JP2007268777A - Manufacturing method of molded object by injection molding - Google Patents

Manufacturing method of molded object by injection molding Download PDF

Info

Publication number
JP2007268777A
JP2007268777A JP2006095417A JP2006095417A JP2007268777A JP 2007268777 A JP2007268777 A JP 2007268777A JP 2006095417 A JP2006095417 A JP 2006095417A JP 2006095417 A JP2006095417 A JP 2006095417A JP 2007268777 A JP2007268777 A JP 2007268777A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
polyethylene
polyethylene wax
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006095417A
Other languages
Japanese (ja)
Inventor
Motoyasu Yasui
基泰 安井
Kuniaki Kawabe
邦昭 川辺
Hirotaka Uosaki
浩隆 宇於崎
Hideo Nakamura
英夫 中村
Yasushi Amada
康 尼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006095417A priority Critical patent/JP2007268777A/en
Priority to EP07738520A priority patent/EP2002955A4/en
Priority to PCT/JP2007/055049 priority patent/WO2007114009A1/en
Priority to TW096110804A priority patent/TWI349610B/en
Publication of JP2007268777A publication Critical patent/JP2007268777A/en
Pending legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection molding method of polyethylene capable of preventing the scorching of a resin and capable of shortening the cooling time after injection. <P>SOLUTION: The injection molding method of polyethylene is characterized by injection-molding a mixture containing polyethylene with a density of 900-below 940(kg/m<SP>3</SP>) and an MI of 0.01-100 g/10 min and polyethylene wax of which the density is 890-980(kg/m<SP>3</SP>) and a number average molecular weight (Mn) in terms of polyethylene measured by gel permeation chromatography (GPC) is 500-4,000 and which satisfies the relation of formula (I): B≤0.0075×K [wherein B is the content ratio (wt.%) of the component, of which the molecular weight measured by GPC in terms of polyethylene is 20,000 or above in polyethylene wax and K is the melt viscosity (mPa s) of polyethylene wax at 140°C]. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は射出成形により成形体を製造する方法に関し、より詳細には、特定の密度範囲のポリエチレンと特定のポリエチレンワックスとを原料とし、射出成形により成形体を製造する方法に関する。   The present invention relates to a method for producing a molded body by injection molding, and more particularly, to a method for producing a molded body by injection molding using polyethylene in a specific density range and a specific polyethylene wax as raw materials.

ポリエチレンなどの熱可塑性樹脂は、加熱により可塑化して流動性を有する樹脂であり、様々な成形方法により各種成形品が製造されている。このとき、熱可塑性樹脂を射出成形する場合、ショートショットを防止するために、熱可塑性樹脂に充分な流動性を付与する必要がある。熱可塑性樹脂に充分な流動性を付与する方法として、熱可塑性樹脂に可塑剤や滑剤を添加して射出成形する方法が知られている。例えば、成形する熱可塑性樹脂に対して、オイル、ポリエチレンワックス等の成形助剤を適用して成形する方法が検討されている(例えば、特許文献1、および2)。しかしながら、従来の成形助剤を用い、ポリエチレン等の熱可塑性樹脂を射出成形したとしても、成形性自体は改善される傾向にあるものの、得られる成形体の物性、例えば機械強度や耐熱性が低下するという問題点があった。   Thermoplastic resins such as polyethylene are plastics that are plasticized by heating and have fluidity, and various molded products are produced by various molding methods. At this time, when injection molding a thermoplastic resin, it is necessary to impart sufficient fluidity to the thermoplastic resin in order to prevent short shots. As a method of imparting sufficient fluidity to a thermoplastic resin, a method of injection molding by adding a plasticizer or a lubricant to the thermoplastic resin is known. For example, a method of molding by applying a molding aid such as oil or polyethylene wax to a thermoplastic resin to be molded has been studied (for example, Patent Documents 1 and 2). However, even if a thermoplastic resin such as polyethylene is injection molded using conventional molding aids, the molding properties themselves tend to improve, but the physical properties of the resulting molded product, such as mechanical strength and heat resistance, are reduced. There was a problem of doing.

一方、可塑剤や滑剤を添加しない方法としては、成形温度を高くして充分に熱可塑性樹脂を可塑化し、この状態で射出成形する方法が知られている。ところが、この方法では、成形温度を高くするために樹脂の焼き焦げや加熱による劣化等の問題があった。また、連続して射出成形する場合、金型を冷却する必要があるが、成形温度を高くすると冷却に時間がかかり、生産性が低下するという問題もあった。このため、従来は、冷却時間を短縮するために冷却装置の能力を増大させるなどの方法が採られていたが、新たな設備投資が必要となり、経済的に好ましくない。
特公平5−80492号公報 特表2003−528948号公報
On the other hand, as a method without adding a plasticizer or a lubricant, a method is known in which the molding temperature is raised to sufficiently plasticize the thermoplastic resin and injection molding is performed in this state. However, this method has problems such as burning of the resin and deterioration due to heating in order to increase the molding temperature. Further, in the case of continuous injection molding, it is necessary to cool the mold. However, if the molding temperature is raised, there is a problem that it takes time for cooling and productivity is lowered. For this reason, conventionally, in order to shorten the cooling time, a method such as increasing the capacity of the cooling device has been adopted, but a new capital investment is required, which is not economically preferable.
Japanese Patent Publication No. 5-80492 Special table 2003-528948 gazette

本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、ポリエチレンの射出成形において、樹脂の焼き焦げを防止し、かつ、射出後の冷却時間を短縮することができるポリエチレンの射出成形方法を提供することを目的としている。   The present invention is intended to solve the problems associated with the prior art as described above, and can prevent burning of the resin and shorten the cooling time after injection in polyethylene injection molding. It aims at providing the injection molding method of polyethylene.

本発明者は、上記問題点を解決すべく鋭意研究した結果、特定の密度範囲のポリエチレンと特定のポリエチレンワックスとを原料として射出成形すると、従来よりも低い成形温度で射出成形できるとともに、滑剤等の可塑化剤を使用しない成形品と同等の物性を有する成形品が得られることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventor can perform injection molding at a molding temperature lower than that of a conventional material when injection molding is performed using polyethylene of a specific density range and a specific polyethylene wax as raw materials, and a lubricant or the like. The present inventors have found that a molded product having physical properties equivalent to that of a molded product not using the plasticizer is obtained, and the present invention has been completed.

すなわち、本発明に係る射出成形方法は、JIS K7112の密度勾配管法に従って測定した密度が900(kg/m3)以上940(kg/m3)未満の範囲にあり、JIS
K7210に従って190℃、試験荷重21.18Nの条件で測定したMIが0.01〜100g/10分の範囲であるポリエチレンと、JIS K7112の密度勾配管法に従って測定した密度が890〜980(kg/m3)の範囲にあり、ゲルパーミエーショ
ンクロマトグラフィー(GPC)で測定したポリエチレン換算の数平均分子量(Mn)が500〜4,000の範囲にあり、かつ下記式(I)で表される関係を満たすポリエチレ
ンワックスとを含む混合物を、射出成形することを特徴とする。
B≦0.0075×K ・・・(I)
(上記式(I)中、Bは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が20,000以上となる成分の含有割合(重量%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
また、上記ポリエチレンワックスは、さらに下記式(II)で表される関係を満たすことが好ましい。
A≦230×K(-0.537) ・・・(II)
(上記式(II)中、Aは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が1,000以下となる成分の含有割合(重量%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
That is, in the injection molding method according to the present invention, the density measured according to the density gradient tube method of JIS K7112 is in the range of 900 (kg / m 3 ) or more and less than 940 (kg / m 3 ).
According to K7210, polyethylene having an MI measured in the range of 0.01 to 100 g / 10 min at 190 ° C. under a test load of 21.18 N, and a density measured according to the density gradient tube method of JIS K7112 is 890 to 980 (kg / m 3 ), the number average molecular weight (Mn) in terms of polyethylene measured by gel permeation chromatography (GPC) is in the range of 500 to 4,000, and is represented by the following formula (I) It is characterized by injection-molding a mixture containing polyethylene wax satisfying the above.
B ≦ 0.0075 × K (I)
(In the above formula (I), B is a content ratio (% by weight) of a component having a polyethylene conversion molecular weight of 20,000 or more in the polyethylene wax when measured by gel permeation chromatography, and K Is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)
The polyethylene wax preferably further satisfies the relationship represented by the following formula (II).
A ≦ 230 × K (-0.537) (II)
(In the above formula (II), A is a content ratio (% by weight) of a component in which the molecular weight in terms of polyethylene in the polyethylene wax is 1,000 or less when measured by gel permeation chromatography, and K Is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)

本発明によると、ポリエチレンワックスを添加することにより、ポリエチレンの流動性を低温でも確保することができる。その結果、低い温度での射出成形が可能となり、射出成形時の樹脂の焼け焦げを防止することができる。さらに、ポリエチレンワックスを含まない場合に比べて低い成形温度でも充分な流動性を有することから、金型の細部にまで充分に樹脂を充填することができ、ショートショットを防止することもできる。また、得られる成形品も特性の低下が見られない。さらに、成形温度が低いため、金型冷却時間を短縮することができ、成形サイクルの増加が可能となり、既存設備での生産性向上を図ることができる。   According to the present invention, by adding polyethylene wax, the fluidity of polyethylene can be ensured even at low temperatures. As a result, it is possible to perform injection molding at a low temperature and prevent scorching of the resin during injection molding. Furthermore, since it has sufficient fluidity even at a molding temperature lower than that in the case of not containing polyethylene wax, the resin can be sufficiently filled to the details of the mold, and short shots can be prevented. In addition, the obtained molded product does not show deterioration in characteristics. Furthermore, since the molding temperature is low, the mold cooling time can be shortened, the molding cycle can be increased, and productivity in existing facilities can be improved.

以下、本発明を詳細に説明する。
まず本発明の射出成形に用いる原料について説明する。
〔ポリエチレン〕
本発明において、ポリエチレンとは、JIS K7210に従って190℃、試験荷重21.18Nの条件で測定したMIが0.01〜100g/10分の範囲であるエチレンの単独重合体またはエチレンと少量のα−オレフィンとの共重合体、またはそれらのブレンド物をいう。
Hereinafter, the present invention will be described in detail.
First, raw materials used in the injection molding of the present invention will be described.
〔polyethylene〕
In the present invention, polyethylene means a homopolymer of ethylene or ethylene and a small amount of α-, having an MI measured in the range of 0.01 to 100 g / 10 min at 190 ° C. and a test load of 21.18 N according to JIS K7210. A copolymer with olefin or a blend thereof.

本発明で用いるポリエチレンとしては、密度が900(kg/m3)以上940(kg
/m3)未満の範囲である限り特に制限はない。具体的には、低密度ポリエチレン、中密
度ポリエチレン、直鎖線状低密度ポリエチレン、超低密度ポリエチレン、あるいはそのブレンド物を挙げられる。
The polyethylene used in the present invention has a density of 900 (kg / m 3 ) or more and 940 (kg
/ M 3 ) as long as it is less than the range. Specific examples include low density polyethylene, medium density polyethylene, linear linear low density polyethylene, ultra-low density polyethylene, or blends thereof.

本発明において、ポリエチレンのMI及び密度の測定条件は以下の通りである。
(MI)
JIS K7210に従って190℃、試験荷重21.18Nの条件で測定した。
In the present invention, the measurement conditions for the MI and density of polyethylene are as follows.
(MI)
The measurement was performed in accordance with JIS K7210 at 190 ° C. and a test load of 21.18 N.

(密度)
JIS K7112の密度勾配管法に従って測定した。
また上述のように、上記ポリエチレンの密度は900(kg/m3)以上940(kg
/m3)未満の範囲であるが、好ましくは900〜930(kg/m3)の範囲である。
(density)
It was measured according to the density gradient tube method of JIS K7112.
As described above, the polyethylene has a density of 900 (kg / m 3 ) or more and 940 (kg
/ M 3) is in the range of less than, but preferably in the range of 900~930 (kg / m 3).

ポリエチレンの密度が上記範囲にある場合には、得られる成形体の風合い、剛性、衝撃性、耐薬品性に優れる。
また、上記ポリエチレンのMIとしては0.1〜30.0g/10minの範囲が好ましく、0.5〜15.0g/10minの範囲がより好ましい。ポリエチレンのMIが上
記範囲にある場合には、成形加工性と機械強度のバランスに優れるとともに、風合い、剛性、衝撃性、耐薬品性に優れた成形体を得ることができる。
When the density of polyethylene is in the above range, the resulting molded article is excellent in texture, rigidity, impact resistance, and chemical resistance.
Moreover, as MI of the said polyethylene, the range of 0.1-30.0 g / 10min is preferable, and the range of 0.5-15.0 g / 10min is more preferable. When the MI of polyethylene is in the above range, it is possible to obtain a molded article having an excellent balance of molding processability and mechanical strength, and excellent texture, rigidity, impact resistance and chemical resistance.

上記ポリエチレンの形状は、特に制限はないが、通常は、ペレット状またはタブレット状の粒子である。
〔ポリエチレンワックス〕
本発明でポリエチレンワックスとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリエチレン換算の数平均分子量(Mn)が500〜4,000の範囲に
あるエチレンの単独重合体またはエチレンと少量のα−オレフィンとの共重合体、またはそれらのブレンド物をいう。上記ポリエチレンワックスのポリエチレン換算の数平均分子量(Mn)は、以下の条件でゲルパーミエーションクロマトグラフィー(GPC)測定から求めたものである。
The shape of the polyethylene is not particularly limited, but is usually pellet-shaped or tablet-shaped particles.
[Polyethylene wax]
In the present invention, the polyethylene wax means a homopolymer of ethylene or ethylene and a small amount of α- in which the number average molecular weight (Mn) in terms of polyethylene measured by gel permeation chromatography (GPC) is in the range of 500 to 4,000. A copolymer with olefin or a blend thereof. The polyethylene-converted number average molecular weight (Mn) of the polyethylene wax is determined from gel permeation chromatography (GPC) measurement under the following conditions.

(数平均分子量(Mn))
数平均分子量は、GPC測定から求めた。測定は以下の条件で行った。また、数平均分子量は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求めた。
装置 : ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
溶剤 : o−ジクロロベンゼン
カラム: TSKgelカラム(東ソー社製)×4
流速 : 1.0 ml/分
試料 : 0.15mg/mL o−ジクロロベンゼン溶液
温度 : 140℃
分子量換算 : PE換算/汎用較正法
(Number average molecular weight (Mn))
The number average molecular weight was determined from GPC measurement. The measurement was performed under the following conditions. The number average molecular weight was determined based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene.
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution temperature: 140 ° C.
Molecular weight conversion: PE conversion / General calibration method

なお、汎用較正の計算には、以下に示すMark−Houwink粘度式の係数を用いた。
ポリスチレン(PS)の係数 : KPS=1.38×10-4, aPS=0.70
ポリエチレン(PE)の係数 : KPE=5.06×10-4, aPE=0.70
本発明で用いるポリエチレンワックスは、密度が890〜980(kg/m3)の範囲
にある。上記ポリエチレンワックスの密度は、JISK7112の密度勾配管法で測定した値である。
In addition, the coefficient of the Mark-Houwink viscosity formula shown below was used for calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Coefficient of polyethylene (PE): KPE = 0.06 × 10 −4 , aPE = 0.70
The polyethylene wax used in the present invention has a density in the range of 890 to 980 (kg / m 3 ). The density of the polyethylene wax is a value measured by the density gradient tube method of JISK7112.

本発明のポリエチレンワックスはその分子量と、溶融粘度との間に下記式(I)で示さ
れる特定の関係がある点に特徴がある。
B≦0.0075×K ・・・(I)
ここで上記式(I)中、Bは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が20,000以上となる成分の重量基準での含有割合(重量%)である。また、Kはブルックフィールド(B型)粘度計で測定した上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。
The polyethylene wax of the present invention is characterized in that there is a specific relationship represented by the following formula (I) between its molecular weight and melt viscosity.
B ≦ 0.0075 × K (I)
Here, in the above formula (I), B is a content ratio (weight%) of a component having a polyethylene conversion molecular weight of 20,000 or more in the polyethylene wax when measured by gel permeation chromatography. ). K is the melt viscosity (mPa · s) at 140 ° C. of the polyethylene wax measured with a Brookfield (B type) viscometer.

上記(I)式の条件を満たすポリエチレンワックスは、ポリエチレンに対して良好な分散性を示す。このようなポリエチレンワックスを用いると、ポリエチレンワックスを添加しない場合に比べて、流動性が改良され、低い成形温度で射出成形しても、同程度の機械的物性を有する射出成形体が得られ、ワックス添加による機械的物性の低下を抑制することができる。また、この射出成形体は金型離型性に優れ、金型汚れを防止することができる。さらに、低い成形温度での射出成形が可能であるため、冷却時間が短縮され、成形サイクルが向上する。さらに、成形温度を低くすることにより、樹脂の熱劣化を抑制し、樹
脂強度の低下を抑制するだけでなく、樹脂の焼け焦げや黒点を抑制することができる。
The polyethylene wax that satisfies the above formula (I) exhibits good dispersibility with respect to polyethylene. When such a polyethylene wax is used, the fluidity is improved as compared with the case where no polyethylene wax is added, and an injection-molded body having the same mechanical properties can be obtained even by injection molding at a low molding temperature. A decrease in mechanical properties due to the addition of wax can be suppressed. In addition, this injection-molded body is excellent in mold releasability and can prevent mold contamination. Further, since injection molding at a low molding temperature is possible, the cooling time is shortened and the molding cycle is improved. Furthermore, by lowering the molding temperature, it is possible not only to suppress the thermal deterioration of the resin and the resin strength, but also to suppress the scorching and black spots of the resin.

従来、ポリエチレンに溶融粘度が低いポリエチレンワックスを混合して、射出成形をすると、混合物全体の粘度が低下するため、ポリエチレンワックスを添加しない場合に比べて、流動性は改良される傾向にあるが、得られる成形体の金型離型性は低下する傾向にあり、また、機械的物性も必ずしも十分でない場合があった。   Conventionally, when polyethylene wax having a low melt viscosity is mixed with polyethylene and injection molding is performed, the viscosity of the entire mixture is lowered, so that the fluidity tends to be improved as compared with the case where polyethylene wax is not added. The mold releasability of the obtained molded product tends to decrease, and the mechanical properties are not always sufficient.

