JP2007268776A - Manufacturing method of stretched film - Google Patents

Manufacturing method of stretched film Download PDF

Info

Publication number
JP2007268776A
JP2007268776A JP2006095416A JP2006095416A JP2007268776A JP 2007268776 A JP2007268776 A JP 2007268776A JP 2006095416 A JP2006095416 A JP 2006095416A JP 2006095416 A JP2006095416 A JP 2006095416A JP 2007268776 A JP2007268776 A JP 2007268776A
Authority
JP
Japan
Prior art keywords
group
polyethylene wax
carbon atoms
molecular weight
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006095416A
Other languages
Japanese (ja)
Other versions
JP4642687B2 (en
Inventor
Motoyasu Yasui
基泰 安井
Hirotaka Uosaki
浩隆 宇於崎
Kuniaki Kawabe
邦昭 川辺
Hideo Nakamura
英夫 中村
Yasushi Amada
康 尼田
Terufumi Suzuki
照文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2006095416A priority Critical patent/JP4642687B2/en
Priority to PCT/JP2007/056211 priority patent/WO2007114102A1/en
Priority to EP07739649A priority patent/EP2002963A4/en
Priority to US12/225,581 priority patent/US20090137729A1/en
Priority to TW096111279A priority patent/TWI353298B/en
Publication of JP2007268776A publication Critical patent/JP2007268776A/en
Application granted granted Critical
Publication of JP4642687B2 publication Critical patent/JP4642687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a polypropylene stretched film not almost causing bleed-out and having high transparency and high strength. <P>SOLUTION: The manufacturing method of the stretched film is characterized by the stretch molding of a mixture containing polypropylene with an MI of 0.01-100 g/10 min and polyethylene wax with a density of 890-950(kg/m<SP>3</SP>), a number average molecular weight (Mn) of 700-4,000 and satisfying the relation of the formula (I): B≤0.0075×K and the formula (II): A≤230×K<SP>(-0.537)</SP>wherein B is the content ratio (%) of the component with a molecular weight of 20,000 or above in polyethylene wax, A is the content ratio (%) with a molecular weight of 1,000 or below in polyethylene wax and K is the melt viscosity (mPa s) of polyethylene wax at 140°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は延伸成形によりフィルムを製造する方法に関し、より詳細には、MIが特定範囲にあるポリプロピレンと特定のポリエチレンワックスとを原料とし、延伸成形によりフィルムを製造する方法に関する。   The present invention relates to a method for producing a film by stretch molding, and more particularly, to a method for producing a film by stretch molding using polypropylene having a MI in a specific range and a specific polyethylene wax as raw materials.

従来より、延伸成形により得られるポリプロピレンのフィルムは、様々な用途に展開されてきている。近年、この延伸成形の生産性の向上がより一層強く求められるようになっている。延伸成形など成形の際の生産性を改善する一般的な方法として、成形助剤を添加して成形する方法が知られている。例えば、熱可塑性樹脂に対して、オイル、ポリエチレンワックス等の成形助剤を適用して成形する方法が検討されている(例えば、特許文献1、および2)。   Conventionally, polypropylene films obtained by stretch molding have been developed for various uses. In recent years, improvement in productivity of this stretch molding has been increasingly demanded. As a general method for improving productivity at the time of molding such as stretch molding, a method of molding by adding a molding aid is known. For example, a method of molding a thermoplastic resin by applying a molding aid such as oil or polyethylene wax has been studied (for example, Patent Documents 1 and 2).

しかし、従来の成形助剤を用いポリエチレン等の樹脂を延伸成形してフィルムを作製したとしても、成形性自体は改善される傾向にあるものの、得られるフィルムの物性、例えば力学物性、透明性、光沢度等の光学物性などが低下する場合があり、フィルムとして使用しようとしても、用途によっては問題となる場合があった。
特公平5−80492号公報 特表2003−528948号公報
However, even if a film such as polyethylene is stretched and molded using a conventional molding aid, the moldability itself tends to improve, but the physical properties of the resulting film, such as mechanical properties, transparency, In some cases, optical properties such as glossiness may decrease, and even if it is used as a film, it may cause a problem depending on the application.
Japanese Patent Publication No. 5-80492 Special table 2003-528948 gazette

本発明の目的は、延伸成形時の生産性を改善し、しかも、透明性、光沢などの光学物性、力学物性が損なわれないポリプロピレンのフィルムを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a polypropylene film which improves the productivity during stretch molding and does not impair optical properties such as transparency and gloss and mechanical properties.

本発明者らは上記課題を検討し、MIが特定範囲にあるポリプロピレンと特定のポリエチレンワックスとを原料とし、延伸成形を行うと、その生産性が改善されるとともに、得られるフィルムは、ポリプロピレン自体が本来有する、透明性、光沢などの光学物性が損なわれず、しかも力学物性が損なわれないことを見いだし、本発明を完成するに至った。   The inventors of the present invention have studied the above-mentioned problems, and when stretch molding is performed using polypropylene having a MI in a specific range and a specific polyethylene wax as raw materials, the productivity is improved. Found that the optical properties such as transparency and gloss inherently possessed by the material are not impaired and the mechanical properties are not impaired, and the present invention has been completed.

すなわち本発明のフィルムを製造する方法は、
JIS K7210に従って230℃、試験荷重21.18Nの条件で測定したMIが0.01〜100g/10分の範囲であるポリプロピレンと、JIS K7112の密度勾配管法に従って測定した密度が890〜950(kg/m3)の範囲にあり、ゲルパー
ミエーションクロマトグラフィー(GPC)で測定したポリエチレン換算の数平均分子量(Mn)が700〜4,000の範囲にあり、かつ下記式(I)および式(II)で表される関係を満たすポリエチレンワックスとを含む混合物を延伸成形することによりフィルムを製造する方法である。
B≦0.0075×K ・・・(I)
(上記式(I)中、Bは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が20,000以上となる成分の含有割合(%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
A≦230×K(-0.537) ・・・(II)
(上記式(II)中、Aは、ゲルパーミエーションクロマトグラフィーで測定した場合の、
上記ポリエチレンワックス中のポリエチレン換算の分子量が1,000以下となる成分の含有割合(重量%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
前記フィルムを製造する方法であって混合物中のポリプロピレン100重量部当たり、ポリエチレンワックスが0.01〜10重量部である原料を用いることが好ましい。
That is, the method for producing the film of the present invention comprises:
Polypropylene having an MI measured in the range of 0.01 to 100 g / 10 min at 230 ° C. and a test load of 21.18 N in accordance with JIS K7210, and a density measured in accordance with the density gradient tube method in JIS K7112 is 890 to 950 (kg) / m 3) is in the range of, there a number average molecular weight in terms of polyethylene as measured by gel permeation chromatography (GPC) (Mn) is in the range of 700~4,000, and the following formula (I) and formula (II This is a method for producing a film by stretching a mixture containing polyethylene wax that satisfies the relationship represented by
B ≦ 0.0075 × K (I)
(In the above formula (I), B is the content (%) of the component in which the polyethylene-converted molecular weight in the polyethylene wax is 20,000 or more when measured by gel permeation chromatography, and K is (It is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)
A ≦ 230 × K (-0.537) (II)
(In the above formula (II), A is measured by gel permeation chromatography.
It is a content ratio (% by weight) of a component having a polyethylene molecular weight of 1,000 or less in the polyethylene wax, and K is a melt viscosity (mPa · s) of the polyethylene wax at 140 ° C. )
In the method for producing the film, it is preferable to use a raw material in which polyethylene wax is 0.01 to 10 parts by weight per 100 parts by weight of polypropylene in the mixture.

本発明のフィルムの製造方法によれば、ポリプロピレンの延伸成形時の生産性に優れる。また、延伸成形により得られるポリプロピレンのフィルムはポリプロピレン自体が本来有する、透明性、光沢度等の光学物性が損なわれず、しかも力学物性も損なわれない。   According to the method for producing a film of the present invention, the productivity at the time of stretch molding of polypropylene is excellent. Further, the polypropylene film obtained by stretch molding does not impair the optical properties such as transparency and glossiness inherent to the polypropylene itself, and also does not impair the mechanical properties.

以下、本発明を詳細に説明する。
まず本発明の延伸成形に用いる原料について説明する。
〔ポリプロピレン〕
本発明に用いるポリプロピレンとは、具体的には、JIS K7210に従って230℃、試験荷重21.18Nの条件で測定したMIが0.01〜100g/10分の範囲にあるプロピレンの単独重合体またはプロピレンとα−オレフィン(プロピレンを除く)との共重合体、またはそれらのブレンド物をいう。上記ポリプロピレンとしては、具体的には、プロピレンホモポリマー、プロピレンとα−オレフィン(プロピレンを除く)とを共重合したポリプロピレンブロックコポリマー、ポリプロピレンランダムコポリマー、またはそれらのブレンド物が挙げられる。
Hereinafter, the present invention will be described in detail.
First, the raw materials used for the stretch molding of the present invention will be described.
〔polypropylene〕
Specifically, the polypropylene used in the present invention is a propylene homopolymer or propylene having an MI measured in the range of 0.01 to 100 g / 10 min at 230 ° C. and a test load of 21.18 N according to JIS K7210. And a copolymer of α-olefin (excluding propylene) or a blend thereof. Specific examples of the polypropylene include a propylene homopolymer, a polypropylene block copolymer obtained by copolymerizing propylene and an α-olefin (excluding propylene), a polypropylene random copolymer, or a blend thereof.

本発明において、ポリプロピレンのMIの測定条件は以下の通りである。
(MI)
JIS K7210に従って230℃、試験荷重21.18Nの条件で測定した。
In the present invention, the measurement conditions for MI of polypropylene are as follows.
(MI)
The measurement was performed under the conditions of 230 ° C. and a test load of 21.18 N according to JIS K7210.

上記ポリプロピレンの形状は、特に制限はないが、通常は、ペレット状またはタブレット状の粒子である。
また上記ポリプロピレンの密度は通常は900〜910(kg/m3)の範囲である。
The shape of the polypropylene is not particularly limited, but is usually pellet-shaped or tablet-shaped particles.
The density of the polypropylene is usually in the range of 900 to 910 (kg / m 3 ).

〔ポリエチレンワックス〕
本発明でポリエチレンワックスとは、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリエチレン換算の数平均分子量(Mn)が700〜4,000の範囲にあるエチレンの単独重合体またはエチレンとα−オレフィンとの共重合体、またはそれらのブレンド物をいう。上記ポリエチレンワックスのポリエチレン換算の数平均分子量(Mn)は、以下の条件でゲルパーミエーションクロマトグラフィー(GPC)測定から求めたものである。
[Polyethylene wax]
In the present invention, the polyethylene wax means an ethylene homopolymer or ethylene and α-olefin having a polyethylene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC) in the range of 700 to 4,000. Or a blend thereof. The polyethylene-converted number average molecular weight (Mn) of the polyethylene wax is determined from gel permeation chromatography (GPC) measurement under the following conditions.

(数平均分子量(Mn))
数平均分子量は、GPC測定から求めた。測定は以下の条件で行った。また、数平均分子量は、市販の単分散標準ポリスチレンを用いて検量線を作成し、下記の換算法に基づいて求めた。
装置 : ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
溶剤 : o−ジクロロベンゼン
カラム: TSKgelカラム(東ソー社製)×4
流速 : 1.0 ml/分
試料 : 0.15mg/mL o−ジクロロベンゼン溶液
温度 : 140℃
分子量換算 : PE換算/汎用較正法
(Number average molecular weight (Mn))
The number average molecular weight was determined from GPC measurement. The measurement was performed under the following conditions. The number average molecular weight was determined based on the following conversion method by creating a calibration curve using commercially available monodisperse standard polystyrene.
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution temperature: 140 ° C.
Molecular weight conversion: PE conversion / General calibration method

なお、汎用較正の計算には、以下に示すMark−Houwink粘度式の係数を用いた。
ポリスチレン(PS)の係数 : KPS=1.38×10-4, aPS=0.70
ポリエチレン(PE)の係数 : KPE=5.06×10-4, aPE=0.70
ポリエチレンワックスが、上述のような組成、分子量にあることで、成形時の生産性が改善される傾向にある。
In addition, the coefficient of the Mark-Houwink viscosity formula shown below was used for calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Coefficient of polyethylene (PE): KPE = 0.06 × 10 −4 , aPE = 0.70
When the polyethylene wax has the composition and molecular weight as described above, the productivity during molding tends to be improved.

本発明で用いるポリエチレンワックスは、密度が890〜950(kg/m3)の範囲
にある。上記ポリエチレンワックスの密度は、JISK7112の密度勾配管法で測定した値である。ポリエチレンワックスの密度が上記範囲にある場合には、成形時の生産性が改善される傾向にある。
The polyethylene wax used in the present invention has a density in the range of 890 to 950 (kg / m 3 ). The density of the polyethylene wax is a value measured by the density gradient tube method of JISK7112. When the density of the polyethylene wax is in the above range, the productivity during molding tends to be improved.

本発明のポリエチレンワックスはその分子量と、溶融粘度との間に下記式(I)および
式(II)で示される特定の関係がある点に特徴がある。
B≦0.0075×K ・・・(I)
ここで上記式(I)中、Bは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が20,000以上となる成分の重量基準での含有割合(重量%)である。また、Kはブルックフィールド(B型)粘度計で測定した上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。
The polyethylene wax of the present invention is characterized in that there is a specific relationship represented by the following formulas (I) and (II) between its molecular weight and melt viscosity.
B ≦ 0.0075 × K (I)
Here, in the above formula (I), B is a content ratio (weight%) of a component having a polyethylene conversion molecular weight of 20,000 or more in the polyethylene wax when measured by gel permeation chromatography. ). K is the melt viscosity (mPa · s) at 140 ° C. of the polyethylene wax measured with a Brookfield (B type) viscometer.

上記(I)式の条件を満たすポリエチレンワックスを用いた場合には、得られるフィルムでは、ポリプロピレンが本来有する力学物性が損なわれない傾向にあり、また得られるフィルムの光学特性が損なわれない傾向がある。   When polyethylene wax that satisfies the condition of the above formula (I) is used, the resulting film tends not to impair the mechanical properties inherent to polypropylene, and the optical properties of the resulting film tend not to be impaired. is there.

通常、ポリプロピレンに溶融粘度が低いポリエチレンワックスを混合して、延伸成形をすると、混合物全体の粘度が低下するため、成形時の生産性に関しては改善される傾向にある。しかし、このように生産性を改善したとしても、結果として得られるフィルムの力学物性が必ずしも十分でない場合や、さらに光学物性が損なわれる場合があった。   Usually, when a polyethylene wax having a low melt viscosity is mixed with polypropylene and stretch-molded, the viscosity of the entire mixture is lowered, and thus the productivity at the time of molding tends to be improved. However, even if the productivity is improved in this way, there are cases where the resulting film has insufficient mechanical properties or optical properties may be impaired.

本発明者らが検討した結果、延伸成形で得られるフィルムの力学物性および光学物性は、使用するポリエチレンワックスのうち、分子量が20,000以上の成分の割合が溶融粘度との関係で極めて重要であることが分かった。その詳細なメカニズムは明らかではないが、ポリエチレンワックスとポリプロピレンとを溶融混練する場合に、ポリエチレンワックス全体の中でも、分子量20,000以上の成分は、その溶融挙動がワックス全体の中でも特異的であり、ポリエチレンワックス全体の溶融粘度という観点から見て、分子量20,000以上の成分を一定割合以下としないと、ポリエチレンワックスがポリプロピレンに対して良好に分散することができず、最終的なフィルムの力学物性および光学物性にも影響を与えるものと推定される。   As a result of investigations by the present inventors, the mechanical properties and optical properties of the film obtained by stretch molding are extremely important because the proportion of the component having a molecular weight of 20,000 or more in the polyethylene wax used is related to the melt viscosity. I found out. Although the detailed mechanism is not clear, when melt-kneading polyethylene wax and polypropylene, among the entire polyethylene wax, the component having a molecular weight of 20,000 or more has a specific melting behavior in the entire wax, From the viewpoint of the melt viscosity of the entire polyethylene wax, unless the component having a molecular weight of 20,000 or more is kept below a certain ratio, the polyethylene wax cannot be dispersed well in polypropylene, and the mechanical properties of the final film It is also presumed that the optical properties will be affected.

B値が上記範囲のポリエチレンワックスは、メタロセン触媒を用いて調製できる。メタ
ロセン触媒の中でも、配位子が非架橋であるメタロセン触媒が好ましい。このようなメタロセン触媒としては、後述する一般式(1)で表されるメタロセン化合物を例示できる。
A polyethylene wax having a B value in the above range can be prepared using a metallocene catalyst. Among the metallocene catalysts, metallocene catalysts whose ligands are non-crosslinked are preferable. As such a metallocene catalyst, a metallocene compound represented by the general formula (1) described later can be exemplified.

さらに、上記B値は重合温度によっても制御できる。例えば、後述するメタロセン触媒
によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述したB値を有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲
である。
Further, the B value can be controlled by the polymerization temperature. For example, when a polyethylene wax is produced by a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing the polyethylene wax having the B value described above, the polymerization temperature is preferably Is in the range of 100 to 180 ° C, more preferably in the range of 100 to 170 ° C.

本発明のポリエチレンワックスはその分子量と、溶融粘度との間にさらに、下記式(II)で示される特定の関係がある。
A≦230×K(-0.537) ・・・(II)
ここで上記式(II)中、Aは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が1,000以下となる成分の重量基準での含有割合(重量%)である。また、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。
The polyethylene wax of the present invention further has a specific relationship represented by the following formula (II) between its molecular weight and melt viscosity.
A ≦ 230 × K (-0.537) (II)
Here, in the above formula (II), A is the content ratio (weight%) of the component whose molecular weight in terms of polyethylene in the polyethylene wax is 1,000 or less when measured by gel permeation chromatography. ). K is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.

上記(II)式の条件を満たすポリエチレンワックスを用いた場合には、得られるフィルムは、ポリプロピレンが本来有する力学物性および光学物性が損なわれない傾向にあり、しかも成形体表面からのブリードアウトも少なくなる傾向にある。   When polyethylene wax satisfying the condition of the above formula (II) is used, the resulting film tends not to impair the mechanical and optical properties inherent to polypropylene, and there is little bleed out from the surface of the molded product. Tend to be.

前述のように、通常、ポリプロピレンに溶融粘度が低いポリエチレンワックスを適用して、延伸成形をすると、混合物全体の粘度が低下するため、成形時の生産性に関しては改善される傾向にある。しかし、生産性を改善できたとしても、結果として得られるフィルムでは、ポリプロピレンが本来有する力学物性が損なわれる場合があり、さらに光学物性も損なわれる場合があり、しかもフィルム表面からのブリードアウトも問題となる場合があった。   As described above, usually, when polyethylene wax having a low melt viscosity is applied to polypropylene and stretch-molded, the viscosity of the entire mixture is lowered, so that the productivity at the time of molding tends to be improved. However, even if productivity can be improved, the resulting film may lose the mechanical properties inherent to polypropylene, and may also lose optical properties, and bleeding out from the film surface is also a problem. There was a case.

本発明者らが検討した結果、延伸成形で得られるフィルムの力学物性等および光学物性には、使用するポリエチレンワックスのうち、分子量が1,000以下の成分の割合が溶融粘度との関係で極めて重要であることが分かった。その詳細なメカニズムは明らかではないが、成形体中でのポリエチレンワックスとポリプロピレンとを溶融混練する場合、ポリエチレンワックス全体の中でも、分子量1,000以下の成分は、溶融しやすくその溶融挙動がワックス全体の中でも特異的であり、ポリエチレンワックス全体の溶融粘度という観点から見て、分子量1,000以下の成分を一定割合以下としないと、表面へ染み出し、場合によっては劣化等を引き起こし最終的な成形体の力学物性、光学物性、ブリードアウトにも影響を与えるものと推定される。   As a result of the study by the present inventors, the ratio of the component having a molecular weight of 1,000 or less in the polyethylene wax to be used is extremely related to the melt viscosity in the mechanical properties and optical properties of the film obtained by stretch molding. I found it important. Although the detailed mechanism is not clear, when polyethylene wax and polypropylene are melt-kneaded in a molded product, among the whole polyethylene wax, components having a molecular weight of 1,000 or less are easily melted, and the melting behavior thereof is the whole wax. From the viewpoint of the melt viscosity of the entire polyethylene wax, if the component with a molecular weight of 1,000 or less is not less than a certain ratio, it will ooze out to the surface, possibly causing deterioration, etc., and final molding It is presumed to affect the physical properties, optical properties, and bleed out of the body.

A値が上記範囲のポリエチレンワックスは、メタロセン触媒を用いて調製できる。メタ
ロセン触媒の中でも、配位子が非架橋であるメタロセン触媒が好ましい。このようなメタロセン触媒としては、後述する一般式(1)で表されるメタロセン化合物を例示できる。
A polyethylene wax having an A value in the above range can be prepared using a metallocene catalyst. Among the metallocene catalysts, metallocene catalysts whose ligands are non-crosslinked are preferable. As such a metallocene catalyst, a metallocene compound represented by the general formula (1) described later can be exemplified.

さらに、上記A値は重合温度によっても制御できる。例えば、後述するメタロセン触媒
によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述したA値を有するポリエチレンワックスを製造する観点からは、重合温
度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。
Furthermore, the A value can be controlled by the polymerization temperature. For example, when a polyethylene wax is produced with a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing the polyethylene wax having the A value described above, the polymerization temperature is preferably Is in the range of 100 to 180 ° C, more preferably in the range of 100 to 170 ° C.

