JP2007268133A - カテーテル装置 - Google Patents

カテーテル装置 Download PDF

Info

Publication number
JP2007268133A
JP2007268133A JP2006099927A JP2006099927A JP2007268133A JP 2007268133 A JP2007268133 A JP 2007268133A JP 2006099927 A JP2006099927 A JP 2006099927A JP 2006099927 A JP2006099927 A JP 2006099927A JP 2007268133 A JP2007268133 A JP 2007268133A
Authority
JP
Japan
Prior art keywords
optical
torque limiter
light
catheter
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006099927A
Other languages
English (en)
Inventor
Hiromichi Tanioka
弘通 谷岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2006099927A priority Critical patent/JP2007268133A/ja
Priority to US11/730,302 priority patent/US20070232893A1/en
Publication of JP2007268133A publication Critical patent/JP2007268133A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters

Abstract

【課題】 駆動シャフト先端部に一度過負荷が加わった場合、駆動シャフトの回転駆動力を瞬時かつ確実に停止させることが可能なカテーテル装置を提供する。
【解決手段】 信号の送受信を繰り返すプローブを備え、該プローブを体腔内においてラジアル走査させることで得られた反射信号を用いて該体腔内の断面画像を形成・出力可能な画像診断装置に、該反射信号を送信するカテーテル装置であって、前記プローブをラジアル走査させるための回転駆動力を伝達する中空のシャフト804と、シャフト804内に配され、前記反射信号を前記画像診断装置に送信するための伝送線と、を備え、シャフト804は、長手方向の一部において周方向の肉厚が不均一に形成されたトルクリミッタ((A)〜(F))を介して前記回転駆動力を受けることを特徴とする。
【選択図】 図10