本発明者らが検討した結果、射出成形で得られる成形体の機械的物性では、使用するポリエチレンワックスのうち、分子量が20,000以上の成分の割合が溶融粘度との関係で極めて重要であることが分かった。その詳細なメカニズムは明らかではないが、成形体中でのポリエチレンワックスとポリエチレンとの溶融混練する場合に、ポリエチレンワックス全体の中でも、分子量20,000以上の成分は、その溶融挙動がワックス全体の中でも特異的であり、ポリエチレンワックス全体の溶融粘度という観点から見て、分子量20,000以上の成分一定割合以下としないと、ポリエチレンワックスがポリエチレンに対して良好に分散することができず、最終的な成形体の機械的物性や金型離型性にも影響を与えるものと推定される。   As a result of investigation by the present inventors, in the mechanical properties of the molded product obtained by injection molding, the proportion of the component having a molecular weight of 20,000 or more in the polyethylene wax used is extremely important in relation to the melt viscosity. I understood that. Although the detailed mechanism is not clear, when the polyethylene wax and polyethylene are melt-kneaded in the molded body, among the whole polyethylene wax, the component having a molecular weight of 20,000 or more has a melting behavior even in the whole wax. From the viewpoint of the specific melt viscosity of the entire polyethylene wax, the polyethylene wax cannot be dispersed well in the polyethylene unless the molecular weight is 20,000 or more. It is presumed to affect the mechanical properties and mold releasability of the molded body.

B値が上記範囲のポリエチレンワックスは、メタロセン触媒を用いて調製できる。メタロセン触媒の中でも、配位子が非架橋であるメタロセン触媒が好ましい。このようなメタロセン触媒としては、後述する一般式(1)で表されるメタロセン化合物を例示できる。   A polyethylene wax having a B value in the above range can be prepared using a metallocene catalyst. Among the metallocene catalysts, metallocene catalysts whose ligands are non-crosslinked are preferable. As such a metallocene catalyst, a metallocene compound represented by the general formula (1) described later can be exemplified.

さらに、上記B値は重合温度によっても制御できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述したB値を有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。   Further, the B value can be controlled by the polymerization temperature. For example, when a polyethylene wax is produced by a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing the polyethylene wax having the B value described above, the polymerization temperature is preferably Is in the range of 100 to 180 ° C, more preferably in the range of 100 to 170 ° C.

本発明のポリエチレンワックスはその分子量と、溶融粘度との間にさらに、下記式(II)で示される特定の関係があることが好ましい。
A≦230×K(-0.537) ・・・(II)
ここで上記式(II)中、Aは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が1,000以下となる成分の重量基準での含有割合(重量%)である。また、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。
The polyethylene wax of the present invention preferably further has a specific relationship represented by the following formula (II) between its molecular weight and melt viscosity.
A ≦ 230 × K (-0.537) (II)
Here, in the above formula (II), A is the content ratio (weight%) of the component whose molecular weight in terms of polyethylene in the polyethylene wax is 1,000 or less when measured by gel permeation chromatography. ). K is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.

上記(II)式の条件を満たすポリエチレンワックスを用いた成形体では、ポリエチレンワックスを添加しない場合と同程度の機械的物性を有する傾向にあり、しかも成形体表面からのブリードアウトも少なくなる傾向にある。また、この射出成形体は金型離型性に優れ、金型汚れを防止することができる。さらに、低い成形温度での射出成形が可能であるため、冷却時間が短縮され、成形サイクルが向上する。さらに、成形温度を低くすることにより、樹脂の熱劣化を抑制し、樹脂強度の低下を抑制するだけでなく、樹脂の焼け焦げや黒点を抑制することができる。   Molded articles using polyethylene wax that satisfies the above formula (II) tend to have the same mechanical properties as when polyethylene wax is not added, and the bleed-out from the molded article surface tends to decrease. is there. In addition, this injection-molded body is excellent in mold releasability and can prevent mold contamination. Further, since injection molding at a low molding temperature is possible, the cooling time is shortened and the molding cycle is improved. Furthermore, by lowering the molding temperature, it is possible not only to suppress the thermal deterioration of the resin and the resin strength, but also to suppress the scorching and black spots of the resin.

前述のように、従来、ポリエチレンに溶融粘度が低いポリエチレンワックスを適用して、射出成形をすると、混合物全体の粘度が低下するため、ポリエチレンワックスを添加しない場合に比べて、流動性が改良される傾向にあるが、得られる成形体の金型離型性は低下する傾向にあり、また、機械的物性が損なわれる場合があり、しかも成形体表面からのブリードアウトも問題となる場合があった。   As described above, conventionally, when polyethylene wax having a low melt viscosity is applied to polyethylene and injection molding is performed, the viscosity of the entire mixture is lowered, so that fluidity is improved as compared with the case where polyethylene wax is not added. Although there is a tendency, the mold releasability of the resulting molded product tends to decrease, the mechanical properties may be impaired, and bleeding out from the surface of the molded product may also be a problem. .

本発明者らが検討した結果、射出成形で得られるの成形体の機械的物性には、使用する
ポリエチレンワックスのうち、分子量が1,000以下の成分の割合が溶融粘度との関係で極めて重要であることが分かった。その詳細なメカニズムは明らかではないが、成形体中でのポリエチレンワックスとポリエチレンとの溶融混練する場合に、ポリエチレンワックス全体の中でも、分子量1,000以下の成分は、溶融しやすくその溶融挙動がワックス全体の中でも特異的であり、ポリエチレンワックス全体の溶融粘度という観点から見て、分子量1,000以下の成分一定割合以下としないと、表面へ染み出し、場合によっては劣化等を引き起こし最終的な成形体の機械的物性、ブリードアウトにも影響を与えるものと推定される。
As a result of the study by the present inventors, the ratio of the component having a molecular weight of 1,000 or less in the polyethylene wax used is extremely important for the mechanical properties of the molded product obtained by injection molding in relation to the melt viscosity. It turns out that. Although the detailed mechanism is not clear, when polyethylene wax and polyethylene are melt-kneaded in a molded product, components having a molecular weight of 1,000 or less are easily melted in the whole polyethylene wax, and the melting behavior thereof is wax. From the viewpoint of the melt viscosity of polyethylene wax as a whole, if it is not less than a certain proportion of components with a molecular weight of 1,000 or less, it will ooze out to the surface, possibly causing deterioration, etc. It is presumed to affect the mechanical properties and bleed out of the body.

A値が上記範囲のポリエチレンワックスは、メタロセン触媒を用いて調製できる。メタロセン触媒の中でも、配位子が非架橋であるメタロセン触媒が好ましい。このようなメタロセン触媒としては、後述する一般式(1)で表されるメタロセン化合物を例示できる。   A polyethylene wax having an A value in the above range can be prepared using a metallocene catalyst. Among the metallocene catalysts, metallocene catalysts whose ligands are non-crosslinked are preferable. As such a metallocene catalyst, a metallocene compound represented by the general formula (1) described later can be exemplified.

さらに、上記A値は重合温度によっても制御できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述したA値を有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。   Furthermore, the A value can be controlled by the polymerization temperature. For example, when a polyethylene wax is produced with a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing the polyethylene wax having the A value described above, the polymerization temperature is preferably Is in the range of 100 to 180 ° C, more preferably in the range of 100 to 170 ° C.

上記ポリエチレンワックスの数平均分子量(Mn)は、500〜4,000の範囲であ
り、1,000〜3,800の範囲が好ましく、2,000〜3,500の範囲が特に好ましい。ポリエチレンワックスの数平均分子量(Mn)が上記範囲にあると、ポリエチレンに対するポリエチレンワックスの分散がより良好となる傾向にある。
The polyethylene wax has a number average molecular weight (Mn) in the range of 500 to 4,000, preferably in the range of 1,000 to 3,800, and particularly preferably in the range of 2,000 to 3,500. When the number average molecular weight (Mn) of the polyethylene wax is in the above range, the dispersion of the polyethylene wax in the polyethylene tends to be better.

ポリエチレンワックスのMnは、重合温度などにより制御できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述した好適範囲のMnを有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。   Mn of the polyethylene wax can be controlled by the polymerization temperature or the like. For example, when a polyethylene wax is produced with a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing a polyethylene wax having the above-mentioned preferred range of Mn, the polymerization temperature is , Preferably, it is the range of 100-180 degreeC, More preferably, it is the range of 100-170 degreeC.

また、ポリエチレンワックスの密度(D(kg/m3))は890〜980(kg/m3)の範囲であり、895〜960(kg/m3)の範囲が好ましく、900〜940(k
g/m3)の範囲がより好ましい。ポリエチレンワックスの密度(D)が上記範囲にある
と、ポリエチレンに対するポリエチレンワックスの分散がより良好となる傾向にある。
The density of the polyethylene wax (D (kg / m 3) ) is in the range of 890~980 (kg / m 3), preferably in the range of 895~960 (kg / m 3), 900~940 (k
The range of g / m 3 ) is more preferred. When the density (D) of the polyethylene wax is within the above range, the dispersion of the polyethylene wax in the polyethylene tends to be better.

ポリエチレンワックスの密度は、ポリエチレンワックスがエチレンの単独重合体である場合には、ポリエチレンワックスの数平均分子量(Mn)に依存する。例えば、ポリエチレンワックスの分子量を低くすれば、得られる重合体の密度を低く制御できる。ポリエチレンワックスがエチレンとα−オレフィンとの共重合体である場合には、ポリエチレンワックスの密度は、数平均分子量(Mn)の大きさに依存するとともに、重合時のエチレンに対するα−オレフィンの使用量、およびその種類により制御できる。例えば、エチレンに対するα−オレフィンの使用量を増加すると、得られる重合体の密度を低くできる。   The density of the polyethylene wax depends on the number average molecular weight (Mn) of the polyethylene wax when the polyethylene wax is a homopolymer of ethylene. For example, if the molecular weight of polyethylene wax is lowered, the density of the resulting polymer can be controlled low. When the polyethylene wax is a copolymer of ethylene and α-olefin, the density of the polyethylene wax depends on the number average molecular weight (Mn), and the amount of α-olefin used for ethylene during polymerization. , And its type. For example, when the amount of α-olefin used relative to ethylene is increased, the density of the resulting polymer can be lowered.

ポリエチレンワックスの密度の観点からは、エチレン単独共重合体、エチレンと炭素数3〜20のα−オレフィンとの共重合体、またはこれらの混合物が好ましい。
上記エチレンと炭素数3〜20のα−オレフィンとの共重合体の製造に使用するα−オレフィンとしては、炭素数が3〜10のα−オレフィンが好ましく、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンがより好ましく、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテンが特に好ましい。
From the viewpoint of the density of the polyethylene wax, an ethylene homopolymer, a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, or a mixture thereof is preferable.
The α-olefin used for producing the copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms is preferably an α-olefin having 3 to 10 carbon atoms, and propylene, 1-butene, 1-pentene. 1-hexene, 4-methyl-1-pentene and 1-octene are more preferable, and propylene, 1-butene, 1-hexene and 4-methyl-1-pentene are particularly preferable.

上記エチレンとα−オレフィンとの共重合体の製造に使用するα−オレフィンは、使用する全単量体に対して0〜20mol%の範囲にあることが好ましい。
また、ポリエチレンワックスの密度は、重合温度によっても制御できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述した好適範囲の密度を有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。
It is preferable that the α-olefin used in the production of the copolymer of ethylene and α-olefin is in the range of 0 to 20 mol% with respect to all monomers used.
The density of the polyethylene wax can also be controlled by the polymerization temperature. For example, when a polyethylene wax is produced by a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing a polyethylene wax having a density in the preferred range described above, the polymerization temperature is , Preferably, it is the range of 100-180 degreeC, More preferably, it is the range of 100-170 degreeC.

このようなポリエチレンワックスは、常温で固体であり、65〜130℃で低粘度の液体となる。
さらに上記ポリエチレンワックスは、示差走査熱量計(DSC)で測定した上記結晶化温度〔Tc(℃)〕と、上記密度勾配法で測定した密度(D(kg/m3))とが、好ま
しくは下記式(III)
0.501×D−366 ≧ Tc …(III)
より好ましくは、下記式(IIIa)
0.501×D−366.5 ≧ Tc …(IIIa)
さらに好ましくは、下記式(IIIb)
0.501×D−367 ≧ Tc …(IIIb)
の関係を満たす。
Such polyethylene wax is solid at normal temperature and becomes a low-viscosity liquid at 65 to 130 ° C.
Further, the polyethylene wax preferably has the crystallization temperature [Tc (° C.)] measured by a differential scanning calorimeter (DSC) and the density (D (kg / m 3 )) measured by the density gradient method. Formula (III) below
0.501 × D-366 ≧ Tc (III)
More preferably, the following formula (IIIa)
0.501 × D-366.5 ≧ Tc (IIIa)
More preferably, the following formula (IIIb)
0.501 × D-367 ≧ Tc (IIIb)
Satisfy the relationship.

ポリエチレンワックスにおいて結晶化温度(Tc)と密度(D)とが上記式の関係を満たしている場合には、ポリエチレンに対するポリエチレンワックスの分散性が良好となる傾向にある。   When the crystallization temperature (Tc) and the density (D) in the polyethylene wax satisfy the relationship of the above formula, the dispersibility of the polyethylene wax in polyethylene tends to be good.

上記式の関係を満たすポリエチレンワックスは、メタロセン触媒を用いて調製できる。メタロセン触媒の中でも、配位子が非架橋であるメタロセン触媒が好ましい。このようなメタロセン触媒としては、後述する一般式(1)で表されるメタロセン化合物が例示できる。   A polyethylene wax that satisfies the relationship of the above formula can be prepared using a metallocene catalyst. Among the metallocene catalysts, metallocene catalysts whose ligands are non-crosslinked are preferable. As such a metallocene catalyst, a metallocene compound represented by the general formula (1) described later can be exemplified.

さらに、上記式の関係を満たすポリエチレンワックスは、重合温度を制御することによっても製造できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述したB値を有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。   Furthermore, the polyethylene wax satisfying the relationship of the above formula can also be produced by controlling the polymerization temperature. For example, when a polyethylene wax is produced by a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing the polyethylene wax having the B value described above, the polymerization temperature is preferably Is in the range of 100 to 180 ° C, more preferably in the range of 100 to 170 ° C.

本発明において好適なメタロセン系触媒としては、例えば、
(A) 周期表第4族から選ばれる遷移金属のメタロセン化合物、並びに
(B)(b-1)有機アルミニウムオキシ化合物、
(b-2)前記架橋メタロセン化合物(A)と反応してイオン対を形成する化合物および
(b-3)有機アルミニウム化合物
とから選ばれる少なくとも1種以上の化合物とからなるオレフィン重合用触媒を
挙げることができる。
Suitable metallocene catalysts in the present invention include, for example,
(A) a metallocene compound of a transition metal selected from Group 4 of the periodic table, and (B) (b-1) an organoaluminum oxy compound,
(b-2) a compound that reacts with the bridged metallocene compound (A) to form an ion pair, and
(b-3) An olefin polymerization catalyst comprising at least one compound selected from organoaluminum compounds.

以下にこれらについて詳細に説明する。
<メタロセン化合物>
(A) 周期表第4族から選ばれる遷移金属のメタロセン化合物
メタロセン系触媒を形成するメタロセン化合物は、周期表第4族から選ばれる遷移金属のメタロセン化合物であり、具体的な例としては下記一般式(1)で表される化合物が挙げられる。
1Lx …(1)
ここで、M1は周期表第4族から選ばれる遷移金属、xは遷移金属M1の原子価、Lは配位子である。M1で示される遷移金属の例としては、ジルコニウム、チタン、ハフニウムな
どがある。Lは遷移金属M1に配位する配位子であって、そのうち少なくとも1個の配位
子Lはシクロペンタジエニル骨格を有する配位子であって、このシクロペンタジエニル骨格を有する配位子は置換基を有していてもよい。シクロペンタジエニル骨格を有する配位子Lとしては、例えばシクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、n−またはi−プロピルシクロペンタジエニル基、n−、i−、sec−またはt−ブチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、メチルプロピルシクロペンタジエニル基、メチルブチルシクロペンタジエニル基、メチルベンジルシクロペンタジエニル基等のアルキルまたはシクロアルキル置換シクロペンタジエニル基;さらにインデニル基、4,5,6,7−テトラヒドロインデニル基、フルオレ
ニル基などが挙げられる。このシクロペンタジエニル骨格を有する配位子の水素は、ハロゲン原子またはトリアルキルシリル基などで置換されていてもよい。
These will be described in detail below.
<Metalocene compounds>
(A) Metallocene compound of transition metal selected from Group 4 of the periodic table The metallocene compound forming the metallocene catalyst is a metallocene compound of transition metal selected from Group 4 of the periodic table. The compound represented by Formula (1) is mentioned.
M 1 Lx (1)
Here, M 1 is a transition metal selected from Group 4 of the periodic table, x is a valence of the transition metal M 1 , and L is a ligand. Examples of the transition metal represented by M 1 include zirconium, titanium, hafnium and the like. L is a ligand coordinated to the transition metal M 1, and at least one of the ligands L is a ligand having a cyclopentadienyl skeleton, and the ligand having this cyclopentadienyl skeleton. The ligand may have a substituent. Examples of the ligand L having a cyclopentadienyl skeleton include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, an n- or i-propylcyclopentadienyl group, n-, alkyl such as i-, sec- or t-butylcyclopentadienyl group, dimethylcyclopentadienyl group, methylpropylcyclopentadienyl group, methylbutylcyclopentadienyl group, methylbenzylcyclopentadienyl group, An alkyl-substituted cyclopentadienyl group; and an indenyl group, 4,5,6,7-tetrahydroindenyl group, a fluorenyl group, and the like. The hydrogen of the ligand having a cyclopentadienyl skeleton may be substituted with a halogen atom or a trialkylsilyl group.

上記のメタロセン化合物が、配位子Lとしてシクロペンタジエニル骨格を有する配位子を2個以上有する場合には、そのうち2個のシクロペンタジエニル骨格を有する配位子同士が、エチレン、プロピレン等のアルキレン基;イソプロピリデン、ジフェニルメチレン等の置換アルキレン基;シリレン基またはジメチルシリレン基、ジフェニルシリレン基、メチルフェニルシリレン基等の置換シリレン基などを介して結合されていてもよい。   When the metallocene compound has two or more ligands having a cyclopentadienyl skeleton as the ligand L, the ligands having two cyclopentadienyl skeletons are ethylene, propylene. Or a substituted alkylene group such as isopropylidene or diphenylmethylene; a substituted silylene group such as a silylene group or a dimethylsilylene group, a diphenylsilylene group, or a methylphenylsilylene group.