上記ポリエチレンワックスの数平均分子量(Mn)は、700〜4,000の範囲である。ポリエチレンワックスの数平均分子量(Mn)が上記範囲にあると、成形する際にポリプロピレンに対するポリエチレンワックスの分散が良好となる傾向にある。また、押出量が向上する傾向、押出し時の負荷が低減する傾向があり、生産性がより向上する傾向にある。さらに、ポリエチレンワックスを添加せずに得られる成形体と比較しても、得られる成形体の力学物性が損なわれない傾向にある。またポリエチレンワックスの数平均分子量(Mn)が、800〜3,800の範囲であることが好ましい。ポリエチレンワックス
の数平均分子量(Mn)が上記好ましい範囲にあると、得られる成形体の力学物性が損なわれないだけでなく、力学物性が向上する場合がある。
The polyethylene wax has a number average molecular weight (Mn) in the range of 700 to 4,000. When the number average molecular weight (Mn) of the polyethylene wax is in the above range, the dispersion of the polyethylene wax with respect to polypropylene tends to be good during molding. Moreover, there exists a tendency for the amount of extrusion to improve and the load at the time of extrusion to reduce, and it exists in the tendency for productivity to improve more. Furthermore, even if compared with a molded article obtained without adding polyethylene wax, the mechanical properties of the obtained molded article tend not to be impaired. The number average molecular weight (Mn) of the polyethylene wax is preferably in the range of 800 to 3,800. When the number average molecular weight (Mn) of the polyethylene wax is in the above preferred range, not only the mechanical properties of the resulting molded article are not impaired, but also the mechanical properties may be improved.

ポリエチレンワックスのMnは、重合温度などにより制御できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述した好適範囲のMnを有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。   Mn of the polyethylene wax can be controlled by the polymerization temperature or the like. For example, when a polyethylene wax is produced with a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing a polyethylene wax having the above-mentioned preferred range of Mn, the polymerization temperature is , Preferably, it is the range of 100-180 degreeC, More preferably, it is the range of 100-170 degreeC.

また、ポリエチレンワックスの密度(D(kg/m3))は890〜950(kg/m3)の範囲である。ポリエチレンワックスの密度(D)が上記範囲にあると、成形する際にポリプロピレンに対するポリエチレンワックスの分散が良好となる傾向にある。また、押出量が向上する傾向、押出し時の負荷が低減する傾向があり、生産性が向上する傾向にある。さらに、ポリエチレンワックスを添加せずに得られる成形体と比較しても、得られる成形体の力学物性が損なわれない傾向にある。またポリエチレンワックスの密度が上記範囲を超える場合、光学物性が悪化する傾向があり、ブリードアウトが発生する場合がある。その詳細なメカニズムは明らかでは無いが、ポリエチレンワックスの密度が上記範囲を超えるとポリエチレンワックスとポリプロピレンとの密度差が大きくなりポリエチレンワックスとポリプロピレンとの相溶性が悪化するため光学特性が悪化する傾向やブリードアウトが発生する場合があると推定される。また、ポリエチレンワックスの密度(D)が、895〜945(kg/m3)の範囲であることが好ましい。ポリエチレンワックスの密
度(D)が上記好ましい範囲にあると、得られる成形体の光学物性がより損なわれない傾向にある。
Further, the density (D (kg / m 3 )) of the polyethylene wax is in the range of 890 to 950 (kg / m 3 ). When the density (D) of the polyethylene wax is within the above range, the dispersion of the polyethylene wax in the polypropylene tends to be good during molding. In addition, the extrusion amount tends to increase, the load during extrusion tends to decrease, and the productivity tends to improve. Furthermore, even if compared with a molded article obtained without adding polyethylene wax, the mechanical properties of the obtained molded article tend not to be impaired. When the density of the polyethylene wax exceeds the above range, the optical properties tend to be deteriorated, and bleed out may occur. Although the detailed mechanism is not clear, if the density of the polyethylene wax exceeds the above range, the density difference between the polyethylene wax and the polypropylene increases, and the compatibility between the polyethylene wax and the polypropylene deteriorates, so the optical characteristics tend to deteriorate. It is estimated that bleed out may occur. Moreover, it is preferable that the density (D) of a polyethylene wax is the range of 895-945 (kg / m < 3 >). When the density (D) of the polyethylene wax is in the above preferred range, the optical physical properties of the resulting molded product tend to be less impaired.

またポリエチレンワックスの数平均分子量(Mn)が上記好ましい範囲にあり、ポリエチレンワックスの密度(D)が上記好ましい範囲にあるとき、得られる成形体の力学物性と光学物性とがより損なわれない。   Further, when the number average molecular weight (Mn) of the polyethylene wax is in the above preferred range and the density (D) of the polyethylene wax is in the above preferred range, the mechanical properties and optical properties of the resulting molded product are not impaired.

ポリエチレンワックスの密度は、ポリエチレンワックスがエチレンの単独重合体である場合には、ポリエチレンワックスの数平均分子量(Mn)に依存する。例えば、ポリエチレンワックスの分子量を低くすれば、得られる重合体の密度を低く制御できる。ポリエチレンワックスがエチレンとα−オレフィンとの共重合体である場合には、ポリエチレンワックスの密度は、数平均分子量(Mn)の大きさに依存するとともに、重合時のエチレンに対するα−オレフィンの使用量、およびその種類により制御できる。例えば、エチレンに対するα−オレフィンの使用量を増加すると、得られる重合体の密度を低くできる。   The density of the polyethylene wax depends on the number average molecular weight (Mn) of the polyethylene wax when the polyethylene wax is a homopolymer of ethylene. For example, if the molecular weight of polyethylene wax is lowered, the density of the resulting polymer can be controlled low. When the polyethylene wax is a copolymer of ethylene and α-olefin, the density of the polyethylene wax depends on the number average molecular weight (Mn), and the amount of α-olefin used for ethylene during polymerization. , And its type. For example, when the amount of α-olefin used relative to ethylene is increased, the density of the resulting polymer can be lowered.

ポリエチレンワックスの密度の観点からは、エチレン単独共重合体、エチレンと炭素数3〜20のα−オレフィンとの共重合体、またはこれらの混合物が好ましい。
上記エチレンと炭素数3〜20のα−オレフィンとの共重合体の製造に使用するα−オレフィンとしては、炭素数が3〜10のα−オレフィンが好ましく、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンがより好ましく、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテンが特に好ましい。
From the viewpoint of the density of the polyethylene wax, an ethylene homopolymer, a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms, or a mixture thereof is preferable.
The α-olefin used for producing the copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms is preferably an α-olefin having 3 to 10 carbon atoms, and propylene, 1-butene, 1-pentene. 1-hexene, 4-methyl-1-pentene and 1-octene are more preferable, and propylene, 1-butene, 1-hexene and 4-methyl-1-pentene are particularly preferable.

上記エチレンとα−オレフィンとの共重合体の製造に使用するα−オレフィンは、使用する全単量体に対して0〜20mol%の範囲にあることが好ましく、0.1〜15mol%の範囲にあることがより好ましく、0.1〜10mol%の範囲にあることが更に好ましい。   The α-olefin used in the production of the copolymer of ethylene and α-olefin is preferably in the range of 0 to 20 mol%, preferably in the range of 0.1 to 15 mol%, based on the total monomers used. More preferably, it is in the range of 0.1 to 10 mol%.

また、ポリエチレンワックスの密度は、重合温度によっても制御できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述した好適範囲の密度を有するポリエチレンワックス
を製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。
The density of the polyethylene wax can also be controlled by the polymerization temperature. For example, when a polyethylene wax is produced by a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing a polyethylene wax having a density in the preferred range described above, the polymerization temperature is , Preferably, it is the range of 100-180 degreeC, More preferably, it is the range of 100-170 degreeC.

このようなポリエチレンワックスは、常温で固体であり、65〜130℃で低粘度の液体となる。
さらに上記ポリエチレンワックスは、示差走査熱量計(DSC)で測定した上記結晶化温度〔Tc(℃)〕と、上記密度勾配法で測定した密度(D(kg/m3))とが、好ま
しくは下記式(III)
0.501×D−366 ≧ Tc …(III)
より好ましくは、下記式(IIIa)
0.501×D−366.5 ≧ Tc …(IIIa)
さらに好ましくは、下記式(IIIb)
0.501×D−367 ≧ Tc …(IIIb)
の関係を満たす。
Such polyethylene wax is solid at normal temperature and becomes a low-viscosity liquid at 65 to 130 ° C.
Further, the polyethylene wax preferably has the crystallization temperature [Tc (° C.)] measured by a differential scanning calorimeter (DSC) and the density (D (kg / m 3 )) measured by the density gradient method. Formula (III) below
0.501 × D-366 ≧ Tc (III)
More preferably, the following formula (IIIa)
0.501 × D-366.5 ≧ Tc (IIIa)
More preferably, the following formula (IIIb)
0.501 × D-367 ≧ Tc (IIIb)
Satisfy the relationship.

ポリエチレンワックスにおいて結晶化温度(Tc)と密度(D)とが上記式の関係を満たしている場合には、ポリプロピレンに対するポリエチレンワックスの分散性が良好となる傾向にある。   When the crystallization temperature (Tc) and the density (D) in the polyethylene wax satisfy the relationship of the above formula, the dispersibility of the polyethylene wax in polypropylene tends to be good.

上記式の関係を満たすポリエチレンワックスは、メタロセン触媒を用いて調製できる。メタロセン触媒の中でも、配位子が非架橋であるメタロセン触媒が好ましい。このようなメタロセン触媒としては、後述する一般式(1)で表されるメタロセン化合物が例示できる。   A polyethylene wax that satisfies the relationship of the above formula can be prepared using a metallocene catalyst. Among the metallocene catalysts, metallocene catalysts whose ligands are non-crosslinked are preferable. As such a metallocene catalyst, a metallocene compound represented by the general formula (1) described later can be exemplified.

さらに、上記式の関係を満たすポリエチレンワックスは、重合温度を制御することによっても製造できる。例えば、後述するメタロセン触媒によりポリエチレンワックスを製造する場合には、重合温度は通常100〜200℃の範囲であるが、上述したB値を有するポリエチレンワックスを製造する観点からは、重合温度は、好ましくは、100〜180℃の範囲、より好ましくは、100〜170℃の範囲である。   Furthermore, the polyethylene wax satisfying the relationship of the above formula can also be produced by controlling the polymerization temperature. For example, when a polyethylene wax is produced by a metallocene catalyst described later, the polymerization temperature is usually in the range of 100 to 200 ° C., but from the viewpoint of producing the polyethylene wax having the B value described above, the polymerization temperature is preferably Is in the range of 100 to 180 ° C, more preferably in the range of 100 to 170 ° C.

本発明において好適なメタロセン系触媒としては、例えば、
(A) 周期表第4族から選ばれる遷移金属のメタロセン化合物、並びに
(B)(b-1)有機アルミニウムオキシ化合物、
(b-2)前記架橋メタロセン化合物(A)と反応してイオン対を形成する化合物および
(b-3)有機アルミニウム化合物
とから選ばれる少なくとも1種以上の化合物とからなるオレフィン重合用触媒を
挙げることができる。
Suitable metallocene catalysts in the present invention include, for example,
(A) a metallocene compound of a transition metal selected from Group 4 of the periodic table, and (B) (b-1) an organoaluminum oxy compound,
(b-2) a compound that reacts with the bridged metallocene compound (A) to form an ion pair, and
(b-3) An olefin polymerization catalyst comprising at least one compound selected from organoaluminum compounds.

以下にこれらについて詳細に説明する。
<メタロセン化合物>
(A) 周期表第4族から選ばれる遷移金属のメタロセン化合物
メタロセン系触媒を形成するメタロセン化合物は、周期表第4族から選ばれる遷移金属のメタロセン化合物であり、具体的な例としては下記一般式(1)で表される化合物が挙げられる。
1Lx …(1)
ここで、M1は周期表第4族から選ばれる遷移金属、xは遷移金属M1の原子価、Lは配位子である。M1で示される遷移金属の例としては、ジルコニウム、チタン、ハフニウムな
どがある。Lは遷移金属M1に配位する配位子であって、そのうち少なくとも1個の配位
子Lはシクロペンタジエニル骨格を有する配位子であって、このシクロペンタジエニル骨格を有する配位子は置換基を有していてもよい。シクロペンタジエニル骨格を有する配位
子Lとしては、例えばシクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、n−またはi−プロピルシクロペンタジエニル基、n−、i−、sec−またはt−ブチルシクロペンタジエニル基、ジメチルシクロペンタジエニル基、メチルプロピルシクロペンタジエニル基、メチルブチルシクロペンタジエニル基、メチルベンジルシクロペンタジエニル基等のアルキルまたはシクロアルキル置換シクロペンタジエニル基;さらにインデニル基、4,5,6,7−テトラヒドロインデニル基、フルオレ
ニル基などが挙げられる。このシクロペンタジエニル骨格を有する配位子の水素は、ハロゲン原子またはトリアルキルシリル基などで置換されていてもよい。
These will be described in detail below.
<Metalocene compounds>
(A) Metallocene compound of transition metal selected from Group 4 of the periodic table The metallocene compound forming the metallocene catalyst is a metallocene compound of transition metal selected from Group 4 of the periodic table. The compound represented by Formula (1) is mentioned.
M 1 Lx (1)
Here, M 1 is a transition metal selected from Group 4 of the periodic table, x is a valence of the transition metal M 1 , and L is a ligand. Examples of the transition metal represented by M 1 include zirconium, titanium, hafnium and the like. L is a ligand coordinated to the transition metal M 1, and at least one of the ligands L is a ligand having a cyclopentadienyl skeleton, and the ligand having this cyclopentadienyl skeleton. The ligand may have a substituent. Examples of the ligand L having a cyclopentadienyl skeleton include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, an n- or i-propylcyclopentadienyl group, n-, alkyl such as i-, sec- or t-butylcyclopentadienyl group, dimethylcyclopentadienyl group, methylpropylcyclopentadienyl group, methylbutylcyclopentadienyl group, methylbenzylcyclopentadienyl group, An alkyl-substituted cyclopentadienyl group; and an indenyl group, 4,5,6,7-tetrahydroindenyl group, a fluorenyl group, and the like. The hydrogen of the ligand having a cyclopentadienyl skeleton may be substituted with a halogen atom or a trialkylsilyl group.

上記のメタロセン化合物が、配位子Lとしてシクロペンタジエニル骨格を有する配位子を2個以上有する場合には、そのうち2個のシクロペンタジエニル骨格を有する配位子同士が、エチレン、プロピレン等のアルキレン基;イソプロピリデン、ジフェニルメチレン等の置換アルキレン基;シリレン基またはジメチルシリレン基、ジフェニルシリレン基、メチルフェニルシリレン基等の置換シリレン基などを介して結合されていてもよい。   When the metallocene compound has two or more ligands having a cyclopentadienyl skeleton as the ligand L, the ligands having two cyclopentadienyl skeletons are ethylene, propylene. Or a substituted alkylene group such as isopropylidene or diphenylmethylene; a substituted silylene group such as a silylene group or a dimethylsilylene group, a diphenylsilylene group, or a methylphenylsilylene group.

シクロペンタジエニル骨格を有する配位子以外の配位子(シクロペンタジエニル骨格を有しない配位子)Lとしては、炭素原子数1〜12の炭化水素基、アルコキシ基、アリーロキシ基、スルフォン酸含有基(−SO31)、ハロゲン原子または水素原子(ここで、R1はアルキル基、ハロゲン原子で置換されたアルキル基、アリール基、ハロゲン原子で
置換されたアリール基またはアルキル基で置換されたアリール基である。)などが挙げられる。
Examples of ligands other than ligands having a cyclopentadienyl skeleton (ligands having no cyclopentadienyl skeleton) L include hydrocarbon groups having 1 to 12 carbon atoms, alkoxy groups, aryloxy groups, sulfones. Acid-containing group (—SO 3 R 1 ), halogen atom or hydrogen atom (where R 1 is an alkyl group, an alkyl group substituted with a halogen atom, an aryl group, an aryl group substituted with a halogen atom, or an alkyl group) A substituted aryl group).

<メタロセン化合物の例−1>
上記一般式(1)で表されるメタロセン化合物が、例えば遷移金属の原子価が4である場合、より具体的には下記一般式(2)で表される。
2 k3 l4 m5 n1 …(2)
ここで、M1は周期表第4族から選ばれる遷移金属、R2はシクロペンタジエニル骨格を有する基(配位子)、R3、R4及びR5はそれぞれ独立にシクロペンタジエニル骨格を有す
るかまたは有しない基(配位子)である。kは1以上の整数であり、k+l+m+n=4である。
<Example 1 of metallocene compound>
When the metallocene compound represented by the general formula (1) has a transition metal valence of 4, for example, it is more specifically represented by the following general formula (2).
R 2 k R 3 l R 4 m R 5 n M 1 (2)
Here, M 1 is a transition metal selected from Group 4 of the periodic table, R 2 is a group (ligand) having a cyclopentadienyl skeleton, and R 3 , R 4 and R 5 are each independently cyclopentadienyl. A group (ligand) having or not having a skeleton. k is an integer of 1 or more, and k + l + m + n = 4.

1がジルコニウムであり、かつシクロペンタジエニル骨格を有する配位子を少なくと
も2個含むメタロセン化合物の例を次に挙げる。ビス(シクロペンタジエニル)ジルコニウムモノクロリドモノハイドライド、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(1−メチル−3−ブチルシクロペンタジエニル)ジルコニウムビス(トリフルオロメタンスルホナト)、ビス(1,3−ジメチルシクロペンタジエニル)ジルコニウ
ムジクロリドなど。
Examples of metallocene compounds in which M 1 is zirconium and contains at least two ligands having a cyclopentadienyl skeleton are given below. Bis (cyclopentadienyl) zirconium monochloride monohydride, bis (cyclopentadienyl) zirconium dichloride, bis (1-methyl-3-butylcyclopentadienyl) zirconium bis (trifluoromethanesulfonate), bis (1, 3-dimethylcyclopentadienyl) zirconium dichloride and the like.

上記の化合物の中で、1,3−位置換シクロペンタジエニル基を1,2−位置換シクロペンタジエニル基に置き換えた化合物も用いることができる。
またメタロセン化合物の別の例としては、上記一般式(2)において、R2、R3、R4
及びR5の少なくとも2個、例えばR2及びR3がシクロペンタジエニル骨格を有する基(
配位子)であり、この少なくとも2個の基がアルキレン基、置換アルキレン基、シリレン基または置換シリレン基などを介して結合されているブリッジタイプのメタロセン化合物を使用することもできる。このときR4及びR5は、それぞれ独立に、前述したシクロペンタジエニル骨格を有する配位子以外の配位子Lと同様である。
Among the above compounds, compounds in which the 1,3-position substituted cyclopentadienyl group is replaced with a 1,2-position substituted cyclopentadienyl group can also be used.
Another example of the metallocene compound is R 2 , R 3 , R 4 in the general formula (2).
And at least two of R 5 , for example, R 2 and R 3 are groups having a cyclopentadienyl skeleton (
A bridge type metallocene compound in which at least two groups are bonded via an alkylene group, a substituted alkylene group, a silylene group, a substituted silylene group, or the like. At this time, R 4 and R 5 are each independently the same as the ligand L other than the ligand having the cyclopentadienyl skeleton described above.

このようなブリッジタイプのメタロセン化合物としては、エチレンビス(インデニル)ジメチルジルコニウム、エチレンビス(インデニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル−フルオレニル)ジルコニウムジクロリド、ジフェニル
シリレンビス(インデニル)ジルコニウムジクロリド、メチルフェニルシリレンビス(インデニル)ジルコニウムジクロリドなどが挙げられる。
Examples of such bridge-type metallocene compounds include ethylenebis (indenyl) dimethylzirconium, ethylenebis (indenyl) zirconium dichloride, isopropylidene (cyclopentadienyl-fluorenyl) zirconium dichloride, diphenylsilylenebis (indenyl) zirconium dichloride, methyl Examples include phenylsilylene bis (indenyl) zirconium dichloride.

<メタロセン化合物の例−2>
またメタロセン化合物の例としては、下記一般式(3)で表される特開平4−268307号公報記載のメタロセン化合物が挙げられる。
<Example 2 of metallocene compound>
Moreover, as an example of a metallocene compound, the metallocene compound of Unexamined-Japanese-Patent No. 4-268307 represented by following General formula (3) is mentioned.

Figure 2007268776
Figure 2007268776

ここで、M1は周期表第4族遷移金属であり、具体的にはチタニウム、ジルコニウム、ハ
フニウムが挙げられる。
11及びR12は互いに同一でも異なっていてもよく、水素原子;炭素原子数1〜10のアルキル基;炭素原子数1〜10のアルコキシ基;炭素原子数6〜10のアリール基;炭素原子数6〜10のアリーロキシ基;炭素原子数2〜10のアルケニル基;炭素原子数7〜40のアリールアルキル基;炭素原子数7〜40のアルキルアリール基;炭素原子数8〜40のアリールアルケニル基;またはハロゲン原子であり、R11及びR12は、塩素原子であることが好ましい。
Here, M 1 is a Group 4 transition metal of the periodic table, and specifically includes titanium, zirconium, and hafnium.
R 11 and R 12 may be the same or different from each other, and are a hydrogen atom; an alkyl group having 1 to 10 carbon atoms; an alkoxy group having 1 to 10 carbon atoms; an aryl group having 6 to 10 carbon atoms; Aryloxy group having 6 to 10 carbon atoms; alkenyl group having 2 to 10 carbon atoms; arylalkyl group having 7 to 40 carbon atoms; alkylaryl group having 7 to 40 carbon atoms; arylalkenyl group having 8 to 40 carbon atoms Or a halogen atom, and R 11 and R 12 are preferably chlorine atoms.