Description

本発明は、カテーテル装置に関し、特にカテーテル内のプローブに回転駆動を伝達する伝達機構に関するものである。
従来より、動脈硬化の診断や、バルーンカテーテル、ステント等の高機能カテーテルによる血管内治療時の術前診断、あるいは術後の結果確認のために画像診断装置が広く使用されている。
画像診断装置の一例として、血管内超音波診断装置(IVUS:Intra Vascular Ultra Sound)が挙げられる。一般に血管内超音波診断装置は、血管内において超音波振動子を内蔵するプローブをラジアル走査させ、体腔内の生体組織で反射された反射波(超音波エコー)を同じ超音波振動子で受信した後、増幅、検波等の処理を施し、生成された超音波エコーの強度に基づいて、血管の断面画像を描出するよう構成されている。
また、血管内超音波診断装置の他、最近では、画像診断装置として光干渉断層診断装置(OCT:Optical Coherent Tomography)も利用されるようになってきている。光干渉断層診断装置は、先端に光学レンズ及び光学ミラーを内蔵するプローブを取り付けた光ファイバーを内蔵したカテーテルを血管内に挿入し、光ファイバーの先端側に配置した光学ミラーをラジアル走査させながら、血管内に光を照射し、生体組織からの反射光をもとに血管の断面画像を描出するものである。
更に、光干渉断層診断装置の改良型として、波長掃引利用の光干渉断層診断装置も利用されるようになってきている。
このように、画像診断装置として検出原理の異なる複数種類の装置が利用されてきているが、いずれの装置も回転駆動力を伝達する駆動シャフトの先端にプローブが固定され、駆動シャフト内の伝送線(電気信号または光信号の伝送線)を通じで信号の送受信が行われ、該プローブをラジアル走査させることで断面画像を抽出することを特徴としている。
かかる駆動シャフトは、カテーテルが血管や管腔等の体腔内に挿入された場合において、狭窄した場所でトラップされたり、駆動シャフトを覆っている外装シースが破損したりすると、先端部に過負荷が加わる危険性があるという問題がある。
このような問題に対して、例えば、特開平7−184888号公報では、駆動シャフトを動作させる回転制御機構に電流制限回路を設け、検出電流値が設定電流値よりも大きく、かつ計測通電時間が設定基準時間よりも大きくなった場合にモータ電流を遮断させることとし、駆動シャフトに過負荷が加わった場合のみモータ回転が停止するように構成している。
また、特開平10−66696号公報では、回転駆動源の回転軸に結合されたカプラと、駆動シャフト側に結合された永久磁石が埋め込まれたプラグと、カプラに軸支持で固定され回動可能な強磁性体の接触子とを配し、負荷トルクが所定値以内であれば永久磁石の吸引力により接触子を介してカプラとプラグを結合させ、負荷トルクが所定値を超えた場合には、接触子がプラグ外周面を滑り、接触子とプラグとの結合が断たれることで、接触子を遠心力により移動させるよう構成している。
このように、従来より駆動シャフト先端部に過負荷が加わることを回避するための様々な提案がなされている。これは、一般に、血管や管腔内で駆動シャフトを回転させる装置を使用する場合において、駆動シャフト先端部に過負荷が加わるということは、なんらかのトラブルが発生していると考えるのが普通であるからである。このため、回転制御機構としては、過負荷が加わった際に、生体組織へのダメージを最小限にすべく、瞬間的に駆動シャフトの回転を停止させることができる構成であることが望ましい。
特開平7−184888号公報 特開平10−66696号公報
しかしながら、上述した従来技術のうち、回転制御機構に電流制限回路を設ける方法(上記特許文献1)においては、通常、モータ電流を停止してから回転が停止するまで、モータ回転の慣性力により数秒の時間がかかるため、駆動シャフトに過負荷が加わるトラブルが発生してからモータが完全に停止するまでの間、血管や管腔内への損傷が増大する危険性がある。また、電気的に遮断させる方法であるため、誤作動の可能性を払拭させることが困難であり、回転駆動を遮断するうえでの確実性に乏しいと考えられる。
また、回転駆動源の駆動トルクの制御を磁力及び遠心力により制御させる方法(上記特許文献2)においては、駆動シャフトに過負荷が加わった後、何らかの要因で負荷トルクが小さくなった場合には、再び回転駆動部分が接続され駆動トルクが伝達されてしまうため、血管や管腔内への損傷が増大する危険性がある。
本発明は、上述した従来技術の問題を考慮してなされたもので、駆動シャフト先端部に一度過負荷が加わった場合、駆動シャフトの回転駆動力を瞬時かつ確実に停止させることが可能なカテーテル装置を提供することを目的とする。
上記の目的を達成するために本発明に係るカテーテル装置は以下のような構成を備える。即ち、
信号の送受信を繰り返すプローブを備え、該プローブを体腔内においてラジアル走査させることで得られた反射信号を用いて該体腔内の断面画像を形成・出力可能な画像診断装置に、該反射信号を送信するカテーテル装置であって、
前記プローブをラジアル走査させるための回転駆動力を伝達する中空のシャフトと、
前記シャフト内に配され、前記反射信号を前記画像診断装置に送信するための伝送線と、を備え、
前記シャフトは、
長手方向の一部において周方向の肉厚が不均一に形成されたトルクリミッタを介して、前記回転駆動力を受けることを特徴とする。
本発明によれば、駆動シャフト先端部に一度過負荷が加わった場合、駆動シャフトの回転駆動力を瞬時かつ確実に停止させることが可能なカテーテル装置を提供することが可能となる。
以下、必要に応じて添付図面を参照しながら本発明の各実施形態を詳細に説明する。
[第1の実施形態]
1.血管内超音波診断装置の外観構成
図1は本発明の第1の実施形態にかかる血管内超音波診断装置(100)の外観構成を示す図である。
図1に示すように、血管内超音波診断装置(100)は、カテーテル部101と、スキャナ/プルバック部102と、操作制御装置103とを備え、スキャナ/プルバック部102と操作制御装置103とは、信号線104により接続されている。
カテーテル部101は、直接血管内に挿入され、超音波振動子(不図示)を用いて血管内部の状態を測定する。スキャナ/プルバック部102は、カテーテル部101内の超音波振動子ユニットのラジアル走査を規定する。
操作制御装置103は、血管内超音波診断を行うにあたり、各種設定値を入力するための機能や、測定により得られたデータを処理し、断面画像として表示するための機能を備える。
操作制御装置103において、111は本体制御部であり、測定により得られたデータを処理したり、処理結果を出力する。111−1はプリンタ/DVDレコーダであり、本体制御部111における処理結果を印刷したり、データとして記憶したりする。
112は操作パネルであり、ユーザは該操作パネル112を介して、各種設定値の入力を行う。113はLCDモニタであり、本体制御部111における処理結果を表示する。
2.血管内超音波診断装置の機能構成
図2は、図1に示した血管内超音波診断装置100の機能構成を示す図である。
同図に示すように、血管内超音波診断装置100は、カテーテル部101と、スキャナ/プルバック部102と、操作制御装置103とに大別できる。
カテーテル部101は、先端内部に超音波振動子ユニット201を備えており、超音波振動子ユニット201は、カテーテル部101の先端が血管内に挿入された状態で、超音波信号送受信器221より送信されたパルス波に基づいて、超音波を血管の断面方向に送信するとともに、その反射信号(エコー)を受信し、コネクタ部202及びロータリジョイント211を介して超音波エコー信号として超音波信号送受信器221に送信する。
スキャナ/プルバック部102は、ロータリジョイント211、回転駆動装置212、直線駆動装置215を備える。カテーテル部101内の超音波振動子ユニット201は、非回転部と回転部との間を結合するロータリジョイント211により回動自在に取り付けられており、ラジアル走査モータ213により回転駆動される。超音波振動子ユニット201が血管内を円周方向に回動することで、血管内の所定の位置における断面画像の生成に必要な超音波エコー信号を検出することができる。
なお、ラジアル走査モータ213の動作は信号処理部225からモータ制御回路226を介して送信された制御信号に基づいて制御される。また、ラジアル走査モータの回転角度は、エンコーダ部214により検出される。エンコーダ部214において出力される出力パルスは、信号処理部225に入力され、表示用の信号の読み出しタイミングに利用される。
スキャナ/プルバック部102は、更に、直線駆動装置215を備え、信号処理部225からの指示に基づいて、カテーテル部101の挿入方向(体腔内の末梢方向およびその反対方向)の動作(軸方向移動)を規定している。軸方向移動は、信号処理部225からの制御信号に基づいて、直線駆動モータ216が動作することにより実現される。また、軸方向移動の動作方向(体腔内の末梢方向またはその反対方向)は、移動方向検出器217により検出され、検出結果は信号処理部225に入力される。
超音波信号送受信器221は、送信回路と受信回路とを備える(不図示)。送信回路は、信号処理部225から送信された制御信号に基づいて、カテーテル部101内の超音波振動子ユニット201に対してパルス波を送信する。
また、受信回路は、カテーテル部101内の超音波振動子ユニット201より超音波エコー信号を受信する。受信された超音波エコー信号はアンプ222により増幅される。
更に、A/D変換器224では、アンプ222より出力された超音波エコー信号をサンプリングして、1ラインのデジタルデータ(超音波エコーデータ)を生成する。
A/D変換部224にて生成されたライン単位の超音波エコーデータは信号処理部225に入力される。信号処理部225では、超音波エコーデータを検波して、血管内の各位置での断面画像を形成し、所定のフレームレートでLCDモニタ227に出力する。
3.操作パネル112の構成
図3は、操作パネル112の構成を示す図である。301はLCDモニタ操作部であり、LCDモニタ227上に表示される各種画面を操作するために用いる。304はトラックボールであり、LCDモニタ227上に表示されたポインタを操作する際に用いる。302、303はそれぞれ左右クリックボタンである。診断時の各種設定(回転速度等)は、LCDモニタ操作部301を介して行われる。
311から315は、信号処理回路225において超音波エコーデータを処理する際の補正値を設定するための設定器である。311は、画像回転設定器であり、入力された超音波エコーデータに基づいて生成される断面画像の回転方向の向きを設定する。312はガンマ補正設定器であり、ガンマ値を調整し色合わせを行う際に用いられる。313は濃度設定器であり、表示される断面画像の濃度を調整する。314はゲイン設定器であり、入力される超音波エコーデータのゲインを調整する。315はコントラスト設定器であり、表示される断面画像のコントラストを調整する。
321から323は、カテーテル部101の超音波振動子ユニット201をラジアル走査させる際に用いられるボタンである。321は前進ボタンであり、当該前進ボタン321を押圧している間、直線駆動モータ216が動作し、これによりカテーテル部101の超音波振動子ユニット201が体腔内の末梢方向に移動する(押圧が解除されると、動作を停止する)。322は後退ボタンであり、当該後退ボタン322を押圧している間、直線駆動モータ216が動作し、これによりカテーテル部101の超音波振動子ユニット201が体腔内の末梢方向と反対方向に移動する(押圧が解除されると、動作を停止する)。