シクロペンタジエニル骨格を有する配位子以外の配位子(シクロペンタジエニル骨格を有しない配位子)Lとしては、炭素原子数1〜12の炭化水素基、アルコキシ基、アリーロキシ基、スルフォン酸含有基(−SO31)、ハロゲン原子または水素原子(ここで、R1はアルキル基、ハロゲン原子で置換されたアルキル基、アリール基、ハロゲン原子で
置換されたアリール基またはアルキル基で置換されたアリール基である。)などが挙げられる。
Examples of ligands other than ligands having a cyclopentadienyl skeleton (ligands having no cyclopentadienyl skeleton) L include hydrocarbon groups having 1 to 12 carbon atoms, alkoxy groups, aryloxy groups, sulfones. Acid-containing group (—SO 3 R 1 ), halogen atom or hydrogen atom (where R 1 is an alkyl group, an alkyl group substituted with a halogen atom, an aryl group, an aryl group substituted with a halogen atom, or an alkyl group) A substituted aryl group).

<メタロセン化合物の例−1>
上記一般式(1)で表されるメタロセン化合物が、例えば遷移金属の原子価が4である場合、より具体的には下記一般式(2)で表される。
2 k3 l4 m5 n1 …(2)
ここで、M1は周期表第4族から選ばれる遷移金属、R2はシクロペンタジエニル骨格を有する基(配位子)、R3、R4及びR5はそれぞれ独立にシクロペンタジエニル骨格を有す
るかまたは有しない基(配位子)である。kは1以上の整数であり、k+l+m+n=4である。
<Example 1 of metallocene compound>
When the metallocene compound represented by the general formula (1) has a transition metal valence of 4, for example, it is more specifically represented by the following general formula (2).
R 2 k R 3 l R 4 m R 5 n M 1 (2)
Here, M 1 is a transition metal selected from Group 4 of the periodic table, R 2 is a group (ligand) having a cyclopentadienyl skeleton, and R 3 , R 4 and R 5 are each independently cyclopentadienyl. A group (ligand) having or not having a skeleton. k is an integer of 1 or more, and k + l + m + n = 4.

1がジルコニウムであり、かつシクロペンタジエニル骨格を有する配位子を少なくと
も2個含むメタロセン化合物の例を次に挙げる。ビス(シクロペンタジエニル)ジルコニウムモノクロリドモノハイドライド、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(1−メチル−3−ブチルシクロペンタジエニル)ジルコニウムビス(トリフルオロメタンスルホナト)、ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウ
ムジクロリドなど。
Examples of metallocene compounds in which M 1 is zirconium and contains at least two ligands having a cyclopentadienyl skeleton are given below. Bis (cyclopentadienyl) zirconium monochloride monohydride, bis (cyclopentadienyl) zirconium dichloride, bis (1-methyl-3-butylcyclopentadienyl) zirconium bis (trifluoromethanesulfonate), bis (1, 3-dimethylcyclopentadienyl) zirconium dichloride and the like.

上記の化合物の中で、1,3−位置換シクロペンタジエニル基を1,2−位置換シクロペンタジエニル基に置き換えた化合物も用いることができる。
またメタロセン化合物の別の例としては、上記一般式(2)において、R2、R3、R4
及びR5の少なくとも2個、例えばR2及びR3がシクロペンタジエニル骨格を有する基(
配位子)であり、この少なくとも2個の基がアルキレン基、置換アルキレン基、シリレン基または置換シリレン基などを介して結合されているブリッジタイプのメタロセン化合物
を使用することもできる。このときR4及びR5は、それぞれ独立に、前述したシクロペンタジエニル骨格を有する配位子以外の配位子Lと同様である。
Among the above compounds, compounds in which the 1,3-position substituted cyclopentadienyl group is replaced with a 1,2-position substituted cyclopentadienyl group can also be used.
Another example of the metallocene compound is R 2 , R 3 , R 4 in the general formula (2).
And at least two of R 5 , for example, R 2 and R 3 are groups having a cyclopentadienyl skeleton (
A bridge type metallocene compound in which at least two groups are bonded via an alkylene group, a substituted alkylene group, a silylene group, a substituted silylene group, or the like. At this time, R 4 and R 5 are each independently the same as the ligand L other than the ligand having the cyclopentadienyl skeleton described above.

このようなブリッジタイプのメタロセン化合物としては、エチレンビス(インデニル)ジメチルジルコニウム、エチレンビス(インデニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル−フルオレニル)ジルコニウムジクロリド、ジフェニルシリレンビス(インデニル)ジルコニウムジクロリド、メチルフェニルシリレンビス(インデニル)ジルコニウムジクロリドなどが挙げられる。   Examples of such bridge-type metallocene compounds include ethylenebis (indenyl) dimethylzirconium, ethylenebis (indenyl) zirconium dichloride, isopropylidene (cyclopentadienyl-fluorenyl) zirconium dichloride, diphenylsilylenebis (indenyl) zirconium dichloride, methyl Examples include phenylsilylene bis (indenyl) zirconium dichloride.

<メタロセン化合物の例−2>
またメタロセン化合物の例としては、下記一般式(3)で表される特開平4−268307号公報記載のメタロセン化合物が挙げられる。
<Example 2 of metallocene compound>
Moreover, as an example of a metallocene compound, the metallocene compound of Unexamined-Japanese-Patent No. 4-268307 represented by following General formula (3) is mentioned.

Figure 2007268777
Figure 2007268777

ここで、M1は周期表第4族遷移金属であり、具体的にはチタニウム、ジルコニウム、ハ
フニウムが挙げられる。
11及びR12は互いに同一でも異なっていてもよく、水素原子;炭素原子数1〜10のアルキル基;炭素原子数1〜10のアルコキシ基;炭素原子数6〜10のアリール基;炭素原子数6〜10のアリーロキシ基;炭素原子数2〜10のアルケニル基;炭素原子数7〜40のアリールアルキル基;炭素原子数7〜40のアルキルアリール基;炭素原子数8〜40のアリールアルケニル基;またはハロゲン原子であり、R11及びR12は、塩素原子であることが好ましい。
Here, M 1 is a Group 4 transition metal of the periodic table, and specifically includes titanium, zirconium, and hafnium.
R 11 and R 12 may be the same or different from each other, and are a hydrogen atom; an alkyl group having 1 to 10 carbon atoms; an alkoxy group having 1 to 10 carbon atoms; an aryl group having 6 to 10 carbon atoms; Aryloxy group having 6 to 10 carbon atoms; alkenyl group having 2 to 10 carbon atoms; arylalkyl group having 7 to 40 carbon atoms; alkylaryl group having 7 to 40 carbon atoms; arylalkenyl group having 8 to 40 carbon atoms Or a halogen atom, and R 11 and R 12 are preferably chlorine atoms.

13及びR14は互いに同一でも異なっていてもよく、水素原子;ハロゲン原子;ハロゲン化されていてもよい炭素原子数1〜10のアルキル基;炭素原子数6〜10のアリール基;−N(R20)2、−SR20、−OSi(R20)3、−Si(R20)3または−P(R20)2基である。ここで、R20はハロゲン原子、好ましくは塩素原子;炭素原子数1〜10、好ましくは1〜3のアルキル基;または炭素原子数6〜10、好ましくは6〜8のアリール基である。R13及びR14は、特に水素原子であることが好ましい。 R 13 and R 14 may be the same or different from each other, and are a hydrogen atom; a halogen atom; an optionally halogenated alkyl group having 1 to 10 carbon atoms; an aryl group having 6 to 10 carbon atoms; (R 20 ) 2 , —SR 20 , —OSi (R 20 ) 3 , —Si (R 20 ) 3 or —P (R 20 ) 2 groups. R 20 is a halogen atom, preferably a chlorine atom; an alkyl group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms; or an aryl group having 6 to 10 carbon atoms, preferably 6 to 8 carbon atoms. R 13 and R 14 are particularly preferably hydrogen atoms.

15及びR16は、水素原子が含まれないことを除きR13及びR14と同じであって、互いに同じでも異なっていてもよく、好ましくは同じである。R15及びR16は、好ましくはハロゲン化されていてもよい炭素原子数1〜4のアルキル基、具体的にはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、トリフルオロメチル等が挙げられ、特にメチルが好ましい。
上記一般式(3)において、R17は次の群から選ばれる。
R 15 and R 16 are the same as R 13 and R 14 except that they do not contain a hydrogen atom, and may be the same or different from each other, preferably the same. R 15 and R 16 are preferably an optionally halogenated alkyl group having 1 to 4 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl and the like. Particularly preferred is methyl.
In the general formula (3), R 17 is selected from the following group.

Figure 2007268777
Figure 2007268777

=BR21、=AlR21、−Ge−、−Sn−、−O−、−S−、=SO、=SO2、=N
21、=CO、=PR21、=P(O)R21など。M2はケイ素、ゲルマニウムまたは錫、
好ましくはケイ素またはゲルマニウムである。ここで、R21、R22及びR23は互いに同一でも異なっていてもよく、水素原子;ハロゲン原子;炭素原子数1〜10のアルキル基;炭素原子数1〜10のフルオロアルキル基;炭素原子数6〜10のアリール基;炭素原子数6〜10のフルオロアリール基;炭素原子数1〜10のアルコキシ基;炭素原子数2〜10のアルケニル基;炭素原子数7〜40のアリールアルキル基;炭素原子数8〜40のアリールアルケニル基;または炭素原子数7〜40のアルキルアリール基である。「R21とR22」または「R21とR23」とは、それぞれそれらが結合する原子と一緒になって環を形成してもよい。また、R17は、=CR2122、=SiR2122、=GeR2122、−O−、−S−、=SO、=PR21または=P(O)R21であることが好ましい。R18及びR19は互いに同一でも異なっていてもよく、R21と同じものが挙げられる。m及びnは互いに同一でも異なっていてもよく、それぞれ0、1または2、好ましくは0または1であり、m+nは0、1または2、好ましくは0または1である。
= BR 21 , = AlR 21 , -Ge-, -Sn-, -O-, -S-, = SO, = SO 2 , = N
R 21 , = CO, = PR 21 , = P (O) R 21 and the like. M 2 is silicon, germanium or tin,
Silicon or germanium is preferred. Here, R 21 , R 22 and R 23 may be the same or different from each other, and are hydrogen atom; halogen atom; alkyl group having 1 to 10 carbon atoms; fluoroalkyl group having 1 to 10 carbon atoms; carbon atom An aryl group having 6 to 10 carbon atoms; a fluoroaryl group having 6 to 10 carbon atoms; an alkoxy group having 1 to 10 carbon atoms; an alkenyl group having 2 to 10 carbon atoms; an arylalkyl group having 7 to 40 carbon atoms; An arylalkenyl group having 8 to 40 carbon atoms; or an alkylaryl group having 7 to 40 carbon atoms. “R 21 and R 22 ” or “R 21 and R 23 ” may form a ring together with the atoms to which they are bonded. R 17 may be = CR 21 R 22 , = SiR 21 R 22 , = GeR 21 R 22 , -O-, -S-, = SO, = PR 21 or = P (O) R 21. preferable. R 18 and R 19 may be the same as or different from each other, and examples thereof include the same as R 21 . m and n may be the same or different and are each 0, 1 or 2, preferably 0 or 1, and m + n is 0, 1 or 2, preferably 0 or 1.

上記一般式(3)で表されるメタロセン化合物の例としては、次の化合物が挙げられる。rac−エチレン(2−メチル−1−インデニル)2−ジルコニウム−ジクロライド、
rac−ジメチルシリレン(2−メチル−1−インデニル)2−ジルコニウム−ジクロラ
イドなど。これらのメタロセン化合物は、例えば、特開平4−268307号公報に記載の方法で製造することができる。
Examples of the metallocene compound represented by the general formula (3) include the following compounds. rac-ethylene (2-methyl-1-indenyl) 2 -zirconium dichloride,
rac-dimethylsilylene (2-methyl-1-indenyl) 2 -zirconium dichloride and the like. These metallocene compounds can be produced, for example, by the method described in JP-A-4-268307.

<メタロセン化合物の例−3>
また、メタロセン化合物としては、下記一般式(4)で表されるメタロセン化合物を用いることもできる。
<Example 3 of metallocene compound>
Moreover, as a metallocene compound, the metallocene compound represented by following General formula (4) can also be used.

Figure 2007268777
Figure 2007268777

式(4)中、M3は、周期表第4族の遷移金属原子を示し、具体的にはチタニウム、ジル
コニウム、ハフニウムなどである。R24及びR25は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基を示す。R24は炭化水素基であることが好ましく、特にメチル、エチルまたはプロピルの炭素原子数1〜3のアルキル基であることが好ましい。R25は水素原子または炭化水素基が好ましく、特に水素原子、またはメチル、エチルもしくはプロピルの炭素原子数1〜3のアルキル基であることが好ましい。R26、R27、R28及びR29は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基を示す。これらの中では水素原子、炭化水素基またはハロゲン化炭化水素基であることが好ましい。R26とR27、R27とR28、R28とR29のうち少なくとも1組は、それらが結合している炭素原子と一緒になって、単環の芳香族環を形成していてもよい。また芳香族環を形成する基以外に、炭化水素基またはハロゲン化炭化水素基が2個以上ある場合には、これらが互いに結合して環状になっていてもよい。なおR29が芳香族基以外の置換基である場合、水素原子であることが好ましい。X1
びX2は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜
20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素原子含有基またはイオウ原子含有基を示すYは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、−O−、−CO−、−S−、−SO−、−SO2−、−NR30−、−
P(R30)−、−P(O)(R30)−、−BR30−または−AlR30−(ただし、R30は水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基)を示す。
In Formula (4), M 3 represents a transition metal atom of Group 4 of the periodic table, and specifically, titanium, zirconium, hafnium, and the like. R 24 and R 25 may be the same or different and are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, oxygen A containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group; R 24 is preferably a hydrocarbon group, and particularly preferably an alkyl group having 1 to 3 carbon atoms such as methyl, ethyl or propyl. R 25 is preferably a hydrogen atom or a hydrocarbon group, particularly preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms such as methyl, ethyl or propyl. R 26 , R 27 , R 28 and R 29 may be the same or different from each other, and are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon having 1 to 20 carbon atoms. Indicates a group. Among these, a hydrogen atom, a hydrocarbon group, or a halogenated hydrocarbon group is preferable. At least one of R 26 and R 27 , R 27 and R 28 , and R 28 and R 29 may form a monocyclic aromatic ring together with the carbon atoms to which they are bonded. Good. When there are two or more hydrocarbon groups or halogenated hydrocarbon groups other than the group forming the aromatic ring, they may be bonded to each other to form a ring. When R 29 is a substituent other than an aromatic group, it is preferably a hydrogen atom. X 1 and X 2 may be the same or different from each other, and are a hydrogen atom, a halogen atom, or a carbon atom number of 1
Y representing 20 hydrocarbon group, halogenated hydrocarbon group having 1 to 20 carbon atoms, oxygen atom-containing group or sulfur atom-containing group is a divalent hydrocarbon group having 1 to 20 carbon atoms, the number of carbon atoms 1-20 divalent halogenated hydrocarbon groups, divalent silicon-containing groups, divalent germanium-containing groups, divalent tin-containing groups, -O-, -CO-, -S-, -SO-, -SO 2 -, - NR 30 - , -
P (R 30) -, - P (O) (R 30) -, - BR 30 - or -AlR 30 - (provided that, R 30 is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, A halogenated hydrocarbon group having 1 to 20 carbon atoms).

式(4)において、R26とR27、R27とR28、R28とR29のうち少なくとも1組が互いに結合して形成する単環の芳香族環を含み、M3に配位する配位子としては、次式で表さ
れるものなどが挙げられる。
In the formula (4), at least one pair of R 26 and R 27 , R 27 and R 28 , R 28 and R 29 is bonded to each other, and is coordinated to M 3 Examples of the ligand include those represented by the following formula.

Figure 2007268777
Figure 2007268777

(式中、Yは前式に示したものと同じである。)
<メタロセン化合物の例−4>
メタロセン化合物としては、また下記一般式(5)で表されるメタロセン化合物を用いることもできる。
(In the formula, Y is the same as that shown in the previous formula.)
<Example 4 of metallocene compound>
As the metallocene compound, a metallocene compound represented by the following general formula (5) can also be used.

Figure 2007268777
Figure 2007268777

式(5)中、M3、R24、R25、R26、R27、R28及びR29は、上記一般式(4)と同じ
である。R26、R27、R28及びR29のうち、R26を含む2個の基がアルキル基であることが好ましく、R26とR28、またはR28とR29がアルキル基であることが好ましい。このアルキル基は、2級または3級アルキル基であることが好ましい。またこのアルキル基は、ハロゲン原子、ケイ素含有基で置換されていてもよく、ハロゲン原子、ケイ素含有基としては、R24、R25で例示した置換基が挙げられる。R26、R27、R28及びR29のうち、アルキル基以外の基は、水素原子であることが好ましい。またR26、R27、R28及びR29は、これらから選ばれる2種の基が互いに結合して芳香族環以外の単環あるいは多環を形成していてもよい。ハロゲン原子としては、上記R24及びR25と同様のものが挙げられる。X1、X2及びYとしては、上記と同様のものが挙げられる。
In the formula (5), M 3 , R 24 , R 25 , R 26 , R 27 , R 28 and R 29 are the same as those in the general formula (4). Of R 26 , R 27 , R 28 and R 29 , two groups including R 26 are preferably alkyl groups, and R 26 and R 28 , or R 28 and R 29 are alkyl groups. preferable. This alkyl group is preferably a secondary or tertiary alkyl group. The alkyl group may be substituted with a halogen atom or a silicon-containing group. Examples of the halogen atom and silicon-containing group include the substituents exemplified for R 24 and R 25 . Of R 26 , R 27 , R 28 and R 29 , the group other than the alkyl group is preferably a hydrogen atom. R 26 , R 27 , R 28, and R 29 may form a monocyclic ring or a polycyclic ring other than an aromatic ring by combining two groups selected from these groups. Examples of the halogen atom are the same as those described above for R 24 and R 25 . Examples of X 1 , X 2 and Y are the same as those described above.