13及びR14は互いに同一でも異なっていてもよく、水素原子;ハロゲン原子;ハロゲン化されていてもよい炭素原子数1〜10のアルキル基;炭素原子数6〜10のアリール基;−N(R20)2、−SR20、−OSi(R20)3、−Si(R20)3または−P(R20)2基である。ここで、R20はハロゲン原子、好ましくは塩素原子;炭素原子数1〜10、好ましくは1〜3のアルキル基;または炭素原子数6〜10、好ましくは6〜8のアリール基である。R13及びR14は、特に水素原子であることが好ましい。 R 13 and R 14 may be the same or different from each other, and are a hydrogen atom; a halogen atom; an optionally halogenated alkyl group having 1 to 10 carbon atoms; an aryl group having 6 to 10 carbon atoms; (R 20 ) 2 , —SR 20 , —OSi (R 20 ) 3 , —Si (R 20 ) 3 or —P (R 20 ) 2 groups. R 20 is a halogen atom, preferably a chlorine atom; an alkyl group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms; or an aryl group having 6 to 10 carbon atoms, preferably 6 to 8 carbon atoms. R 13 and R 14 are particularly preferably hydrogen atoms.

15及びR16は、水素原子が含まれないことを除きR13及びR14と同じであって、互いに同じでも異なっていてもよく、好ましくは同じである。R15及びR16は、好ましくはハロゲン化されていてもよい炭素原子数1〜4のアルキル基、具体的にはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、トリフルオロメチル等が挙げられ、特にメチルが好ましい。
上記一般式(3)において、R17は次の群から選ばれる。
R 15 and R 16 are the same as R 13 and R 14 except that they do not contain a hydrogen atom, and may be the same or different from each other, preferably the same. R 15 and R 16 are preferably an optionally halogenated alkyl group having 1 to 4 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl and the like. Particularly preferred is methyl.
In the general formula (3), R 17 is selected from the following group.

Figure 2007268776
Figure 2007268776

=BR21、=AlR21、−Ge−、−Sn−、−O−、−S−、=SO、=SO2、=N
21、=CO、=PR21、=P(O)R21など。M2はケイ素、ゲルマニウムまたは錫、
好ましくはケイ素またはゲルマニウムである。ここで、R21、R22及びR23は互いに同一でも異なっていてもよく、水素原子;ハロゲン原子;炭素原子数1〜10のアルキル基;炭素原子数1〜10のフルオロアルキル基;炭素原子数6〜10のアリール基;炭素原子数6〜10のフルオロアリール基;炭素原子数1〜10のアルコキシ基;炭素原子数2〜10のアルケニル基;炭素原子数7〜40のアリールアルキル基;炭素原子数8〜40のアリールアルケニル基;または炭素原子数7〜40のアルキルアリール基である。「R21とR22」または「R21とR23」とは、それぞれそれらが結合する原子と一緒になって環を形成してもよい。また、R17は、=CR2122、=SiR2122、=GeR2122、−O−、−S−、=SO、=PR21または=P(O)R21であることが好ましい。R18及びR19は互いに同一でも異なっていてもよく、R21と同じものが挙げられる。m及びnは互いに同一でも異なっていてもよく、それぞれ0、1または2、好ましくは0または1であり、m+nは0、1または2、好ましくは0または1である。
= BR 21 , = AlR 21 , -Ge-, -Sn-, -O-, -S-, = SO, = SO 2 , = N
R 21 , = CO, = PR 21 , = P (O) R 21 and the like. M 2 is silicon, germanium or tin,
Silicon or germanium is preferred. Here, R 21 , R 22 and R 23 may be the same or different from each other, and are hydrogen atom; halogen atom; alkyl group having 1 to 10 carbon atoms; fluoroalkyl group having 1 to 10 carbon atoms; carbon atom An aryl group having 6 to 10 carbon atoms; a fluoroaryl group having 6 to 10 carbon atoms; an alkoxy group having 1 to 10 carbon atoms; an alkenyl group having 2 to 10 carbon atoms; an arylalkyl group having 7 to 40 carbon atoms; An arylalkenyl group having 8 to 40 carbon atoms; or an alkylaryl group having 7 to 40 carbon atoms. “R 21 and R 22 ” or “R 21 and R 23 ” may form a ring together with the atoms to which they are bonded. R 17 may be = CR 21 R 22 , = SiR 21 R 22 , = GeR 21 R 22 , -O-, -S-, = SO, = PR 21 or = P (O) R 21. preferable. R 18 and R 19 may be the same as or different from each other, and examples thereof include the same as R 21 . m and n may be the same or different and are each 0, 1 or 2, preferably 0 or 1, and m + n is 0, 1 or 2, preferably 0 or 1.

上記一般式(3)で表されるメタロセン化合物の例としては、次の化合物が挙げられる。rac−エチレン(2−メチル−1−インデニル)2−ジルコニウム−ジクロライド、
rac−ジメチルシリレン(2−メチル−1−インデニル)2−ジルコニウム−ジクロラ
イドなど。これらのメタロセン化合物は、例えば、特開平4−268307号公報に記載の方法で製造することができる。
Examples of the metallocene compound represented by the general formula (3) include the following compounds. rac-ethylene (2-methyl-1-indenyl) 2 -zirconium dichloride,
rac-dimethylsilylene (2-methyl-1-indenyl) 2 -zirconium dichloride and the like. These metallocene compounds can be produced, for example, by the method described in JP-A-4-268307.

<メタロセン化合物の例−3>
また、メタロセン化合物としては、下記一般式(4)で表されるメタロセン化合物を用いることもできる。
<Example 3 of metallocene compound>
Moreover, as a metallocene compound, the metallocene compound represented by following General formula (4) can also be used.

Figure 2007268776
Figure 2007268776

式(4)中、M3は、周期表第4族の遷移金属原子を示し、具体的にはチタニウム、ジル
コニウム、ハフニウムなどである。R24及びR25は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基を示す。R24は炭化水素基であることが好ましく、特にメチル、エチルまたはプロピルの炭素原子数1〜3のアルキル基であることが好ましい。R25は水素原子または炭化水素基が好ましく、特に水素原子、またはメチル、エチルもしくはプロピルの炭素原子数1〜3のアルキル基であることが好ましい。R26、R27、R28及びR29は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基を示す。これらの中では水素原子、炭化水素基またはハロゲン化炭化水素基であることが好ましい。R26とR27、R27とR28、R28とR29のうち少なくとも1組は、それらが結合している炭素原子と一緒になって、単環の芳香族環を形成していてもよい。また芳香族環を形成する基以外に、炭化水素基またはハロゲン化炭化水素基が2個以上ある場合には、これらが互いに結合して環状になっていてもよい。なおR29が芳香族基以外の置換基である場合、水素原子であることが好ましい。X1
びX2は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜
20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素原子含有基またはイオウ原子含有基を示すYは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、−O−、−CO−、−S−、−SO−、−SO2−、−NR30−、−
P(R30)−、−P(O)(R30)−、−BR30−または−AlR30−(ただし、R30は水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基)を示す。
In Formula (4), M 3 represents a transition metal atom of Group 4 of the periodic table, and specifically, titanium, zirconium, hafnium, and the like. R 24 and R 25 may be the same or different and are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, oxygen A containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group; R 24 is preferably a hydrocarbon group, and particularly preferably an alkyl group having 1 to 3 carbon atoms such as methyl, ethyl or propyl. R 25 is preferably a hydrogen atom or a hydrocarbon group, particularly preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms such as methyl, ethyl or propyl. R 26 , R 27 , R 28 and R 29 may be the same or different from each other, and are a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon having 1 to 20 carbon atoms. Indicates a group. Among these, a hydrogen atom, a hydrocarbon group, or a halogenated hydrocarbon group is preferable. At least one of R 26 and R 27 , R 27 and R 28 , and R 28 and R 29 may form a monocyclic aromatic ring together with the carbon atoms to which they are bonded. Good. When there are two or more hydrocarbon groups or halogenated hydrocarbon groups other than the group forming the aromatic ring, they may be bonded to each other to form a ring. When R 29 is a substituent other than an aromatic group, it is preferably a hydrogen atom. X 1 and X 2 may be the same or different from each other, and are a hydrogen atom, a halogen atom, or a carbon atom number of 1
Y representing 20 hydrocarbon group, halogenated hydrocarbon group having 1 to 20 carbon atoms, oxygen atom-containing group or sulfur atom-containing group is a divalent hydrocarbon group having 1 to 20 carbon atoms, the number of carbon atoms 1-20 divalent halogenated hydrocarbon groups, divalent silicon-containing groups, divalent germanium-containing groups, divalent tin-containing groups, -O-, -CO-, -S-, -SO-, -SO 2 -, - NR 30 - , -
P (R 30) -, - P (O) (R 30) -, - BR 30 - or -AlR 30 - (provided that, R 30 is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, A halogenated hydrocarbon group having 1 to 20 carbon atoms).

式(4)において、R26とR27、R27とR28、R28とR29のうち少なくとも1組が互いに結合して形成する単環の芳香族環を含み、M3に配位する配位子としては、次式で表さ
れるものなどが挙げられる。
In the formula (4), at least one pair of R 26 and R 27 , R 27 and R 28 , R 28 and R 29 is bonded to each other, and is coordinated to M 3 Examples of the ligand include those represented by the following formula.

Figure 2007268776
Figure 2007268776

(式中、Yは前式に示したものと同じである。)
<メタロセン化合物の例−4>
メタロセン化合物としては、また下記一般式(5)で表されるメタロセン化合物を用いることもできる。
(In the formula, Y is the same as that shown in the previous formula.)
<Example 4 of metallocene compound>
As the metallocene compound, a metallocene compound represented by the following general formula (5) can also be used.

Figure 2007268776
Figure 2007268776

式(5)中、M3、R24、R25、R26、R27、R28及びR29は、上記一般式(4)と同じ
である。R26、R27、R28及びR29のうち、R26を含む2個の基がアルキル基であることが好ましく、R26とR28、またはR28とR29がアルキル基であることが好ましい。このアルキル基は、2級または3級アルキル基であることが好ましい。またこのアルキル基は、ハロゲン原子、ケイ素含有基で置換されていてもよく、ハロゲン原子、ケイ素含有基としては、R24、R25で例示した置換基が挙げられる。R26、R27、R28及びR29のうち、アルキル基以外の基は、水素原子であることが好ましい。またR26、R27、R28及びR29は、これらから選ばれる2種の基が互いに結合して芳香族環以外の単環あるいは多環を形成していてもよい。ハロゲン原子としては、上記R24及びR25と同様のものが挙げられる。X1、X2及びYとしては、上記と同様のものが挙げられる。
In the formula (5), M 3 , R 24 , R 25 , R 26 , R 27 , R 28 and R 29 are the same as those in the general formula (4). Of R 26 , R 27 , R 28 and R 29 , two groups including R 26 are preferably alkyl groups, and R 26 and R 28 , or R 28 and R 29 are alkyl groups. preferable. This alkyl group is preferably a secondary or tertiary alkyl group. The alkyl group may be substituted with a halogen atom or a silicon-containing group. Examples of the halogen atom and silicon-containing group include the substituents exemplified for R 24 and R 25 . Of R 26 , R 27 , R 28 and R 29 , the group other than the alkyl group is preferably a hydrogen atom. R 26 , R 27 , R 28, and R 29 may form a monocyclic ring or a polycyclic ring other than an aromatic ring by combining two groups selected from these groups. Examples of the halogen atom are the same as those described above for R 24 and R 25 . Examples of X 1 , X 2 and Y are the same as those described above.

上記一般式(5)で表されるメタロセン化合物の具体的な例を次に示す。rac−ジメチルシリレン−ビス(4,7−ジメチル−1−インデニル)ジルコニウムジクロリド、r
ac−ジメチルシリレン−ビス(2,4,7−トリメチル−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2,4,6−トリメチル−1−インデニル)ジルコニウムジクロリドなど。
Specific examples of the metallocene compound represented by the general formula (5) are shown below. rac-dimethylsilylene-bis (4,7-dimethyl-1-indenyl) zirconium dichloride, r
ac-dimethylsilylene-bis (2,4,7-trimethyl-1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2,4,6-trimethyl-1-indenyl) zirconium dichloride, and the like.

これらの化合物において、ジルコニウム金属を、チタニウム金属、ハフニウム金属に置き換えた遷移金属化合物を用いることもできる。遷移金属化合物は、通常ラセミ体として用いられるが、R型またはS型を用いることもできる。   In these compounds, transition metal compounds in which zirconium metal is replaced with titanium metal or hafnium metal can also be used. The transition metal compound is usually used as a racemate, but can also be used in the R-type or S-type.

<メタロセン化合物の例−5>
メタロセン化合物として、下記一般式(6)で表されるメタロセン化合物を使用することもできる。
<Examples of metallocene compounds-5>
As the metallocene compound, a metallocene compound represented by the following general formula (6) can also be used.

Figure 2007268776
Figure 2007268776

式(6)中、M3、R24、X1、X2及びYは、上記一般式(4)と同じである。R24は炭
化水素基であることが好ましく、特にメチル、エチル、プロピルまたはブチルの炭素原子数1〜4のアルキル基であることが好ましい。R25は、炭素原子数6〜16のアリール基を示す。R25はフェニル、ナフチルであることが好ましい。アリール基は、ハロゲン原子
、炭素原子数1〜20の炭化水素基または炭素原子数1〜20のハロゲン化炭化水素基で置換されていてもよい。X1及びX2としては、ハロゲン原子、炭素原子数1〜20の炭化水素基であることが好ましい。
In the formula (6), M 3 , R 24 , X 1 , X 2 and Y are the same as those in the general formula (4). R 24 is preferably a hydrocarbon group, particularly preferably an alkyl group having 1 to 4 carbon atoms such as methyl, ethyl, propyl or butyl. R 25 represents an aryl group having 6 to 16 carbon atoms. R 25 is preferably phenyl or naphthyl. The aryl group may be substituted with a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. X 1 and X 2 are preferably a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms.

上記一般式(6)で表されるメタロセン化合物の具体的な例を次に示す。rac−ジメチルシリレン−ビス(4−フェニル−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−フェニル−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−(α−ナフチル)−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−(β−ナフチル)−1−インデニル)ジルコニウムジクロリド、rac−ジメチルシリレン−ビス(2−メチル−4−(1−アントリル)−1−インデニル)ジルコニウムジクロリドなど。またこれら化合物において、ジルコニウム金属をチタニウム金属またはハフニウム金属に置き換えた遷移金属化合物を用いることもできる。   Specific examples of the metallocene compound represented by the general formula (6) are shown below. rac-dimethylsilylene-bis (4-phenyl-1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2-methyl-4-phenyl-1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2-methyl) -4- (α-naphthyl) -1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2-methyl-4- (β-naphthyl) -1-indenyl) zirconium dichloride, rac-dimethylsilylene-bis (2 -Methyl-4- (1-anthryl) -1-indenyl) zirconium dichloride and the like. In these compounds, transition metal compounds in which zirconium metal is replaced with titanium metal or hafnium metal can also be used.

<メタロセン化合物の例−6>
またメタロセン化合物として、下記一般式(7)で表されるメタロセン化合物を用いることもできる。
LaM43 2 …(7)
ここで、M4は周期表第4族またはランタニド系列の金属である。Laは非局在化π結合基の誘導体であり、金属M4活性サイトに拘束幾何形状を付与している基である。X3は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数20以下の炭化水素基、20以下のケイ素を含有するシリル基または20以下のゲルマニウムを含有するゲルミル基である。
<Examples of metallocene compounds-6>
As the metallocene compound, a metallocene compound represented by the following general formula (7) can also be used.
LaM 4 X 3 2 (7)
Here, M 4 is a periodic table group 4 or lanthanide series metal. La is a derivative of a delocalized π bond group, and is a group imparting a constraining geometry to the metal M 4 active site. X 3 may be the same or different from each other, and is a hydrogen atom, a halogen atom, a hydrocarbon group having 20 or less carbon atoms, a silyl group containing 20 or less silicon, or a germanyl group containing 20 or less germanium.

この化合物の中では、次式(8)で示される化合物が好ましい。   Among these compounds, a compound represented by the following formula (8) is preferable.

Figure 2007268776
Figure 2007268776

式(8)中、M4は、チタン、ジルコニウムまたはハフニウムである。X3は上記一般式(7)で説明したものと同様である。CpはM4にπ結合しており、かつ置換基Zを有する
置換シクロペンタジエニル基である。Zは酸素、イオウ、ホウ素または周期表第4族の元素(例えばケイ素、ゲルマニウムまたは錫)である。Yは窒素、リン、酸素またはイオウを含む配位子であり、ZとYとで縮合環を形成していてもよい。このような式(8)で表されるメタロセン化合物の具体的な例を次に示す。(ジメチル(t−ブチルアミド)(テト
ラメチル−η5−シクロペンタジエニル)シラン)チタンジクロリド、((t−ブチルアミ
ド)(テトラメチル−η5−シクロペンタジエニル)−1,2−エタンジイル)チタンジクロ
リドなど。またこのメタロセン化合物において、チタンをジルコニウムまたはハフニウムに置き換えた化合物を挙げることもできる。
In the formula (8), M 4 is titanium, zirconium or hafnium. X 3 is the same as that described in the general formula (7). Cp is a substituted cyclopentadienyl group having a π bond to M 4 and having a substituent Z. Z is oxygen, sulfur, boron or an element belonging to Group 4 of the periodic table (for example, silicon, germanium or tin). Y is a ligand containing nitrogen, phosphorus, oxygen or sulfur, and Z and Y may form a condensed ring. Specific examples of the metallocene compound represented by the formula (8) are shown below. (Dimethyl (t-butylamide) (tetramethyl-η 5 -cyclopentadienyl) silane) titanium dichloride, ((t-butylamide) (tetramethyl-η 5 -cyclopentadienyl) -1,2-ethanediyl) titanium Dichloride etc. In the metallocene compound, a compound in which titanium is replaced with zirconium or hafnium can be exemplified.

<メタロセン化合物の例−7>
またメタロセン化合物としては、下記一般式(9)で表されるメタロセン化合物を使用することもできる。
<Examples of metallocene compounds-7>
Moreover, as a metallocene compound, the metallocene compound represented by following General formula (9) can also be used.

Figure 2007268776
Figure 2007268776

式(9)中、M3は周期表第4族の遷移金属原子であり、具体的には、チタニウム、ジル
コニウムまたはハフニウムであり、好ましくはジルコニウムである。R31は互いに同一でも異なっていてもよく、そのうち少なくとも1個が炭素原子数11〜20のアリール基、炭素原子数12〜40のアリールアルキル基、炭素原子数13〜40のアリールアルケニル基、炭素原子数12〜40のアルキルアリール基またはケイ素含有基であるか、またはR31で示される基のうち隣接する少なくとも2個の基が、それらの結合する炭素原子とともに、単数または複数の芳香族環または脂肪族環を形成している。この場合、R31により形成される環は、R31が結合する炭素原子を含んで全体として炭素原子数が4〜20である。アリール基、アリールアルキル基、アリールアルケニル基、アルキルアリール基及び芳香族環、脂肪族環を形成しているR31以外のR31は、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基またはケイ素含有基である。R32は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜20のアリール基、炭素原子数2〜10のアルケニル基、炭素原子数7〜40のアリールアルキル基、炭素原子数8〜40のアリールアルケニル基、炭素原子数7〜40のアルキルアリール基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。また、R32で示される基のうち隣接する少なくとも2個の基が、それらの結合する炭素原子とともに、単数または複数の芳香族環または脂肪族環を形成していてもよい。この場合、R32により形成される環は、R32が結合する炭素原子を含んで全体として炭素原子数が4〜20であり、芳香族環、脂肪族環を形成しているR32以外のR32は、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基またはケイ素含有基である。なお、R32で示される2個の基が、単数または複数の芳香族環または脂肪族環を形成して構成される基にはフルオレニル基が次式のような構造になる態様も含まれる。
In formula (9), M 3 is a transition metal atom of Group 4 of the periodic table, specifically titanium, zirconium or hafnium, preferably zirconium. R 31 may be the same as or different from each other, and at least one of them is an aryl group having 11 to 20 carbon atoms, an arylalkyl group having 12 to 40 carbon atoms, an arylalkenyl group having 13 to 40 carbon atoms, carbon An alkylaryl group having 12 to 40 atoms or a silicon-containing group, or at least two adjacent groups among the groups represented by R 31 , together with the carbon atoms to which they are bonded, one or more aromatic rings Or an aliphatic ring is formed. In this case, the ring formed by R 31, it is 4 to 20 carbon atoms in all including carbon atoms to which R 31 is bonded. Aryl group, arylalkyl group, arylalkenyl group, an alkylaryl group and an aromatic ring, R 31 other than R 31 that forms an aliphatic ring is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms Or a silicon-containing group. R 32 may be the same as or different from each other, and may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a carbon atom. An arylalkyl group having 7 to 40 carbon atoms, an arylalkenyl group having 8 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, a silicon-containing group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group It is. Further, at least two adjacent groups among the groups represented by R 32 may form one or more aromatic rings or aliphatic rings together with the carbon atoms to which they are bonded. In this case, the ring formed by R 32 has 4 to 20 carbon atoms in all including carbon atoms to which R 32 is bonded, an aromatic ring, other than R 32 that forms an aliphatic ring R 32 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or a silicon-containing group. The group in which the two groups represented by R 32 form one or more aromatic rings or aliphatic rings includes an embodiment in which the fluorenyl group has a structure represented by the following formula.