323はスキャン開始ボタンであり、当該スキャン開始ボタン323を押圧すると、ラジアル走査モータ213が動作し、カテーテル部101の超音波振動子ユニット201が所定の回転速度で回転する。324はスキャン停止ボタンであり、当該スキャン停止ボタン324を押圧することにより、回転中の超音波振動子ユニット201が停止する。
331から336は、格納された断面画像をLCDモニタ227に表示する際に用いられるボタンである。333はPLAYボタンであり、格納された断面画像を所定のフレームレートでLCDモニタ227上に表示する際に用いる。331はSTOPボタンであり、断面画像の表示を停止する際に用いる。332はPAUSEボタンであり、所定のフレームレートで表示中の断面画像を一時停止する際に用いる。
334は表示中の断面画像を所定の位置(現在表示中の位置よりも前の位置)にスキップする際に用いられる。335は表示中の断面画像を所定の位置(現在表示中の位置よりも後ろの位置)にスキップする際に用いられる。
336は早送り/巻き戻しボタンであり、右回りにまわすことで、所定のフレームレートで表示中の断面画像を早送り表示する。また、左回りにまわすことで、所定のフレームレートで表示中の断面画像を巻き戻し表示する。
なお、上記操作パネル112では、超音波振動子ユニット201のラジアル走査を、直線動作と回転動作をそれぞれ実行させるための別個の操作ボタンを操作することにより実現することとしたが、本発明は特にこれに限られない。例えば、ラジアル走査を直接実現するための単独の操作ボタンが設けられていてもよい。また、直線動作は、操作ボタンを押下することにより実現してもよいし、スキャナ/プルバック部102を、手で直接前後に動かすようにしてもよい。なお、この場合でも、移動方向検出器217による直線動作の動作方向は検出されるものとする。
4.カテーテル部の構成
4.1 カテーテル部の全体構成
次にカテーテル部101の全体構成について図4を用いて説明する。
図4に示すように、カテーテル部101は、血管内に挿入される長尺のカテーテルシース401と、ユーザが操作するために血管内に挿入されずユーザの手元側に配置されるコネクタ部402により構成される。シースの先端には、ガイドワイヤルーメン403が形成されており、カテーテルシース401は、ガイドワイヤルーメン403との接続部分からコネクタ部402との接続部分にかけて連続する管腔として形成されている。
カテーテルシース401の管腔内部には、超音波を送受信する超音波振動子ユニット421と、それを回転させるための駆動力を伝達する駆動シャフト422とを備えるイメージングコア420がカテーテルシース401のほぼ全長にわたって挿通されている。
コネクタ部402は、カテーテルシース401の基端に一体化して構成されたシースコネクタ402aと駆動シャフト422の基端に設けられ、駆動シャフト422を回転可能に保持するよう構成された駆動シャフトコネクタ402bとからなる。
シースコネクタ402aとカテーテルシース401の境界部には、耐キンクプロテクタ411が設けられている、これにより所定の剛性が保たれ、急激な変化による折れ曲がり(キンク)を防止することができる。また、駆動シャフトコネクタ402bには、カテーテルシース401の管腔内全体を超音波伝達液で満たすため、シリンジ(不図示)等の取り付けが可能な注入ポート412が備えられている。駆動シャフトコネクタ402bの基端は、後述するスキャナ/プルバック部102と接続可能に構成されている。
図5は、駆動シャフト422をカテーテルシース401に対して相対的にスライドさせた様子を示す図である。同図に示すように、シースコネクタ402aは固定した状態で、不図示のスキャナ/プルバック部102を用いて駆動シャフトコネクタ402bを基端側に(矢印501方向に)スライドさせれば、内部の駆動シャフト422やその先端に固定された超音波振動子ユニット421が軸方向にスライドすることとなる。この軸方向のスライドは、ユーザが手動で行ってもよいし、電動で行っても良い。なお、駆動シャフトコネクタ402bの先端側には、高速回転する駆動シャフト422が露出しないように、保護内管402cが設けられている。
4.2 血管内超音波診断時のカテーテル部101の動作
図6は血管内超音波診断時のカテーテル部101の動作を説明するための模式図である。図6(a)、(b)はそれぞれカテーテル部101が挿入された状態の血管の断面図および斜視図である。
図6(a)において、601はカテーテル部101が挿入された血管断面を示している。上述のように、カテーテル部101はその先端内部に超音波振動子ユニット421が取り付けられており、ラジアル走査モータ213により矢印602方向に回転する。
超音波振動子ユニット421からは、各回転角度にて超音波の送信/受信が行われる。ライン1、2、・・・1024は各回転角度における超音波の送信方向を示している。本実施形態では、超音波振動子ユニット421が所定の血管断面(601)にて360度回動する間に、1024回の超音波の送信/受信が断続的に行われる。なお、360度回動する間における超音波の送信/受信回数は特にこれに限られず、任意に設定可能であるものとする。このように、超音波振動子(信号の送受信部)を回転させながら信号の送信/受信を繰り返すスキャン(走査)を、一般に「ラジアルスキャン(ラジアル走査)」という。
このような超音波の送信/受信は、血管内を矢印603方向(図6(b))に進みながら行われる。
4.3 カテーテル部の先端部の構成
次にカテーテル部101の先端部の構成について図7を用いて説明する。
図7において、超音波振動子ユニット421は、超音波振動子701bとそれを保持するハウジング701aからなり、当該超音波振動子701bより体腔内組織に向けて超音波が送信されるとともに、当該超音波振動子701bにて体腔内組織からの反射波が受信される。
駆動シャフト422はコイル状に形成され、その内部には電気伝送線が配され、超音波振動子701bからコネクタ部402まで伸びている。
超音波振動子701bは矩形状あるいは円形状をしており、PZT等からなる圧電材の両面に、電極を蒸着することにより形成されている。超音波振動子701bは、駆動シャフト422が回転ムラを引き起こさないように、回転軸方向の中心付近に位置するよう設置されている。
ハウジング701aは、短い円筒状のパイプの一部に切り欠き部を有した形状をしており、素材としては、金属又は硬質の樹脂が好適に用いられる。成形方法としては、パイプ状のものに切削加工、レーザ加工、プレス加工などの加工を施し、
切り欠き部を形成する方法や、射出成形やMIM(金属粉末射出成形)などにより直接所望の形状を得る方法がある。ハウジング701aは、内部に超音波振動子701bを有し、基端側は駆動シャフト422と接続されている。また、先端側には短いコイル状の弾性部材704が設けられている。
弾性部材704はステンレス鋼線材をコイル状に形成したものであり、弾性部材704が先端側に配されることで、イメージングコア420の回転時の安定性が向上する。また、弾性部材704またはハウジング701aの表面には金メッキが施されている。一般に、金は高いX線不透過性を有する金属であるため、当該金メッキにより、弾性部材704はカテーテルシース401が体腔内へ挿入された場合でも、X線撮像装置の映像下で造影される。これにより、ユーザは超音波振動子701bの位置を容易に知ることができる。
カテーテルシース401の先端部とガイドワイヤルーメン403との境界部には、プライミング作業で注入された超音波伝達液を外部に排出するための排出口705が設けられている。
706は補強コイルであり、カテーテルシース401の先端部分の急激な折れ曲がりを防止する目的で設けられている。
ガイドワイヤルーメン403は、ガイドワイヤが挿入可能な孔を有する。ガイドワイヤルーメン403は、予め体腔内に挿入され、カテーテルシース401を患部まで導くために使用される。
駆動シャフト422は、カテーテルシース401に対して回転及びスライド動作することが可能であり、柔軟で、かつ回転をよく伝達できる特性をもつ、例えば、ステンレス等の金属線からなる多重多層密着コイル等により構成されている。
4.4 駆動シャフトコネクタ402bの構成
図8(a)、(b)は駆動シャフトコネクタ402bの内部構成を示す断面図であり、図8(a)は、スキャナ/プルバック部102が接続されていない状態を、図8(b)は、スキャナ/プルバック部102が接続された状態をそれぞれ示している。
図8(a)、(b)に示すように、駆動シャフト422とコネクタ801とは、先端側接続パイプ802及び手元側接続パイプ803を介してトルクリミッタ804で接合されている。
超音波振動子701bを通電させる電気伝送線805は、駆動シャフト422内のルーメンを通じて挿入されており、コネクタ801で一方の信号電極807と他方の信号電極806とに分けられる。電気伝送線805はツイストペア線、同軸線のいずれでもかまわないが、本実施形態ではツイストペア線が用いられているものとする。
トルクリミッタ804内部の電気伝送線805の一部はトルクリミッタ式コネクタ(詳細は後述)になっており、一定以上の負荷トルクが加わった場合において、スキャナ/プルバック部102から伝達される回転駆動力が遮断できる機構となっている。
4.5 トルクリミッタ804の構成
図9はトルクリミッタ804の詳細を示す図である。トルクリミッタ804は、その一部に周方向に渡って溝が形成されており、駆動シャフト422の先端部に一定以上の負荷トルクが加わった場合において、スキャナ/プルバック部102から駆動シャフト422へ伝達される回転駆動力を遮断させる機構を備える。
本実施形態において、トルクリミッタ804の遮断トルクは、実用的には0.1〜5mN・mであることが好ましく、さらには0.5〜2mN・mであることが好ましい。従って、トルクリミッタ804自体の材料は、樹脂材料、紙・パルプ材料、無機材料であることが好ましく、さらには、再現性良く高精度に溝を形成させる方法に適した材料であることが好ましい。再現性良く高精度に溝を形成させる方法とは、例えば、エキシマレーザ加工方法が挙げられる。
トルクリミッタ804内において、電気伝送線805は、トルクリミッタ式コネクタ901により接続されており、トルクリミッタ式コネクタ901は、半円筒形状の絶縁材料である先端側部分901aと手元側部分901bとを備える。
4.5.1 トルクリミッタ804の加工方法
上記トルクリミッタ804の加工方法(エキシマレーザ加工方法)について説明する。エキシマレーザとは、紫外線波長のパルス発振式ガスレーザである。使用される混合ガスは希ガスとハロゲンガスとの混合ガスであり、これらをHe、Neなどのバッファガスで希釈し全圧力を4気圧程度としたものを放電励起させて、パルス幅が10ns以下のレーザ光を発振させる。エキシマレーザにおける一般的な混合ガスはKrF(波長248nm)である。
エキシマレーザ加工方法とは、アブレーションプロセスと呼ばれる、高分子材料の分子間結合力より大きいエネルギーを瞬時に吸収させ、分子間結合を断ち切り、ガス化または微粒子化させる方法で、これにより熱影響の少ない微細加工を行うことができる。なお、エキシマレーザはビームの絞込みが容易であるため、理論上1μmレベルの微細加工が可能である。
他のレーザとしては、紫外線の発振が可能なハイパワーの高調波Qスイッチ Nd:YAGレーザ(波長266nm)や、パルス発振式の炭酸ガスレーザが挙げられ、加工精度はやや劣るが、エキシマレーザの場合と同様に溝を形成することが可能である。
その他、溝を形成させる方法としては、微細カッターなどの刃物を用いた方法が挙げられる。しかしこの方法では、刃の切れ味が悪くなりやすいため、再現良く高精度に溝を形成させることがやや困難である。
エキシマレーザにて良好な微細加工が可能なトルクリミッタの代表的な高分子材料として、ポリイミドが挙げられる。ポリイミドはエンジニアリングプラスチックに属し、ヤング率が大きいので肉薄のチューブ形状にしても実用強度がある。肉薄チューブであればエキシマレーザで微細貫通溝加工をするのに好都合である。