上記一般式(5)で表されるメタロセン化合物の具体的な例を次に示す。rac−ジメチルシリレン−ビス(4,7−ジメチル−1−インデニル)ジルコニウムジクロリド、r
ac−ジメチルシリレン−ビス(2,4,7−トリメチル−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2,4,6−トリメチル−1−インデニル)ジルコニウムジクロリドなど。
Specific examples of the metallocene compound represented by the general formula (5) are shown below. rac-dimethylsilylene-bis (4,7-dimethyl-1-indenyl) zirconium dichloride, r
ac-dimethylsilylene-bis (2,4,7-trimethyl-1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2,4,6-trimethyl-1-indenyl) zirconium dichloride, and the like.

これらの化合物において、ジルコニウム金属を、チタニウム金属、ハフニウム金属に置換えた遷移金属化合物を用いることもできる。遷移金属化合物は、通常ラセミ体として用いられるが、R型またはS型を用いることもできる。   In these compounds, transition metal compounds in which zirconium metal is replaced with titanium metal or hafnium metal can also be used. The transition metal compound is usually used as a racemate, but can also be used in the R-type or S-type.

<メタロセン化合物の例−5>
メタロセン化合物として、下記一般式(6)で表されるメタロセン化合物を使用することもできる。
<Examples of metallocene compounds-5>
As the metallocene compound, a metallocene compound represented by the following general formula (6) can also be used.

Figure 2007268777
Figure 2007268777

式(6)中、M3、R24、X1、X2及びYは、上記一般式(4)と同じである。R24は炭
化水素基であることが好ましく、特にメチル、エチル、プロピルまたはブチルの炭素原子数1〜4のアルキル基であることが好ましい。R25は、炭素原子数6〜16のアリール基を示す。R25はフェニル、ナフチルであることが好ましい。アリール基は、ハロゲン原子、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基で
置換されていてもよい。X1及びX2としては、ハロゲン原子、炭素原子数1〜20の炭化水素基であることが好ましい。
In the formula (6), M 3 , R 24 , X 1 , X 2 and Y are the same as those in the general formula (4). R 24 is preferably a hydrocarbon group, particularly preferably an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl or butyl. R 25 represents an aryl group having 6 to 16 carbon atoms. R 25 is preferably phenyl or naphthyl. The aryl group may be substituted with a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. X 1 and X 2 are preferably a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms.

上記一般式(6)で表されるメタロセン化合物の具体的な例を次に示す。rac−ジメチルシリレン−ビス(4−フェニル−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−フェニル−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−(α−ナフチル)−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−(β−ナフチル)−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−(1−アントリル)−1−インデニル)ジルコニウムジクロリドなど。またこれら化合物において、ジルコニウム金属をチタニウム金属またはハフニウム金属に置き換えた遷移金属化合物を用いることもできる。   Specific examples of the metallocene compound represented by the general formula (6) are shown below. rac-dimethylsilylene-bis (4-phenyl-1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2-methyl-4-phenyl-1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2-methyl) -4- (α-naphthyl) -1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2-methyl-4- (β-naphthyl) -1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2 -Methyl-4- (1-anthryl) -1-indenyl) zirconium dichloride and the like. In these compounds, transition metal compounds in which zirconium metal is replaced with titanium metal or hafnium metal can also be used.

<メタロセン化合物の例−6>
またメタロセン化合物として、下記一般式(7)で表されるメタロセン化合物を用いることもできる。
LaM43 2 …(7)
ここで、M4は周期表第4族またはランタニド系列の金属である。Laは非局在化π結合基の誘導体であり、金属M4活性サイトに拘束幾何形状を付与している基である。X3は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数20以下の炭化水素基、20以下のケイ素を含有するシリル基または20以下のゲルマニウムを含有するゲルミル基である。
この化合物の中では、次式(8)で示される化合物が好ましい。
<Examples of metallocene compounds-6>
As the metallocene compound, a metallocene compound represented by the following general formula (7) can also be used.
LaM 4 X 3 2 (7)
Here, M 4 is a periodic table group 4 or lanthanide series metal. La is a derivative of a delocalized π bond group, and is a group imparting a constraining geometry to the metal M 4 active site. X 3 may be the same or different from each other, and is a hydrogen atom, a halogen atom, a hydrocarbon group having 20 or less carbon atoms, a silyl group containing 20 or less silicon, or a germanyl group containing 20 or less germanium.
Among these compounds, a compound represented by the following formula (8) is preferable.

Figure 2007268777
Figure 2007268777

式(8)中、M4は、チタン、ジルコニウムまたはハフニウムである。X3は上記一般式(7)で説明したものと同様である。CpはM4にπ結合しており、かつ置換基Zを有する
置換シクロペンタジエニル基である。Zは酸素、イオウ、ホウ素または周期表第4族の元素(例えばケイ素、ゲルマニウムまたは錫)である。Yは窒素、リン、酸素またはイオウを含む配位子であり、ZとYとで縮合環を形成していてもよい。このような式(8)で表されるメタロセン化合物の具体的な例を次に示す。(ジメチル(t−ブチルアミド)(テト
ラメチル−η5−シクロペンタジエニル)シラン)チタンジクロリド、((t−ブチルアミ
ド)(テトラメチル−η5−シクロペンタジエニル)−1,2−エタンジイル)チタンジクロ
リドなど。またこのメタロセン化合物において、チタンをジルコニウムまたはハフニウムに置き換えた化合物を挙げることもできる。
In the formula (8), M 4 is titanium, zirconium or hafnium. X 3 is the same as that described in the general formula (7). Cp is a substituted cyclopentadienyl group having a π bond to M 4 and having a substituent Z. Z is oxygen, sulfur, boron or an element belonging to Group 4 of the periodic table (for example, silicon, germanium or tin). Y is a ligand containing nitrogen, phosphorus, oxygen or sulfur, and Z and Y may form a condensed ring. Specific examples of the metallocene compound represented by the formula (8) are shown below. (Dimethyl (t-butylamide) (tetramethyl-η 5 -cyclopentadienyl) silane) titanium dichloride, ((t-butylamide) (tetramethyl-η 5 -cyclopentadienyl) -1,2-ethanediyl) titanium Dichloride etc. In the metallocene compound, a compound in which titanium is replaced with zirconium or hafnium can be exemplified.

<メタロセン化合物の例−7>
またメタロセン化合物としては、下記一般式(9)で表されるメタロセン化合物を使用することもできる。
<Examples of metallocene compounds-7>
Moreover, as a metallocene compound, the metallocene compound represented by following General formula (9) can also be used.

Figure 2007268777
Figure 2007268777

式(9)中、M3は周期表第4族の遷移金属原子であり、具体的には、チタニウム、ジル
コニウムまたはハフニウムであり、好ましくはジルコニウムである。R31は互いに同一でも異なっていてもよく、そのうち少なくとも1個が炭素原子数11〜20のアリール基、炭素原子数12〜40のアリールアルキル基、炭素原子数13〜40のアリールアルケニル基、炭素原子数12〜40のアルキルアリール基またはケイ素含有基であるか、またはR31で示される基のうち隣接する少なくとも2個の基が、それらの結合する炭素原子とともに、単数または複数の芳香族環または脂肪族環を形成している。この場合、R31により形成される環は、R31が結合する炭素原子を含んで全体として炭素原子数が4〜20である。アリール基、アリールアルキル基、アリールアルケニル基、アルキルアリール基及び芳香族環、脂肪族環を形成しているR31以外のR31は、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基またはケイ素含有基である。R32は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜20のアリール基、炭素原子数2〜10のアルケニル基、炭素原子数7〜40のアリールアルキル基、炭素原子数8〜40のアリールアルケニル基、炭素原子数7〜40のアルキルアリール基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。また、R32で示される基のうち隣接する少なくとも2個の基が、それらの結合する炭素原子とともに、単数または複数の芳香族環または脂肪族環を形成していてもよい。この場合、R32により形成される環は、R32が結合する炭素原子を含んで全体として炭素原子数が4〜20であり、芳香族環、脂肪族環を形成しているR32以外のR32は、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基またはケイ素含有基である。なお、R32で示される2個の基が、単数または複数の芳香族環または脂肪族環を形成して構成される基にはフルオレニル基が次式のような構造になる態様も含まれる。
In formula (9), M 3 is a transition metal atom of Group 4 of the periodic table, specifically titanium, zirconium or hafnium, preferably zirconium. R 31 may be the same as or different from each other, and at least one of them is an aryl group having 11 to 20 carbon atoms, an arylalkyl group having 12 to 40 carbon atoms, an arylalkenyl group having 13 to 40 carbon atoms, carbon An alkylaryl group having 12 to 40 atoms or a silicon-containing group, or at least two adjacent groups among the groups represented by R 31 , together with the carbon atoms to which they are bonded, one or more aromatic rings Or an aliphatic ring is formed. In this case, the ring formed by R 31, it is 4 to 20 carbon atoms in all including carbon atoms to which R 31 is bonded. Aryl group, arylalkyl group, arylalkenyl group, an alkylaryl group and an aromatic ring, R 31 other than R 31 that forms an aliphatic ring is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms Or a silicon-containing group. R 32 may be the same as or different from each other, and may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a carbon atom. An arylalkyl group having 7 to 40 carbon atoms, an arylalkenyl group having 8 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, a silicon-containing group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group It is. Further, at least two adjacent groups among the groups represented by R 32 may form one or more aromatic rings or aliphatic rings together with the carbon atoms to which they are bonded. In this case, the ring formed by R 32 has 4 to 20 carbon atoms in all including carbon atoms to which R 32 is bonded, an aromatic ring, other than R 32 that forms an aliphatic ring R 32 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a silicon-containing group. The group in which the two groups represented by R 32 form one or more aromatic rings or aliphatic rings includes an embodiment in which the fluorenyl group has a structure represented by the following formula.

Figure 2007268777
Figure 2007268777

32は、水素原子またはアルキル基であることが好ましく、特に水素原子またはメチル、エチル、プロピルの炭素原子数1〜3の炭化水素基であることが好ましい。このような置換基としてR32を有するフルオレニル基としては、2,7−ジアルキル−フルオレニル基
が好適な例として挙げられ、この場合の2,7−ジアルキルのアルキル基としては、炭素
原子数1〜5のアルキル基が挙げられる。また、R31とR32は、互いに同一でも異なって
いてもよい。R33及びR34は互いに同一でも異なっていてもよく、上記と同様の水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜20のアリール基、炭素原子数2〜10のアルケニル基、炭素原子数7〜40のアリールアルキル基、炭素原子数8〜40のアリールアルケニル基、炭素原子数7〜40のアルキルアリール基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。これらのうち、R33及びR34は、少なくとも一方が炭素原子数1〜3のアルキル基であることが好ましい。X1及びX2は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基もしくは窒素含有基、またはX1とX2とから形成された共役ジエン残基である。X1とX2とから形成された共役ジエン残基としては、1,3−ブタジエン、2,4−ヘキサジエン、1−フェニル−1,3−ペンタジエン、1,4−ジフェニルブタジエンの残基が好ましく、これらの残基はさらに炭素原子数1〜10の炭化水素基で置換されていてもよい。X1及びX2としては、ハロゲン原子、炭素原子数1〜20の炭化水素基またはイオウ含有基であることが好ましい。Yは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、−O−、−CO−、−S−、−SO−、−SO2−、−N
35−、−P(R35)−、−P(O)(R35)−、−BR35−または−AlR35−(ただし、R35は水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基)を示す。これらの2価の基のうちでも、−Y−の最短連結部が1個または2個の原子で構成されているものが好ましい。また、R35は、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基である。Yは、炭素原子数1〜5の2価の炭化水素基、2価のケイ素含有基または2価のゲルマニウム含有基であることが好ましく、2価のケイ素含有基であることがより好ましく、アルキルシリレン、アルキルアリールシリレンまたはアリールシリレンであることが特に好ましい。
R 32 is preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms such as methyl, ethyl or propyl. A suitable example of such a fluorenyl group having R 32 as a substituent is a 2,7-dialkyl-fluorenyl group. In this case, the 2,7-dialkyl alkyl group includes 1 to 1 carbon atoms. 5 alkyl groups. R 31 and R 32 may be the same as or different from each other. R 33 and R 34 may be the same as or different from each other, and are the same hydrogen atom, halogen atom, alkyl group having 1 to 10 carbon atoms, aryl group having 6 to 20 carbon atoms, and 2 to 2 carbon atoms. 10 alkenyl groups, arylalkyl groups having 7 to 40 carbon atoms, arylalkenyl groups having 8 to 40 carbon atoms, alkylaryl groups having 7 to 40 carbon atoms, silicon-containing groups, oxygen-containing groups, sulfur-containing groups, A nitrogen-containing group or a phosphorus-containing group. Of these, at least one of R 33 and R 34 is preferably an alkyl group having 1 to 3 carbon atoms. X 1 and X 2 may be the same or different and are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, sulfur A conjugated diene residue formed from a containing group or a nitrogen-containing group, or X 1 and X 2 . As the conjugated diene residue formed from X 1 and X 2 , residues of 1,3-butadiene, 2,4-hexadiene, 1-phenyl-1,3-pentadiene and 1,4-diphenylbutadiene are preferable. These residues may be further substituted with a hydrocarbon group having 1 to 10 carbon atoms. X 1 and X 2 are preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a sulfur-containing group. Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent Tin-containing group, —O—, —CO—, —S—, —SO—, —SO 2 —, —N
R 35 -, - P (R 35) -, - P (O) (R 35) -, - BR 35 - or -AlR 35 - (provided that, R 35 is a hydrogen atom, a halogen atom, carbon atom 20 And a halogenated hydrocarbon group having 1 to 20 carbon atoms). Among these divalent groups, those in which the shortest linking portion of -Y- is composed of one or two atoms are preferable. R 35 is a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. Y is preferably a divalent hydrocarbon group having 1 to 5 carbon atoms, a divalent silicon-containing group or a divalent germanium-containing group, more preferably a divalent silicon-containing group. Particularly preferred is silylene, alkylarylsilylene or arylsilylene.

<メタロセン化合物の例−8>
またメタロセン化合物としては、下記一般式(10)で表されるメタロセン化合物を用いることもできる。
<Examples of metallocene compounds-8>
As the metallocene compound, a metallocene compound represented by the following general formula (10) can also be used.

Figure 2007268777
Figure 2007268777

式(10)中、M3は周期表第4族の遷移金属原子であり、具体的にはチタニウム、ジル
コニウムまたはハフニウムであり、好ましくはジルコニウムである。R36は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜10のアリール基、炭素原子数2〜10のアルケニル基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。なお、上記アルキル基及びアルケニル基は、ハロゲン原子で置換されていてもよい。R36はこれらのうち、アルキ
ル基、アリール基または水素原子であることが好ましく、特にメチル、エチル、n−プロピル、i−プロピルの炭素原子数1〜3の炭化水素基、フェニル、α−ナフチル、β−ナフチルなどのアリール基または水素原子であることが好ましい。R37は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜20のアリール基、炭素原子数2〜10のアルケニル基、炭素原子数7〜40のアリールアルキル基、炭素原子数8〜40のアリールアルケニル基、炭素原子数7〜40のアルキルアリール基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。なお、上記アルキル基、アリール基、アルケニル基、アリールアルキル基、アリールアルケニル基、アルキルアリール基は、ハロゲンが置換していてもよい。R37はこれらのうち、水素原子またはアルキル基であることが好ましく、特に水素原子またはメチル、エチル、n−プロピル、i−プロピル、n−ブチル、tert−ブチルの炭素原子数1〜4の炭化水素基であることが好ましい。また、上記R36とR37は、互いに同一でも異なっていてもよい。R38及びR39は、いずれか一方が炭素原子数1〜5のアルキル基であり、他方は水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。これらのうち、R38及びR39は、いずれか一方がメチル、エチル、プロピルなどの炭素原子数1〜3のアルキル基であり、他方は水素原子であることが好ましい。X1及びX2は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基もしくは窒素含有基、またはX1とX2とから形成された共役ジエン残基である。これらのうち、ハロゲン原子または炭素原子数1〜20の炭化水素基であることが好ましい。Yは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、−O−、−CO−、−S−、−SO−、−SO2−、−NR40−、−P(R40)−、
−P(O)(R40)−、−BR40−または−AlR40−(ただし、R40は水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基)を示す。これらのうちYは、炭素原子数1〜5の2価の炭化水素基、2価のケイ素含有基または2価のゲルマニウム含有基であることが好ましく、2価のケイ素含有基であることがより好ましく、アルキルシリレン、アルキルアリールシリレンまたはアリールシリレンであることが特に好ましい。
In formula (10), M 3 is a transition metal atom of Group 4 of the periodic table, specifically titanium, zirconium or hafnium, preferably zirconium. R 36 may be the same as or different from each other, and includes a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and silicon-containing Group, oxygen-containing group, sulfur-containing group, nitrogen-containing group or phosphorus-containing group. The alkyl group and alkenyl group may be substituted with a halogen atom. Of these, R 36 is preferably an alkyl group, an aryl group or a hydrogen atom, particularly a hydrocarbon group having 1 to 3 carbon atoms such as methyl, ethyl, n-propyl and i-propyl, phenyl, α-naphthyl. And an aryl group such as β-naphthyl or a hydrogen atom. R 37 may be the same or different from each other, and may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a carbon atom. An arylalkyl group having 7 to 40 carbon atoms, an arylalkenyl group having 8 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, a silicon-containing group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group It is. Note that the alkyl group, aryl group, alkenyl group, arylalkyl group, arylalkenyl group, and alkylaryl group may be substituted with halogen. Of these, R 37 is preferably a hydrogen atom or an alkyl group, and particularly a hydrogen atom or a carbon atom having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, or tert-butyl. A hydrogen group is preferred. R 36 and R 37 may be the same as or different from each other. One of R 38 and R 39 is an alkyl group having 1 to 5 carbon atoms, and the other is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. A silicon-containing group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group. Among these, it is preferable that any one of R 38 and R 39 is an alkyl group having 1 to 3 carbon atoms such as methyl, ethyl, and propyl, and the other is a hydrogen atom. X 1 and X 2 may be the same or different and are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, sulfur A conjugated diene residue formed from a containing group or a nitrogen-containing group, or X 1 and X 2 . Among these, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms is preferable. Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, -O -, - CO -, - S -, - SO -, - SO 2 -, - NR 40 -, - P (R 40) -,
—P (O) (R 40 ) —, —BR 40 — or —AlR 40 — (wherein R 40 is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms. A halogenated hydrocarbon group). Among these, Y is preferably a divalent hydrocarbon group having 1 to 5 carbon atoms, a divalent silicon-containing group, or a divalent germanium-containing group, and more preferably a divalent silicon-containing group. An alkylsilylene, an alkylarylsilylene or an arylsilylene is particularly preferable.