Figure 2007268776
Figure 2007268776

32は、水素原子またはアルキル基であることが好ましく、特に水素原子またはメチル、エチル、プロピルの炭素原子数1〜3の炭化水素基であることが好ましい。このような置換基としてR32を有するフルオレニル基としては、2,7−ジアルキル−フルオレニル基
が好適な例として挙げられ、この場合の2,7−ジアルキルのアルキル基としては、炭素
原子数1〜5のアルキル基が挙げられる。また、R31とR32は、互いに同一でも異なって
いてもよい。R33及びR34は互いに同一でも異なっていてもよく、上記と同様の水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜20のアリール基、炭素原子数2〜10のアルケニル基、炭素原子数7〜40のアリールアルキル基、炭素原子数8〜40のアリールアルケニル基、炭素原子数7〜40のアルキルアリール基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。これらのうち、R33及びR34は、少なくとも一方が炭素原子数1〜3のアルキル基であることが好ましい。X1及びX2は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基もしくは窒素含有基、またはX1とX2とから形成された共役ジエン残基である。X1とX2とから形成された共役ジエン残基としては、1,3−ブタジエン、2,4−ヘキサジエン、1−フェニル−1,3−ペンタジエン、1,4−ジフェニルブタジエンの残基が好ましく、これらの残基はさらに炭素原子数1〜10の炭化水素基で置換されていてもよい。X1及びX2としては、ハロゲン原子、炭素原子数1〜20の炭化水素基またはイオウ含有基であることが好ましい。Yは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、−O−、−CO−、−S−、−SO−、−SO2−、−N
35−、−P(R35)−、−P(O)(R35)−、−BR35−または−AlR35−(ただし、R35は水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基)を示す。これらの2価の基のうちでも、−Y−の最短連結部が1個または2個の原子で構成されているものが好ましい。また、R35は、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基である。Yは、炭素原子数1〜5の2価の炭化水素基、2価のケイ素含有基または2価のゲルマニウム含有基であることが好ましく、2価のケイ素含有基であることがより好ましく、アルキルシリレン、アルキルアリールシリレンまたはアリールシリレンであることが特に好ましい。
R 32 is preferably a hydrogen atom or an alkyl group, and particularly preferably a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms such as methyl, ethyl or propyl. A suitable example of such a fluorenyl group having R 32 as a substituent is a 2,7-dialkyl-fluorenyl group. In this case, the 2,7-dialkyl alkyl group includes 1 to 1 carbon atoms. 5 alkyl groups. R 31 and R 32 may be the same as or different from each other. R 33 and R 34 may be the same as or different from each other, and are the same hydrogen atom, halogen atom, alkyl group having 1 to 10 carbon atoms, aryl group having 6 to 20 carbon atoms, and 2 to 2 carbon atoms. 10 alkenyl groups, arylalkyl groups having 7 to 40 carbon atoms, arylalkenyl groups having 8 to 40 carbon atoms, alkylaryl groups having 7 to 40 carbon atoms, silicon-containing groups, oxygen-containing groups, sulfur-containing groups, A nitrogen-containing group or a phosphorus-containing group. Of these, at least one of R 33 and R 34 is preferably an alkyl group having 1 to 3 carbon atoms. X 1 and X 2 may be the same or different and are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, sulfur A conjugated diene residue formed from a containing group or a nitrogen-containing group, or X 1 and X 2 . As the conjugated diene residue formed from X 1 and X 2 , residues of 1,3-butadiene, 2,4-hexadiene, 1-phenyl-1,3-pentadiene and 1,4-diphenylbutadiene are preferable. These residues may be further substituted with a hydrocarbon group having 1 to 10 carbon atoms. X 1 and X 2 are preferably a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a sulfur-containing group. Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent Tin-containing group, —O—, —CO—, —S—, —SO—, —SO 2 —, —N
R 35 -, - P (R 35) -, - P (O) (R 35) -, - BR 35 - or -AlR 35 - (provided that, R 35 is a hydrogen atom, a halogen atom, carbon atom 20 And a halogenated hydrocarbon group having 1 to 20 carbon atoms). Among these divalent groups, those in which the shortest linking portion of -Y- is composed of one or two atoms are preferable. R 35 is a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogenated hydrocarbon group having 1 to 20 carbon atoms. Y is preferably a divalent hydrocarbon group having 1 to 5 carbon atoms, a divalent silicon-containing group or a divalent germanium-containing group, more preferably a divalent silicon-containing group. Particularly preferred is silylene, alkylarylsilylene or arylsilylene.

<メタロセン化合物の例−8>
またメタロセン化合物としては、下記一般式(10)で表されるメタロセン化合物を用いることもできる。
<Examples of metallocene compounds-8>
As the metallocene compound, a metallocene compound represented by the following general formula (10) can also be used.

Figure 2007268776
Figure 2007268776

式(10)中、M3は周期表第4族の遷移金属原子であり、具体的にはチタニウム、ジル
コニウムまたはハフニウムであり、好ましくはジルコニウムである。R36は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜10のアリール基、炭素原子数2〜10のアルケニル基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。なお、上記アルキル基及びアルケニル基は、ハロゲン原子で置換されていてもよい。R36はこれらのうち、アルキ
ル基、アリール基または水素原子であることが好ましく、特にメチル、エチル、n−プロピル、i−プロピルの炭素原子数1〜3の炭化水素基、フェニル、α−ナフチル、β−ナフチルなどのアリール基または水素原子であることが好ましい。R37は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数6〜20のアリール基、炭素原子数2〜10のアルケニル基、炭素原子数7〜40のアリールアルキル基、炭素原子数8〜40のアリールアルケニル基、炭素原子数7〜40のアルキルアリール基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。なお、上記アルキル基、アリール基、アルケニル基、アリールアルキル基、アリールアルケニル基、アルキルアリール基は、ハロゲンが置換していてもよい。R37はこれらのうち、水素原子またはアルキル基であることが好ましく、特に水素原子またはメチル、エチル、n−プロピル、i−プロピル、n−ブチル、tert−ブチルの炭素原子数1〜4の炭化水素基であることが好ましい。また、上記R36とR37は、互いに同一でも異なっていてもよい。R38及びR39は、いずれか一方が炭素原子数1〜5のアルキル基であり、他方は水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、ケイ素含有基、酸素含有基、イオウ含有基、窒素含有基またはリン含有基である。これらのうち、R38及びR39は、いずれか一方がメチル、エチル、プロピルなどの炭素原子数1〜3のアルキル基であり、他方は水素原子であることが好ましい。X1及びX2は互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基、酸素含有基、イオウ含有基もしくは窒素含有基、またはX1とX2とから形成された共役ジエン残基である。これらのうち、ハロゲン原子または炭素原子数1〜20の炭化水素基であることが好ましい。Yは、炭素原子数1〜20の2価の炭化水素基、炭素原子数1〜20の2価のハロゲン化炭化水素基、2価のケイ素含有基、2価のゲルマニウム含有基、2価のスズ含有基、−O−、−CO−、−S−、−SO−、−SO2−、−NR40−、−P(R40)−、
−P(O)(R40)−、−BR40−または−AlR40−(ただし、R40は水素原子、ハロゲン原子、炭素原子数1〜20の炭化水素基、炭素原子数1〜20のハロゲン化炭化水素基)を示す。これらのうちYは、炭素原子数1〜5の2価の炭化水素基、2価のケイ素含有基または2価のゲルマニウム含有基であることが好ましく、2価のケイ素含有基であることがより好ましく、アルキルシリレン、アルキルアリールシリレンまたはアリールシリレンであることが特に好ましい。
In formula (10), M 3 is a transition metal atom of Group 4 of the periodic table, specifically titanium, zirconium or hafnium, preferably zirconium. R 36 may be the same as or different from each other, and includes a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and silicon-containing Group, oxygen-containing group, sulfur-containing group, nitrogen-containing group or phosphorus-containing group. The alkyl group and alkenyl group may be substituted with a halogen atom. Of these, R 36 is preferably an alkyl group, an aryl group or a hydrogen atom, particularly a hydrocarbon group having 1 to 3 carbon atoms such as methyl, ethyl, n-propyl and i-propyl, phenyl, α-naphthyl. And an aryl group such as β-naphthyl or a hydrogen atom. R 37 may be the same or different from each other, and may be a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or a carbon atom. An arylalkyl group having 7 to 40 carbon atoms, an arylalkenyl group having 8 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, a silicon-containing group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group It is. Note that the alkyl group, aryl group, alkenyl group, arylalkyl group, arylalkenyl group, and alkylaryl group may be substituted with halogen. Of these, R 37 is preferably a hydrogen atom or an alkyl group, and particularly a hydrogen atom or a carbon atom having 1 to 4 carbon atoms such as methyl, ethyl, n-propyl, i-propyl, n-butyl, or tert-butyl. A hydrogen group is preferred. R 36 and R 37 may be the same as or different from each other. One of R 38 and R 39 is an alkyl group having 1 to 5 carbon atoms, and the other is a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. A silicon-containing group, an oxygen-containing group, a sulfur-containing group, a nitrogen-containing group or a phosphorus-containing group. Among these, it is preferable that any one of R 38 and R 39 is an alkyl group having 1 to 3 carbon atoms such as methyl, ethyl, and propyl, and the other is a hydrogen atom. X 1 and X 2 may be the same or different and are each a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogenated hydrocarbon group having 1 to 20 carbon atoms, an oxygen-containing group, sulfur A conjugated diene residue formed from a containing group or a nitrogen-containing group, or X 1 and X 2 . Among these, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms is preferable. Y is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent halogenated hydrocarbon group having 1 to 20 carbon atoms, a divalent silicon-containing group, a divalent germanium-containing group, a divalent tin-containing group, -O -, - CO -, - S -, - SO -, - SO 2 -, - NR 40 -, - P (R 40) -,
—P (O) (R 40 ) —, —BR 40 — or —AlR 40 — (wherein R 40 is a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a group having 1 to 20 carbon atoms. A halogenated hydrocarbon group). Among these, Y is preferably a divalent hydrocarbon group having 1 to 5 carbon atoms, a divalent silicon-containing group, or a divalent germanium-containing group, and more preferably a divalent silicon-containing group. An alkylsilylene, an alkylarylsilylene or an arylsilylene is particularly preferable.

<メタロセン化合物の例−9>
またメタロセン化合物としては、下記一般式(11)で表されるメタロセン化合物を用いることもできる。
<Examples of metallocene compounds-9>
Further, as the metallocene compound, a metallocene compound represented by the following general formula (11) can also be used.

Figure 2007268776
Figure 2007268776

式(11)において、Yは炭素、ケイ素、ゲルマニウムおよびスズ原子から選ばれ、MはTi、ZrまたはHfであり、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11およびR12
は水素、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R5からR12までの隣接した置換基は互いに結合して環を形成してもよく、R13、R14は炭化
水素基およびケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R13およ
びR14が互いに結合して環を形成してもよい。Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。)
In the formula (11), Y is selected from carbon, silicon, germanium and tin atoms, M is Ti, Zr or Hf, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12
Are selected from hydrogen, a hydrocarbon group, and a silicon-containing group, and may be the same or different, and adjacent substituents from R 5 to R 12 may be bonded to each other to form a ring, R 13 , R 14 is selected from a hydrocarbon group and a silicon-containing group, and may be the same or different, and R 13 and R 14 may be bonded to each other to form a ring. Q may be selected from a halogen, a hydrocarbon group, an anionic ligand, or a neutral ligand capable of coordinating with a lone electron pair in the same or different combination, and j is an integer of 1 to 4. )

以下、本発明に関わる架橋メタロセン化合物の化学構造上の特徴であるシクロペンタジエニル基、フルオレニル基、架橋部、およびその他特徴について順次説明した後に、これらの特徴を併せ持つ好ましい架橋メタロセン化合物を説明する。   Hereinafter, a cyclopentadienyl group, a fluorenyl group, a bridge portion, and other characteristics which are characteristics of the chemical structure of the bridged metallocene compound according to the present invention will be described in order, and then a preferable bridged metallocene compound having these characteristics will be described. .

シクロペンタジエニル基
シクロペンタジエニル基は置換されていてもいなくてもよい。置換されていてもいなくてもよいシクロペンタジエニル基とは、上記一般式(11)におけるシクロペンタジエニル基部分が保有するR1、R2、R3およびR4が全て水素原子であるか、またはR1、R2、R3およびR4の内のいずれか一つ以上が炭化水素基(f1)、好ましくは総炭素数1から20の炭化水素基(f1')、またはケイ素含有基(f2)、好ましくは総炭素数1から20のケイ素含有基(f2')で置換されたシクロペンタジエニル基であることを意味する。R1、R2、R3およびR4の内の二つ以上が置換されている場合は、それらの置換基は相互に同一でも異なっていてもよい。また、総炭素数1から20の炭化水素基とは、炭素および水素のみから構成されるアルキル、ア
ルケニル、アルキニル、アリール基である。この中には、隣接する任意の二つの水素原子が同時に置換されて脂環族あるいは芳香族環を形成しているものも含む。総炭素数1から20の炭化水素基(f1')としては、炭素および水素のみから構成されるアルキル、アルケニル、アルキニル、アリール基以外に、これらの炭素に直結した水素原子の一部がハロゲン原子、酸素含有基、窒素含有基、ケイ素含有基で置換されたヘテロ原子含有炭化水素基や、隣接する任意の二つの水素原子が脂環族を形成しているものも含む。このような基(f1')
としては、メチル基、エチル基、n-プロピル基、アリル(allyl)基、n-ブチル基、n-ペン
チル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基などの直鎖状炭化水素基;イソプロピル基、t-ブチル基、アミル基、3-メチルペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロ
ピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチル
プロピル基などの分岐状炭化水素基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントラセニル基などの環状不飽和炭化水素基およびこれらの核アルキル置換体;ベンジル基、クミル基などのアリール基の置換した飽和炭化水素基; メトキシ基、エトキシ基、フェノキシ基N-メチルアミノ基、トリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基などのヘテロ原子含有炭化水素基を挙げることができる。
ケイ素含有基(f2)とは、例えば、シクロペンタジエニル基の環炭素がケイ素原子と直接共有結合している基であり、具体的にはアルキルシリル基やアリールシリル基である。総炭素数1から20のケイ素含有基(f2')としては、トリメチルシリル基、トリフェニルシリル基等を例示することができる。
Cyclopentadienyl group The cyclopentadienyl group may or may not be substituted. The cyclopentadienyl group which may or may not be substituted means that R 1 , R 2 , R 3 and R 4 possessed by the cyclopentadienyl group moiety in the general formula (11) are all hydrogen atoms. Or any one or more of R 1 , R 2 , R 3 and R 4 is a hydrocarbon group (f1), preferably a hydrocarbon group having 1 to 20 carbon atoms (f1 ′), or silicon-containing It means a cyclopentadienyl group substituted by a group (f2), preferably a silicon-containing group (f2 ′) having a total carbon number of 1 to 20. When two or more of R 1 , R 2 , R 3 and R 4 are substituted, these substituents may be the same as or different from each other. Further, the hydrocarbon group having 1 to 20 carbon atoms in total is an alkyl, alkenyl, alkynyl, or aryl group composed of only carbon and hydrogen. These include those in which any two adjacent hydrogen atoms are simultaneously substituted to form an alicyclic or aromatic ring. The hydrocarbon group having 1 to 20 carbon atoms in total (f1 ′) includes, in addition to alkyl, alkenyl, alkynyl and aryl groups composed only of carbon and hydrogen, some of the hydrogen atoms directly connected to these carbon atoms are halogen atoms. , An oxygen-containing group, a nitrogen-containing group, a heteroatom-containing hydrocarbon group substituted with a silicon-containing group, or a group in which any two adjacent hydrogen atoms form an alicyclic group. Such a group (f1 ')
As, methyl group, ethyl group, n-propyl group, allyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, linear hydrocarbon group such as n-decanyl group; isopropyl group, t-butyl group, amyl group, 3-methylpentyl group, 1,1-diethylpropyl group, 1,1-dimethylbutyl group, 1-methyl- Branched hydrocarbon groups such as 1-propylbutyl group, 1,1-propylbutyl group, 1,1-dimethyl-2-methylpropyl group, 1-methyl-1-isopropyl-2-methylpropyl group; cyclopentyl group, Cyclic saturated hydrocarbon groups such as cyclohexyl group, cycloheptyl group, cyclooctyl group, norbornyl group, adamantyl group; cyclic unsaturated hydrocarbon groups such as phenyl group, naphthyl group, biphenyl group, phenanthryl group, anthracenyl group and their nuclei Alkyl substitution A saturated hydrocarbon group substituted with an aryl group such as benzyl group or cumyl group; methoxy group, ethoxy group, phenoxy group, N-methylamino group, trifluoromethyl group, tribromomethyl group, pentafluoroethyl group, pentafluorophenyl And a heteroatom-containing hydrocarbon group such as a group.
The silicon-containing group (f2) is, for example, a group in which a ring carbon of a cyclopentadienyl group is directly covalently bonded to a silicon atom, and specifically an alkylsilyl group or an arylsilyl group. Examples of the silicon-containing group (f2 ′) having a total carbon number of 1 to 20 include a trimethylsilyl group and a triphenylsilyl group.

フルオレニル基
フルオレニル基は置換されていてもいなくてもよい。置換されていてもいなくてもよいフルオレニル基とは、上記一般式(11)におけるフルオレニル基部分が保有するR5、R6、R7、R8、R9、R10、R11およびR12が全て水素原子であるか、またはR5、R6、R7、R8、R9、R
10、R11およびR12の内のいずれか一つ以上が炭化水素基(f1)、好ましくは総炭素数1から20の炭化水素基(f1')、またはケイ素含有基(f2)、好ましくは総炭素数1から20のケイ素含
有基(f2')で置換されたフルオレニル基であることを意味する。R5、R6、R7、R8、R9、R10、R11およびR12の内の二つ以上が置換されている場合は、それらの置換基は相互に同一でも異なっていてもよい。また、R5、R6、R7、R8、R9、R10、R11およびR12は、隣接する基
が互いに結合して環を形成していてもよい。触媒のその製造上の容易性からR6とR11、お
よびR7とR10が相互に同一であるものが好んで使用される。
炭化水素基(f1)の好ましい基は、前記した総炭素数1から20の炭化水素基(f1')であり、ケイ素含有基(f2)の好ましい例は、前記した総炭素数1から20のケイ素含有基(f2')である。
Fluorenyl group The fluorenyl group may or may not be substituted. The fluorenyl group which may or may not be substituted is R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 possessed by the fluorenyl group moiety in the general formula (11). Are all hydrogen atoms, or R 5 , R 6 , R 7 , R 8 , R 9 , R
Any one or more of 10 , R 11 and R 12 is a hydrocarbon group (f1), preferably a hydrocarbon group having 1 to 20 carbon atoms (f1 ′), or a silicon-containing group (f2), preferably It means a fluorenyl group substituted with a silicon-containing group (f2 ′) having a total carbon number of 1 to 20. When two or more of R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are substituted, the substituents may be the same or different from each other. Good. Further, R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 may be bonded to each other to form a ring. In view of the ease of production of the catalyst, those in which R 6 and R 11 and R 7 and R 10 are the same are preferably used.
A preferred group of the hydrocarbon group (f1) is the above-described hydrocarbon group (f1 ′) having a total carbon number of 1 to 20, and a preferable example of the silicon-containing group (f2) is the above-described total number of carbon atoms of 1 to 20. It is a silicon-containing group (f2 ′).

共有結合架橋
シクロペンタジエニル基とフルオレニル基を結ぶ結合の主鎖部は、炭素、ケイ素、ゲルマニウムおよびスズ原子を一つ含有する2価の共有結合架橋である。本発明の高温溶液重合
において重要な点は、共有結合架橋部の架橋原子Yが、相互に同一でも異なっていてもよ
いR13とR14を有することである。炭化水素基(f1)の好ましい基は、前記した総炭素数1か
ら20の炭化水素基(f1')であり、ケイ素含有基(f2)の好ましい例は、前記した総炭素数1から20のケイ素含有基(f2')である。
Covalent bond bridge The main chain part of the bond connecting the cyclopentadienyl group and the fluorenyl group is a divalent covalent bond containing one carbon, silicon, germanium and tin atom. The important point in the high-temperature solution polymerization of the present invention is that the bridging atom Y of the covalent bond bridging portion has R 13 and R 14 which may be the same or different from each other. A preferred group of the hydrocarbon group (f1) is the above-described hydrocarbon group (f1 ′) having a total carbon number of 1 to 20, and a preferable example of the silicon-containing group (f2) is the above-described total number of carbon atoms of 1 to 20. It is a silicon-containing group (f2 ′).

架橋メタロセン化合物のその他の特徴
前記一般式(11)において、Qはハロゲン、炭素数が1〜10の炭化水素基、または炭素数が10以下の中性、共役または非共役ジエン、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選ばれる。ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素であり、炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピル、1,1,2,2-テトラメチルプロピル
、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペン
チル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル等が挙げら
れる。炭素数が10以下の中性、共役または非共役ジエンの具体例としては、s-シス-また
はs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-トラン
ス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(トリメ
チルシリル)-1,3-ブタジエン等が挙げられる。アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシ等のアルコキシ基、アセテート、ベンゾエート等のカル
ボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1,2-ジメトキシエタン等のエーテル類が挙げられる。jは1〜4の整数であり、jが2以上の時は、Qは互いに同一でも異なっていてもよい。
Other characteristics of the bridged metallocene compound In the general formula (11), Q is halogen, a hydrocarbon group having 1 to 10 carbon atoms, or a neutral, conjugated or nonconjugated diene having 10 or less carbon atoms, An anionic ligand or a neutral ligand capable of coordinating with a lone pair is selected in the same or different combination. Specific examples of the halogen are fluorine, chlorine, bromine and iodine, and specific examples of the hydrocarbon group are methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2, 2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1, Examples include 1,3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl-1-cyclohexyl and the like. Neutral having 10 or less carbon atoms, and specific examples of the conjugated or non-conjugated dienes, s- cis - or s- trans eta 4-1,3-butadiene, s- cis - or s- trans eta 4 - 1,4-diphenyl-1,3-butadiene, s-cis- or s-trans-η 4 -3-methyl-1,3-pentadiene, s-cis- or s-trans-η 4 -1,4- Dibenzyl-1,3-butadiene, s-cis- or s-trans-η 4 -2,4-hexadiene, s-cis- or s-trans-η 4 -1,3-pentadiene, s-cis- or s -Trans-η 4 -1,4-ditolyl-1,3-butadiene, s-cis- or s-trans-η 4 -1,4-bis (trimethylsilyl) -1,3-butadiene and the like. Specific examples of the anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate. Specific examples of neutral ligands that can be coordinated by a lone pair include organophosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, diphenylmethylphosphine, tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane. j is an integer of 1 to 4, and when j is 2 or more, Qs may be the same or different from each other.