4.5.2 トルクリミッタ804の加工例1
図10(A)〜(C)は、トルクリミッタ804に形成される溝形状の一実施例を示したトルクリミッタの展開図である。図10(A)は、トルクリミッタ804に形成させる溝形状を台形としたものであり、トルクリミッタ804の表面上に、エキシマレーザの微細なビームスポットをあらかじめ入力されたプログラムで台形状にパターニングすることで形成される。この台形スロット1001は、貫通または非貫通いずれの状態に形成されても良く、トルクリミッタ804の長手方向の一部において周方向に複数個形成される(つまり、トルクリミッタ804は長手方向の一部において周方向の肉厚が不均一に形成されている)。
なお、図10(B)及び図10(C)に示すようにスロット形成パターンはらせん状に形成されていても、あるいは互い違いに形成されていてもかまわない。また、スロットの形状は、台形以外に、菱形、二等辺三角形、楕円、トラック円、またはその他の形成可能な任意の形状であってもよい。また、エキシマレーザのビームスポットサイズは、できるだけ小さいことが好ましく、実サイズでは、φ0.01〜0.02であることが好ましい。また、ビームスポット形状は、丸形状、四角形状、三角形状、またはその他任意の形状であってもよい。
本実施例においては、スロットの数は少なくとも3つ以上あることが好ましい。スロットの数が2個以下では、応力がヒンジ部(溝加工されていない部分)に集中しやすく、組み立て時に破損しやすくなるからである。図10(A)〜(C)において、スロット間隔Lの長さは、トルクリミッタ804の材料及びスロットの数に依存するが、例えば、スロットの数が3個の場合においては、スロット間隔Lは0.2〜0.3mmであることが好ましい。
4.5.3 トルクリミッタの加工例2
図10(D)〜(F)は、トルクリミッタ804に形成される溝形状のその他の実施例を示したトルクリミッタ804の展開図である。図10(D)は、トルクリミッタ804に形成させる溝を、エキシマレーザのビームスポットをそのまま周方向にパターニングしたものであり、断続的な貫通溝1002としている。貫通溝の間隔L’の長さは、0.2〜0.3mmであることが好ましい。また、図10(E)は、貫通溝1002と非貫通溝(破線)1003とを組み合わせたものであり、図10(E)と同程度の遮断トルクとした場合に貫通溝L’の長さを短くすることが可能となるため、トルクリミッタ804の組み立て時の耐破損性を向上させるのに有利である。図10(F)は、ジグザグ形状の非貫通溝(破線)1004を形成したものである。なお、非貫通溝のパターンは、ジグザグ形状以外に、半円形状、波形状、またはその他任意の形状であってもよい。また、これらの溝は全て非貫通溝であってもよい。
4.5.4 トルクリミッタ式コネクタ901の構成
電気伝送線805のトルクリミッタ式コネクタ901の詳細について図11及び図12の斜視図を用いて以下に説明する。
図11に示すように、トルクリミッタ式コネクタ901は半円筒形状の絶縁材料より構成され、その一部にくびれ部分1101があり、一定以上の負荷トルク以上で破壊する構造となっている。ツイストペア線の電気伝送線805は、それぞれ、オス端子1102及びメス端子1103で脱着可能な構成となっており、くびれ部分1101でそれぞれの端子が接続されている。
トルクリミッタ式コネクタ901の半円筒形状部分である、先端側部分901a及び手元側部分901bは、それぞれ先端側接続パイプ802及び手元側接続パイプ803の内面に接着固定されている。トルクリミッタ式コネクタ901の材料は、樹脂材料であることが好ましく、さらには射出成形性が良く、各種接着剤との接着性の良い材料であることが好ましい。
4.6 トルクリミッタ及びトルクリミッタ式コネクタの動作
このようにして電気伝送線805がトルクリミッタ式コネクタ901上で端子接続された状態で、駆動シャフト422を高速回転させたときに、駆動シャフト422先端部に一定以上の負荷トルクが加わった場合において、トルクリミッタ804が破壊し駆動シャフト422の回転駆動が遮断されると同時に、トルクリミッタ式コネクタ901も破壊する。そして、図12に示すように電気伝送線805の端子接続部が外れることで電気伝送線805も遮断される。このように、本実施形態によれば、スキャナ/プルバック部102から伝達される回転駆動力を瞬時に遮断させることが可能となる。
図13は、駆動シャフト422先端部に過負荷が加わった場合においてトルクリミッタ804及びトルクリミッタ式コネクタ901が破断した状態を示す一部断面図である。駆動シャフト422の先端部に一定以上の負荷トルクが加わった場合において、スキャナ/プルバック部102から駆動シャフト422への回転駆動力が遮断され、同時にトルクリミッタ式コネクタ901が破断する。
以上の説明から明らかなように、本実施形態にかかる血管内超音波診断装置によれば、駆動シャフト先端部に過負荷が加わった場合、トルクリミッタとトルクリミッタ式コネクタが瞬時に破談するため、駆動シャフトの回転駆動力を瞬時に遮断させ、プローブの回転を確実に停止させることが可能となる。
[第2の実施形態]
上記第1の実施形態では、血管内超音波診断装置におけるカテーテル部について説明した。しかしながら、本発明は特に血管内超音波診断装置に限定されるものではなく、他の画像診断装置のカテーテル部においても適用可能である。そこで、本実施形態では、光干渉断層診断装置及び波長掃引利用の光干渉断層診断装置のカテーテル部に適用した場合について説明する。
1.光干渉断層診断装置の測定原理
はじめに光干渉断層診断装置の測定原理について簡単に説明する。一般に光は電磁波であるため、重畳させた場合に干渉するという性質を有する。干渉しやすいか干渉しにくいかの干渉性能はコヒーレンスとも呼ばれ、一般的な光干渉断層診断装置では、干渉性の低い低コヒーレンス光(低干渉性光)が利用される。
低コヒーレンス光は、横軸に時間、縦軸に電場をとった場合、図14(a)の1401、1402に示すように、ランダムな信号となる。同図における各々の山は波連と呼ばれ、波連は一つ一つが相互に独立な位相と振幅を持っている。このため、図14(a)のように同じ波連同士が重なった場合は(1401と1402)干渉して強めあう一方(1403参照)、わずかな時間遅れがあった場合には(図14(b)の1404と1405)、打ち消しあって、干渉が観測されなくなる(図14(b)の1406参照)。
光干渉断層診断装置は、かかる性質を利用したものであり、図15に装置の基本原理を示す。同図に示すように、低干渉性光源1501から出た光をビームスプリッタ1504で分割し、それぞれを参照ミラー1502と測定対象1503に向かわせる。このとき、測定対象側から戻ってくる反射光には、物体表面で反射した光や、物体内部の浅い位置で反射した光、物体内部の深部で反射した光など様々な位置からの反射光が含まれる。
しかし、入射光が低干渉性光であるため、干渉が観測される反射光は、ビームスプリッタ1504から参照ミラー1502までの距離をL、コヒーレンス長をΔLとすると、ビームスプリッタ1504からの距離がL+ΔL/2の位置に存在する反射面からの反射光のみとなる。
したがって、ビームスプリッタ1504から参照ミラー1502までの距離を変えれば、検出器1505ではその距離に対応した物体内反射面からの反射光のみを選択的に検出することができる。そして、各距離に応じた反射光の強度に基づいて、物体内部の構造情報を可視化することで断面画像を形成することができる。
2.光干渉断層診断装置の外観構成
光干渉断層診断装置の外観構成は、上記第1の実施形態において説明した血管内超音波診断装置(図1参照)と同様であるため、説明は省略する。
3.光干渉断層診断装置の機能構成
本実施形態にかかる光干渉断層診断装置(1600)の機能構成について図16を用いて説明する。
1609は超高輝度発光ダイオード等の低干渉性光源である。低干渉性光源1609は、その波長が1310nm程度で、その可干渉距離(コヒーレント長)が数μm〜10数μm程度であるような短い距離範囲でのみ干渉性を示す低干渉性光を出力する。
このため、この光を2つに分岐した後、再び混合した場合には分岐した点から混合した点までの2つの光路長の差が17μm程度の短い距離範囲内の場合には干渉光として検出され、それよりも光路長の差が大きい場合には干渉光が検出されない。
低干渉性光源1609の光は、第1のシングルモードファイバ1628の一端に入射され、先端面側に伝送される。第1のシングルモードファイバ1628は、途中の光カップラ部1608で第2のシングルモードファイバ1629と光学的に結合されている。従って、この光カップラ部1608で2つに分岐されて伝送される。
第1のシングルモードファイバ1628の光カップラ部1608より先端側には、非回転部と回転部との間を結合し、光を伝送する光ロータリジョイント1603が設けられている。
更に、光ロータリジョイント1603内の第3のシングルモードファイバ1630の先端には、光プローブのコネクタ部1602が着脱自在に接続されている。これにより光プローブ1601内に挿通され回転駆動可能な第4のシングルモードファイバ1631に、低干渉性光源1609からの光が伝送される。
伝送された光は、光プローブ1601の先端側から体腔内の生体組織側にラジアル走査しながら照射される。そして、生体組織側の表面あるいは内部で散乱した反射光の一部は光プローブ1601により取り込まれ、逆の光路を経て第1のシングルモードファイバ1628側に戻り、光カップラ部1608によりその一部が第2のシングルモードファイバ1629側に移り、第2のシングルモードファイバ1629の一端から光検出器(例えばフォトダイオード1610)に入射される。なお、光ロータリジョイント1603の回転部側は回転駆動装置1604のラジアル走査モータ1605により回転駆動される。また、ラジアル走査モータ1605の回転角度は、エンコーダ部1606により検出される。更に、光ロータリジョイント1603は、直線駆動装置1607を備え、信号処理部1614からの指示に基づいて、カテーテル部101の挿入方向(体腔内の末梢方向およびその反対方向)の動作(軸方向移動)を規定している。軸方向移動は、信号処理部1614からの制御信号に基づいて、直線駆動モータ1615が動作することにより実現される。また、軸方向移動の動作方向(体腔内の末梢方向またはその反対方向)は、移動方向検出器1630により検出され、検出結果は信号処理部1614に入力される。
また、第2のシングルモードファイバ1629の光カップラ部1608より先端側には、基準光の光路長を変える光路長の可変機構1616が設けてある。
この光路長の可変機構1616は生体組織の深さ方向の検査範囲に相当する光路長を高速に変化させる第1の光路長変化手段と、光プローブを交換して使用した場合の個々の光プローブの長さのばらつきを吸収できるように、その長さのバラツキに相当する光路長を変化させる第2の光路長変化手段とを備えている。
第2のシングルモードファイバ1629の先端に対向して、この先端とともに1軸ステージ1620上に取り付けられ、矢印1623に示す方向に移動自在のコリメートレンズ1621を介して、グレーティング1619が配置されている。また、このグレーティング1619(回折格子)と対応するレンズ1618を介して微小角度回動可能なガルバノメータ1617が第1の光路長変化手段として取り付けられている。このガルバノメータミラー1617はガルバノメータコントローラ1624により、矢印1622方向に高速に回転される。