<メタロセン化合物の例−9>
またメタロセン化合物としては、下記一般式(11)で表されるメタロセン化合物を用いることもできる。
<Examples of metallocene compounds-9>
Further, as the metallocene compound, a metallocene compound represented by the following general formula (11) can also be used.

Figure 2007268777
Figure 2007268777

式(11)において、Yは炭素、ケイ素、ゲルマニウムおよびスズ原子から選ばれ、MはTi、ZrまたはHfであり、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11およびR12
は水素、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R5からR12までの隣接した置換基は互いに結合して環を形成してもよく、R13、R14は炭化
水素基およびケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R13およ
びR14が互いに結合して環を形成してもよい。Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。)
以下、本発明に関わる架橋メタロセン化合物の化学構造上の特徴であるシクロペンタジエニル基、フルオレニル基、架橋部、およびその他特徴について順次説明した後に、これらの特徴を併せ持つ好ましい架橋メタロセン化合物を説明する。
In the formula (11), Y is selected from carbon, silicon, germanium and tin atoms, M is Ti, Zr or Hf, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12
Are selected from hydrogen, a hydrocarbon group, and a silicon-containing group, and may be the same or different, and adjacent substituents from R 5 to R 12 may be bonded to each other to form a ring, R 13 , R 14 is selected from a hydrocarbon group and a silicon-containing group, and may be the same or different, and R 13 and R 14 may be bonded to each other to form a ring. Q may be selected from a halogen, a hydrocarbon group, an anionic ligand, or a neutral ligand capable of coordinating with a lone electron pair in the same or different combination, and j is an integer of 1 to 4. )
Hereinafter, after describing sequentially the cyclopentadienyl group, the fluorenyl group, the crosslinked part, and other characteristics that are the chemical structure characteristics of the bridged metallocene compound according to the present invention, a preferable bridged metallocene compound having these characteristics will be described. .

シクロペンタジエニル基
シクロペンタジエニル基は置換されていてもいなくてもよい。置換されていてもいなくてもよいシクロペンタジエニル基とは、上記一般式(11)におけるシクロペンタジエニル基部分が保有するR1、R2、R3およびR4が全て水素原子であるか、またはR1、R2、R3およびR4の内のいずれか一つ以上が炭化水素基(f1)、好ましくは総炭素数1から20の炭化水素基(f1')、またはケイ素含有基(f2)、好ましくは総炭素数1から20のケイ素含有基(f2')で置換されたシクロペンタジエニル基であることを意味する。R1、R2、R3およびR4の内の二つ以上が置換されている場合は、それらの置換基は相互に同一でも異なっていてもよい。また、総炭素数1から20の炭化水素基とは、炭素および水素のみから構成されるアルキル、ア
ルケニル、アルキニル、アリール基である。この中には、隣接する任意の二つの水素原子が同時に置換されて脂環族あるいは芳香族環を形成しているものも含む。総炭素数1から20の炭化水素基(f1')としては、炭素および水素のみから構成されるアルキル、アルケニル、アルキニル、アリール基以外に、これらの炭素に直結した水素原子の一部がハロゲン原子、酸素含有基、窒素含有基、ケイ素含有基で置換されたヘテロ原子含有炭化水素基や、隣接する任意の二つの水素原子が脂環族を形成しているものも含む。このような基(f1')
としては、メチル基、エチル基、n-プロピル基、アリル(allyl)基、n-ブチル基、n-ペン
チル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状炭化水素基;イソプロピル基、t-ブチル基、アミル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロ
ピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチル
プロピル基などの分岐状炭化水素基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントラセニル基などの環状不飽和炭化水素基およびこれらの核アルキル置換体;ベンジル基、クミル基などのアリール基の置換した飽和炭化水素基; メトキシ基、エトキシ基、フェノキシ基N-メチルアミノ基、トリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などのヘテロ原子含有炭化水素基を挙げることができる。
ケイ素含有基(f2)とは、例えば、シクロペンタジエニル基の環炭素がケイ素原子と直接共有結合している基であり、具体的にはアルキルシリル基やアリールシリル基である。総炭素数1から20のケイ素含有基(f2')としては、トリメチルシリル基、トリフェニルシリル基等を例示することができる。
Cyclopentadienyl group The cyclopentadienyl group may or may not be substituted. The cyclopentadienyl group which may or may not be substituted means that R 1 , R 2 , R 3 and R 4 possessed by the cyclopentadienyl group moiety in the general formula (11) are all hydrogen atoms. Or any one or more of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group (f1), preferably a hydrocarbon group having 1 to 20 carbon atoms (f1 ′), or silicon-containing It means a cyclopentadienyl group substituted by a group (f2), preferably a silicon-containing group (f2 ′) having a total carbon number of 1 to 20. When two or more of R 1 , R 2 , R 3 and R 4 are substituted, these substituents may be the same as or different from each other. Further, the hydrocarbon group having 1 to 20 carbon atoms in total is an alkyl, alkenyl, alkynyl, or aryl group composed of only carbon and hydrogen. These include those in which any two adjacent hydrogen atoms are simultaneously substituted to form an alicyclic or aromatic ring. The hydrocarbon group having 1 to 20 carbon atoms in total (f1 ′) includes, in addition to alkyl, alkenyl, alkynyl and aryl groups composed only of carbon and hydrogen, some of the hydrogen atoms directly connected to these carbon atoms are halogen atoms. , An oxygen-containing group, a nitrogen-containing group, a heteroatom-containing hydrocarbon group substituted with a silicon-containing group, or a group in which any two adjacent hydrogen atoms form an alicyclic group. Such a group (f1 ')
As, methyl group, ethyl group, n-propyl group, allyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, linear hydrocarbon group such as n-decanyl group; isopropyl group, t-butyl group, amyl group, 3-methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1-methyl- Branched hydrocarbon groups such as 1-propylbutyl group, 1,1-propylbutyl group, 1,1-dimethyl-2-methylpropyl group, 1-methyl-1-isopropyl-2-methylpropyl group; cyclopentyl group, Cyclic saturated hydrocarbon groups such as cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornyl group, adamantyl group; cyclic unsaturated hydrocarbon groups such as phenyl group, naphthyl group, biphenyl group, phenanthryl group, anthracenyl group and their nuclei Alkyl substitution A saturated hydrocarbon group substituted with an aryl group such as benzyl group or cumyl group; methoxy group, ethoxy group, phenoxy group, N-methylamino group, trifluoromethyl group, tribromomethyl group, pentafluoroethyl group, pentafluorophenyl And a heteroatom-containing hydrocarbon group such as a group.
The silicon-containing group (f2) is, for example, a group in which a ring carbon of a cyclopentadienyl group is directly covalently bonded to a silicon atom, and specifically an alkylsilyl group or an arylsilyl group. Examples of the silicon-containing group (f2 ′) having a total carbon number of 1 to 20 include a trimethylsilyl group and a triphenylsilyl group.

フルオレニル基
フルオレニル基は置換されていてもいなくてもよい。置換されていてもいなくてもよいフルオレニル基とは、上記一般式(11)におけるフルオレニル基部分が保有するR5、R6、R7、R8、R9、R10、R11およびR12が全て水素原子であるか、またはR5、R6、R7、R8、R9、R10、R11およびR12の内のいずれか一つ以上が炭化水素基(f1)、好ましくは総炭素数1から2
0の炭化水素基(f1')、またはケイ素含有基(f2)、好ましくは総炭素数1から20のケイ素含
有基(f2')で置換されたフルオレニル基であることを意味する。R5、R6、R7、R8、R9、R10、R11およびR12の内の二つ以上が置換されている場合は、それらの置換基は相互に同一でも異なっていてもよい。また、R5、R6、R7、R8、R9、R10、R11およびR12は、隣接する基
が互いに結合して環を形成していてもよい。触媒のその製造上の容易性からR6とR11、お
よびR7とR10が相互に同一であるものが好んで使用される。
炭化水素基(f1)の好ましい基は、前記した総炭素数1から20の炭化水素基(f1')であり、ケイ素含有基(f2)の好ましい例は、前記した総炭素数1から20のケイ素含有基(f2')である。
Fluorenyl group The fluorenyl group may or may not be substituted. The fluorenyl group which may or may not be substituted is R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 possessed by the fluorenyl group moiety in the general formula (11). Are all hydrogen atoms, or at least one of R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 is a hydrocarbon group (f1), preferably Total carbon number 1 to 2
It means a fluorenyl group substituted with 0 hydrocarbon group (f1 ′) or silicon-containing group (f2), preferably a silicon-containing group (f2 ′) having 1 to 20 carbon atoms in total. When two or more of R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are substituted, the substituents may be the same or different from each other. Good. Further, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be bonded to each other to form a ring. In view of the ease of production of the catalyst, those in which R 6 and R 11 and R 7 and R 10 are the same are preferably used.
A preferred group of the hydrocarbon group (f1) is the above-described hydrocarbon group (f1 ′) having a total carbon number of 1 to 20, and a preferable example of the silicon-containing group (f2) is the above-described total number of carbon atoms of 1 to 20. It is a silicon-containing group (f2 ′).

共有結合架橋
シクロペンタジエニル基とフルオレニル基を結ぶ結合の主鎖部は、炭素、ケイ素、ゲルマニウムおよびスズ原子を一つ含有する2価の共有結合架橋である。本発明の高温溶液重合
において重要な点は、共有結合架橋部の架橋原子Yが、相互に同一でも異なっていてもよ
いR13とR14を有することである。炭化水素基(f1)の好ましい基は、前記した総炭素数1か
ら20の炭化水素基(f1')であり、ケイ素含有基(f2)の好ましい例は、前記した総炭素数1から20のケイ素含有基(f2')である。
Covalent bond bridge The main chain part of the bond connecting the cyclopentadienyl group and the fluorenyl group is a divalent covalent bond containing one carbon, silicon, germanium and tin atom. The important point in the high-temperature solution polymerization of the present invention is that the bridging atom Y of the covalent bond bridging portion has R 13 and R 14 which may be the same or different from each other. A preferred group of the hydrocarbon group (f1) is the above-described hydrocarbon group (f1 ′) having a total carbon number of 1 to 20, and a preferable example of the silicon-containing group (f2) is the above-described total number of carbon atoms of 1 to 20. It is a silicon-containing group (f2 ′).

架橋メタロセン化合物のその他の特徴
前記一般式(11)において、Qはハロゲン、炭素数が1〜10の炭化水素基、または炭素数が10以下の中性、共役または非共役ジエン、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組み合わせで選ばれる。ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素であり、炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロ
ピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオ
ペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル等が挙
げられる。炭素数が10以下の中性、共役または非共役ジエンの具体例としては、s-シス-
またはs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-ト
ランス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(ト
リメチルシリル)-1,3-ブタジエン等が挙げられる。アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシ等のアルコキシ基、アセテート、ベンゾエート等の
カルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類が挙げられる。jは1〜4の整数であり、jが2以上の時は、Qは互いに同一でも異なっていてもよい。
Other characteristics of the bridged metallocene compound In the general formula (11), Q is halogen, a hydrocarbon group having 1 to 10 carbon atoms, or a neutral, conjugated or nonconjugated diene having 10 or less carbon atoms, They are selected from the same or different combinations from anionic ligands or neutral ligands that can coordinate with a lone pair of electrons. Specific examples of the halogen are fluorine, chlorine, bromine and iodine, and specific examples of the hydrocarbon group are methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2, 2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1, Examples include 1,3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl-1-cyclohexyl and the like. Specific examples of neutral, conjugated or non-conjugated dienes having 10 or less carbon atoms include s-cis-
Or s- trans eta 4 -1,3-butadiene, s- cis - or s- trans eta 4-1,4-diphenyl-1,3-butadiene, s- cis - or s- trans eta 4 - 3-methyl-1,3-pentadiene, s-cis- or s-trans-η 4 -1,4-dibenzyl-1,3-butadiene, s-cis- or s-trans-η 4 -2,4- Hexadiene, s-cis- or s-trans-η 4 -1,3-pentadiene, s-cis- or s-trans-η 4 -1,4-ditolyl-1,3-butadiene, s-cis- or s -Trans-η 4 -1,4-bis (trimethylsilyl) -1,3-butadiene and the like. Specific examples of the anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate. Specific examples of neutral ligands that can be coordinated by a lone pair include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane. j is an integer of 1 to 4, and when j is 2 or more, Qs may be the same or different from each other.

<メタロセン化合物の例−10>
またメタロセン化合物としては、下記一般式(12)で表されるメタロセン化合物を用いることもできる。
<Example of metallocene compound-10>
Moreover, as a metallocene compound, the metallocene compound represented by the following general formula (12) can also be used.

Figure 2007268777
Figure 2007268777

式中、R1、R2、R3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14は水素、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R 1からR 14までの隣接した置換基は互いに結合して環を形成してもよく、MはTi、Zr
またはHfであり、Yは第14族原子であり、Qはハロゲン、炭化水素基、炭素数が10以下の中性、共役または非共役ジエン、アニオン配位子、および孤立電子対で配位可能な中性配位子からなる群から同一または異なる組合せで選ばれ、nは2〜4の整数、jは1〜4の整数である。
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 are hydrogen or a hydrocarbon group Selected from silicon-containing groups, which may be the same or different, and adjacent substituents from R 1 to R 14 may be bonded to each other to form a ring, and M represents Ti, Zr
Or Hf, Y is a Group 14 atom, Q can be coordinated by halogen, hydrocarbon group, neutral having 10 or less carbon atoms, conjugated or non-conjugated diene, anionic ligand, and lone pair of electrons Selected from the group consisting of neutral ligands in the same or different combinations, n is an integer of 2 to 4, and j is an integer of 1 to 4.

上記一般式(12)において、炭化水素基としては、好ましくは炭素数1〜20のアルキル基、炭素数7〜20のアリールアルキル基、炭素数6〜20のアリール基、または炭素数7〜20のアルキルアリール基であり、1つ以上の環構造を含んでいてもよい。   In the general formula (12), the hydrocarbon group is preferably an alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 7 to 20 carbon atoms. And may contain one or more ring structures.

その具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-
メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメ
チルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル、1-アダマンチル、2-アダマンチル、2-メチル-2-アダマンチル、メンチル、ノルボルニル、ベンジル、2-フェニルエチル、1-テトラヒドロナフチル、1-メチル-1-テトラヒドロナフチル、フェニル、ナフチル、トリル等が挙げられ
る。
Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-
Methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1,1,3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl- 1-cyclohexyl, 1-adamantyl, 2-adamantyl, 2-methyl-2-adamantyl, menthyl, norbornyl, benzyl, 2-phenylethyl, 1-tetrahydronaphthyl, 1-methyl-1-tetrahydronaphthyl, phenyl, naphthyl, tolyl Etc.

上記一般式(12)において、ケイ素含有炭化水素基としては、好ましくはケイ素数1〜4、炭素数3〜20のアルキルまたはアリールシリル基であり、その具体例としては、トリメチルシリル、tert-ブチルジメチルシリル、トリフェニルシリル等が挙げられる。   In the general formula (12), the silicon-containing hydrocarbon group is preferably an alkyl or arylsilyl group having 1 to 4 silicon atoms and 3 to 20 carbon atoms. Specific examples thereof include trimethylsilyl and tert-butyldimethyl. Examples thereof include silyl and triphenylsilyl.

本発明において、上記一般式(12)のR1からR14は水素、炭化水素基、ケイ素含有
炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。好ましい炭化水素基、ケイ素含有炭化水素基の具体例としては、上記と同様のものを挙げることができる。
In the present invention, R 1 to R 14 in the general formula (12) are selected from hydrogen, a hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different. Specific examples of preferred hydrocarbon groups and silicon-containing hydrocarbon groups include the same as those described above.

上記一般式(12)のシクロペンタジエニル環上のR 1からR 14までの隣接した置換基
は、互いに結合して環を形成してもよい。
一般式(12)のMは、周期律表第4族元素、すなわちジルコニウム、チタンまたはハ
フニウムであり、好ましくはジルコニウムである。
The adjacent substituents from R 1 to R 14 on the cyclopentadienyl ring of the general formula (12) may be bonded to each other to form a ring.
M in the general formula (12) is a group 4 element of the periodic table, that is, zirconium, titanium or hafnium, preferably zirconium.

Yは第14族原子であり、好ましくは炭素原子または珪素原子である。nは2〜4の整
数であり、好ましくは2または3、特に好ましくは2である。
Qはハロゲン、炭化水素基、炭素数が10以下の中性、共役または非共役ジエン、アニ
オン配位子および孤立電子対で配位可能な中性配位子からなる群から同一または異なる組み合わせで選ばれる。Qが炭化水素基であるとき、より好ましくは炭素数が1〜10の炭
化水素基である。
Y is a Group 14 atom, preferably a carbon atom or a silicon atom. n is an integer of 2 to 4, preferably 2 or 3, particularly preferably 2.
Q is the same or different combination from the group consisting of halogen, hydrocarbon group, neutral having 10 or less carbon atoms, conjugated or non-conjugated diene, anionic ligand and neutral ligand capable of coordinating with a lone pair. To be elected. When Q is a hydrocarbon group, it is more preferably a hydrocarbon group having 1 to 10 carbon atoms.

ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素であり、炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピ
ル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メ
チル-1-シクロヘキシル等が挙げられる。炭素数が10以下の中性、共役または非共役ジ
エンの具体例としては、s-シス-またはs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチ
ル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン等が挙げられる。アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシ等のアルコキシ基
、アセテート、ベンゾエート等のカルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1、2−ジメトキシエタン等のエーテル類が挙げられる。jが2以上の整数である場合は、複数のQは同一でも異なっていてもよい。
Specific examples of the halogen are fluorine, chlorine, bromine and iodine, and specific examples of the hydrocarbon group are methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2, 2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1, Examples include 1,3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl-1-cyclohexyl and the like. Neutral having 10 or less carbon atoms, and specific examples of the conjugated or non-conjugated dienes, s- cis - or s- trans eta 4-1,3-butadiene, s- cis - or s- trans eta 4 - 1,4-diphenyl-1,3-butadiene, s-cis- or s-trans-η 4 -3-methyl-1,3-pentadiene, s-cis- or s-trans-η 4 -1,4- Dibenzyl-1,3-butadiene, s-cis- or s-trans-η 4 -2,4-hexadiene, s-cis- or s-trans-η 4 -1,3-pentadiene, s-cis- or s -Trans-η 4 -1,4-ditolyl-1,3-butadiene, s-cis- or s-trans-η 4 -1,4-bis (trimethylsilyl) -1,3-butadiene and the like. Specific examples of the anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate. Specific examples of the neutral ligand that can coordinate with a lone electron pair include organic phosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, and diphenylmethylphosphine, or tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane. When j is an integer greater than or equal to 2, several Q may be the same or different.

式(12)において、Yは2〜4の複数個存在するが、複数のYは相互に同一であっても異なっていてもよい。Yに結合する複数のR13及び複数のR14は、それぞれ相互に同一であ
っても異なっていてもよい。例えば同一のYに結合する複数のR13が相互に異なっていてもよいし、異なるYに結合する複数のR13が相互に同一であってもよい。また、R13もしくはR14同士が環を形成していてもよい。
In the formula (12), there are a plurality of Ys of 2 to 4, but the Ys may be the same as or different from each other. The plurality of R 13 and the plurality of R 14 bonded to Y may be the same as or different from each other. For example, a plurality of R 13 bonded to the same Y may be different from each other, or a plurality of R 13 bonded to different Y may be the same as each other. R 13 or R 14 may form a ring.

式(12)で表される第4族遷移金属化合物の好ましい例として、下記式(13)で表される化合物を挙げることができる。   Preferable examples of the Group 4 transition metal compound represented by the formula (12) include a compound represented by the following formula (13).

Figure 2007268777
Figure 2007268777

式(13)中、R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12
水素原子、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R 13、R 14、R 15、R 16は水素原子または炭化水素基であり、nは1〜3の整数であり
、n=1のときは前記R 1からR 16は同時に水素原子ではなく、それぞれ同一でも異なっていてもよい。R 5からR 12までの隣接した置換基は互いに結合して環を形成してもよく、R
13とR 15は互いに結合して環を形成してもよく、またR 13とR 15は互いに結合して環を
形成すると同時にR 14とR 16は互いに結合して環を形成してもよく、Y1およびY2は第14族原子であり相互に同一でも異なっていてもよく、MはTi、ZrまたはHfであり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。
このようなメタロセン化合物の例−9、10のような化合物は特開2004−175707号公報WO2001/027124、WO2004/029062、WO2004/083265等に挙げられている。
In formula (13), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 are hydrogen atoms, hydrocarbon groups, silicon R 13 , R 14 , R 15 , and R 16 are each a hydrogen atom or a hydrocarbon group, n is an integer of 1 to 3, and n = 1 In some cases, R 1 to R 16 are not hydrogen atoms and may be the same or different. Adjacent substituents from R 5 to R 12 may combine with each other to form a ring, and R
13 and R 15 may be bonded to each other to form a ring, and R 13 and R 15 may be bonded to each other to form a ring, and at the same time, R 14 and R 16 may be bonded to each other to form a ring. , Y 1 and Y 2 are group 14 atoms which may be the same or different from each other, M is Ti, Zr or Hf, Q is a halogen, a hydrocarbon group, an anionic ligand or a lone pair of electrons You may choose from the neutral ligand which can be coordinated by the same or different combination, and j is an integer of 1-4.
Examples of such metallocene compounds such as Examples-9 and 10 are listed in JP-A No. 2004-175707, WO2001 / 027124, WO2004 / 029062, WO2004 / 083265, and the like.

以上に説明したメタロセン化合物は、単独であるいは2種以上組み合せて用いられる。またメタロセン化合物は、炭化水素またはハロゲン化炭化水素などに希釈して用いてもよい。   The metallocene compounds described above are used alone or in combination of two or more. The metallocene compound may be diluted with a hydrocarbon or a halogenated hydrocarbon.

触媒成分は、(A)前記で表される架橋メタロセン化合物、並びに(B)(b-1) 有機アルミニウムオキシ化合物、(b-2) 前記架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、および(b-3)有機アルミニウム化合物から選ばれる少なくても1種の化
合物から構成される。
The catalyst component comprises (A) the bridged metallocene compound represented above, and (B) (b-1) an organoaluminum oxy compound, (b-2) reacts with the bridged metallocene compound (A) to form an ion pair. And at least one compound selected from (b-3) organoaluminum compounds.

以下、(B)成分について具体的に説明する。
<(b-1) 有機アルミニウムオキシ化合物>
本発明で用いられる(b-1) 有機アルミニウムオキシ化合物は、従来公知のアルミノキサンをそのまま使用できる。具体的には、下記一般式(14)
Hereinafter, the component (B) will be specifically described.
<(B-1) Organoaluminum oxy compound>
As the (b-1) organoaluminum oxy compound used in the present invention, a conventionally known aluminoxane can be used as it is. Specifically, the following general formula (14)

Figure 2007268777
Figure 2007268777

および/または一般式(15)   And / or general formula (15)

Figure 2007268777
Figure 2007268777

(ここで、Rは炭素数1〜10の炭化水素基、nは2以上の整数を示す。)で代表される化合物を挙げることができ、特にRがメチル基であるメチルアルミノキサンでnが3以上、好まし
くは10以上のものが利用される。これらアルミノキサン類に若干の有機アルミニウム化合物が混入していても差し支えない。本発明の高温溶液重合において特徴的な性質は、特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合
物をも適用できることである。また、特開平2-167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2-24701号公報、特開平3-103407号公報に記載されている二
種類以上のアルキル基を有するアルミノキサンなども好適に利用できる。なお、本発明の高温溶液重合で用いられる「ベンゼン不溶性の」有機アルミニウムオキシ化合物とは、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好
ましくは2%以下であり、ベンゼンに対して不溶性または難溶性であることをいう。
(Wherein R represents a hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 2 or more). In particular, R is a methylaluminoxane in which methyl is a methyl group, and n is 3 More preferably, 10 or more are used. These aluminoxanes may be mixed with some organoaluminum compounds. A characteristic property in the high temperature solution polymerization of the present invention is that a benzene-insoluble organoaluminum oxy compound as exemplified in JP-A-2-78687 can also be applied. Further, organoaluminum oxy compounds described in JP-A-2-167305, aluminoxanes having two or more types of alkyl groups described in JP-A-2-24701, JP-A-3-103407, and the like It can be suitably used. The “benzene-insoluble” organoaluminum oxy compound used in the high-temperature solution polymerization of the present invention means that the Al component dissolved in benzene at 60 ° C. is usually 10% or less, preferably 5% or less, particularly preferably 5% or less. Is 2% or less, and is insoluble or hardly soluble in benzene.

また、本発明で用いられる有機アルミニウムオキシ化合物としては下記(16)のような修飾メチルアルミノキサン等も挙げられる。   Examples of the organoaluminum oxy compound used in the present invention include modified methylaluminoxane as shown in (16) below.

Figure 2007268777
Figure 2007268777

(ここで、Rは炭素数1〜10の炭化水素基、m,nは2以上の整数を示す。)
この修飾メチルアルミノキサンはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されるものである。このような化合物[V]は一般にMMAOと呼ばれている。このようなMMAOはUS4960878およびUS5041584で挙げられている方法
で調製することが出来る。また、東ソー・ファインケム社等からもトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製したRがイソブチル基であるものがMMAOやTMAOといった名称で商業生産されている。このようなMMAOは各種溶媒への溶解性および保
存安定性を改良したアルミノキサンであり、具体的には上記(14)、(15)のようなベンゼンに対して不溶性または難溶性のものとは違い、脂肪族炭化水素や脂環族炭化水素に溶解するものである。
(Here, R represents a hydrocarbon group having 1 to 10 carbon atoms, and m and n represent an integer of 2 or more.)
This modified methylaluminoxane is prepared using trimethylaluminum and an alkylaluminum other than trimethylaluminum. Such a compound [V] is generally called MMAO. Such MMAO can be prepared by the methods listed in US4960878 and US5041584. In addition, Tosoh Finechem Co., Ltd., etc., which are prepared using trimethylaluminum and triisobutylaluminum and whose R is an isobutyl group, are commercially produced under the names MMAO and TMAO. Such MMAO is an aluminoxane having improved solubility in various solvents and storage stability, and specifically, it is different from those insoluble or hardly soluble in benzene such as the above (14) and (15). It is soluble in aliphatic hydrocarbons and alicyclic hydrocarbons.

さらに、本発明で用いられる有機アルミニウムオキシ化合物としては、下記一般式(1
7)で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Further, the organoaluminum oxy compound used in the present invention includes the following general formula (1
An organoaluminum oxy compound containing boron represented by 7) can also be mentioned.

Figure 2007268777
Figure 2007268777

(式中、Rcは炭素原子数が1〜10の炭化水素基を示す。Rdは、互いに同一でも異なってい
てもよく、水素原子、ハロゲン原子または炭素原子数が1〜10の炭化水素基を示す。)
<(b-2) 架橋メタロセン化合物(A)と反応してイオン対を形成する化合物>
架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(b-2)(以下、「イオン性化合物」と略称する場合がある。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
本発明において、好ましく採用されるイオン性化合物は下記一般式(18)で表される化合物である。
(In the formula, R c represents a hydrocarbon group having 1 to 10 carbon atoms. R d may be the same or different and each represents a hydrogen atom, a halogen atom or a hydrocarbon having 1 to 10 carbon atoms. Group.)
<(B-2) Compound that reacts with bridged metallocene compound (A) to form an ion pair>
Examples of the compound (b-2) that reacts with the bridged metallocene compound (A) to form an ion pair (hereinafter sometimes abbreviated as “ionic compound”) include JP-A-1-501950, Lewis acids and ionic properties described in 1-502036, JP-A-3-17905, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, USP5321106, etc. Examples thereof include compounds, borane compounds and carborane compounds. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned.
In the present invention, the ionic compound preferably employed is a compound represented by the following general formula (18).

Figure 2007268777
Figure 2007268777

式中、Re+としては、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウ
ムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。Rf〜Riは、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基である。
In the formula, R e + includes H + , carbenium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, ferrocenium cation having a transition metal, and the like. R f to R i may be the same as or different from each other, and are organic groups, preferably aryl groups.

前記カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンなどが挙げられる。   Specific examples of the carbenium cation include trisubstituted carbenium cations such as triphenylcarbenium cation, tris (methylphenyl) carbenium cation, and tris (dimethylphenyl) carbenium cation.

前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n-プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。   Specific examples of the ammonium cation include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, triisopropylammonium cation, tri (n-butyl) ammonium cation, and triisobutylammonium cation. N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation, etc., N, N-dialkylanilinium cation, diisopropylammonium cation, dicyclohexyl And dialkyl ammonium cations such as ammonium cations.

前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(メチルフェニル)ホスホニウムカチオン、トリス(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。   Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.

上記のうち、Re+としては、カルベニウムカチオン、アンモニウムカチオンなどが好ま
しく、特にトリフェニルカルベニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
Of these, Re e + is preferably a carbenium cation, an ammonium cation or the like, and particularly preferably a triphenylcarbenium cation, an N, N-dimethylanilinium cation or an N, N-diethylanilinium cation.

カルベニウム塩として具体的には、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリス(4-メ
チルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5-ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを挙
げることができる。
Specific examples of the carbenium salt include triphenylcarbenium tetraphenylborate, triphenylcarbeniumtetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis (3,5-ditrifluoromethylphenyl) borate, tris (4-methyl And phenyl) carbenium tetrakis (pentafluorophenyl) borate and tris (3,5-dimethylphenyl) carbenium tetrakis (pentafluorophenyl) borate.

アンモニウム塩としては、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩などを挙げることができる。
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n-
ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(p-トリル)ボレート、トリメチルアンモニウムテトラキス(o-トリル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウム
テトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(
ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジメチルフェニル)ボ
レート、トリ(n-ブチル)アンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(p-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムなどが挙げられる。
Examples of ammonium salts include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and the like.
Specific examples of the trialkyl-substituted ammonium salt include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-
Butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p-tolyl) borate, trimethylammonium tetrakis (o-tolyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) Borate, tripropylammonium tetrakis (
Pentafluorophenyl) borate, tripropylammonium tetrakis (2,4-dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (4-tri Fluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-ditrifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetraphenylborate, di Octadecylmethylammonium tetrakis (p-tolyl) borate, dioctadecylmethylammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetrakis (pentafluorophenyl) borate, dioctadecylmethylammonium tetrakis (2,4-dimethyl) Tilphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-dimethylphenyl) borate, dioctadecylmethylammonium tetrakis (4-trifluoromethylphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-ditrifluoromethylphenyl) borate And dioctadecylmethylammonium.

N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラフェニルボレート、 N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニ
ル)ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリ
ニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジエチルアニリニウムテト
ラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタ
フルオロフェニル)ボレートなどが挙げられる。
Specific examples of N, N-dialkylanilinium salts include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis ( 3,5-ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (3,5- Ditrifluoromethylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, etc. .

ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどが挙げられる。   Specific examples of the dialkylammonium salt include di (1-propyl) ammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.

その他、本出願人によって開示(特開2004-51676号公報)されているイオン性化合物も制限無く使用が可能である。
尚、上記のようなイオン性化合物(b-2)は、2種以上混合して用いることができる。
In addition, ionic compounds disclosed by the present applicant (Japanese Patent Laid-Open No. 2004-51676) can also be used without limitation.
The ionic compound (b-2) as described above can be used as a mixture of two or more.

<(b-3) 有機アルミニウム化合物>
オレフィン重合触媒を形成する(b-3)有機アルミニウム化合物としては、例えば下記
一般式[X]で表される有機アルミニウム化合物、下記一般式(19)で表される第1族金属とアルミニウムとの錯アルキル化物などを挙げることができる。
Ra mAl(ORb)nHpXq------ (19)
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好
ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミ
ニウム化合物。このような化合物の具体例として、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムなどのトリn-アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、
トリ2-メチルブチルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム;ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;一般式(i-C4H9)xAly(C5H10)z(式中、x、y、zは正
の数であり、z≦2xである。)
などで表されるイソプレニルアルミニウムなどのアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;一般式Ra 2.5Al(ORb)0.5などで表される平均組成を有する部
分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。
M2AlRa 4 -----------(20)
(式中、M2はLi、NaまたはKを示し、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示す。)
で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。このような化合物としては、LiAl(C2H5)4、LiAl(C7H15)4などを例示することができる。
<(B-3) Organoaluminum compound>
Examples of the organoaluminum compound that forms the olefin polymerization catalyst (b-3) include, for example, an organoaluminum compound represented by the following general formula [X], a group 1 metal represented by the following general formula (19), and aluminum. Examples thereof include complex alkylated products.
R a m Al (OR b ) n H p X q ------ (19)
(In the formula, R a and R b may be the same or different from each other, each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X represents a halogen atom, and m represents 0. <M ≦ 3, n is 0 ≦ n <3, p is a number of 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3). Specific examples of such compounds include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum, trioctylaluminum; triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, Tri-tert-butylaluminum,
Tri-branched alkylaluminums such as tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum; tricycloalkylaluminums such as tricyclohexylaluminum and tricyclooctylaluminum; triphenylaluminum, tritolylaluminum, etc. triaryl aluminum; diisopropyl aluminum hydride, dialkylaluminum hydride such as diisobutylaluminum hydride; formula (iC 4 H 9) x Al y (C 5 H 10) z ( wherein, x, y, z are positive numbers Yes, z ≦ 2x.)
Alkenyl aluminum alkoxide such as isobutylaluminum methoxide and isobutylaluminum ethoxide; Dialkylaluminum alkoxide such as dimethylaluminum methoxide, diethylaluminum ethoxide and dibutylaluminum butoxide; Alkyl aluminum sesquialkoxides such as ethoxide and butylaluminum sesquibutoxide; partially alkoxylated alkylaluminums having an average composition represented by the general formula R a 2.5 Al (OR b ) 0.5 and the like; diethylaluminum phenoxide and diethylaluminum Alkyl aluminum aryloxides such as (2,6-di-t-butyl-4-methylphenoxide); dimethylal Dialkylaluminum halides such as nium chloride, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride; alkylaluminum sesquichlorides such as ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide; Partially halogenated alkylaluminums such as alkylaluminum dihalides; dialkylaluminum hydrides such as diethylaluminum hydride and dibutylaluminum hydride; alkylaluminum dihydrides such as ethylaluminum dihydride and propylaluminum dihydride and other partially Hydrogenated alk Aluminum; ethylaluminum ethoxy chloride, butyl aluminum butoxide cycloalkyl chloride, etc. partially alkoxylated and halogenated alkylaluminum such as ethylaluminum ethoxy bromide and the like.
M 2 AlR a 4 ----------- (20)
(In the formula, M 2 represents Li, Na or K, and R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.)
A complex alkylated product of a group 1 metal and aluminum in the periodic table represented by: Examples of such a compound include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .

また、上記一般式(20)で表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を
挙げることができる。このような化合物として具体的には、(C2H5)2AlN(C2H5)Al(C2H5)2
などを挙げることができる。
入手容易性の点から、(b−3)有機アルミニウム化合物としては、トリメチルアルミニウム、トリイソブチルアルミニウムが好んで用いられる。
A compound similar to the compound represented by the general formula (20) can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom. Specifically, as such a compound, (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2
And so on.
From the viewpoint of availability, trimethylaluminum and triisobutylaluminum are preferably used as the (b-3) organoaluminum compound.

<重合>
本発明で用いられるポリエチレンワックスは、上記メタロセン系触媒の存在下に、エチレンを通常液相で単独重合するか、またはエチレンおよびα−オレフィンを共重合させることにより得られる。重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
<Polymerization>
The polyethylene wax used in the present invention can be obtained by homopolymerizing ethylene in a normal liquid phase or copolymerizing ethylene and an α-olefin in the presence of the metallocene catalyst. In the polymerization, the method of using each component and the order of addition are arbitrarily selected, and the following methods are exemplified.