<メタロセン化合物の例−10>
またメタロセン化合物としては、下記一般式(12)で表されるメタロセン化合物を用いることもできる。
<Example of metallocene compound-10>
Moreover, as a metallocene compound, the metallocene compound represented by the following general formula (12) can also be used.

Figure 2007268776
Figure 2007268776

式中、R1、R2、R3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12、R 13、R 14は水素、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R 1からR 14までの隣接した置換基は互いに結合して環を形成してもよく、MはTi、Zr
またはHfであり、Yは第14族原子であり、Qはハロゲン、炭化水素基、炭素数が10以下の中性、共役または非共役ジエン、アニオン配位子、および孤立電子対で配位可能な中性配位子からなる群から同一または異なる組合せで選ばれ、nは2〜4の整数、jは1〜4の整数である。
In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 are hydrogen or a hydrocarbon group Selected from silicon-containing groups, which may be the same or different, and adjacent substituents from R 1 to R 14 may be bonded to each other to form a ring, and M represents Ti, Zr
Or Hf, Y is a Group 14 atom, Q can be coordinated by halogen, hydrocarbon group, neutral having 10 or less carbon atoms, conjugated or non-conjugated diene, anionic ligand, and lone pair of electrons Selected from the group consisting of neutral ligands in the same or different combinations, n is an integer of 2 to 4, and j is an integer of 1 to 4.

上記一般式(12)において、炭化水素基としては、好ましくは炭素数1〜20のアルキル基、炭素数7〜20のアリールアルキル基、炭素数6〜20のアリール基、または炭素数7〜20のアルキルアリール基であり、1つ以上の環構造を含んでいてもよい。   In the general formula (12), the hydrocarbon group is preferably an alkyl group having 1 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or 7 to 20 carbon atoms. And may contain one or more ring structures.

その具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-
メチルプロピル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメ
チルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メチル-1-シクロヘキシル、1-アダマンチル、2-アダマンチル、2-メチル-2-アダマンチル、メンチル、ノルボルニル、ベンジル、2-フェニルエチル、1-テトラヒドロナフチル、1-メチル-1-テトラヒドロナフチル、フェニル、ナフチル、トリル等が挙げられ
る。
Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-
Methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1,1,3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl- 1-cyclohexyl, 1-adamantyl, 2-adamantyl, 2-methyl-2-adamantyl, menthyl, norbornyl, benzyl, 2-phenylethyl, 1-tetrahydronaphthyl, 1-methyl-1-tetrahydronaphthyl, phenyl, naphthyl, tolyl Etc.

上記一般式(12)において、ケイ素含有炭化水素基としては、好ましくはケイ素数1〜4、炭素数3〜20のアルキルまたはアリールシリル基であり、その具体例としては、トリメチルシリル、tert-ブチルジメチルシリル、トリフェニルシリル等が挙げられる。   In the general formula (12), the silicon-containing hydrocarbon group is preferably an alkyl or arylsilyl group having 1 to 4 silicon atoms and 3 to 20 carbon atoms. Specific examples thereof include trimethylsilyl and tert-butyldimethyl. Examples thereof include silyl and triphenylsilyl.

本発明において、上記一般式(12)のR1からR14は水素、炭化水素基、ケイ素含有
炭化水素基から選ばれ、それぞれ同一でも異なっていてもよい。好ましい炭化水素基、ケイ素含有炭化水素基の具体例としては、上記と同様のものを挙げることができる。
In the present invention, R 1 to R 14 in the general formula (12) are selected from hydrogen, a hydrocarbon group, and a silicon-containing hydrocarbon group, and may be the same or different. Specific examples of preferred hydrocarbon groups and silicon-containing hydrocarbon groups include the same as those described above.

上記一般式(12)のシクロペンタジエニル環上のR 1からR 14までの隣接した置換基
は、互いに結合して環を形成してもよい。
一般式(12)のMは、周期律表第4族元素、すなわちジルコニウム、チタンまたはハ
フニウムであり、好ましくはジルコニウムである。
The adjacent substituents from R 1 to R 14 on the cyclopentadienyl ring of the general formula (12) may be bonded to each other to form a ring.
M in the general formula (12) is a group 4 element of the periodic table, that is, zirconium, titanium or hafnium, preferably zirconium.

Yは第14族原子であり、好ましくは炭素原子または珪素原子である。nは2〜4の整
数であり、好ましくは2または3、特に好ましくは2である。
Qはハロゲン、炭化水素基、炭素数が10以下の中性、共役または非共役ジエン、アニ
オン配位子および孤立電子対で配位可能な中性配位子からなる群から同一または異なる組合せで選ばれる。Qが炭化水素基であるとき、より好ましくは炭素数が1〜10の炭化水
素基である。
Y is a Group 14 atom, preferably a carbon atom or a silicon atom. n is an integer of 2 to 4, preferably 2 or 3, particularly preferably 2.
Q is the same or different combination from the group consisting of halogen, hydrocarbon group, neutral having 10 or less carbon atoms, conjugated or nonconjugated diene, anionic ligand and neutral ligand capable of coordinating with a lone pair of electrons. To be elected. When Q is a hydrocarbon group, it is more preferably a hydrocarbon group having 1 to 10 carbon atoms.

ハロゲンの具体例としては、フッ素、塩素、臭素、ヨウ素であり、炭化水素基の具体例としては、メチル、エチル、n-プロピル、イソプロピル、2-メチルプロピル、1,1-ジメチルプロピル、2,2-ジメチルプロピル、1,1-ジエチルプロピル、1-エチル-1-メチルプロピ
ル、1,1,2,2-テトラメチルプロピル、sec-ブチル、tert-ブチル、1,1-ジメチルブチル、1,1,3-トリメチルブチル、ネオペンチル、シクロヘキシルメチル、シクロヘキシル、1-メ
チル-1-シクロヘキシル等が挙げられる。炭素数が10以下の中性、共役または非共役ジ
エンの具体例としては、s-シス-またはs-トランス-η4-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ジフェニル-1,3-ブタジエン、s-シス-またはs-トランス-η4-3-メチ
ル-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジベンジル-1,3-ブタジエン、s-シス-またはs-トランス-η4-2,4-ヘキサジエン、s-シス-またはs-トランス-η4-1,3-ペンタジエン、s-シス-またはs-トランス-η4-1,4-ジトリル-1,3-ブタジエン、s-シス-またはs-トランス-η4-1,4-ビス(トリメチルシリル)-1,3-ブタジエン等が挙げられる。アニオン配位子の具体例としては、メトキシ、tert-ブトキシ、フェノキシ等のアルコキシ基
、アセテート、ベンゾエート等のカルボキシレート基、メシレート、トシレート等のスルホネート基等が挙げられる。孤立電子対で配位可能な中性配位子の具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィンなどの有機リン化合物、またはテトラヒドロフラン、ジエチルエーテル、ジオキサン、1、2−ジメトキシエタン等のエーテル類が挙げられる。jが2以上の整数である場合は、複数のQは同一でも異なっていてもよい。
Specific examples of the halogen are fluorine, chlorine, bromine and iodine, and specific examples of the hydrocarbon group are methyl, ethyl, n-propyl, isopropyl, 2-methylpropyl, 1,1-dimethylpropyl, 2, 2-dimethylpropyl, 1,1-diethylpropyl, 1-ethyl-1-methylpropyl, 1,1,2,2-tetramethylpropyl, sec-butyl, tert-butyl, 1,1-dimethylbutyl, 1, Examples include 1,3-trimethylbutyl, neopentyl, cyclohexylmethyl, cyclohexyl, 1-methyl-1-cyclohexyl and the like. Neutral having 10 or less carbon atoms, and specific examples of the conjugated or non-conjugated dienes, s- cis - or s- trans eta 4-1,3-butadiene, s- cis - or s- trans eta 4 - 1,4-diphenyl-1,3-butadiene, s-cis- or s-trans-η 4 -3-methyl-1,3-pentadiene, s-cis- or s-trans-η 4 -1,4- Dibenzyl-1,3-butadiene, s-cis- or s-trans-η 4 -2,4-hexadiene, s-cis- or s-trans-η 4 -1,3-pentadiene, s-cis- or s -Trans-η 4 -1,4-ditolyl-1,3-butadiene, s-cis- or s-trans-η 4 -1,4-bis (trimethylsilyl) -1,3-butadiene and the like. Specific examples of the anionic ligand include alkoxy groups such as methoxy, tert-butoxy and phenoxy, carboxylate groups such as acetate and benzoate, and sulfonate groups such as mesylate and tosylate. Specific examples of the neutral ligand that can coordinate with a lone electron pair include organic phosphorus compounds such as trimethylphosphine, triethylphosphine, triphenylphosphine, and diphenylmethylphosphine, or tetrahydrofuran, diethyl ether, dioxane, 1,2- And ethers such as dimethoxyethane. When j is an integer greater than or equal to 2, several Q may be the same or different.

式(12)において、Yは2〜4の複数個存在するが、複数のYは相互に同一であっても異なっていてもよい。Yに結合する複数のR13及び複数のR14は、それぞれ相互に同一であ
っても異なっていてもよい。例えば同一のYに結合する複数のR13が相互に異なっていてもよいし、異なるYに結合する複数のR13が相互に同一であってもよい。また、R13もしくはR14同士が環を形成していてもよい。
In the formula (12), there are a plurality of Ys of 2 to 4, but the Ys may be the same as or different from each other. The plurality of R 13 and the plurality of R 14 bonded to Y may be the same as or different from each other. For example, a plurality of R 13 bonded to the same Y may be different from each other, or a plurality of R 13 bonded to different Y may be the same as each other. R 13 or R 14 may form a ring.

式(12)で表される第4族遷移金属化合物の好ましい例として、下記式(13)で表される化合物を挙げることができる。   Preferable examples of the Group 4 transition metal compound represented by the formula (12) include a compound represented by the following formula (13).

Figure 2007268776
Figure 2007268776

式(13)中、R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10、R 11、R 12
水素原子、炭化水素基、ケイ素含有基から選ばれ、それぞれ同一でも異なっていてもよく、R 13、R 14、R 15、R 16は水素原子または炭化水素基であり、nは1〜3の整数であり
、n=1のときは前記R 1からR 16は同時に水素原子ではなく、それぞれ同一でも異なっていてもよい。R 5からR 12までの隣接した置換基は互いに結合して環を形成してもよく、R
13とR 15は互いに結合して環を形成してもよく、またR 13とR 15は互いに結合して環を
形成すると同時にR 14とR 16は互いに結合して環を形成してもよく、Y1およびY2は第14族原子であり相互に同一でも異なっていてもよく、MはTi、ZrまたはHfであり、Qはハロゲン、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子から同一または異なる組合せで選んでもよく、jは1〜4の整数である。
このようなメタロセン化合物の例−9、10のような化合物は特開2004−175707号公報WO2001/027124、WO2004/029062、WO2004/083265等に挙げられている。
In formula (13), R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 are hydrogen atoms, hydrocarbon groups, silicon R 13 , R 14 , R 15 , and R 16 are each a hydrogen atom or a hydrocarbon group, n is an integer of 1 to 3, and n = 1 In some cases, R 1 to R 16 are not hydrogen atoms and may be the same or different. Adjacent substituents from R 5 to R 12 may combine with each other to form a ring, and R
13 and R 15 may be bonded to each other to form a ring, and R 13 and R 15 may be bonded to each other to form a ring, and at the same time, R 14 and R 16 may be bonded to each other to form a ring. , Y 1 and Y 2 are group 14 atoms which may be the same or different from each other, M is Ti, Zr or Hf, Q is a halogen, a hydrocarbon group, an anionic ligand or a lone pair of electrons You may choose from the neutral ligand which can be coordinated by the same or different combination, and j is an integer of 1-4.
Examples of such metallocene compounds such as Examples-9 and 10 are listed in JP-A No. 2004-175707, WO2001 / 027124, WO2004 / 029062, WO2004 / 083265, and the like.

以上に説明したメタロセン化合物は、単独であるいは2種以上組み合せて用いられる。またメタロセン化合物は、炭化水素またはハロゲン化炭化水素などに希釈して用いてもよい。
触媒成分は、(A)前記で表される架橋メタロセン化合物、並びに(B)(b-1) 有機アルミニウムオキシ化合物、(b-2) 前記架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、および(b-3)有機アルミニウム化合物から選ばれる少なくても1種の化
合物から構成される。
The metallocene compounds described above are used alone or in combination of two or more. The metallocene compound may be diluted with a hydrocarbon or a halogenated hydrocarbon.
The catalyst component comprises (A) the bridged metallocene compound represented above, and (B) (b-1) an organoaluminum oxy compound, (b-2) reacts with the bridged metallocene compound (A) to form an ion pair. And at least one compound selected from (b-3) organoaluminum compounds.

以下、(B)成分について具体的に説明する。
<(b-1) 有機アルミニウムオキシ化合物>
本発明で用いられる(b-1) 有機アルミニウムオキシ化合物は、従来公知のアルミノキサンをそのまま使用できる。具体的には、下記一般式(14)
Hereinafter, the component (B) will be specifically described.
<(B-1) Organoaluminum oxy compound>
As the (b-1) organoaluminum oxy compound used in the present invention, a conventionally known aluminoxane can be used as it is. Specifically, the following general formula (14)

Figure 2007268776
Figure 2007268776

および/または一般式(15)   And / or general formula (15)

Figure 2007268776
Figure 2007268776

(ここで、Rは炭素数1〜10の炭化水素基、nは2以上の整数を示す。)で代表される化合物を挙げることができ、特にRがメチル基であるメチルアルミノキサンでnが3以上、好まし
くは10以上のものが利用される。これらアルミノキサン類に若干の有機アルミニウム化合物が混入していても差し支えない。本発明の高温溶液重合において特徴的な性質は、特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合
物をも適用できることである。また、特開平2-167305号公報に記載されている有機アルミ
ニウムオキシ化合物、特開平2-24701号公報、特開平3-103407号公報に記載されている二
種類以上のアルキル基を有するアルミノキサンなども好適に利用できる。なお、本発明の高温溶液重合で用いられる「ベンゼン不溶性の」有機アルミニウムオキシ化合物とは、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好
ましくは2%以下であり、ベンゼンに対して不溶性または難溶性であることをいう。
(Wherein R represents a hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 2 or more). In particular, R is a methylaluminoxane in which methyl is a methyl group, and n is 3 More preferably, 10 or more are used. These aluminoxanes may be mixed with some organoaluminum compounds. A characteristic property in the high temperature solution polymerization of the present invention is that a benzene-insoluble organoaluminum oxy compound as exemplified in JP-A-2-78687 can also be applied. Further, organoaluminum oxy compounds described in JP-A-2-167305, aluminoxanes having two or more types of alkyl groups described in JP-A-2-24701, JP-A-3-103407, and the like It can be suitably used. The “benzene-insoluble” organoaluminum oxy compound used in the high-temperature solution polymerization of the present invention means that the Al component dissolved in benzene at 60 ° C. is usually 10% or less, preferably 5% or less, particularly preferably 5% or less. Is 2% or less, and is insoluble or hardly soluble in benzene.

また、本発明で用いられる有機アルミニウムオキシ化合物としては下記(16)のような修飾メチルアルミノキサン等も挙げられる。   Examples of the organoaluminum oxy compound used in the present invention include modified methylaluminoxane as shown in (16) below.

Figure 2007268776
Figure 2007268776

(ここで、Rは炭素数1〜10の炭化水素基、m,nは2以上の整数を示す。)
この修飾メチルアルミノキサンはトリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムを用いて調製されるものである。このような化合物[V]は一般にMMAOと呼ばれている。このようなMMAOはUS4960878およびUS5041584で挙げられている方法
で調製することが出来る。また、東ソー・ファインケム社等からもトリメチルアルミニウムとトリイソブチルアルミニウムを用いて調製したRがイソブチル基であるものがMMAOやTMAOといった名称で商業生産されている。このようなMMAOは各種溶媒への溶解性および保
存安定性を改良したアルミノキサンであり、具体的には上記(14)、(15)のようなベンゼンに対して不溶性または難溶性のものとは違い、脂肪族炭化水素や脂環族炭化水素に溶解するものである。
(Here, R represents a hydrocarbon group having 1 to 10 carbon atoms, and m and n represent an integer of 2 or more.)
This modified methylaluminoxane is prepared using trimethylaluminum and an alkylaluminum other than trimethylaluminum. Such a compound [V] is generally called MMAO. Such MMAO can be prepared by the methods listed in US4960878 and US5041584. In addition, Tosoh Finechem Co., Ltd., etc., which are prepared using trimethylaluminum and triisobutylaluminum and whose R is an isobutyl group, are commercially produced under the names MMAO and TMAO. Such MMAO is an aluminoxane having improved solubility in various solvents and storage stability, and specifically, it is different from those insoluble or hardly soluble in benzene such as the above (14) and (15). It is soluble in aliphatic hydrocarbons and alicyclic hydrocarbons.

さらに、本発明で用いられる有機アルミニウムオキシ化合物としては、下記一般式(1
7)で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Further, the organoaluminum oxy compound used in the present invention includes the following general formula (1
An organoaluminum oxy compound containing boron represented by 7) can also be mentioned.

Figure 2007268776
Figure 2007268776

(式中、Rcは炭素原子数が1〜10の炭化水素基を示す。Rdは、互いに同一でも異なってい
てもよく、水素原子、ハロゲン原子または炭素原子数が1〜10の炭化水素基を示す。)
<(b-2) 架橋メタロセン化合物(A)と反応してイオン対を形成する化合物>
架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(b-2)(以下、「イオン性化合物」と略称する場合がある。)としては、特開平1-501950号公報、特開平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
(In the formula, R c represents a hydrocarbon group having 1 to 10 carbon atoms. R d may be the same or different and each represents a hydrogen atom, a halogen atom or a hydrocarbon having 1 to 10 carbon atoms. Group.)
<(B-2) Compound that reacts with bridged metallocene compound (A) to form an ion pair>
Examples of the compound (b-2) that reacts with the bridged metallocene compound (A) to form an ion pair (hereinafter sometimes abbreviated as “ionic compound”) include JP-A-1-501950, Lewis acids and ionic properties described in 1-502036, JP-A-3-17905, JP-A-3-179006, JP-A-3-207703, JP-A-3-207704, USP5321106, etc. Examples thereof include compounds, borane compounds and carborane compounds. Furthermore, heteropoly compounds and isopoly compounds can also be mentioned.

本発明において、好ましく採用されるイオン性化合物は下記一般式(18)で表される化合物である。   In the present invention, the ionic compound preferably employed is a compound represented by the following general formula (18).

Figure 2007268776
Figure 2007268776

式中、Re+としては、H+、カルベニウムカチオン、オキソニウムカチオン、アンモニウ
ムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。Rf〜Riは、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基である。
In the formula, R e + includes H + , carbenium cation, oxonium cation, ammonium cation, phosphonium cation, cycloheptyltrienyl cation, ferrocenium cation having a transition metal, and the like. R f to R i may be the same as or different from each other, and are organic groups, preferably aryl groups.

前記カルベニウムカチオンとして具体的には、トリフェニルカルベニウムカチオン、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオンなどの三置換カルベニウムカチオンなどが挙げられる。   Specific examples of the carbenium cation include trisubstituted carbenium cations such as triphenylcarbenium cation, tris (methylphenyl) carbenium cation, and tris (dimethylphenyl) carbenium cation.

前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n-プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン、ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。   Specific examples of the ammonium cation include trialkylammonium cations such as trimethylammonium cation, triethylammonium cation, tri (n-propyl) ammonium cation, triisopropylammonium cation, tri (n-butyl) ammonium cation, and triisobutylammonium cation. N, N-dimethylanilinium cation, N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation, etc., N, N-dialkylanilinium cation, diisopropylammonium cation, dicyclohexyl And dialkyl ammonium cations such as ammonium cations.

前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリス(メチルフェニル)ホスホニウムカチオン、トリス(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。   Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tris (methylphenyl) phosphonium cation, and tris (dimethylphenyl) phosphonium cation.

上記のうち、Re+としては、カルベニウムカチオン、アンモニウムカチオンなどが好ま
しく、特にトリフェニルカルベニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
Of these, Re e + is preferably a carbenium cation, an ammonium cation or the like, and particularly preferably a triphenylcarbenium cation, an N, N-dimethylanilinium cation or an N, N-diethylanilinium cation.

カルベニウム塩として具体的には、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリス(4-メ
チルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5-ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを挙
げることができる。
Specific examples of the carbenium salt include triphenylcarbenium tetraphenylborate, triphenylcarbeniumtetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis (3,5-ditrifluoromethylphenyl) borate, tris (4-methyl And phenyl) carbenium tetrakis (pentafluorophenyl) borate and tris (3,5-dimethylphenyl) carbenium tetrakis (pentafluorophenyl) borate.

アンモニウム塩としては、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩などを挙げることができる。
トリアルキル置換アンモニウム塩として具体的には、たとえばトリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n-
ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(p-トリル)ボレート、トリメチルアンモニウムテトラキス(o-トリル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウム
テトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(
ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジメチルフェニル)ボ
レート、トリ(n-ブチル)アンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(p-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(o-トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4-トリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムなどが挙げられる。
Examples of ammonium salts include trialkyl-substituted ammonium salts, N, N-dialkylanilinium salts, dialkylammonium salts, and the like.
Specific examples of the trialkyl-substituted ammonium salt include triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (n-
Butyl) ammonium tetraphenylborate, trimethylammonium tetrakis (p-tolyl) borate, trimethylammonium tetrakis (o-tolyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) Borate, tripropylammonium tetrakis (
Pentafluorophenyl) borate, tripropylammonium tetrakis (2,4-dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-dimethylphenyl) borate, tri (n-butyl) ammonium tetrakis (4-tri Fluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (3,5-ditrifluoromethylphenyl) borate, tri (n-butyl) ammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetraphenylborate, di Octadecylmethylammonium tetrakis (p-tolyl) borate, dioctadecylmethylammonium tetrakis (o-tolyl) borate, dioctadecylmethylammonium tetrakis (pentafluorophenyl) borate, dioctadecylmethylammonium tetrakis (2,4-dimethyl) Tilphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-dimethylphenyl) borate, dioctadecylmethylammonium tetrakis (4-trifluoromethylphenyl) borate, dioctadecylmethylammonium tetrakis (3,5-ditrifluoromethylphenyl) borate And dioctadecylmethylammonium.