ガルバノメータミラー1617はガルバノメータのミラーにより光を反射させるものであり、参照ミラーとして機能する。ガルバノメータに交流の駆動信号を印加することによりその可動部分に採りうけたミラーを高速に回転させるよう構成されている。
つまり、ガルバノメータコントローラ1624より、ガルバノメータに対して駆動信号が印加され、該駆動信号により矢印1622方向に高速に回転することで、基準光の光路長が、生体組織の深さ方向の検査範囲に相当する光路長だけ高速に変化することとなる。この光路長の変化の一周期が一ライン分の干渉光データを取得する周期となる。
一方、1軸ステージ1620は光プローブ1601を交換した場合に、光プローブの光路長のバラツキを吸収できるだけの光路長の可変範囲を有する第2の光路長変化手段を形成する。さらに、1軸ステージ1620はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ1601の先端が生体組織の表面に密着していない場合でも、1軸ステージ1620により光路長を微小変化させることにより、生体組織の表面位置から干渉する状態に設定することが可能となる。
光路長の可変機構1616で光路長が変えられた光は第2のシングルモードファイバ1629の途中に設けた光カップラ部1608で第1のシングルモードファイバ1638側から漏れた光と混合されて、フォトダイオード1610にて受光される。
フォトダイオード1610にて受光された光は光電変換され、アンプ1611により増幅された後、復調器1612に入力される。この復調器1612では干渉した光の信号部分のみを抽出する復調処理を行い、その出力はA/D変換器1613に入力される。
A/D変換器1613では、干渉光信号を200ポイント分サンプリングして1ラインのデジタルデータ(干渉光データ)を生成する。サンプリング周波数は、光路長の1走査の時間を200で除した値である。
A/D変換器1613で生成されたライン単位の干渉光データは、信号処理部1614に入力される。この信号処理部1614では深度方向の干渉光データをビデオ信号に変換することにより、血管内の各位置での断面画像を形成し、所定のフレームレートでLCDモニタ1627に出力する。
なお、信号処理部1614は位置制御装置1626と接続されている。信号処理部1614は位置制御装置1626を介して1軸ステージ1620の位置の制御を行う。また、信号処理部1614はモータ制御回路1625と接続され、ラジアル走査モータ1605の回転駆動を制御する。
また、信号処理部1614は、参照ミラー(ガルバノメータミラー)の光路長の走査を制御するガルバノメータコントローラ1624と接続され、ガルバノメータコントローラ1624は信号処理部1614へ駆動信号を出力し、モータ制御回路1625はこの駆動信号に基づいてガルバノメータコントローラ1624と同期をとる。
4.波長掃引利用の光干渉断層診断装置の測定原理
次に波長掃引利用の光干渉断層診断装置の測定原理について簡単に説明する。なお、波長掃引利用の光干渉断層診断装置は、上記光干渉断層診断装置の測定原理(図14、図15)と光干渉を利用する点において基本的に同じである。そこで、ここでは光干渉断層診断装置1600との相違点を中心に説明する。
光干渉断層診断装置との測定原理上の相違点は光源にあり、第1にコヒーレント長が異なる。つまり、光干渉断層診断装置の光源は、コヒーレント長が10μm〜20μm程度の低干渉性光を用いるのに対して、波長掃引利用の光干渉断層診断装置の光源には、コヒーレント長が4〜10mm程度のものが用いられる。
これは、光干渉断層診断装置の場合、生体組織の深さ方向の検査範囲は、参照ミラーの可動範囲に依存するのに対して、波長掃引利用の光干渉断層診断装置の場合、生体組織の深さ方向の検査範囲は、コヒーレント長に依存するからである。そして、血管等の生体組織の深さ方向の全範囲を網羅するために、波長掃引利用の光干渉断層診断装置では、コヒーレント長の比較的長い光源が用いられる。
光源の第2の相違点は、波長掃引利用の光干渉断層診断装置の場合、異なる波長を持つ光が連続的に照射される点にある。
上述の光干渉断層診断装置の場合、生体組織の深さ方向の各点からの反射光の抽出は、参照ミラーの移動により実現し、測定対象の深さ方向の分解能は、照射する光のコヒーレント長に依存していた。
これに対して、波長掃引利用の光干渉断層診断装置の場合、連続的に波長を変化させた光を照射し、生体組織の深さ方向の各点からの反射光の強度は、干渉光の周波数成分の違いに基づいて行うことを特徴としている。
一般的に、掃引する光の周波数(波長の逆数)を下式(式1)に示す時間関数として考えると、干渉光の強度は下式(式2)に示す時間関数として表現できる。このとき、Δxは参照光と対象光の光路差を示し、Δfは単位時間における周波数の変化率を示すものである。また、A、B、Cは定数を示す。
(式1)f(t)=fα+Δft
(式2)I(t)=A+Bcos(CΔx(fα+Δft))
式2からわかるように、干渉光強度I(t)の時間変化の周波数成分は光路差Δxと波長掃引の周波数変化Δfで表される。したがって、干渉光の周波数成分がわかれば、光路差ごとの干渉光強度がわかることになる。
これにより、1ライン分の信号を取得するのに要する時間が短くなり、また、描出深度を深くすることができる。
図17は、波長掃引利用の光干渉断層診断装置の基本原理を示す図である。同図において光源1701は、Swept Laserである。
光源1701より連続的に出力された異なる波長を有する光は、ビームスプリッタ1704で分割され、それぞれを参照ミラー1702と測定対象1703に向かう。このとき測定対象1703側から戻ってくる反射光には、物体表面での反射光や、物体内部の浅い位置で反射した光、物体内部の深部で反射した光など様々な位置からの反射光が含まれる。
そして上述のように、検出器1705において観測された干渉光を周波数分解することで、測定対象の深さ方向の特定の位置での構造情報を可視化することが可能となる。この結果、断面画像を形成することができる。
なお、光源1701より出力される光は、コヒーレント長が4〜10mm程度あるため、測定対象の深さ方向の検査範囲が全て網羅できるため、参照ミラーを動作させる必要は無く、参照ミラー1702は一定の距離に固定して配されることとなる。
このように参照ミラーを機械的に動かす必要がないので、波長掃引利用の光干渉断層診断装置の場合、光干渉断層診断装置と比べて1ライン分の信号を取得するのに要する時間が短くなり、フレームレートを上げることができる。光干渉断層診断装置における最大フレームレートが15fr/sであるのに対し、波長掃引利用の光干渉断層診断装置のフレームレートは30〜200fr/s程度である。
もともと光干渉断層診断装置や波長掃引利用の光干渉断層診断装置の場合、血球成分への光の吸収を避け、良好な画像を取得するために、診断時には血液を排除しなければならない。このため、フレームレートが低いと血液を排除しておく時間を長くしなければならず、臨床上問題がある。これに対して、波長掃引利用の光干渉断層診断装置の場合、数秒間の血液排除で血管の軸方向に30mm以上の断面画像を取得することができるため、臨床上の問題を低減させることができるというメリットがある。
5.波長掃引利用の光干渉断層診断装置の機能構成
図18は、波長掃引利用の光干渉断層診断装置1800の機能構成を示す図である。以下、図16を用いて説明した光干渉断層診断装置との相違点を中心に説明する。
1808は光源であり、Swept Laserが用いられる。Swept Laser1808は、SOA1816(semiconductor optical amplifier)とリング状に結合された光ファイバ1817とポリゴンスキャニングフィルタ(1808b)よりなる、Extended−cavity Laserの一種である。
SOA1816から出力された光が、光ファイバ1817を進み、ポリゴンスキャニングフィルタ1808bに入り、ここで波長選択された光がSOA1816で増幅され、最終的にcoupler1814から出力される。
ポリゴンスキャニングフィルタ1808bは、光を分光する回折格子1812とポリゴンミラー1809との組み合わせで波長を選択する。回折格子1812により分光された光を2枚のレンズ(1810、1811)によりポリゴンミラー1809の表面に集光させる。これによりポリゴンミラー1809と直交する波長の光のみ同一の光路を戻り、ポリゴンスキャニングフィルタ1808bから出力されるため、ミラーを回転させることで、波長の時間掃引を行う。
ポリゴンミラー1809は、例えば、32面体のミラーが使用され、回転数が50000rpm程度である。ポリゴンミラー1809と回折格子1812とを組み合わせたユニークな波長掃引方式により、高速、高出力の波長掃引が可能である。
Coupler1814から出力されたSwept Laser1808の光は、第1のシングルモードファイバ1830の一端に入射され、先端面側に伝送される。第1のシングルモードファイバ1830は、途中の光カップラ部1826で第2のシングルモードファイバ1831と光学的に結合されている。従って、この光カップラ部1826で2つに分岐されて伝送される。
第1のシングルモードファイバ1830の光カップラ部1826より先端側には、非回転部と回転部との間を結合し、光を伝送する光ロータリジョイント1803が設けられている。
更に、光ロータリジョイント1803内の第3のシングルモードファイバ1832の先端には、光プローブのコネクタ部1802が着脱自在に接続されている。これにより光プローブ1801内に挿通され回転駆動可能な第4のシングルモードファイバ1833に、光源1808からの光が伝送される。
伝送された光は、光プローブ1801の先端側から体腔内の生体組織側にラジアル走査しながら照射される。そして、生体組織側の表面あるいは内部で散乱した反射光の一部に光プローブ1801により取り込まれ、逆の光路を経て第1のシングルモードファイバ1830側に戻る。さらに、光カップラ部1826によりその一部が第2のシングルモードファイバ1831側に移り、第2のシングルモードファイバ1831の一端から光検出器(例えばフォトダイオード1819)に入射される。なお、光ロータリジョイント1803の回転部側は回転駆動装置1804のラジアル走査モータ1805により回転駆動される。また、ラジアル走査モータ1805の回転角度は、エンコーダ部1806により検出される。更に、光ロータリジョイント1803は、直線駆動装置1807を備え、信号処理部1823からの指示に基づいて、カテーテル部101の挿入方向の動作を規定している。
また、第2のシングルモードファイバ1831の光カップラ部1826より先端側には、基準光の光路長を微調整する光路長の可変機構1825が設けてある。
この光路長の可変機構1825は光プローブを交換して使用した場合の個々の光プローブの長さのばらつきを吸収できるように、その長さのバラツキに相当する光路長を変化させる光路長変化手段を備えている。
第2のシングルモードファイバ1831およびコリメートレンズ1826は、その光軸方向に矢印1833で示すように移動自在な1軸ステージ1832上に設けられ、光路長変化手段を形成している。
具体的には、1軸ステージ1832は光プローブ1801を交換した場合に、光プローブの光路長のバラツキを吸収できるだけの光路長の可変範囲を有する光路長変化手段を形成する。さらに、1軸ステージ1832はオフセットを調整する調整手段としての機能も備えている。例えば、光プローブ1801の先端が生体組織の表面に密着していない場合でも、1軸ステージにより光路長を微小変化させることにより、生体組織の表面位置から干渉する状態に設定することが可能となる。
光路長の可変機構1825で光路長が微調整された光は第2のシングルモードファイバ1831の途中に設けた光カップラ部1826で第1のシングルモードファイバ1826側から漏れた光と混合されて、フォトダイオード1819にて受光される。