[q1] 成分(A)を単独で重合器に添加する方法。
[q2] 成分(A)および成分(B)を任意の順序で重合器に添加する方法。
上記[q2]の方法においては、各触媒成分の少なくとも2つ以上は予め接触されていても
よい。この際、一般に炭化水素溶媒が用いられるが、α−オレフィンを溶媒として用いてもよい。なお、ここで用いる各モノマーは、前述した通りである。
[q1] A method of adding the component (A) alone to the polymerization vessel.
[q2] A method of adding the component (A) and the component (B) to the polymerization vessel in an arbitrary order.
In the method [q2], at least two or more of the catalyst components may be in contact with each other in advance. At this time, a hydrocarbon solvent is generally used, but an α-olefin may be used as a solvent. The monomers used here are as described above.

重合方法は、ポリエチレンワックスがヘキサン等の溶媒中に粒子として存在する状態で重合する懸濁重合、溶媒を用いないで重合する気相重合、そして140℃以上の重合温度で、ポリエチレンワックスが溶剤と共存または単独で溶融した状態で重合する溶液重合が可能であり、その中でも溶液重合が経済性と品質の両面で好ましい。   The polymerization methods include suspension polymerization in which polyethylene wax is polymerized in the presence of particles in a solvent such as hexane, gas phase polymerization in which no solvent is used, and at a polymerization temperature of 140 ° C. or higher, polyethylene wax is mixed with the solvent. Solution polymerization that polymerizes in the coexistence or melted state is possible, and among these, solution polymerization is preferable in terms of both economy and quality.

重合反応は、バッチ法あるいは連続法いずれの方法で行ってもよい。重合をバッチ法で実施するに際しては、前記の触媒成分は次に説明する濃度下で用いられる。
上記のようなオレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、成分(A)は,反応容積1リットル当り、通常10-9〜10-1モル、好ましくは10-8〜10-2モルに
なるような量で用いられる。
The polymerization reaction may be performed by either a batch method or a continuous method. When the polymerization is carried out by a batch method, the above catalyst components are used in the concentrations described below.
When the olefin polymerization is carried out using the olefin polymerization catalyst as described above, the component (A) is usually 10 −9 to 10 −1 mol, preferably 10 −8 to 10 −2 mol per liter of reaction volume. It is used in such an amount that it becomes a mole.

成分(b−1)は、成分(b−1)と、成分(A)中の全遷移金属原子(M)とのモル比
〔(b−1)/M〕が通常0.01〜5,000、好ましくは0.05〜2,000となるような量で用いられる。成分(b−2)は、成分(b−2)中のイオン性化合物と、成分(A)中の全遷移金属(M)とのモル比〔(b−2)/M〕が、通常0.01〜5,000、好ましくは1〜2,000となるような量で用いられる。成分(b−3)は、成分(b−3)と、成分(A)中の遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常1〜1
0000、好ましくは1〜5000となるような量で用いられる。
Component (b-1) has a molar ratio [(b-1) / M] of component (b-1) to all transition metal atoms (M) in component (A) of usually 0.01 to 5, 000, preferably 0.05 to 2,000. In the component (b-2), the molar ratio [(b-2) / M] of the ionic compound in the component (b-2) and the total transition metal (M) in the component (A) is usually 0. 0.01 to 5,000, preferably 1 to 2,000. The component (b-3) has a molar ratio [(b-3) / M] of the component (b-3) and the transition metal atom (M) in the component (A) of usually 1-1.
The amount used is 0000, preferably 1 to 5000.

重合反応は、温度が通常、ワックス10gをフィルター上にセットして、−20〜+200℃、好ましくは50〜180℃、さらに好ましくは70〜180℃で、圧力が通常、0を超えて7.8MPa(80kgf/cm2、ゲージ圧)以下、好ましくは0を超えて
4.9MPa(50kgf/cm2、ゲージ圧)以下の条件下に行われる。
In the polymerization reaction, the temperature is usually 10 g of wax set on a filter, -20 to + 200 ° C., preferably 50 to 180 ° C., more preferably 70 to 180 ° C., and the pressure usually exceeds 0. It is performed under conditions of 8 MPa (80 kgf / cm 2 , gauge pressure) or less, preferably more than 0 and 4.9 MPa (50 kgf / cm 2 , gauge pressure) or less.

重合に際して、エチレンおよび必要に応じて用いられるα−オレフィンは、前記した特定組成のポリエチレンワックスが得られるような量割合で重合系に供給される。また重合に際しては、水素などの分子量調節剤を添加することもできる。   In the polymerization, ethylene and the α-olefin used as needed are supplied to the polymerization system in such a proportion that the polyethylene wax having the specific composition described above can be obtained. In the polymerization, a molecular weight regulator such as hydrogen can be added.

このようにして重合させると、生成した重合体は通常これを含む重合液として得られるので、常法により処理するとポリエチレンワックスが得られる。
本発明においては、特に<メタロセン化合物の例−1>で示したメタロセン化合物を含む触媒の使用が好ましい。
When polymerized in this manner, the produced polymer is usually obtained as a polymerization solution containing the polymer, so that polyethylene wax can be obtained by treatment by a conventional method.
In the present invention, it is particularly preferable to use a catalyst containing the metallocene compound shown in <Example 1 of metallocene compound>.

このような触媒を用いると上述した特性を有するポリエチレンワックスが容易に得られる。
本発明のポリエチレンワックスの形状は特に制限はないが、通常、ペレット状、またはタブレット状の粒子である。
When such a catalyst is used, a polyethylene wax having the above-described characteristics can be easily obtained.
The shape of the polyethylene wax of the present invention is not particularly limited, but is usually pellet-like or tablet-like particles.

〔その他成分〕
本発明では、上記ポリエチレンとポリエチレンワックスとに加えて、さらに必要に応じて、酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、金属石鹸、充填剤、難燃剤等の添加剤を原料に加えて使用してもよい。また、発泡剤を添加することにより、発泡成形することができ、特に、低温発泡剤を使用すると低温発泡成形が可能となる。
[Other ingredients]
In the present invention, in addition to the polyethylene and the polyethylene wax, additives such as antioxidants, UV absorbers, light stabilizers, metal soaps, fillers, flame retardants, and the like are further used as necessary. May be used in addition to. Further, by adding a foaming agent, foam molding can be performed. In particular, when a low-temperature foaming agent is used, low-temperature foam molding is possible.

上記安定剤としては、ヒンダードフェノール系化合物、フォスファイト系化合物、チオエーテル系化合物などの酸化防止剤;
ベンゾトリアゾール系化合物、ベンゾフェノン系化合物などの紫外線吸収剤;
ヒンダードアミン系化合物などの光安定剤が挙げられる。
Examples of the stabilizer include antioxidants such as hindered phenol compounds, phosphite compounds, and thioether compounds;
UV absorbers such as benzotriazole compounds and benzophenone compounds;
Examples thereof include light stabilizers such as hindered amine compounds.

上記金属石鹸としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸亜鉛などのステアリン酸塩等が挙げられる。
上記充填剤としては、炭酸カルシウム、酸化チタン、硫酸バリウム、タルク、クレー、カーボンブラックなどが挙げられる。
Examples of the metal soap include stearates such as magnesium stearate, calcium stearate, barium stearate, and zinc stearate.
Examples of the filler include calcium carbonate, titanium oxide, barium sulfate, talc, clay, and carbon black.

上記難燃剤としては、デガブロムジフェニルエーテル、オクタブロムジフェニルエーテ
ル等のハロゲン化ジフェニルエーテル、ハロゲン化ポリカーボネイトなどのハロゲン化合物;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、ピロアンチモン酸ソーダ、水酸化アルミニウムなどの無機化合物;リン系化合物などが挙げられる。
Examples of the flame retardant include halogen compounds such as halogenated diphenyl ether and halogenated polycarbonate such as degabromo diphenyl ether and octabromo diphenyl ether; antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium pyroantimonate, aluminum hydroxide, etc. Inorganic compounds; phosphorus compounds and the like.

また、ドリップ防止のため難燃助剤としてはテトラフルオロエチレン等の化合物を添加することができる。
上記抗菌剤、防カビ剤としては、イミダゾール系化合物、チアゾール系化合物、ニトリル系化合物、ハロアルキル系化合物、ピリジン系化合物などの有機化合物;
銀、銀系化合物、亜鉛系化合物、銅系化合物、チタン系化合物などの無機物質、無機化合物などが挙げられる。
Moreover, a compound such as tetrafluoroethylene can be added as a flame retardant aid for preventing drip.
Examples of the antibacterial and antifungal agents include organic compounds such as imidazole compounds, thiazole compounds, nitrile compounds, haloalkyl compounds, and pyridine compounds;
Examples include inorganic substances such as silver, silver compounds, zinc compounds, copper compounds, and titanium compounds, and inorganic compounds.

これら化合物のなかでも、熱的に安定で性能の高い銀、銀系化合物が好ましい。
上記銀系化合物としては、銀錯体、脂肪酸、リン酸等銀塩を挙げることができる。
銀および銀系化合物を抗菌剤、防カビ剤として用いる場合には、これら物質はゼオライト、シリカゲル、リン酸ジルコニウム、リン酸カルシュウム、ハイドロタルサイト、ヒドロキシアパタイト、ケイ酸カルシウムなどの多孔性構造体に担持させて使用する場合もある。
その他添加剤としては、着色剤、可塑剤、老化防止剤、着色剤、可塑剤、オイルなどが挙げられる。
Among these compounds, thermally stable silver and silver-based compounds are preferable.
As said silver type compound, silver salts, such as a silver complex, a fatty acid, and phosphoric acid, can be mentioned.
When silver and silver-based compounds are used as antibacterial and antifungal agents, these substances can be used in porous structures such as zeolite, silica gel, zirconium phosphate, calcium phosphate, hydrotalcite, hydroxyapatite, and calcium silicate. In some cases, it is used while being supported.
Examples of other additives include colorants, plasticizers, anti-aging agents, colorants, plasticizers, and oils.

〔原料組成比〕
本発明の原料として用いる、ポリエチレンとポリエチレンワックスの組成比は、得られる成形体の物性が損なわれない限り、特に制限はないが、ポリエチレン100重量部に対して、通常0.01〜10重量部の範囲、好ましくは0.1〜5重量部の範囲、より好ましくは0.5〜3重量部の範囲である。
[Raw material composition ratio]
The composition ratio of polyethylene and polyethylene wax used as a raw material of the present invention is not particularly limited as long as the physical properties of the obtained molded article are not impaired, but usually 0.01 to 10 parts by weight with respect to 100 parts by weight of polyethylene. The range is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight.

上記範囲の組成比でポリエチレンとポリエチレンワックスとを用いた場合には、ポリエチレンワックスを添加しない場合に比べて、流動性の改良効果が大きく、低い成形温度で射出成形しても、同程度の機械的物性を有する射出成形体が得られ、ワックス添加による機械的物性の低下を抑制することができる。また、低い成形温度で成形すると、冷却時間が短縮され、成形サイクルが向上する。さらに、成形温度を低くすることにより、樹脂の熱劣化を抑制し、樹脂強度の低下を抑制するだけでなく、樹脂の焼け焦げや黒点を抑制することができる。   When polyethylene and polyethylene wax are used at a composition ratio in the above range, the effect of improving fluidity is greater than when polyethylene wax is not added, and even when injection molding is performed at a low molding temperature, the same degree of machinery is used. An injection-molded article having specific physical properties can be obtained, and deterioration of mechanical properties due to the addition of wax can be suppressed. Further, when molding is performed at a low molding temperature, the cooling time is shortened and the molding cycle is improved. Furthermore, by lowering the molding temperature, it is possible not only to suppress the thermal deterioration of the resin and the resin strength, but also to suppress the scorching and black spots of the resin.

〔射出成形〕
本発明の成形体の製造方法では、上記原料を、射出成形する。
射出成形については、特に制限はなく、従来公知の方法を適用することができる。通常、ホッパーから添加した、ポリエチレン、ポリエチレンワックス等の原料を加熱シリンダ内で溶融混練し、この溶融混練した物を射出装置により金型内に充填し、金型内の樹脂組成物を冷却・固化した後、金型内から成形品を取り出す。
〔injection molding〕
In the method for producing a molded article of the present invention, the raw material is injection molded.
There is no restriction | limiting in particular about injection molding, A conventionally well-known method is applicable. Usually, raw materials such as polyethylene and polyethylene wax added from a hopper are melt-kneaded in a heating cylinder, and the melt-kneaded material is filled into a mold by an injection device, and the resin composition in the mold is cooled and solidified. After that, the molded product is taken out from the mold.

ポリエチレンおよびポリエチレンワックスは、上記射出装置に供給する前に予め混合(予備混合)してもよいし、射出装置に供給された樹脂にポリエチレンワックスを供給(例えばサイドフィード)して混合してもよい。上記いずれの場合にも、射出時にはポリエチレンとポリエチレンワックスとの混合物が形成される。予備混合方法は特に限定されず、溶融混合でもドライブレンドでもよい。ドライブレンドに用いる装置としては、ヘンシェルミキサーなどの高速ミキサー、タンブラーなどが挙げられる。溶融混練に用いる装置としては、プラストミル、ニーダー、ロールミキサー、バンバリーミキサー、ブラベンダー、1軸押出機、2軸押出機などが挙げられる。   Polyethylene and polyethylene wax may be mixed in advance (preliminary mixing) before being supplied to the injection device, or may be mixed by supplying polyethylene wax to the resin supplied to the injection device (for example, side feed). . In any of the above cases, a mixture of polyethylene and polyethylene wax is formed during injection. The premixing method is not particularly limited, and may be melt mixing or dry blending. Examples of the apparatus used for dry blending include a high-speed mixer such as a Henschel mixer, and a tumbler. Examples of the apparatus used for melt kneading include a plast mill, a kneader, a roll mixer, a Banbury mixer, a Brabender, a single screw extruder, a twin screw extruder, and the like.

本発明によると、射出成形温度(樹脂温度)を、ポリエチレンワックスを添加しない場合の射出成形温度、具体的には、140〜300℃の範囲の温度に対して、5℃以上、好ましくは10℃以上、より好ましくは15℃以上低い温度に設定できる。ここで、「ポリエチレンワックスを含まない場合の射出成形温度」とは、成形速度や得られる成型体の物性を考慮して、使用するポリエチレンにより適宜決定される、最適な射出成形温度である。たとえば、結晶性ポリエチレンの場合、結晶融解温度Tmから下記式により最適な射出
成形温度Tpc0を決定することができる。
According to the present invention, the injection molding temperature (resin temperature) is 5 ° C. or more, preferably 10 ° C., with respect to the temperature in the range of 140 to 300 ° C. when no polyethylene wax is added. As described above, it can be set at a temperature lower by 15 ° C. or more. Here, the “injection molding temperature in the case of not containing polyethylene wax” is an optimum injection molding temperature that is appropriately determined depending on the polyethylene to be used in consideration of the molding speed and the physical properties of the molded article to be obtained. For example, in the case of crystalline polyethylene, the optimum injection molding temperature Tpc 0 can be determined from the crystal melting temperature T m according to the following formula.

Tpc0=3/4×Tm+100
一方、「ポリエチレンワックスを含む場合の射出成形温度」は、ポリエチレンワックスを含まない場合の射出成形温度における押出機のスクリュートルクと同一のスクリュートルクになる射出成形温度である。ここで、上記「同一」は5%程度の誤差を含むものとする。
Tpc 0 = 3/4 × T m +100
On the other hand, the “injection molding temperature when polyethylene wax is included” is an injection molding temperature at which the screw torque is the same as the screw torque of the extruder at the injection molding temperature when polyethylene wax is not included. Here, the above “same” includes an error of about 5%.

このように、成形温度を下げることができると、射出成形時の焼け焦げを防止することができる。また、得られた射出成形品はポリエチレンワックスを添加しても物性の低下が見られない。また、成形温度を低下させることができるため、金型冷却時間を短縮することができ、その結果、成形サイクルを増加させることができ、既存の設備で生産性を向上させることが可能となる。さらに、低温で射出成形できるため、低温での発泡も可能となる。   Thus, if the molding temperature can be lowered, scorching at the time of injection molding can be prevented. Moreover, even if polyethylene wax is added to the obtained injection-molded product, no deterioration in physical properties is observed. In addition, since the molding temperature can be lowered, the mold cooling time can be shortened. As a result, the molding cycle can be increased, and the productivity can be improved with existing equipment. Furthermore, since it can be injection-molded at a low temperature, foaming at a low temperature is also possible.

なお、射出成形温度を除く射出成形条件は、従来公知条件を採用することができる。具体的には、射出圧力が通常30〜100MPa、好ましくは30〜50MPaであり、金型温度が通常20〜40℃、好ましくは25〜35℃である。   In addition, conventionally well-known conditions can be employ | adopted for the injection molding conditions except injection molding temperature. Specifically, the injection pressure is usually 30 to 100 MPa, preferably 30 to 50 MPa, and the mold temperature is usually 20 to 40 ° C., preferably 25 to 35 ° C.

[実施例]
以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

以下の実施例においてポリエチレンおよびポリエチレンワックスの物性は次のようにして測定した。
(数平均分子量(Mn))
数平均分子量(Mn)は、GPC測定から求めたものである。測定は以下の条件で行った。また、数平均分子量(Mn)は、市販の単分散標準ポリスチレンを用いて検量線を作成し下記の換算法に基づいて分子量を求めた。
装置 : ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
溶剤 : o−ジクロロベンゼン
カラム: TSKgelカラム(東ソー社製)×4
流速 : 1.0 ml/分
試料 : 0.15mg/mL o−ジクロロベンゼン溶液
温度 : 140℃
分子量換算 : PE換算/汎用較正法
In the following examples, the physical properties of polyethylene and polyethylene wax were measured as follows.
(Number average molecular weight (Mn))
The number average molecular weight (Mn) is obtained from GPC measurement. The measurement was performed under the following conditions. Moreover, the number average molecular weight (Mn) calculated | required the molecular weight based on the following conversion method, creating a calibration curve using the commercially available monodisperse standard polystyrene.
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution temperature: 140 ° C.
Molecular weight conversion: PE conversion / General calibration method

なお、汎用較正の計算には、以下に示すMark−Houwink粘度式の係数を用いた。
ポリスチレン(PS)の係数 : KPS=1.38×10-4, aPS=0.70
ポリエチレン(PE)の係数 : KPE=5.06×10-4, aPE=0.70
(A値、B値)
上述したGPCの測定結果より、分子量1,000以下の成分の割合を重量%で求め、
A値とした。また、GPCの測定結果より、分子量20,000以上の成分の割合を重量
%で求め、B値とした。
In addition, the coefficient of the Mark-Houwink viscosity formula shown below was used for calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Coefficient of polyethylene (PE): KPE = 0.06 × 10 −4 , aPE = 0.70
(A value, B value)
From the GPC measurement results described above, the proportion of the component having a molecular weight of 1,000 or less is determined by weight%,
A value was used. Further, from the measurement result of GPC, the ratio of the component having a molecular weight of 20,000 or more was determined by weight%, and the B value was obtained.