N,N-ジアルキルアニリニウム塩として具体的には、たとえばN,N-ジメチルアニリニウムテトラフェニルボレート、 N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニ
ル)ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、N,N-ジエチルアニリ
ニウムテトラキス(ペンタフルオロフェニル)ボレート、 N,N-ジエチルアニリニウムテト
ラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラフェニルボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタ
フルオロフェニル)ボレートなどが挙げられる。
Specific examples of N, N-dialkylanilinium salts include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis ( 3,5-ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (3,5- Ditrifluoromethylphenyl) borate, N, N-2,4,6-pentamethylanilinium tetraphenylborate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, etc. .

ジアルキルアンモニウム塩として具体的には、たとえばジ(1-プロピル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどが挙げられる。   Specific examples of the dialkylammonium salt include di (1-propyl) ammonium tetrakis (pentafluorophenyl) borate and dicyclohexylammonium tetraphenylborate.

その他、本出願人によって開示(特開2004-51676号公報)されているイオン性化合物も制限無く使用が可能である。
尚、上記のようなイオン性化合物(b-2)は、2種以上混合して用いることができる。
In addition, ionic compounds disclosed by the present applicant (Japanese Patent Laid-Open No. 2004-51676) can also be used without limitation.
The ionic compound (b-2) as described above can be used as a mixture of two or more.

<(b-3) 有機アルミニウム化合物>
オレフィン重合触媒を形成する(b-3)有機アルミニウム化合物としては、例えば下記
一般式[X]で表される有機アルミニウム化合物、下記一般式(19)で表される第1族金属とアルミニウムとの錯アルキル化物などを挙げることができる。
Ra mAl(ORb)nHpXq------ (19)
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1〜15、好
ましくは1〜4の炭化水素基を示し、Xはハロゲン原子を示し、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。)で表される有機アルミ
ニウム化合物。このような化合物の具体例として、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウムなどのトリn-アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、
トリ2-メチルブチルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム;ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;一般式(i-C4H9)xAly(C5H10)z(式中、x、y、zは正
の数であり、z≦2xである。)
などで表されるイソプレニルアルミニウムなどのアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;一般式Ra 2.5Al(ORb)0.5などで表される平均組成を有する部
分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。
M2AlRa 4 -----------(20)
(式中、M2はLi、NaまたはKを示し、Raは炭素原子数が1〜15、好ましくは1〜4の炭化水素基を示す。)
で表される周期律表第1族金属とアルミニウムとの錯アルキル化物。このような化合物としては、LiAl(C2H5)4、LiAl(C7H15)4などを例示することができる。
<(B-3) Organoaluminum compound>
Examples of the organoaluminum compound that forms the olefin polymerization catalyst (b-3) include, for example, an organoaluminum compound represented by the following general formula [X], a group 1 metal represented by the following general formula (19), and aluminum. Examples thereof include complex alkylated products.
R a m Al (OR b ) n H p X q ------ (19)
(In the formula, R a and R b may be the same or different from each other, each represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, X represents a halogen atom, and m represents 0. <M ≦ 3, n is 0 ≦ n <3, p is a number of 0 ≦ p <3, q is a number of 0 ≦ q <3, and m + n + p + q = 3). Specific examples of such compounds include tri-n-alkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-butylaluminum, trihexylaluminum, trioctylaluminum; triisopropylaluminum, triisobutylaluminum, trisec-butylaluminum, Tri-tert-butylaluminum,
Tri-branched alkylaluminums such as tri-2-methylbutylaluminum, tri-3-methylhexylaluminum, tri-2-ethylhexylaluminum; tricycloalkylaluminums such as tricyclohexylaluminum and tricyclooctylaluminum; triphenylaluminum, tritolylaluminum, etc. triaryl aluminum; diisopropyl aluminum hydride, dialkylaluminum hydride such as diisobutylaluminum hydride; formula (iC 4 H 9) x Al y (C 5 H 10) z ( wherein, x, y, z are positive numbers Yes, z ≦ 2x.)
Alkenyl aluminum alkoxide such as isobutylaluminum methoxide and isobutylaluminum ethoxide; Dialkylaluminum alkoxide such as dimethylaluminum methoxide, diethylaluminum ethoxide and dibutylaluminum butoxide; Alkyl aluminum sesquialkoxides such as ethoxide and butylaluminum sesquibutoxide; partially alkoxylated alkylaluminums having an average composition represented by the general formula R a 2.5 Al (OR b ) 0.5 and the like; diethylaluminum phenoxide and diethylaluminum Alkyl aluminum aryloxides such as (2,6-di-t-butyl-4-methylphenoxide); dimethylal Dialkylaluminum halides such as nium chloride, diethylaluminum chloride, dibutylaluminum chloride, diethylaluminum bromide, diisobutylaluminum chloride; alkylaluminum sesquichlorides such as ethylaluminum sesquichloride, butylaluminum sesquichloride, ethylaluminum sesquibromide; Partially halogenated alkylaluminums such as alkylaluminum dihalides; dialkylaluminum hydrides such as diethylaluminum hydride and dibutylaluminum hydride; alkylaluminum dihydrides such as ethylaluminum dihydride and propylaluminum dihydride and other partially Hydrogenated alk Aluminum; ethylaluminum ethoxy chloride, butyl aluminum butoxide cycloalkyl chloride, etc. partially alkoxylated and halogenated alkylaluminum such as ethylaluminum ethoxy bromide and the like.
M 2 AlR a 4 ----------- (20)
(In the formula, M 2 represents Li, Na or K, and R a represents a hydrocarbon group having 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms.)
A complex alkylated product of a group 1 metal and aluminum in the periodic table represented by: Examples of such a compound include LiAl (C 2 H 5 ) 4 and LiAl (C 7 H 15 ) 4 .

また、上記一般式(20)で表される化合物に類似する化合物も使用することができ、例えば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を
挙げることができる。このような化合物として具体的には、(C2H5)2AlN(C2H5)Al(C2H5)2
などを挙げることができる。
入手容易性の点から、(b−3)有機アルミニウム化合物としては、トリメチルアルミニウム、トリイソブチルアルミニウムが好んで用いられる。
A compound similar to the compound represented by the general formula (20) can also be used, and examples thereof include an organoaluminum compound in which two or more aluminum compounds are bonded through a nitrogen atom. Specifically, as such a compound, (C 2 H 5 ) 2 AlN (C 2 H 5 ) Al (C 2 H 5 ) 2
And so on.
From the viewpoint of availability, trimethylaluminum and triisobutylaluminum are preferably used as the (b-3) organoaluminum compound.

<重合>
本発明で用いられるポリオレフィンワックスは、上記メタロセン系触媒の存在下に、エチレンを通常液相で単独重合するか、またはエチレンおよびα−オレフィンを共重合させることにより得られる。重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。
<Polymerization>
The polyolefin wax used in the present invention is obtained by homopolymerizing ethylene in a normal liquid phase or copolymerizing ethylene and an α-olefin in the presence of the metallocene catalyst. In the polymerization, the method of using each component and the order of addition are arbitrarily selected, and the following methods are exemplified.

[q1] 成分(A)を単独で重合器に添加する方法。
[q2] 成分(A)および成分(B)を任意の順序で重合器に添加する方法。
上記[q2]の方法においては、各触媒成分の少なくとも2つ以上は予め接触されていても
よい。この際、一般に炭化水素溶媒が用いられるが、α−オレフィンを溶媒として用いてもよい。なお、ここで用いる各モノマーは、前述した通りである。
[q1] A method of adding the component (A) alone to the polymerization vessel.
[q2] A method of adding the component (A) and the component (B) to the polymerization vessel in an arbitrary order.
In the method [q2], at least two or more of the catalyst components may be in contact with each other in advance. At this time, a hydrocarbon solvent is generally used, but an α-olefin may be used as a solvent. The monomers used here are as described above.

重合方法は、ポリオレフィンワックスがヘキサン等の溶媒中に粒子として存在する状態で重合する懸濁重合、溶媒を用いないで重合する気相重合、そして140℃以上の重合温度で、ポリオレフィンワックスが溶剤と共存または単独で溶融した状態で重合する溶液重合が可能であり、その中でも溶液重合が経済性と品質の両面で好ましい。   The polymerization method includes suspension polymerization in which polyolefin wax is polymerized in the presence of particles in a solvent such as hexane, gas phase polymerization in which a solvent is not used, and polymerization temperature of 140 ° C. or higher. Solution polymerization that polymerizes in the coexistence or melted state is possible, and among these, solution polymerization is preferable in terms of both economy and quality.

重合反応は、バッチ法あるいは連続法いずれの方法で行ってもよい。重合をバッチ法で実施するに際しては、前記の触媒成分は次に説明する濃度下で用いられる。
上記のようなオレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、成分(A)は,反応容積1リットル当り、通常10-9〜10-1モル、好ましくは10-8〜10-2モルに
なるような量で用いられる。
The polymerization reaction may be performed by either a batch method or a continuous method. When the polymerization is carried out by a batch method, the above catalyst components are used in the concentrations described below.
When the olefin polymerization is carried out using the olefin polymerization catalyst as described above, the component (A) is usually 10 −9 to 10 −1 mol, preferably 10 −8 to 10 −2 mol per liter of reaction volume. It is used in such an amount that it becomes a mole.

成分(b−1)は、成分(b−1)と、成分(A)中の全遷移金属原子(M)とのモル比
〔(b−1)/M〕が通常0.01〜5,000、好ましくは0.05〜2,000となるような量で用いられる。成分(b−2)は、成分(b−2)中のイオン性化合物と、成分(A)中の全遷移金属(M)とのモル比〔(b−2)/M〕が、通常0.01〜5,000、好ましくは1〜2,000となるような量で用いられる。成分(b−3)は、成分(b−3)と、成分(A)中の遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常1〜1
0000、好ましくは1〜5000となるような量で用いられる。
Component (b-1) has a molar ratio [(b-1) / M] of component (b-1) to all transition metal atoms (M) in component (A) of usually 0.01 to 5, 000, preferably 0.05 to 2,000. In the component (b-2), the molar ratio [(b-2) / M] of the ionic compound in the component (b-2) and the total transition metal (M) in the component (A) is usually 0. 0.01 to 5,000, preferably 1 to 2,000. The component (b-3) has a molar ratio [(b-3) / M] of the component (b-3) and the transition metal atom (M) in the component (A) of usually 1-1.
The amount used is 0000, preferably 1 to 5000.

重合反応は、温度が通常、ワックス10gをフィルター上にセットして、−20〜+200℃、好ましくは50〜180℃、さらに好ましくは70〜180℃で、圧力が通常、0を超えて7.8MPa(80kgf/cm2、ゲージ圧)以下、好ましくは0を超えて
4.9MPa(50kgf/cm2、ゲージ圧)以下の条件下に行われる。
In the polymerization reaction, the temperature is usually 10 g of wax set on a filter, -20 to + 200 ° C., preferably 50 to 180 ° C., more preferably 70 to 180 ° C., and the pressure usually exceeds 0. It is performed under conditions of 8 MPa (80 kgf / cm 2 , gauge pressure) or less, preferably more than 0 and 4.9 MPa (50 kgf / cm 2 , gauge pressure) or less.

重合に際して、エチレンおよび必要に応じて用いられるα−オレフィンは、前記した特定組成のポリオレフィンワックスが得られるような量割合で重合系に供給される。また重合に際しては、水素などの分子量調節剤を添加することもできる。   In the polymerization, ethylene and the α-olefin used as necessary are supplied to the polymerization system in such an amount ratio that a polyolefin wax having the specific composition described above can be obtained. In the polymerization, a molecular weight regulator such as hydrogen can be added.

このようにして重合させると、生成した重合体は通常これを含む重合液として得られるので、常法により処理するとポリオレフィンワックスが得られる。
本発明においては、特に<メタロセン化合物の例−1>で示したメタロセン化合物を含む触媒の使用が好ましい。
本発明のポリエチレンワックスの形状は特に制限はないが、通常、ペレット状、またはタブレット状の粒子である。
When polymerized in this manner, the produced polymer is usually obtained as a polymerization solution containing the polymer, so that a polyolefin wax can be obtained by treatment by a conventional method.
In the present invention, it is particularly preferable to use a catalyst containing the metallocene compound shown in <Example 1 of metallocene compound>.
The shape of the polyethylene wax of the present invention is not particularly limited, but is usually pellet-like or tablet-like particles.

〔その他成分〕
本発明では、上記ポリプロピレンとポリエチレンワックスとに加えて、さらに必要に応じて、酸化防止剤、紫外線吸収剤、光安定剤等の安定剤、金属石鹸、充填剤、難燃剤等の添加剤を原料に加えて使用してもよい。
[Other ingredients]
In the present invention, in addition to the above polypropylene and polyethylene wax, additives such as antioxidants, ultraviolet absorbers, light stabilizers, metal soaps, fillers, flame retardants, etc., as necessary, are added as necessary. May be used in addition to.

上記安定剤としては、ヒンダードフェノール系化合物、フォスファイト系化合物、チオエーテル系化合物などの酸化防止剤;
ベンゾトリアゾール系化合物、ベンゾフェノン系化合物などの紫外線吸収剤;
ヒンダードアミン系化合物などの光安定剤が挙げられる。
Examples of the stabilizer include antioxidants such as hindered phenol compounds, phosphite compounds, and thioether compounds;
UV absorbers such as benzotriazole compounds and benzophenone compounds;
Examples thereof include light stabilizers such as hindered amine compounds.

上記金属石鹸としては、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸亜鉛などのステアリン酸塩等が挙げられる。
上記充填剤としては、炭酸カルシウム、酸化チタン、硫酸バリウム、タルク、クレー、カーボンブラックなどが挙げられる。
Examples of the metal soap include stearates such as magnesium stearate, calcium stearate, barium stearate, and zinc stearate.
Examples of the filler include calcium carbonate, titanium oxide, barium sulfate, talc, clay, and carbon black.

上記難燃剤としては、デガブロムジフェニルエーテル、オクタブロムジフェニルエーテル等のハロゲン化ジフェニルエーテル、ハロゲン化ポリカーボネイトなどのハロゲン化合物;三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、ピロアンチモン酸ソーダ、水酸化アルミニウムなどの無機化合物;リン系化合物などが挙げられる。   Examples of the flame retardant include halogenated diphenyl ethers such as degabromo diphenyl ether and octabromo diphenyl ether, halogen compounds such as halogenated polycarbonates; antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium pyroantimonate, aluminum hydroxide, etc. Inorganic compounds; phosphorus compounds and the like.

また、ドリップ防止のため難燃助剤としてはテトラフルオロエチレン等の化合物を添加することができる。
上記抗菌剤、防カビ剤としては、イミダゾール系化合物、チアゾール系化合物、ニトリル系化合物、ハロアルキル系化合物、ピリジン系化合物などの有機化合物;
銀、銀系化合物、亜鉛系化合物、銅系化合物、チタン系化合物などの無機物質、無機化合物などが挙げられる。
これら化合物のなかでも、熱的に安定で性能の高い銀、銀系化合物が好ましい。
Moreover, a compound such as tetrafluoroethylene can be added as a flame retardant aid for preventing drip.
Examples of the antibacterial and antifungal agents include organic compounds such as imidazole compounds, thiazole compounds, nitrile compounds, haloalkyl compounds, and pyridine compounds;
Examples include inorganic substances such as silver, silver compounds, zinc compounds, copper compounds, and titanium compounds, and inorganic compounds.
Among these compounds, thermally stable silver and silver-based compounds are preferable.

上記銀系化合物としては、銀錯体、脂肪酸、リン酸等銀塩を挙げることができる。
銀および銀系化合物を抗菌剤、防カビ剤として用いる場合には、これら物質はゼオライト、シリカゲル、リン酸ジルコニウム、リン酸カルシュウム、ハイドロタルサイト、ヒドロキシアパタイト、ケイ酸カルシウムなどの多孔性構造体に担持させて使用する場合もある。
その他添加剤としては、着色剤、可塑剤、老化防止剤、着色剤、可塑剤、オイルなどが挙げられる。
As said silver type compound, silver salts, such as a silver complex, a fatty acid, and phosphoric acid, can be mentioned.
When silver and silver-based compounds are used as antibacterial and antifungal agents, these substances can be used in porous structures such as zeolite, silica gel, zirconium phosphate, calcium phosphate, hydrotalcite, hydroxyapatite, and calcium silicate. In some cases, it is used while being supported.
Examples of other additives include colorants, plasticizers, anti-aging agents, colorants, plasticizers, and oils.

〔原料組成比〕
本発明の原料として用いる、ポリプロピレンとポリエチレンワックスの組成比は、得られる延伸成形体の物性が損なわれない限り、特に制限はないが、ポリプロピレン100重量部に対して、通常0.01〜10重量部の範囲、好ましくは0.1〜8重量部の範囲、より好ましくは0.3〜5重量部の範囲である。
[Raw material composition ratio]
The composition ratio of polypropylene and polyethylene wax used as a raw material of the present invention is not particularly limited as long as the physical properties of the obtained stretched molded product are not impaired, but is usually 0.01 to 10 weights with respect to 100 parts by weight of polypropylene. Parts, preferably 0.1 to 8 parts by weight, more preferably 0.3 to 5 parts by weight.

上記範囲の組成比でポリプロピレンとポリエチレンワックスとを用いた場合には、延伸成形時の流動性の改良効果が大きく、しかも成形速度がより一層向上して生産性が向上する傾向にある。さらに、ポリプロピレンが本来有する、力学物性および光学物性も損なわない傾向にある。さらに、ポリエチレンワックスを添加せずに延伸成形した場合と比較して、より低い成形温度で成形可能となり、冷却時間が短縮される場合もある。さらに、成形温度を低くすることにより、樹脂の熱劣化を抑制し、樹脂強度の低下を抑制するだけでなく、樹脂の焼け焦げや黒点を抑制することができる場合もある。   When polypropylene and polyethylene wax are used at a composition ratio in the above range, the effect of improving the fluidity at the time of stretch molding is large, and the molding speed tends to be further improved to improve the productivity. Furthermore, the mechanical properties and optical properties inherent to polypropylene tend not to be impaired. Furthermore, compared with the case where it is stretch-molded without adding polyethylene wax, molding can be performed at a lower molding temperature, and the cooling time may be shortened. Furthermore, by lowering the molding temperature, it is possible not only to suppress the thermal deterioration of the resin and the resin strength, but also to suppress the scorching and black spots of the resin.

また上記範囲の中でも特に好ましくはポリプロピレン100重量部に対して、ポリエチレンワックスが0.5〜2重量部の範囲である。上記範囲では光学物性がより損なわれないため特に好ましい。   In the above range, polyethylene wax is particularly preferably in the range of 0.5 to 2 parts by weight with respect to 100 parts by weight of polypropylene. In the said range, since an optical physical property is not impaired more, it is especially preferable.

〔延伸成形〕
本発明のフィルムの製造方法では、上記原料を、延伸成形する。
延伸成形の方法については、特に制限はない。延伸成形の方法としては、一軸延伸法、二軸延伸法が挙げられる。二軸延伸法としては、テンター法、チューブ法が挙げられる。
[Extension molding]
In the method for producing a film of the present invention, the raw material is stretch-molded.
There is no particular limitation on the stretch molding method. Examples of the stretch molding method include a uniaxial stretching method and a biaxial stretching method. Examples of the biaxial stretching method include a tenter method and a tube method.

テンター法の場合には、通常、本発明のポリプロピレンとポリエチレンワックスとを含む混合物を押出機で溶融混練してTダイから押し出し、得られた溶融混練物をキャスティングドラム上で冷却固化した後、遅(前)駆動ロールと速(後)駆動ロールとの間に導入して、縦方向に所定の倍率に延伸し、ついで、縦方向に延伸されたフィルムをテンターに入れ、横両端を保持して加熱をしつつ横方向にさらに延伸することで、延伸フィルムを製造できる。その際、テンター内で、フィルムの分子配向を固定させることなどを目的として、さらに熱処理を行ってもよい。また、未延伸フィルムを得る手段は、通常Tダイ成形法によるが、その他公知の方法によって未延伸フィルムを得てもよい。   In the case of the tenter method, usually, a mixture containing the polypropylene and polyethylene wax of the present invention is melt-kneaded with an extruder and extruded from a T die, and the obtained melt-kneaded product is cooled and solidified on a casting drum, and then slowly. Introduced between the (front) drive roll and the speed (rear) drive roll, stretched to a predetermined magnification in the longitudinal direction, and then put the film stretched in the longitudinal direction into a tenter, holding both lateral ends A stretched film can be produced by further stretching in the transverse direction while heating. At that time, heat treatment may be performed for the purpose of fixing the molecular orientation of the film in the tenter. The means for obtaining an unstretched film is usually based on a T-die molding method, but an unstretched film may be obtained by other known methods.

チューブ法の場合には、通常、本発明のポリプロピレンとポリエチレンワックスとを含む混合物を押出機で溶融混練して、リングダイから溶融ポリマーをチューブ状に押し出し
、冷却槽で急冷した後に、このチューブ状のものを加熱して、内部に空気を導入して加圧、あるいは、チューブの外部を減圧して、横方向に延伸しつつ、縦方向に張力を加えて縦方向にも延伸することで、延伸フィルムを製造できる。
In the case of the tube method, usually, a mixture containing the polypropylene and polyethylene wax of the present invention is melt-kneaded with an extruder, the molten polymer is extruded from a ring die into a tube shape, rapidly cooled in a cooling bath, and then the tube shape. By heating the thing, introducing air into the inside and pressurizing, or reducing the outside of the tube, stretching in the transverse direction, applying tension in the longitudinal direction and stretching in the longitudinal direction, A stretched film can be produced.