フォトダイオード1819にて受光された光は光電変換され、アンプ1820により増幅された後、復調器1821に入力される。この復調器1821では干渉した光の信号部分のみを抽出する復調処理を行い、その出力はA/D変換器1822に入力される。
A/D変換器1822では、干渉光信号を180MHzで2048ポイント分サンプリングして、1ラインのデジタルデータ(干渉光データ)を生成する。なお、サンプリング周波数を180MHzとしたのは、波長掃引の繰り返し周波数を40kHzにした場合に波長掃引の周期(12.5μsec)の90%程度を2048点のデジタルデータとして抽出することを前提としたものであり、特にこれに限定されるものではない。
A/D変換器1822にて生成されたライン単位の干渉光データは、信号処理部1823に入力される。この信号処理部1823では干渉光データをFFT(高速フーリエ変換)により周波数分解して深さ方向のデータを生成し、これを座標変換することにより、血管内の各位置での断面画像を形成し、所定のフレームレートでLCDモニタ1827に出力する。
なお、信号処理部1823は位置制御装置1834と接続されている。信号処理部1823は位置制御装置1834を介して1軸ステージ1832の位置の制御を行う。また、信号処理部1823はモータ制御回路1824と接続され、断面画像を形成する際のビデオ同期信号に同期して内部のメモリに該断面画像を格納する。
6.カテーテル部の先端部の構成
カテーテル部101の全体構成は、上記第1の実施形態において説明した血管内超音波診断装置のカテーテル部の構成(図4、図5)と同じであるため説明は省略し、カテーテル部101の先端部の構成の相違点について、図19を用いて説明する。
図19は、本実施形態にかかる光干渉断層診断装置1600または波長掃引利用の光干渉断層診断装置1800のカテーテル部101の先端部の構成を示す図である。
図19において、カテーテルシース401の管腔内部には、光を照射/受光する光プローブ1901が設けられている。光プローブ1901は、側方照射のためのプリズムまたはミラー1901bが設けられている。光プローブ1901は、プリズムまたはミラー1901bとそれを保持するハウジング1901aからなり、プリズムまたはミラー1901bより体腔内組織にむけて光が照射されるとともに、当該プリズムまたはミラー1901bにて体腔内からの反射光を受ける。
また、駆動シャフト1902の内部には、光ファイバが配され、ハウジング1901aからコネクタ部1602または1802まで伸びている。
なお、本実施形態における光干渉断層診断装置または波長掃引利用の光干渉断層診断装置においては、事前の生理食塩水の注入(プライミング作業)は必ずしも必要ではないため、カテーテルシース401の先端部とガイドワイヤルーメン403との境界部に形成されるプライミング用排出口705はなくても良い。
7.駆動シャフトコネクタ402bの構成
図20(a)、(b)は駆動シャフトコネクタ402bの内部構成を示す断面図である。駆動シャフト1902の手元側は、シースハブで外部を覆われており、シースハブはスキャナ/プルバック部102と容易に接続させることが可能な構造となっている。なお、図20(a)は、スキャナ/プルバック部102が接続されていない状態を、図20(b)は、スキャナ/プルバック部102が接続された状態をそれぞれ示している。
図20(a)、(b)に示すように、駆動シャフト1902とコネクタ2001とは、先端側接続パイプ2002及び手元側接続パイプ2003を介してトルクリミッタ2004で接合されている。また、コネクタ2001により光ファイバ2005はスキャナ/プルバック部102と接続される。
更に、トルクリミッタ2004内部の光ファイバ2005の一部は溶接接続部2006(詳細は後述)になっており、一定以上の負荷トルクが加わった場合に、スキャナ/プルバック部102から伝達される回転駆動力を遮断させる機構となっている。
なお、トルクリミッタ2004の構成は、上記第1の実施形態において説明したトルクリミッタ804と同じであるため、ここでは説明を省略する。
8.溶接接続部の構成
光ファイバの溶接接続部について図21〜図23を用いて説明する。
8.1 光ファイバの構成
はじめに一般的な光ファイバの構成について説明する。図21は、一般的なシングルモード光ファイバの構成を示す一部断面図である。光ファイバ2005は、光を伝送するコア2101と、コア2101よりも屈折率のやや小さいクラッド2102より構成され、入射角が臨界角よりも大きい場合にのみ、光がコア2101とクラッド2102との境界面で全反射を繰り返し伝送される。また、光ファイバ2005のクラッド2102の外面はジャケット2103と呼ばれる樹脂材料で被覆されており、大きな曲率で曲げた場合においても、応力が分散され、光ファイバ2005が折れたりしないようになっている。
光ファイバ同士は、一般的に通信業界で用いられている光ファイバ溶融接続機を使用して接続することができる。光ファイバ溶融接続機とは、アーク放電により発生した熱で光ファイバを溶融接続させる装置である。
図22は、光ファイバ溶融接続機にセットする前の光ファイバ端面の前処理状態を示す一部断面図である。光ファイバ端部はあらかじめ、ジャケットストリッパーと呼ばれる専用の装置(図示せず)にてジャケット2103が剥離され、クリーバーと呼ばれる専用の装置(図示せず)にてクラッド2102の端面が直角にカットされる。
8.2 光ファイバの溶接接続
図23(A)〜図23(C)は、光ファイバ溶融接続機を用いて光ファイバが溶融接続される様子を示す一部断面図である。
図23(A)は、光ファイバ溶融接続機に光ファイバをセットした状態の一部断面図である。図23(A)に示すように、ファイバホルダー2302に固定された光ファイバは、光ファイバ溶融接続機の対向する電極2301の間に、光ファイバ端部のクラッド2102を露出させたそれぞれの光ファイバを電極2301と直角方向に対向した状態でセットされる。
図23(B)は、光ファイバ溶融接続機の電極間にアーク放電を発生させ、光ファイバを溶融接続している状態を示す断面図である。光ファイバ溶融接続機のスイッチ操作により、それぞれの光ファイバが自動ステージで自動的に調芯され近接した後、電極2301よりアーク放電2303を行うことで光ファイバ同士を接続させることができる。
図23(C)は、光ファイバの溶融接続された後に細径チューブを被覆した状態を示す断面図である。溶融接続部分は、光ファイバの他の部分と比較して耐久性が低いため、細径チューブ2305で被覆保護されている。この細径チューブ2305は、樹脂材料であることが好ましく、かつ一般的なエポキシ系接着剤、シアノアクリレート系接着剤、UV硬化型接着剤等との接着性が良好な材料であることが好ましい。さらには、内部が透視できる透明もしくは半透明の材料であることが好ましい。好適な実施例では、この細径チューブ2305の材料はポリイミドが選定される。細径チューブ2305は、手元側もしくは先端側のいずれかでジャケット2103と接着剤2304にて固定されている。なお、本実施形態においては、手元側で固定(接着)している。
以上のようにして溶接接続部が生成される。
8.3 トルクリミッタ及び溶接接続部の動作
図24は、駆動シャフト先端部に過負荷が加わった場合においてトルクリミッタ2004及び光ファイバ2005が破断した状態を示す一部断面図である。駆動シャフト1902の先端部に一定以上の負荷トルクが加わった場合において、スキャナ/プルバック部102から駆動シャフト1902への回転駆動力が遮断され、同時に光ファイバの溶融接続部が破断する(2401)。
以上の説明から明らかなように、本実施形態にかかる波長掃引利用の光干渉断層診断装置によれば、駆動シャフト先端部に過負荷が加わった場合、トルクリミッタと光ファイバの溶接接続部が破断するため、駆動シャフトの回転駆動力を瞬時に遮断させ、プローブの回転を確実に停止させることが可能となる。
[第3の実施形態]
上記第1及び第2の実施形態では、血管内超音波診断装置用または光干渉断層診断装置(または波長掃引利用の光干渉断層診断装置)用のカテーテルについて説明したが、本発明はこれに限定されない。例えば、上記第1及び第2の実施形態において説明した駆動シャフトコネクタ部の機構を、血管内超音波診断装置及び光干渉断層診断装置(または波長掃引利用の光干渉断層診断装置)を組み合わせたカテーテルの駆動シャフトコネクタ部に適用してもよいことはいうまでもない。この場合、上記のトルクリミッタと、電気伝送線用のトルクリミッタ式コネクタ及び光ファイバケーブル用の溶融接続部とを組み合わせることにより実現される。
血管内超音波診断装置の外観構成を示す図である。 血管内超音波診断装置の機能構成を示す図である。 血管内超音波診断装置の操作パネルの構成を示す図である。 血管内超音波診断装置のカテーテル部の全体構成を示す図である。 カテーテル部において駆動シャフトをカテーテルシースに対して相対的にスライドさせた様子を示す図である。 血管内超音波診断時のカテーテル部の動作を説明するための模式図である。 血管内超音波診断装置のカテーテル部の先端部の構成を示す図である。 駆動シャフトコネクタの内部構成を示す断面図である。 トルクリミッタの詳細を示す図である。 トルクリミッタに形成される溝形状の一実施例を示したトルクリミッタの展開図である。 電気伝送線のトルクリミッタ式コネクタの詳細を示す図である。 電気伝送線のトルクリミッタ式コネクタの詳細を示す図である。 駆動シャフト先端部に過負荷が加わった場合においてトルクリミッタ及びトルクリミッタ式コネクタが破断した状態を示す一部断面図である。 光干渉断層診断の基本原理を示す図である。 光干渉断層診断装置の基本原理を示す図である。 光干渉断層診断装置の機能構成を示す図である。 波長掃引利用の光干渉断層診断装置の基本原理を示す図である。 波長掃引利用の光干渉断層診断装置の機能構成を示す図である。 光干渉断層診断装置または波長掃引利用の光干渉断層診断装置のカテーテル部の先端部の構成を示す図である。 駆動シャフトコネクタの内部構成を示す断面図である。 一般的なシングルモード光ファイバの構成を示す一部断面図である。 光ファイバ溶融接続機にセットする前の光ファイバ端面の前処理状態を示す一部断面図である。 光ファイバ溶融接続機を用いて光ファイバが溶融接続される様子を示す一部断面図である。 駆動シャフト先端部に過負荷が加わった場合においてトルクリミッタ及び光ファイバの溶接接続部が破断した状態を示す一部断面図である。
符号の説明
401 カテーテルシース
402 コネクタ部
402a シースコネクタ
402b 駆動シャフトコネクタ
403 ガイドワイヤルーメン
420 イメージングコア
421 超音波振動子ユニット
422 駆動シャフト
701a ハウジング
701b 超音波振動子
801 コネクタ
802 先端側接続パイプ
803 手元側接続パイプ
804 トルクリミッタ
805 電気伝送線
806 信号電極
807 信号電極
901 トルクリミッタ式コネクタ
901a トルクリミッタ式コネクタの先端側部分
901b トルクリミッタ式コネクタの手元側部分
1001 台形スロット
1002 貫通溝
1003 非貫通溝
1004 非貫通溝
1101 くびれ部分
1102 オス端子
1103 メス端子
1901 光プローブ
1901a ハウジング
1901b プリズムまたはミラー
1902 駆動シャフト
2001 コネクタ
2002 先端側接続パイプ
2003 手元側接続パイプ
2004 トルクリミッタ
2005 光ファイバ
2006 溶接接続部
2101 コア
2102 クラッド
2103 ジャケット
2304 接着剤
2305 細径チューブ