(溶融粘度)
ブルックフィールド粘度計を用いて140℃で測定した。
(密度)
JIS K7112の密度勾配法に従って測定した。
(Melt viscosity)
Measurements were made at 140 ° C. using a Brookfield viscometer.
(density)
It was measured according to the density gradient method of JIS K7112.

(融点)
示差走査型熱量計(DSC)〔DSC−20(セイコー電子工業社製)〕を用いて測定した。まず測定試料を、一旦200℃まで昇温して、5分間保持した後、直ちに室温まで冷却した。この試料約10mgを−20℃から200℃の温度範囲で、昇温速度10℃/分の条件でDSC測定した。測定結果から得られたカーブの吸熱ピークの値を融点とした。
(Melting point)
It measured using the differential scanning calorimeter (DSC) [DSC-20 (made by Seiko Denshi Kogyo Co., Ltd.)]. First, the measurement sample was once heated to 200 ° C. and held for 5 minutes, and then immediately cooled to room temperature. About 10 mg of this sample was subjected to DSC measurement in the temperature range from −20 ° C. to 200 ° C. under the temperature rising rate of 10 ° C./min. The endothermic peak value of the curve obtained from the measurement results was taken as the melting point.

(結晶融解温度)
結晶融解温度(Tm、℃)は、ASTM D 3417‐75に準拠して、降温速度2℃/minの条件で測定した。
(Crystal melting temperature)
The crystal melting temperature (T m , ° C.) was measured under the condition of a temperature drop rate of 2 ° C./min according to ASTM D 3417-75.

[比較例1]
低密度ポリエチレン(商品名:ミラソン403P、(株)プライムポリマー製、結晶融解温度:108℃、密度:921kg/m3、MI:7.0g/10min)について下
記条件で射出成形して成形品を作製し、各種物性を評価した。結果を表1に示す。
[Comparative Example 1]
Low-density polyethylene (trade name: Mirason 403P, manufactured by Prime Polymer Co., Ltd., crystal melting temperature: 108 ° C., density: 921 kg / m 3 , MI: 7.0 g / 10 min) is injection-molded under the following conditions to give a molded product It produced and evaluated various physical properties. The results are shown in Table 1.

〔射出成形条件〕
射出成形機:(株)東芝機械製、55ton射出成形機(IS55EPNi1.5B)
成形温度(シリンダー設定温度):180℃
射出圧力(1次):35MPa
射出速度:80mm/sec
射出時間:15秒
金型温度:30℃
金型冷却時間:20秒
[Injection molding conditions]
Injection molding machine: 55ton injection molding machine (IS55EPNi1.5B) manufactured by Toshiba Machine Co., Ltd.
Molding temperature (cylinder setting temperature): 180 ° C
Injection pressure (primary): 35 MPa
Injection speed: 80mm / sec
Injection time: 15 seconds Mold temperature: 30 ° C
Mold cooling time: 20 seconds

〔物性評価〕
(離型性)
上記射出成形機により上記条件で平板(縦110mm×横120mm×厚み2mm)を射出成形し、所定時間金型を冷却した後、金型内の成形品を突き出しピンで押し出し、このときの離型性を、下記基準で判定した。
○:成形品が、抵抗なく離型し、変形しないもの。
×:成形品が、金型への張り付き等により離型抵抗が大きく、変形するもの。
〔Evaluation of the physical properties〕
(Releasability)
A flat plate (110 mm in length x 120 mm in width x 2 mm in thickness) is injection-molded under the above conditions with the above-mentioned injection molding machine, and after cooling the mold for a predetermined time, the molded product in the mold is pushed out with an ejection pin, and the mold release at this time Sex was judged according to the following criteria.
○: The molded product is released without resistance and does not deform.
X: The molded product is deformed due to large release resistance due to sticking to the mold.

(フローマーク)
上記射出成形機を用いて上記条件で平板(縦110mm×横120mm×厚み2mm)を射出成形し、フローマークを観察した。
○:フローマークなし
×:フローマークあり
(引張破壊応力、引張降伏応力)
上記射出成形機を用いて上記条件で試験片(1BA形試験片)を作成し、JIS K7161に準拠して、引張速度50mm/minで引張破壊応力及び引張降伏応力を測定した。
(Flow mark)
A flat plate (length 110 mm × width 120 mm × thickness 2 mm) was injection molded under the above conditions using the injection molding machine, and a flow mark was observed.
○: No flow mark ×: With flow mark (Tensile fracture stress, tensile yield stress)
A test piece (1BA type test piece) was prepared under the above-described conditions using the injection molding machine, and the tensile fracture stress and the tensile yield stress were measured at a tensile speed of 50 mm / min according to JIS K7161.

(曲げ弾性率、曲げ強度)
上記射出成形機を用いて上記条件で試験片を作成し、JIS K7171に準拠して、支点間距離48mm、試験速度5.0mm/minで曲げ弾性率及び曲げ強度を測定した。
(Bending elastic modulus, bending strength)
Test pieces were prepared under the above conditions using the injection molding machine, and the flexural modulus and flexural strength were measured at a fulcrum distance of 48 mm and a test speed of 5.0 mm / min in accordance with JIS K7171.

(耐熱性)
上記射出成形機を用いて上記条件で試験片を作成し、JIS K7206に準拠して、A50法によりビカット軟化点を測定した。
(Heat-resistant)
A test piece was prepared under the above conditions using the above injection molding machine, and the Vicat softening point was measured by the A50 method in accordance with JIS K7206.

(耐衝撃性)
上記射出成形機を用いて上記条件で試験片(ノッチ付きタイプ1号A試験片)を作成し、JIS K7110に準拠して、アイゾット衝撃値を測定した。
(Impact resistance)
A test piece (type 1A test piece with a notch) was prepared under the above conditions using the injection molding machine, and an Izod impact value was measured in accordance with JIS K7110.

[比較例2]
成形温度を160℃に変更した以外は、比較例1と同様にして低密度ポリエチレン(ミラソン403P)の射出成形を試みたが、ショートショットとなり、良好な成形体が得られなかった。
[Comparative Example 2]
Except that the molding temperature was changed to 160 ° C., injection molding of low-density polyethylene (Mirason 403P) was attempted in the same manner as in Comparative Example 1, but a short shot was obtained, and a good molded body could not be obtained.

[比較例3]
低密度ポリエチレン(ミラソン403P)100重量部に、チーグラー系触媒を用いて調製したチーグラー系ポリエチレンワックス(商品名:ハイワックス(登録商標)420P、三井化学(株)製、エチレン含量97mol%、密度:930kg/m3、平均分子
量(Mn):2000、溶融粘度(140℃):700mPa・s、A値:8.3重量%、B値:6.2重量%)を2重量部添加し、タンブラーミキサー中で十分混合して低密度ポリエチレンとポリエチレンワックスとの混合物を作製した。
[Comparative Example 3]
Ziegler-based polyethylene wax (trade name: High Wax (registered trademark) 420P, manufactured by Mitsui Chemicals, Inc., ethylene content 97 mol%), density: 100 parts by weight of low-density polyethylene (Mirason 403P) 2 parts by weight of 930 kg / m 3 , average molecular weight (Mn): 2000, melt viscosity (140 ° C.): 700 mPa · s, A value: 8.3% by weight, B value: 6.2% by weight Mix well in a mixer to make a mixture of low density polyethylene and polyethylene wax.

低密度ポリエチレン(ミラソン403P)の代わりにこの混合物を用い、成形温度を160℃に変更し、金型冷却時間を15秒に変更した以外は、比較例1と同様にして射出成形を行い、各種物性を評価した。結果を表1に示す。   This mixture was used in place of low density polyethylene (Mirason 403P), the molding temperature was changed to 160 ° C., and the mold cooling time was changed to 15 seconds. Physical properties were evaluated. The results are shown in Table 1.

[実施例1]
チーグラー系ポリエチレンワックス(ハイワックス(登録商標)420P)の代わりに、メタロセン触媒を用いて調製したメタロセン系ポリエチレンワックス(商品名:エクセレックス(登録商標)48070BT、三井化学(株)製、エチレン含量92mol%、密度:902kg/m3、平均分子量(Mn):3400、溶融粘度(140℃):13
50mPa・s、A値:4.7重量%、B値:8.7重量%)を2重量部使用した以外は、比較例3と同様にして射出成形を行い、各種物性を評価した。結果を表1に示す。
[Example 1]
Metallocene polyethylene wax prepared using a metallocene catalyst instead of Ziegler polyethylene wax (High Wax (registered trademark) 420P) (trade name: Excellex (registered trademark) 48070BT, manufactured by Mitsui Chemicals, Inc., ethylene content 92 mol %, Density: 902 kg / m 3 , average molecular weight (Mn): 3400, melt viscosity (140 ° C.): 13
50 mPa · s, A value: 4.7 wt%, B value: 8.7 wt%) were used in the same manner as in Comparative Example 3 except that 2 parts by weight were used, and various physical properties were evaluated. The results are shown in Table 1.

Figure 2007268777
Figure 2007268777

実施例1と比較例1および2とを比較すると、低密度ポリエチレンにポリエチレンワックスを添加すると、成形温度を添加しない場合よりも20℃以上低くした場合でも、成形品の物性を低下させずに、射出成形できることがわかる。さらに、金型冷却時間も短縮できることがわかる。また、実施例1と比較例3とを比較すると、低密度ポリエチレンに、溶融粘度とB値とが式(I)の関係を満たし、かつ溶融粘度とA値とが式(II)の関係を満たす触媒を用いて得られたポリエチレンワックスを添加すると、従来のワックスを用いた場合に比べて機械的物性に優れた射出成形品を製造することができ、金型からの離型性も良好であることがわかる。   A comparison between Example 1 and Comparative Examples 1 and 2 shows that when polyethylene wax is added to low density polyethylene, the physical properties of the molded product are not lowered even when the molding temperature is lower by 20 ° C. or more than when no molding temperature is added. It can be seen that injection molding is possible. Further, it can be seen that the mold cooling time can be shortened. Further, when Example 1 and Comparative Example 3 are compared, the low-density polyethylene has a relationship between the melt viscosity and the B value satisfying the relationship of the formula (I), and the melt viscosity and the A value satisfying the relationship of the formula (II). By adding polyethylene wax obtained using a catalyst that satisfies the requirements, it is possible to produce an injection-molded product with excellent mechanical properties compared to the case of using a conventional wax, and the mold release property is also good. I know that there is.

Claims (2)

JIS K7112の密度勾配管法に従って測定した密度が900(kg/m3)以上
940(kg/m3)未満の範囲にあり、JIS K7210に従って190℃、試験荷
重21.18Nの条件で測定したMIが0.01〜100g/10分の範囲であるポリエチレンと、JIS K7112の密度勾配管法に従って測定した密度が890〜980(kg/m3)の範囲にあり、ゲルパーミエーションクロマトグラフィー(GPC)で測定
したポリエチレン換算の数平均分子量(Mn)が500〜4,000の範囲にあり、かつ
下記式(I)で表される関係を満たすポリエチレンワックスとを含む混合物を、射出成形することにより成形体を製造する方法。
B≦0.0075×K ・・・(I)
(上記式(I)中、Bは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が20,000以上となる成分の含有割合(重量%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
The density measured according to the density gradient tube method of JIS K7112 is in the range of 900 (kg / m 3 ) or more and less than 940 (kg / m 3 ), MI measured under conditions of 190 ° C. and test load 21.18 N according to JIS K7210 Has a density measured in accordance with the density gradient tube method of JIS K7112 in the range of 890 to 980 (kg / m 3 ), and gel permeation chromatography (GPC) Molded by injection molding a mixture containing a polyethylene wax having a polyethylene-equivalent number average molecular weight (Mn) in the range of 500 to 4,000 and satisfying the relationship represented by the following formula (I) A method of manufacturing a body.
B ≦ 0.0075 × K (I)
(In the above formula (I), B is a content ratio (% by weight) of a component having a polyethylene conversion molecular weight of 20,000 or more in the polyethylene wax when measured by gel permeation chromatography, and K Is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)
上記ポリエチレンワックスがさらに下記式(II)で表される関係を満たす、請求項1に記載の射出成形による成形体の製造方法。
A≦230×K(-0.537) ・・・(II)
(上記式(II)中、Aは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が1,000以下となる成分の含有割合(重量%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
The method for producing a molded article by injection molding according to claim 1, wherein the polyethylene wax further satisfies a relationship represented by the following formula (II).
A ≦ 230 × K (-0.537) (II)
(In the above formula (II), A is a content ratio (% by weight) of a component in which the molecular weight in terms of polyethylene in the polyethylene wax is 1,000 or less when measured by gel permeation chromatography, and K Is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)
JP2006095417A 2006-03-30 2006-03-30 Manufacturing method of molded object by injection molding Pending JP2007268777A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006095417A JP2007268777A (en) 2006-03-30 2006-03-30 Manufacturing method of molded object by injection molding
EP07738520A EP2002955A4 (en) 2006-03-30 2007-03-14 Process for producing molded object by injection molding
PCT/JP2007/055049 WO2007114009A1 (en) 2006-03-30 2007-03-14 Process for producing molded object by injection molding
TW096110804A TWI349610B (en) 2006-03-30 2007-03-28 Process for producing injection molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095417A JP2007268777A (en) 2006-03-30 2006-03-30 Manufacturing method of molded object by injection molding

Publications (1)

Publication Number Publication Date
JP2007268777A true JP2007268777A (en) 2007-10-18

Family

ID=38672086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095417A Pending JP2007268777A (en) 2006-03-30 2006-03-30 Manufacturing method of molded object by injection molding

Country Status (1)

Country Link
JP (1) JP2007268777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268779A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268778A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268920A (en) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026886A (en) * 2002-06-21 2004-01-29 Mitsui Chemicals Inc Composition for synthetic wood, and synthetic wood
JP2004051769A (en) * 2002-07-19 2004-02-19 Nissan Motor Co Ltd Car interior molded article
JP2004059867A (en) * 2002-07-31 2004-02-26 Mitsui Chemicals Inc Thermoplastic resin composition
JP2005281449A (en) * 2004-03-29 2005-10-13 Mitsui Chemicals Inc Thermoplastic resin composition and molded product obtained by molding the same
WO2007043188A1 (en) * 2005-10-07 2007-04-19 Mitsui Chemicals, Inc. Process for producing injection-molded object
WO2007043190A1 (en) * 2005-10-07 2007-04-19 Mitsui Chemicals, Inc. Process for producing injection-molded object
JP2007261920A (en) * 2006-03-30 2007-10-11 Dainippon Ink & Chem Inc Cement composition
JP2007261201A (en) * 2006-03-29 2007-10-11 Mitsui Chemicals Inc Manufacturing method of molded object by blow molding
JP2007268779A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268778A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268776A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of stretched film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026886A (en) * 2002-06-21 2004-01-29 Mitsui Chemicals Inc Composition for synthetic wood, and synthetic wood
JP2004051769A (en) * 2002-07-19 2004-02-19 Nissan Motor Co Ltd Car interior molded article
JP2004059867A (en) * 2002-07-31 2004-02-26 Mitsui Chemicals Inc Thermoplastic resin composition
JP2005281449A (en) * 2004-03-29 2005-10-13 Mitsui Chemicals Inc Thermoplastic resin composition and molded product obtained by molding the same
WO2007043188A1 (en) * 2005-10-07 2007-04-19 Mitsui Chemicals, Inc. Process for producing injection-molded object
WO2007043190A1 (en) * 2005-10-07 2007-04-19 Mitsui Chemicals, Inc. Process for producing injection-molded object
JP2007261201A (en) * 2006-03-29 2007-10-11 Mitsui Chemicals Inc Manufacturing method of molded object by blow molding
JP2007261920A (en) * 2006-03-30 2007-10-11 Dainippon Ink & Chem Inc Cement composition
JP2007268779A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268778A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268776A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of stretched film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268779A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268778A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268920A (en) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP4647535B2 (en) * 2006-03-31 2011-03-09 三井化学株式会社 Manufacturing method of molded body by injection molding

Similar Documents

Publication Publication Date Title
US20080064805A1 (en) Process for producing injection molded product
JP2007261201A (en) Manufacturing method of molded object by blow molding
JP2005281449A (en) Thermoplastic resin composition and molded product obtained by molding the same
US20090137729A1 (en) Process for Producing Oriented Film
JP2007268778A (en) Manufacturing method of molded object by injection molding
JP4642687B2 (en) Method for producing stretched film
JP4647535B2 (en) Manufacturing method of molded body by injection molding
US20090127751A1 (en) Process for Producing Molded Product by Inflation Molding
TWI387529B (en) Process for producing t-die extrusion molded product
JP2007268777A (en) Manufacturing method of molded object by injection molding
JP5068028B2 (en) Manufacturing method of molded body by T-die molding
JP2007268779A (en) Manufacturing method of molded object by injection molding
JP5068026B2 (en) Method for producing stretched film
JP4846503B2 (en) Method for producing blow molded article
EP2002955A9 (en) Process for producing molded object by injection molding
JP4828223B2 (en) Thermoplastic resin molding
JP2007270033A (en) Method for producing foamed article by foam-molding
JP4749894B2 (en) Manufacturing method of molded body by inflation molding
US20070082998A1 (en) Process for producing injection molded product
JP5068058B2 (en) Method for producing thermoplastic resin composition
JP4749909B2 (en) Manufacturing method of molded body by T-die molding
JP5068025B2 (en) Method for producing stretched film
JP4749911B2 (en) Manufacturing method of molded body by T-die molding
JP5047523B2 (en) Manufacturing method of molded body by T-die molding
US20070225423A1 (en) Process for producing blow molded product by blow molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308