一軸法の場合には、通常、Tダイ成形、あるいはインフレーション成形して得られた未延伸フィルムを、冷却した後に、遅(前)駆動ロールと速(後)駆動ロールとの間に導入するなどして、縦方向に所定の倍率に延伸することで、延伸フィルムを製造できる。さらに、フィルムの分子配向を固定させることなどを目的として、熱処理をさらに行ってもよい。   In the case of the uniaxial method, an unstretched film obtained by T-die molding or inflation molding is usually cooled and then introduced between a slow (front) driving roll and a fast (rear) driving roll. And a stretched film can be manufactured by extending | stretching to a predetermined magnification in the vertical direction. Furthermore, heat treatment may be further performed for the purpose of fixing the molecular orientation of the film.

Tダイを設置した押出機を用いてテンター法で製造する場合には、通常、押出機の入り口側の温度を130〜200℃の温度範囲、押出機の出口側の温度を200〜280℃の温度範囲、ダイスの温度を200〜260℃の温度範囲で設定し、樹脂温度が200〜260℃の範囲となるようにTダイから押出し所望の縦横比となるように延伸することによって得られる。   When producing by the tenter method using an extruder equipped with a T die, the temperature on the inlet side of the extruder is usually in the temperature range of 130 to 200 ° C, and the temperature on the outlet side of the extruder is 200 to 280 ° C. It is obtained by setting the temperature range and the die temperature in a temperature range of 200 to 260 ° C., extruding from a T-die so that the resin temperature is in the range of 200 to 260 ° C., and stretching to a desired aspect ratio.

チューブ法で製造する場合には、通常、押出機の入り口側の温度を120〜180℃の温度範囲、押出機の出口側の温度を140〜220℃の温度範囲、ダイスの温度を140〜210℃の温度範囲で設定し、樹脂温度が140〜210℃の範囲となるようにリングダイから押出し所望の縦横比となるように延伸することによって得られる。   When manufacturing by a tube method, the temperature on the inlet side of the extruder is usually in a temperature range of 120 to 180 ° C, the temperature on the outlet side of the extruder is in a temperature range of 140 to 220 ° C, and the temperature of the die is 140 to 210 ° C. It is set by a temperature range of ° C., and is obtained by extruding from a ring die and stretching to a desired aspect ratio so that the resin temperature is in a range of 140 to 210 ° C.

Tダイ成形により得た未延伸フィルムを一軸延伸する場合には、通常、押出機の入り口側の温度を130〜200℃の温度範囲、押出機の出口側の温度を200〜280℃の温度範囲、ダイスの温度を200〜260℃の温度範囲で設定し、樹脂温度が200〜260℃の範囲となるようにTダイから押出し所望の縦倍率となるように延伸することによって得られる。   When uniaxially stretching an unstretched film obtained by T-die molding, the temperature on the inlet side of the extruder is usually in the temperature range of 130 to 200 ° C, and the temperature on the outlet side of the extruder is in the temperature range of 200 to 280 ° C. The temperature of the die is set in a temperature range of 200 to 260 ° C., and is extruded from a T die so that the resin temperature is in a range of 200 to 260 ° C. and stretched to have a desired longitudinal magnification.

インフレーション成形により得た未延伸フィルムを一軸延伸する場合には、通常、押出機の入り口側の温度を120〜180℃の温度範囲、押出機の出口側の温度を140〜220℃の温度範囲、ダイスの温度を140〜210℃の温度範囲で設定し、樹脂温度が140〜210℃の範囲となるようにリングダイから押出し所望の縦倍率となるように延伸することによって得られる。   When uniaxially stretching an unstretched film obtained by inflation molding, the temperature on the inlet side of the extruder is usually in a temperature range of 120 to 180 ° C, the temperature on the outlet side of the extruder is in a temperature range of 140 to 220 ° C, It is obtained by setting the die temperature in a temperature range of 140 to 210 ° C., extruding from a ring die so that the resin temperature is in a range of 140 to 210 ° C., and stretching to a desired longitudinal magnification.

本発明では、上述した延伸成形により、フィルムが得られる。フィルムは、単層フィルムであっても、多層フィルムであってもよい。単層フィルムは、上述した延伸成形により得られる。多層フィルムは、例えば、フィルムの各層を形成する樹脂組成物を別々の押出機で溶融混練し、この溶融混練物を、共押出用のダイに圧入し、さらに、このダイのスリットからこれら溶融混練物を同時に押し出して、前述した、一軸延伸法、二軸延伸法で延伸することにより製造できる。   In the present invention, a film is obtained by the stretch molding described above. The film may be a single layer film or a multilayer film. A single layer film is obtained by the above-mentioned stretch molding. The multilayer film is obtained, for example, by melt-kneading the resin composition forming each layer of the film with separate extruders, pressing the melt-kneaded product into a die for co-extrusion, and further melting and kneading these through the slits of the die. It can manufacture by extruding a thing simultaneously and extending | stretching by the uniaxial stretching method mentioned above and the biaxial stretching method.

なお、本発明により得られる多層フィルムでは、少なくとも1層は、上述したポリプロピレンとポリエチレンワックスとを原料とする樹脂組成物から形成されているが、他の層については、他の熱可塑性樹脂組成物によって形成されていてもよい。上記、他の熱可塑性樹脂組成物の溶融混練、押出条件としては、通常、その熱可塑性樹脂で用いる押出成形条件を適用できる。   In the multilayer film obtained by the present invention, at least one layer is formed from a resin composition using the above-described polypropylene and polyethylene wax as raw materials, but the other layers are other thermoplastic resin compositions. May be formed. As the above-mentioned melt-kneading and extrusion conditions for the other thermoplastic resin compositions, the extrusion molding conditions usually used for the thermoplastic resin can be applied.

〔実施例〕
以下、本発明を実施例により具体的に説明するが、本発明は、これら実施例により何ら限定されるものではない。
以下の実施例においてポリエチレンワックスの物性は次のようにして測定した。
〔Example〕
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
In the following examples, the physical properties of polyethylene wax were measured as follows.

(数平均分子量(Mn))
数平均分子量(Mn)は、GPC測定から求めたものである。測定は以下の条件で行った。また、数平均分子量(Mn)は、市販の単分散標準ポリスチレンを用いて検量線を作成し下記の換算法に基づいて分子量を求めた。
装置 : ゲル浸透クロマトグラフAlliance GPC2000型(Waters社製)
溶剤 : o−ジクロロベンゼン
カラム: TSKgelカラム(東ソー社製)×4
流速 : 1.0 ml/分
試料 : 0.15mg/mL o−ジクロロベンゼン溶液
温度 : 140℃
分子量換算 : PE換算/汎用較正法
(Number average molecular weight (Mn))
The number average molecular weight (Mn) is obtained from GPC measurement. The measurement was performed under the following conditions. Moreover, the number average molecular weight (Mn) calculated | required the molecular weight based on the following conversion method, creating a calibration curve using the commercially available monodisperse standard polystyrene.
Apparatus: Gel permeation chromatograph Alliance GPC2000 (manufactured by Waters)
Solvent: o-dichlorobenzene column: TSKgel column (manufactured by Tosoh Corporation) x 4
Flow rate: 1.0 ml / min Sample: 0.15 mg / mL o-dichlorobenzene solution temperature: 140 ° C.
Molecular weight conversion: PE conversion / General calibration method

なお、汎用較正の計算には、以下に示すMark−Houwink粘度式の係数を用いた。
ポリスチレン(PS)の係数 : KPS=1.38×10-4, aPS=0.70
ポリエチレン(PE)の係数 : KPE=5.06×10-4, aPE=0.70
(A値、B値)
上述したGPCの測定結果より、分子量1,000以下の成分の割合を重量%で求め、A値とした。また、GPCの測定結果より、分子量20,000以上の成分の割合を重量
%で求め、B値とした。
In addition, the coefficient of the Mark-Houwink viscosity formula shown below was used for calculation of general-purpose calibration.
Coefficient of polystyrene (PS): KPS = 1.38 × 10 −4 , aPS = 0.70
Coefficient of polyethylene (PE): KPE = 0.06 × 10 −4 , aPE = 0.70
(A value, B value)
From the GPC measurement results described above, the proportion of components having a molecular weight of 1,000 or less was determined by weight%, and was designated as A value. Further, from the measurement result of GPC, the ratio of the component having a molecular weight of 20,000 or more was determined by weight%, and the B value was obtained.

(溶融粘度)
ブルックフィールド粘度計を用いて140℃で測定した。
(密度)
JIS K7112の密度勾配法に従って測定した。
(Melt viscosity)
Measurements were made at 140 ° C. using a Brookfield viscometer.
(density)
It was measured according to the density gradient method of JIS K7112.

(融点)
示差走査型熱量計(DSC)〔DSC−20(セイコー電子工業社製)〕を用いて測定した。まず測定試料を、一旦200℃まで昇温して、5分間保持した後、直ちに室温まで冷却した。この試料約10mgを−20℃から200℃の温度範囲で、昇温速度10℃/分の条件でDSC測定した。測定結果から得られたカーブの吸熱ピークの値を融点とした。
(Melting point)
It measured using the differential scanning calorimeter (DSC) [DSC-20 (made by Seiko Denshi Kogyo Co., Ltd.)]. First, the measurement sample was once heated to 200 ° C. and held for 5 minutes, and then immediately cooled to room temperature. About 10 mg of this sample was subjected to DSC measurement in the temperature range from −20 ° C. to 200 ° C. under the temperature rising rate of 10 ° C./min. The endothermic peak value of the curve obtained from the measurement results was taken as the melting point.

(結晶化温度)
結晶化温度(Tc、℃)は、ASTM D 3417‐75に準拠して、降温速度2℃
/minの条件で測定した。
(Crystallization temperature)
The crystallization temperature (Tc, ° C.) is 2 ° C. in accordance with ASTM D 3417-75.
/ Min.

(ポリエチレンワックス(1)の合成)
メタロセン触媒を用いて、次のようにしてポリエチレンワックス(1)を合成した。
充分に窒素置換し、25℃に保持した内容積2Lのステンレス製オートクレーブにヘキサン770mlおよびプロピレン115gを装入した。次いで、系内の温度を150℃に昇温した後、トリイソブチルアルミニウムを0.3ミリモル、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを0.04ミリモル、ビス(シクロペンタジエニル)ジルコニウムジクロライドを0.0005ミリモル、エチレンで圧入することにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3.0MPa(ゲージ圧)に保ち、155℃で30分間重合を行った。
(Synthesis of polyethylene wax (1))
Polyethylene wax (1) was synthesized using a metallocene catalyst as follows.
770 ml of hexane and 115 g of propylene were charged into a 2 L stainless steel autoclave sufficiently purged with nitrogen and kept at 25 ° C. Subsequently, after raising the temperature in the system to 150 ° C., 0.3 mmol of triisobutylaluminum, 0.04 mmol of dimethylanilinium tetrakis (pentafluorophenyl) borate, and bis (cyclopentadienyl) zirconium dichloride were added. Polymerization was initiated by press-fitting with 0.0005 mmol ethylene. Thereafter, by continuously supplying only ethylene, the total pressure was kept at 3.0 MPa (gauge pressure), and polymerization was carried out at 155 ° C. for 30 minutes.

少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンを
パージした。得られたポリマー溶液を、100℃減圧下で一晩乾燥してポリエチレンワックス(1)46gを得た。得られたポリエチレンワックス(1)は、数平均分子量(Mn)が800、重量平均分子量(Mw)が1,500、溶融粘度が40mPa・s、密度が897kg/m3であり、融点が78.8℃であり、ポリエチレンワックスに使用された全
単量体に対してエチレンの占める割合(以下、エチレン含量とも記す。)は90mol%であった。また、A値が31.7重量%、B値が0.01重量%であった。結果を表1に示す。
After stopping the polymerization by adding a small amount of ethanol into the system, unreacted ethylene was purged. The obtained polymer solution was dried overnight at 100 ° C. under reduced pressure to obtain 46 g of polyethylene wax (1). The obtained polyethylene wax (1) has a number average molecular weight (Mn) of 800, a weight average molecular weight (Mw) of 1,500, a melt viscosity of 40 mPa · s, a density of 897 kg / m 3 , and a melting point of 78. The ratio of ethylene to the total amount of monomers used in polyethylene wax (hereinafter, also referred to as ethylene content) was 90 mol%. Moreover, A value was 31.7 weight% and B value was 0.01 weight%. The results are shown in Table 1.

(ポリエチレンワックス(2)の合成)
メタロセン触媒を用いて、次のようにしてポリエチレンワックス(2)を合成した。
充分に窒素置換し、25℃に保持した内容積2Lのステンレス製オートクレーブにヘキサン930mlおよびプロピレン35gを装入した。次いで、系内の温度を150℃に昇温した後、トリイソブチルアルミニウムを0.3ミリモル、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを0.04ミリモル、ビス(シクロペンタジエニル)ジルコニウムジクロライドを0.0005ミリモル、エチレンで圧入することにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を3.0MPa(ゲージ圧)に保ち、155℃で30分間重合を行った。
(Synthesis of polyethylene wax (2))
Polyethylene wax (2) was synthesized as follows using a metallocene catalyst.
A stainless steel autoclave with an internal volume of 2 L, sufficiently purged with nitrogen and kept at 25 ° C., was charged with 930 ml of hexane and 35 g of propylene. Subsequently, after raising the temperature in the system to 150 ° C., 0.3 mmol of triisobutylaluminum, 0.04 mmol of dimethylanilinium tetrakis (pentafluorophenyl) borate, and bis (cyclopentadienyl) zirconium dichloride were added. Polymerization was initiated by press-fitting with 0.0005 mmol ethylene. Thereafter, by continuously supplying only ethylene, the total pressure was kept at 3.0 MPa (gauge pressure), and polymerization was carried out at 155 ° C. for 30 minutes.

少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンをパージした。得られたポリマー溶液を、100℃減圧下で一晩乾燥してポリエチレンワックス(2)40gを得た。得られたポリエチレンワックス(2)は、数平均分子量(Mn)が1,300、重量平均分子量(Mw)が3,300、溶融粘度が90mPa・s、密度が948kg/m3であり、融点が115.4℃でありエチレン含量は96mol%であ
った。また、A値が19.8重量%、B値が0.3重量%であった。結果を表1に示す。
本発明で使用するワックスの物性を表1にまとめた。
After stopping the polymerization by adding a small amount of ethanol into the system, unreacted ethylene was purged. The obtained polymer solution was dried overnight at 100 ° C. under reduced pressure to obtain 40 g of polyethylene wax (2). The obtained polyethylene wax (2) has a number average molecular weight (Mn) of 1,300, a weight average molecular weight (Mw) of 3,300, a melt viscosity of 90 mPa · s, a density of 948 kg / m 3 and a melting point of The ethylene content was 115.4 ° C. and 96 mol%. Moreover, A value was 19.8 weight% and B value was 0.3 weight%. The results are shown in Table 1.
The physical properties of the wax used in the present invention are summarized in Table 1.

Figure 2007268776
Figure 2007268776

以下の実施例においてフィルムの物性は次のようにして測定した。
(透明性)
JIS K7105に従って、同じ膜厚に成形したフィルムのヘイズを測定した。
In the following examples, film physical properties were measured as follows.
(transparency)
According to JIS K7105, the haze of the film formed into the same film thickness was measured.

(生産性)
生産性は最大延伸応力で評価した。
[最大延伸応力]
フィルム二軸延伸機(BIX−703型、(株)岩本製作所製)を使用してシートを同時二軸延伸する際にかかった最大応力で評価した。
(productivity)
Productivity was evaluated by maximum stretching stress.
[Maximum stretching stress]
The maximum stress applied when the sheet was simultaneously biaxially stretched using a film biaxial stretching machine (BIX-703, manufactured by Iwamoto Seisakusho) was evaluated.

(力学物性)
力学特性は、耐衝撃性で評価した。
[耐衝撃性]
東洋精機製作所製フィルムインパクトテスターに、先端径1.0インチ、容量3.0Jの半球状ハンマーを装着し、23℃の温度条件で試験機に装着したフィルム試料面を、上記半球状ハンマーで直角に打抜き、破壊に要するエネルギー(kJ/m)を求めた。
(Mechanical properties)
The mechanical properties were evaluated by impact resistance.
[Shock resistance]
A film impact tester manufactured by Toyo Seiki Seisakusho is equipped with a hemispherical hammer with a tip diameter of 1.0 inch and a capacity of 3.0 J, and the film sample surface mounted on the testing machine at a temperature condition of 23 ° C. is perpendicular to the above hemispherical hammer. The energy required for breaking (kJ / m) was determined.

ポリプロピレン樹脂(プライムポリプロ F113G;プライムポリマー社製)(ポリ
プロピレンホモポリマー)MI=3.0g/10分(JIS K7210)100質量部、メタロセン系ポリエチレンワックス(エクセレックス30200BT;三井化学(株)社製、密度=913(kg/m3)、Mn=2,000、A値=9.3(重量%)、B値=2.2(重量%)、溶融粘度=300(mPa・s)、エチレン含量=95(mol%))3質量部を混合し、65mmφ単軸押出機、リップ幅600mmのTダイにて500
μm厚のシートを作製した。バッチ式同時二軸延伸装置を使用して、予備加熱140℃×5min、延伸速度300mm/sec.、延伸倍率5倍(MD方向、TD方向とも)、アニール条件140℃×1minにて、20μm厚の二軸延伸フィルムを作製した。二軸延伸時の最大延伸応力は3.9MPaであり、フィルムの厚みむらもなく、良好な成形加工性を示した。また、二軸延伸フィルムの耐衝撃性は、72.2kJ/mであり、ヘイズは0.74%であった。また、作製したシートを120℃×24時間、エアーオーブン中で養生したもののヘイズは0.98%であった。結果を表2に示す。
Polypropylene resin (Prime Polypro F113G; manufactured by Prime Polymer) (Polypropylene homopolymer) MI = 3.0 g / 10 min (JIS K7210) 100 parts by mass, metallocene polyethylene wax (Excellex 30200BT; manufactured by Mitsui Chemicals, Inc.) Density = 913 (kg / m3), Mn = 2,000, A value = 9.3 (% by weight), B value = 2.2 (% by weight), melt viscosity = 300 (mPa · s), ethylene content = 95 (mol%)) 3 parts by mass are mixed with a 65 mmφ single-screw extruder and a T die having a lip width of 600 mm.
A sheet having a thickness of μm was produced. Using a batch type simultaneous biaxial stretching apparatus, preheating 140 ° C. × 5 min, stretching speed 300 mm / sec. A biaxially stretched film having a thickness of 20 μm was produced under a stretching ratio of 5 times (both in the MD direction and TD direction) under annealing conditions of 140 ° C. × 1 min. The maximum stretching stress during biaxial stretching was 3.9 MPa, and there was no unevenness in film thickness, indicating good moldability. Moreover, the impact resistance of the biaxially stretched film was 72.2 kJ / m, and the haze was 0.74%. Moreover, the haze of the sheet prepared in an air oven at 120 ° C. for 24 hours was 0.98%. The results are shown in Table 2.

実施例1においてポリエチレンワックスをポリエチレンワックス(エクセレックス48070BT;三井化学(株)社製、密度=902(kg/m3)、Mn=3,400、A
値=4.7(重量%)、B値=8.7(重量%)、溶融粘度=1,350(mPa・s)、エチレン含量=92(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
In Example 1, the polyethylene wax was changed to polyethylene wax (Excellex 48070BT; manufactured by Mitsui Chemicals, Inc., density = 902 (kg / m 3 ), Mn = 3,400, A
Value = 4.7 (wt%), B value = 8.7 (wt%), melt viscosity = 1,350 (mPa · s), ethylene content = 92 (mol%)) Then, stretch molding was performed. The results are shown in Table 2.

実施例1においてポリエチレンワックスをポリエチレンワックス(1)(密度=897(kg/m3)、Mn=800、A値=23.5(重量%)、B値=0.01(重量%)
、溶融粘度=40(mPa・s)、エチレン含量=90(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
In Example 1, the polyethylene wax was changed to polyethylene wax (1) (density = 897 (kg / m 3 ), Mn = 800, A value = 23.5 (wt%), B value = 0.01 (wt%).
Stretch molding was performed in the same manner except that the melt viscosity was changed to 40 (mPa · s) and the ethylene content was 90 (mol%). The results are shown in Table 2.

実施例1においてポリエチレンワックスをポリエチレンワックス(2)(密度=948(kg/m3)、Mn=1,300、A値=19.8(重量%)、B値=0.3(重量%
)、溶融粘度=90(mPa・s)、エチレン含量=96(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
In Example 1, polyethylene wax was changed to polyethylene wax (2) (density = 948 (kg / m 3 ), Mn = 1,300, A value = 19.8 (wt%), B value = 0.3 (wt%)
), Melt viscosity = 90 (mPa · s), ethylene content = 96 (mol%)). The results are shown in Table 2.

実施例1においてポリエチレンワックス(エクセレックス30200BT;三井化学(株)社製)の添加量を1質量部に変更した以外は実施例1と同様の方法で延伸成形を行った。結果を表2に示す。   Stretch molding was performed in the same manner as in Example 1 except that the amount of polyethylene wax (Excellex 30200BT; manufactured by Mitsui Chemicals, Inc.) was changed to 1 part by mass in Example 1. The results are shown in Table 2.

実施例1においてポリエチレンワックス(エクセレックス30200BT;三井化学(株)社製)の添加量を5質量部に変更した以外は実施例1と同様の方法で延伸成形を行った。結果を表2に示す。   Stretch molding was performed in the same manner as in Example 1 except that the amount of polyethylene wax (Excellex 30200BT; manufactured by Mitsui Chemicals, Inc.) was changed to 5 parts by mass in Example 1. The results are shown in Table 2.