Claims (7)

  1. 信号の送受信を繰り返すプローブを備え、該プローブを体腔内においてラジアル走査させることで得られた反射信号を用いて該体腔内の断面画像を形成・出力可能な画像診断装置に、該反射信号を送信するカテーテル装置であって、
    前記プローブをラジアル走査させるための回転駆動力を伝達する中空のシャフトと、
    前記シャフト内に配され、前記反射信号を前記画像診断装置に送信するための伝送線と、を備え、
    前記シャフトは、
    長手方向の一部において周方向の肉厚が不均一に形成されたトルクリミッタを介して、前記回転駆動力を受けることを特徴とするカテーテル装置。
  2. 前記トルクリミッタは、長手方向の一部において、周方向に断続的な貫通溝が形成された円筒パイプであることを特徴とする請求項1に記載のカテーテル装置。
  3. 前記トルクリミッタは、長手方向の一部において、周方向に断続的または連続的な非貫通溝が形成された円筒パイプであることを特徴とする請求項1に記載のカテーテル装置。
  4. 前記伝送線は電気伝送線であることを特徴とする請求項1に記載のカテーテル装置。
  5. 前記伝送線は、前記トルクリミッタ内において、着脱可能なコネクタにより接続されていることを特徴とする請求項4に記載のカテーテル装置。
  6. 前記伝送線は光ファイバケーブルであることを特徴とする請求項1に記載のカテーテル装置。
  7. 前記伝送線は、前記トルクリミッタ内において、溶接により接続されていることを特徴とする請求項6に記載のカテーテル装置。
JP2006099927A 2006-03-31 2006-03-31 カテーテル装置 Withdrawn JP2007268133A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006099927A JP2007268133A (ja) 2006-03-31 2006-03-31 カテーテル装置
US11/730,302 US20070232893A1 (en) 2006-03-31 2007-03-30 Probe, image diagnostic system and catheter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006099927A JP2007268133A (ja) 2006-03-31 2006-03-31 カテーテル装置

