducing the carbon particles into a tubular furnace in which carbon dioxide gas was circulated at 2 L / min for 2 hours. The specific surface area of the obtained activated carbon was 1856 m 2 / g.

[比較例1]
炭素粒子の原料としてメソフェーズピッチAR−MP(三菱ガス化学(株)製)を乳鉢で粉砕した後、篩により300μm未満のAR−MPの粒子を得た。この粒子10重量部を500ccのステンレス容器に10mmのジルコニアボール50重量部と共に仕込み、200rpmで15分遊星ボールミル装置を用い粉砕処理を施した。得られた炭素粒子を空気中200℃まで1時間で昇温した後、200℃から400℃まで3時間で昇温することで400℃焼成炭を得た。得られた焼成炭の窒素吸着法によるBET比表面積は0.3m/gであった。また、レーザー回折・散乱装置を用い、この炭素粒子の測定を実施したところ、頻度曲線(volume−under曲線の微分)の上限が154μmであり、d(0.9)が122、d(0.5)が56以下、d(0.1)が7であった。上記炭素粒子を炭酸ガス2L/分で流通した管状炉内に6時間導入することで活性炭を得た。得られた活性炭の比表面積は168m/gであった。
[Comparative Example 1]
After pulverizing mesophase pitch AR-MP (manufactured by Mitsubishi Gas Chemical Co., Inc.) as a raw material for carbon particles with a mortar, AR-MP particles of less than 300 μm were obtained with a sieve. 10 parts by weight of these particles were charged in a 500 cc stainless steel container together with 50 parts by weight of 10 mm zirconia balls, and pulverized using a planetary ball mill apparatus at 200 rpm for 15 minutes. The obtained carbon particles were heated in air to 200 ° C. over 1 hour, and then heated from 200 ° C. to 400 ° C. over 3 hours to obtain 400 ° C. calcined charcoal. The resulting calcined charcoal had a BET specific surface area of 0.3 m 2 / g as determined by the nitrogen adsorption method. Further, when the carbon particles were measured using a laser diffraction / scattering apparatus, the upper limit of the frequency curve (derivation of the volume-under curve) was 154 μm, d (0.9) was 122, and d (0. 5) was 56 or less, and d (0.1) was 7. Activated carbon was obtained by introducing the carbon particles into a tubular furnace which was circulated at 2 L / min of carbon dioxide gas for 6 hours. The specific surface area of the obtained activated carbon was 168 m 2 / g.

実施例2の操作によって得られたカーボンナノファイバー(粉末状)の電子顕微鏡写真図(撮影倍率5000倍)である。3 is an electron micrograph (photographing magnification: 5000 times) of carbon nanofibers (powder) obtained by the operation of Example 2. FIG.

Claims (4)

比表面積5〜50m/gの範囲にある易黒鉛化性炭素の集合体を賦活処理することによって得る、比表面積1200〜2500m/gである、電気二重層キャパシタの活物質に好的に用いられる活性炭の製造方法。 Obtained by activation treatment of the aggregate of the graphitizable carbon is in a range of specific surface area 5 to 50 m 2 / g, a specific surface area 1200~2500m 2 / g, good to the active material of the electric double layer capacitor Method for producing activated carbon used. レーザー回折散乱法で評価した易黒鉛化性炭素の集合体が、下記要件(A)および(B)を同時に満足する請求項1記載の活性炭の製造方法。
(A)頻度曲線(volume−under曲線の微分)の上限が5μm以下であること。
(B)d(0.9)が4以下、d(0.5)が2以下、d(0.1)が0.1以上を同時に満足すること。
[ここで、d(0.9)はこれ以下の粒子の比率が90%である粒径をμmで表した数字、d(0.5)は粒子の50%がこれより大きく、50%がこれより小さいという粒径をμmで表した数字、d(0.1)はこれ以下の粒子の比率が90%である粒径をμmで表した数字を指す。]
The method for producing activated carbon according to claim 1, wherein the aggregate of graphitizable carbon evaluated by a laser diffraction scattering method satisfies the following requirements (A) and (B) simultaneously.
(A) The upper limit of the frequency curve (the derivative of the volume-under curve) is 5 μm or less.
(B) d (0.9) is 4 or less, d (0.5) is 2 or less, and d (0.1) is 0.1 or more at the same time.
[Where d (0.9) is a numerical value in μm of the particle size at which the ratio of particles below 90% is expressed, and d (0.5) is 50% larger than 50% of the particles, The number of particles smaller than this is expressed in μm, and d (0.1) indicates the number of particles whose particle ratio is 90% or less, expressed in μm. ]
易黒鉛化性炭素が繊維状である請求項1記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the graphitizable carbon is fibrous. 賦活処理が酸化性ガスで実施される請求項1記載の活性炭の製造方法。   The method for producing activated carbon according to claim 1, wherein the activation treatment is performed with an oxidizing gas.
JP2006097412A 2006-03-31 2006-03-31 Method of manufacturing activated carbon Pending JP2007269553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006097412A JP2007269553A (en) 2006-03-31 2006-03-31 Method of manufacturing activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006097412A JP2007269553A (en) 2006-03-31 2006-03-31 Method of manufacturing activated carbon

Publications (1)

Publication Number Publication Date
JP2007269553A true JP2007269553A (en) 2007-10-18

Family

ID=38672731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006097412A Pending JP2007269553A (en) 2006-03-31 2006-03-31 Method of manufacturing activated carbon

Country Status (1)

Country Link
JP (1) JP2007269553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245482A (en) * 2009-04-10 2010-10-28 Jx Nippon Oil & Energy Corp Carbon material for use of electric double-layer capacitor electrode and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245482A (en) * 2009-04-10 2010-10-28 Jx Nippon Oil & Energy Corp Carbon material for use of electric double-layer capacitor electrode and method for producing same

Similar Documents

Publication Publication Date Title
JP4432493B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
JP6523484B2 (en) Composite core-shell particles
JP7075346B2 (en) Manufacture of Si / C composite particles
WO2016009938A1 (en) Electrode material and a lithium-ion battery or lithium ion capacitor using same
KR101907912B1 (en) SiOx-FULLERENE COMPOSITE, METHOD AND APPARATUS FOR MANUFACTURING THE SAME, AND THE USE OF THE SAME
CA2990347A1 (en) Carbonaceous composite materials with snowball-like morphology
JP6906891B2 (en) Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries
JP6981203B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
KR101907916B1 (en) APPARATUS AND METHOD FOR CAPTURING SiOx
JP2011046584A (en) Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
JP2006324183A (en) Carbon particle, activated carbon particle, and their manufacturing method
JP2002104817A (en) Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JPH09147860A (en) Negative electrode material for lithium ion secondary battery
JP2013108186A (en) Modified carbon fiber and negative electrode for battery
TWI751290B (en) Carbonaceous material and its manufacturing method, and electrode material for electric double layer capacitor, electrode for electric double layer capacitor and electric double layer capacitor containing the carbon material
JP5071106B2 (en) Carbon material production method and alkali activation device
JP2007269552A (en) Activated carbon and method of manufacturing the same
JP2007269553A (en) Method of manufacturing activated carbon
JP6738202B2 (en) Ultrafine carbon fiber manufacturing method
JP5573404B2 (en) Method for producing activated carbon for electric double layer capacitor electrode
US11390524B2 (en) Carbon powders and methods of making same
US20200106124A1 (en) Anode Active Materials for Lithium-ion Batteries
JP2017062898A (en) Carbon material, and nonaqueous secondary battery
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JP2013193886A (en) Composite carbon material, method of producing the same, and negative electrode using the same, and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321