〔比較例1〕
ポリプロピレン樹脂(プライムポリプロ F113G;プライムポリマー社製)(ポリ
プロピレンホモポリマー)MI=3.0g/10分(JIS K7210)を65mmφ単軸押出機を、リップ幅600mmのTダイにて500μm厚のシートを作製した。バッ
チ式同時二軸延伸装置を使用して、予備加熱140℃×5min、延伸速度300mm/sec.、延伸倍率5倍(MD方向、TD方向とも)、アニール条件140℃×1minにて、20μm厚の二軸延伸フィルムを作製した。二軸延伸時の最大延伸応力は4.3MPaであった。また、二軸延伸フィルムの耐衝撃性は、66.9kJ/mであり、ヘイズは0.70%であった。また、作製したシートを120℃×24時間、エアーオーブン中で
養生したもののヘイズは0.84%であった。結果を表2に示す。
[Comparative Example 1]
Polypropylene resin (Prime Polypro F113G; manufactured by Prime Polymer Co., Ltd.) (polypropylene homopolymer) MI = 3.0 g / 10 min (JIS K7210) with a 65 mmφ single screw extruder and a 500 μm thick sheet using a T die with a lip width of 600 mm Produced. Using a batch type simultaneous biaxial stretching apparatus, preheating 140 ° C. × 5 min, stretching speed 300 mm / sec. A biaxially stretched film having a thickness of 20 μm was produced under a stretching ratio of 5 times (both in the MD direction and TD direction) under annealing conditions of 140 ° C. × 1 min. The maximum stretching stress during biaxial stretching was 4.3 MPa. Moreover, the impact resistance of the biaxially stretched film was 66.9 kJ / m, and the haze was 0.70%. Moreover, the haze of the sheet prepared in an air oven at 120 ° C. for 24 hours was 0.84%. The results are shown in Table 2.

〔比較例2〕
実施例1においてポリエチレンワックスをポリエチレンワックス(エクセレックス10500;三井化学(株)社製、密度=960(kg/m3)、Mn=700、A値=47
.8(重量%)、B値=0(重量%)、溶融粘度=18(mPa・s)、エチレン含量=100(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
[Comparative Example 2]
In Example 1, polyethylene wax was changed to polyethylene wax (Excellex 10500; manufactured by Mitsui Chemicals, Inc., density = 960 (kg / m 3 ), Mn = 700, A value = 47.
. Extensive molding was performed in the same manner except that 8 (wt%), B value = 0 (wt%), melt viscosity = 18 (mPa · s), ethylene content = 100 (mol%)). The results are shown in Table 2.

〔比較例3〕
実施例1においてポリエチレンワックスをポリエチレンワックス(エクセレックス40800T;三井化学(株)社製、密度=980(kg/m3)、Mn=2,400、A値
=7.3、B値=4.2、溶融粘度=600(mPa・s)、エチレン含量=100(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
[Comparative Example 3]
In Example 1, the polyethylene wax was changed to polyethylene wax (Excellex 40800T; manufactured by Mitsui Chemicals, Inc., density = 980 (kg / m 3 ), Mn = 2,400, A value = 7.3, B value = 4. 2. Stretch molding was performed in the same manner except that the melt viscosity was changed to 600 (mPa · s) and the ethylene content was set to 100 (mol%). The results are shown in Table 2.

〔比較例4〕
実施例1においてポリエチレンワックスをポリエチレンワックス(ハイワックス420P;三井化学社製、密度=930(kg/m3)、Mn=2,000、A値=8.3(重
量%)、B値=6.2(重量%)、溶融粘度=700(mPa・s)、エチレン含量=97(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
[Comparative Example 4]
In Example 1, the polyethylene wax was changed to polyethylene wax (High Wax 420P; manufactured by Mitsui Chemicals, density = 930 (kg / m 3 ), Mn = 2,000, A value = 8.3 (% by weight), B value = 6. .2 (% by weight), melt viscosity = 700 (mPa · s), ethylene content = 97 (mol%)). The results are shown in Table 2.

〔比較例5〕
実施例1においてポリエチレンワックスをポリエチレンワックス(A−C6;ハネウェル社製、密度=913(kg/m3)、Mn=1,800、A値=6.5(重量%)、B
値=3.3(重量%)、溶融粘度=420(mPa・s))に変更した以外は同様の方法で延伸成形を行った。結果を表2に示す。
[Comparative Example 5]
In Example 1, the polyethylene wax was changed to polyethylene wax (A-C6; manufactured by Honeywell, density = 913 (kg / m 3 ), Mn = 1,800, A value = 6.5 (% by weight), B
Stretch molding was performed in the same manner except that the value was changed to 3.3 (wt%) and melt viscosity = 420 (mPa · s). The results are shown in Table 2.

Figure 2007268776
Figure 2007268776

ポリプロピレン樹脂(プライムポリプロF219DA;プライムポリマー社製)(ポリプロピレンランダムコポリマー)MI=8.0g/10分(JIS K7210)100質量部、ポリエチレンワックス(エクセレックス30200BT;三井化学(株)社製、密度=913(kg/m3)、Mn=2,000、A値=9.3(重量%)、B値=2.
2(重量%)、溶融粘度=300(mPa・s)、エチレン含量=95(mol%))2質量部を混合した。65mmφ単軸押出機を使用してリップ幅600mmのTダイにて5
00μm厚のシートを作製した。バッチ式同時二軸延伸装置を使用して、予備加熱140℃×5min、延伸速度300mm/sec.、延伸倍率5倍(MD方向、TD方向とも)、アニール条件140℃×1minにて、20μm厚の二軸延伸フィルムを作製した。二軸延伸時の最大延伸応力は2.7MPaであり、フィルムの厚みむらもなく、良好な成形加工性を示した。また、二軸延伸フィルムの耐衝撃性は、91.7kJ/mであり、ヘイズは0.67%であった。また、作製したシートを120℃×24時間、エアーオーブン中で養生したもののヘイズは0.88%であった。結果を表3に示す。
Polypropylene resin (Prime Polypro F219DA; manufactured by Prime Polymer) (polypropylene random copolymer) MI = 8.0 g / 10 min (JIS K7210) 100 parts by mass, polyethylene wax (Excellex 30200BT; manufactured by Mitsui Chemicals, Inc., density = 913 (kg / m 3 ), Mn = 2,000, A value = 9.3 (% by weight), B value = 2.
2 parts by weight (2% by weight), melt viscosity = 300 (mPa · s), ethylene content = 95 (mol%)) were mixed. Using a 65mmφ single screw extruder, 5 with a T die with a lip width of 600mm
A sheet having a thickness of 00 μm was prepared. Using a batch type simultaneous biaxial stretching apparatus, preheating 140 ° C. × 5 min, stretching speed 300 mm / sec. A biaxially stretched film having a thickness of 20 μm was produced under a stretching ratio of 5 times (both in the MD direction and TD direction) under annealing conditions of 140 ° C. × 1 min. The maximum stretching stress during biaxial stretching was 2.7 MPa, and there was no unevenness in the thickness of the film, indicating good moldability. Moreover, the impact resistance of the biaxially stretched film was 91.7 kJ / m, and the haze was 0.67%. Moreover, the haze of the produced sheet was cured in an air oven at 120 ° C. for 24 hours, and the haze was 0.88%. The results are shown in Table 3.

実施例7においてポリエチレンワックスをポリエチレンワックス(エクセレックス48070BT;三井化学(株)社製、密度=902(kg/m3)、Mn=3,400、A
値=4.7(重量%)、B値=8.7(重量%)、溶融粘度=1,350(mPa・s)、エチレン含量=92(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
In Example 7, the polyethylene wax was changed to polyethylene wax (Excellex 48070BT; manufactured by Mitsui Chemicals, Inc., density = 902 (kg / m 3 ), Mn = 3,400, A
Value = 4.7 (wt%), B value = 8.7 (wt%), melt viscosity = 1,350 (mPa · s), ethylene content = 92 (mol%)) Then, stretch molding was performed. The results are shown in Table 3.

実施例7においてポリエチレンワックスをポリエチレンワックス(1)(密度=897(kg/m3)、Mn=800、A値=23.5(重量%)、B値=0.01(重量%)
、溶融粘度=40(mPa・s)、エチレン含量=90(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
In Example 7, the polyethylene wax was changed to polyethylene wax (1) (density = 897 (kg / m 3 ), Mn = 800, A value = 23.5 (wt%), B value = 0.01 (wt%).
Stretch molding was performed in the same manner except that the melt viscosity was changed to 40 (mPa · s) and the ethylene content was 90 (mol%). The results are shown in Table 3.

実施例7においてポリエチレンワックスをポリエチレンワックス(2)(密度=948(kg/m3)、Mn=1,300、A値=19.8(重量%)、B値=0.3(重量%
)、溶融粘度=90(mPa・s)、エチレン含量=96(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
In Example 7, the polyethylene wax was changed to polyethylene wax (2) (density = 948 (kg / m 3 ), Mn = 1,300, A value = 19.8 (wt%), B value = 0.3 (wt%).
), Melt viscosity = 90 (mPa · s), ethylene content = 96 (mol%)). The results are shown in Table 3.

実施例7においてポリエチレンワックス(エクセレックス30200BT;三井化学(株)社製)の添加量を1質量部に変更した以外は実施例1と同様の方法で延伸成形を行った。結果を表3に示す。   Extensive molding was performed in the same manner as in Example 1 except that the amount of polyethylene wax (Excellex 30200BT; manufactured by Mitsui Chemicals, Inc.) was changed to 1 part by mass in Example 7. The results are shown in Table 3.

実施例7においてポリエチレンワックス(エクセレックス30200BT;三井化学(株)社製)の添加量を5質量部に変更した以外は実施例1と同様の方法で延伸成形を行った。結果を表3に示す。   Stretch molding was performed in the same manner as in Example 1 except that the amount of polyethylene wax (Excellex 30200BT; manufactured by Mitsui Chemicals, Inc.) was changed to 5 parts by mass in Example 7. The results are shown in Table 3.

〔比較例6〕
ポリプロピレン樹脂(プライムポリプロ F219DA;プライムポリマー社製)(ポ
リプロピレンランダムコポリマー)MI=8.0g/10分(JIS K7210)を65mmφ単軸押出機、リップ幅600mmのTダイにて500μm厚のシートを作製した
。バッチ式同時二軸延伸装置を使用して、予備加熱140℃×5min、延伸速度300mm/sec.、延伸倍率5倍(MD方向、TD方向とも)、アニール条件140℃×1minにて、20μm厚の二軸延伸フィルムを作製した。二軸延伸時の最大延伸応力は2
.9MPaであった。また、二軸延伸フィルムの耐衝撃性は、85.0kJ/mであり、ヘイズは0.63%であった。また、作製したシートを120℃×24時間、エアーオーブン中で養生したもののヘイズは0.76%であった。結果を表3に示す。
[Comparative Example 6]
Polypropylene resin (Prime Polypro F219DA; manufactured by Prime Polymer Co., Ltd.) (polypropylene random copolymer) MI = 8.0 g / 10 min (JIS K7210) is produced with a 65 mmφ single screw extruder and a T die with a lip width of 600 mm to produce a 500 μm thick sheet. did. Using a batch type simultaneous biaxial stretching apparatus, preheating 140 ° C. × 5 min, stretching speed 300 mm / sec. A biaxially stretched film having a thickness of 20 μm was produced under a stretching ratio of 5 times (both in the MD direction and TD direction) under annealing conditions of 140 ° C. × 1 min. Maximum stretching stress during biaxial stretching is 2
. It was 9 MPa. Moreover, the impact resistance of the biaxially stretched film was 85.0 kJ / m, and the haze was 0.63%. Moreover, the haze of the sheet prepared in an air oven at 120 ° C. for 24 hours was 0.76%. The results are shown in Table 3.

〔比較例7〕
実施例7においてポリエチレンワックスをポリエチレンワックス(エクセレックス10500;三井化学(株)社製、密度=960(kg/m3)、Mn=700、A値=47
.8(重量%)、B値=0(重量%)、溶融粘度=18(mPa・s)、エチレン含量=100(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
[Comparative Example 7]
In Example 7, the polyethylene wax was changed to polyethylene wax (Excellex 10500; manufactured by Mitsui Chemicals, Inc., density = 960 (kg / m 3 ), Mn = 700, A value = 47.
. Extensive molding was performed in the same manner except that 8 (wt%), B value = 0 (wt%), melt viscosity = 18 (mPa · s), ethylene content = 100 (mol%)). The results are shown in Table 3.

〔比較例8〕
実施例7においてポリエチレンワックスをポリエチレンワックス(エクセレックス40800T;三井化学(株)社製、密度=980(kg/m3)、Mn=2,400、A値
=7.3、B値=4.2、溶融粘度=600(mPa・s)、エチレン含量=100(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
[Comparative Example 8]
In Example 7, the polyethylene wax was changed to polyethylene wax (Excellex 40800T; manufactured by Mitsui Chemicals, Inc., density = 980 (kg / m 3 ), Mn = 2,400, A value = 7.3, B value = 4. 2. Stretch molding was performed in the same manner except that the melt viscosity was changed to 600 (mPa · s) and the ethylene content was set to 100 (mol%). The results are shown in Table 3.

〔比較例9〕
実施例7においてポリエチレンワックスをポリエチレンワックス(ハイワックス420P;三井化学社製、密度=930(kg/m3)、Mn=2,000、A値=8.3(重
量%)、B値=6.2(重量%)、溶融粘度=700(mPa・s)、エチレン含量=97(mol%))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
[Comparative Example 9]
In Example 7, the polyethylene wax was changed to polyethylene wax (High Wax 420P; manufactured by Mitsui Chemicals, density = 930 (kg / m 3 ), Mn = 2,000, A value = 8.3 (wt%), B value = 6. .2 (% by weight), melt viscosity = 700 (mPa · s), ethylene content = 97 (mol%)). The results are shown in Table 3.

〔比較例10〕
実施例7においてポリエチレンワックスをポリエチレンワックス(A−C6;ハネウェル社製、密度=913(kg/m3)、Mn=1,800、A値=6.5(重量%)、B
値=3.3(重量%)、溶融粘度=420(mPa・s))に変更した以外は同様の方法で延伸成形を行った。結果を表3に示す。
[Comparative Example 10]
In Example 7, the polyethylene wax was changed to polyethylene wax (A-C6; manufactured by Honeywell, density = 913 (kg / m 3 ), Mn = 1,800, A value = 6.5 (% by weight), B
Stretch molding was performed in the same manner except that the value was changed to 3.3 (wt%) and melt viscosity = 420 (mPa · s). The results are shown in Table 3.

Figure 2007268776
Figure 2007268776

本発明によれば、熱可塑性樹脂に特定のポリオレフィンワックスを添加することにより、押出機のスクリューに掛かる負荷を低減させることができるので、押出成形の生産性を向上させることができる。   According to the present invention, by adding a specific polyolefin wax to the thermoplastic resin, it is possible to reduce the load applied to the screw of the extruder, so that the productivity of extrusion molding can be improved.

Claims (2)

JIS K7210に従って230℃、試験荷重21.18Nの条件で測定したMIが0.01〜100g/10分の範囲であるポリプロピレンと、JIS K7112の密度勾配管法に従って測定した密度が890〜950(kg/m3)の範囲にあり、ゲルパー
ミエーションクロマトグラフィー(GPC)で測定したポリエチレン換算の数平均分子量(Mn)が700〜4,000の範囲にあり、かつ下記式(I)および式(II)で表される関係を満たすポリエチレンワックスとを含む混合物を延伸成形することによりフィルムを製造する方法。
B≦0.0075×K ・・・(I)
(上記式(I)中、Bは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が20,000以上となる成分の含有割合(%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
A≦230×K(-0.537) ・・・(II)
(上記式(II)中、Aは、ゲルパーミエーションクロマトグラフィーで測定した場合の、上記ポリエチレンワックス中のポリエチレン換算の分子量が1,000以下となる成分の含有割合(重量%)であり、Kは上記ポリエチレンワックスの140℃における溶融粘度(mPa・s)である。)
Polypropylene having an MI measured in the range of 0.01 to 100 g / 10 min at 230 ° C. and a test load of 21.18 N according to JIS K7210, and a density measured according to the density gradient tube method of JIS K7112 is 890 to 950 (kg) / m 3) is in the range of, there a number average molecular weight in terms of polyethylene as measured by gel permeation chromatography (GPC) (Mn) is in the range of 700~4,000, and the following formula (I) and formula (II The method of manufacturing a film by extending | stretching the mixture containing the polyethylene wax which satisfy | fills the relationship represented by.
B ≦ 0.0075 × K (I)
(In the above formula (I), B is the content (%) of the component in which the polyethylene-converted molecular weight in the polyethylene wax is 20,000 or more when measured by gel permeation chromatography, and K is (It is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)
A ≦ 230 × K (-0.537) (II)
(In the above formula (II), A is a content ratio (% by weight) of a component having a polyethylene conversion molecular weight of 1,000 or less in the polyethylene wax when measured by gel permeation chromatography, and K Is the melt viscosity (mPa · s) of the polyethylene wax at 140 ° C.)
前記混合物中のポリプロピレン100重量部当たり、ポリエチレンワックスが0.01〜10重量部である原料を用いる請求項1に記載のフィルムを製造する方法。   The method for producing a film according to claim 1, wherein a raw material in which polyethylene wax is 0.01 to 10 parts by weight per 100 parts by weight of polypropylene in the mixture is used.
JP2006095416A 2006-03-30 2006-03-30 Method for producing stretched film Active JP4642687B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006095416A JP4642687B2 (en) 2006-03-30 2006-03-30 Method for producing stretched film
PCT/JP2007/056211 WO2007114102A1 (en) 2006-03-30 2007-03-26 Process for producing oriented film
EP07739649A EP2002963A4 (en) 2006-03-30 2007-03-26 Process for producing oriented film
US12/225,581 US20090137729A1 (en) 2006-03-30 2007-03-26 Process for Producing Oriented Film
TW096111279A TWI353298B (en) 2006-03-30 2007-03-30 Process for producing stretch molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095416A JP4642687B2 (en) 2006-03-30 2006-03-30 Method for producing stretched film

Publications (2)

Publication Number Publication Date
JP2007268776A true JP2007268776A (en) 2007-10-18
JP4642687B2 JP4642687B2 (en) 2011-03-02

Family

ID=38672085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095416A Active JP4642687B2 (en) 2006-03-30 2006-03-30 Method for producing stretched film

Country Status (1)

Country Link
JP (1) JP4642687B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268779A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268777A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268778A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268920A (en) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278951A (en) * 1996-04-10 1997-10-28 Mitsui Petrochem Ind Ltd Olefin polymer composition
JP2004026886A (en) * 2002-06-21 2004-01-29 Mitsui Chemicals Inc Composition for synthetic wood, and synthetic wood
JP2004059867A (en) * 2002-07-31 2004-02-26 Mitsui Chemicals Inc Thermoplastic resin composition
JP2005281449A (en) * 2004-03-29 2005-10-13 Mitsui Chemicals Inc Thermoplastic resin composition and molded product obtained by molding the same
WO2007052368A1 (en) * 2005-10-31 2007-05-10 Mitsui Chemicals, Inc. Process for production of thermoplastic resin composition
JP2007261201A (en) * 2006-03-29 2007-10-11 Mitsui Chemicals Inc Manufacturing method of molded object by blow molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278951A (en) * 1996-04-10 1997-10-28 Mitsui Petrochem Ind Ltd Olefin polymer composition
JP2004026886A (en) * 2002-06-21 2004-01-29 Mitsui Chemicals Inc Composition for synthetic wood, and synthetic wood
JP2004059867A (en) * 2002-07-31 2004-02-26 Mitsui Chemicals Inc Thermoplastic resin composition
JP2005281449A (en) * 2004-03-29 2005-10-13 Mitsui Chemicals Inc Thermoplastic resin composition and molded product obtained by molding the same
WO2007052368A1 (en) * 2005-10-31 2007-05-10 Mitsui Chemicals, Inc. Process for production of thermoplastic resin composition
JP2007261201A (en) * 2006-03-29 2007-10-11 Mitsui Chemicals Inc Manufacturing method of molded object by blow molding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007268779A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268777A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268778A (en) * 2006-03-30 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP2007268920A (en) * 2006-03-31 2007-10-18 Mitsui Chemicals Inc Manufacturing method of molded object by injection molding
JP4647535B2 (en) * 2006-03-31 2011-03-09 三井化学株式会社 Manufacturing method of molded body by injection molding

Also Published As

Publication number Publication date
JP4642687B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP2007261201A (en) Manufacturing method of molded object by blow molding
US20090137729A1 (en) Process for Producing Oriented Film
KR100964049B1 (en) Process for production of thermoplastic resin composition
JP4642687B2 (en) Method for producing stretched film
EP1995037B1 (en) Process for production of moldings by the inflation method
EP2006071B1 (en) Process for producing shaped article by t-die molding
JP5068028B2 (en) Manufacturing method of molded body by T-die molding
JP2007268778A (en) Manufacturing method of molded object by injection molding
JP4647535B2 (en) Manufacturing method of molded body by injection molding
JP5068026B2 (en) Method for producing stretched film
JP2007268777A (en) Manufacturing method of molded object by injection molding
JP4828223B2 (en) Thermoplastic resin molding
JP4749894B2 (en) Manufacturing method of molded body by inflation molding
JP4846503B2 (en) Method for producing blow molded article
JP2007270033A (en) Method for producing foamed article by foam-molding
JP5068025B2 (en) Method for producing stretched film
JP2007268779A (en) Manufacturing method of molded object by injection molding
JP4749909B2 (en) Manufacturing method of molded body by T-die molding
JP5047523B2 (en) Manufacturing method of molded body by T-die molding
JP5196727B2 (en) Manufacturing method of molded body by inflation molding
JP4749911B2 (en) Manufacturing method of molded body by T-die molding
EP2002955A2 (en) Process for producing molded object by injection molding
JP5068058B2 (en) Method for producing thermoplastic resin composition
JP2008088389A (en) Method for manufacturing thermoplastic resin composition
JP2007125883A (en) Manufacturing method of injection-molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250