Publications (1)

Publication Number Publication Date
JP2007268133A true JP2007268133A (ja) 2007-10-18

Family

ID=38560152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099927A Withdrawn JP2007268133A (ja) 2006-03-31 2006-03-31 カテーテル装置

Country Status (2)

Country Link
US (1) US20070232893A1 (ja)
JP (1) JP2007268133A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240711A (ja) * 2008-03-31 2009-10-22 Terumo Corp 生体内挿入用プローブ装置
JP2009240709A (ja) * 2008-03-31 2009-10-22 Terumo Corp 生体内画像診断プローブ
JP2009240710A (ja) * 2008-03-31 2009-10-22 Terumo Corp 生体内挿入用プローブ
JP2011200596A (ja) * 2010-03-26 2011-10-13 Terumo Corp 光干渉断層像形成装置及びその制御方法
JP2013070814A (ja) * 2011-09-27 2013-04-22 Terumo Corp ドライブ装置およびカテーテルユニット
WO2013133356A1 (ja) * 2012-03-09 2013-09-12 テルモ株式会社 カテーテル
WO2014089162A1 (en) * 2012-12-05 2014-06-12 Volcano Corporation Self-flushing intravascular catheter apparatus and associated methods
JP5563582B2 (ja) * 2009-09-30 2014-07-30 テルモ株式会社 画像診断装置
JP2016515876A (ja) * 2013-03-15 2016-06-02 ボルケーノ コーポレイション 汎用患者インタフェースモジュール及び関連装置、システム、及び方法
US11375881B2 (en) 2018-02-22 2022-07-05 Canon U.S.A., Inc. Catheter apparatus to control torque

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
JP5524835B2 (ja) 2007-07-12 2014-06-18 ヴォルカノ コーポレイション 生体内撮像用カテーテル
WO2009021179A1 (en) 2007-08-09 2009-02-12 Volcano Corporation Controller user interface for a catheter lab intravascular ultrasound system
US8582934B2 (en) 2007-11-12 2013-11-12 Lightlab Imaging, Inc. Miniature optical elements for fiber-optic beam shaping
US9007872B2 (en) * 2009-02-06 2015-04-14 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and method thereof
US8647281B2 (en) 2009-03-31 2014-02-11 Boston Scientific Scimed, Inc. Systems and methods for making and using an imaging core of an intravascular ultrasound imaging system
US8298149B2 (en) * 2009-03-31 2012-10-30 Boston Scientific Scimed, Inc. Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system
US20100249604A1 (en) * 2009-03-31 2010-09-30 Boston Scientific Corporation Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system
US20110071400A1 (en) * 2009-09-23 2011-03-24 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular ultrasound imaging systems with sealed imaging cores
US20110071401A1 (en) * 2009-09-24 2011-03-24 Boston Scientific Scimed, Inc. Systems and methods for making and using a stepper motor for an intravascular ultrasound imaging system
US8926590B2 (en) 2009-12-22 2015-01-06 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
US8206377B2 (en) * 2009-12-22 2012-06-26 Lightlab Imaging, Inc. Torque limiter for an OCT catheter
AU2012247093B2 (en) * 2009-12-22 2015-09-10 Lightlab Imaging, Inc. Torque limiter for an oct catheter
BR112013012194A8 (pt) * 2010-11-18 2017-04-18 Koninklijke Philips Electronics Nv Aparelho de detecção para a detecção de um objeto e programa de computador para a detecção de um objeto
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US8873900B2 (en) * 2011-04-21 2014-10-28 Medtronic Vascular, Inc. Balloon catheter with integrated optical sensor for determining balloon diameter
WO2013033592A1 (en) 2011-08-31 2013-03-07 Volcano Corporation Optical-electrical rotary joint and methods of use
JP5902428B2 (ja) * 2011-09-28 2016-04-13 テルモ株式会社 画像診断装置
SG11201403868SA (en) 2012-01-23 2014-10-30 Terumo Corp Medical tube, catheter, and method for producing medical tube
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
JP2015532536A (ja) 2012-10-05 2015-11-09 デイビッド ウェルフォード, 光を増幅するためのシステムおよび方法
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
WO2014093374A1 (en) 2012-12-13 2014-06-19 Volcano Corporation Devices, systems, and methods for targeted cannulation
CA2895502A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp RECONFIGURABLE OPTICAL COHERENCE TOMOGRAPHY SYSTEM BETWEEN DIFFERENT IMAGING MODES
JP2016506276A (ja) 2012-12-20 2016-03-03 ジェレミー スティガール, 血管内画像の位置の特定
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
CA2895940A1 (en) 2012-12-21 2014-06-26 Andrew Hancock System and method for multipath processing of image signals
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
WO2014099760A1 (en) 2012-12-21 2014-06-26 Mai Jerome Ultrasound imaging with variable line density
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
WO2014138555A1 (en) 2013-03-07 2014-09-12 Bernhard Sturm Multimodal segmentation in intravascular images
WO2014163601A1 (en) 2013-03-11 2014-10-09 Lightlab Imaging, Inc. Friction torque limiter for an imaging catheter
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
EP2967488B1 (en) 2013-03-13 2021-06-16 Jinhyoung Park System for producing an image from a rotational intravascular ultrasound device
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
WO2014152365A2 (en) 2013-03-14 2014-09-25 Volcano Corporation Filters with echogenic characteristics
JP5937141B2 (ja) * 2013-05-29 2016-06-22 住友電気工業株式会社 光干渉断層撮影装置用カテーテルの製造方法、および光干渉断層撮影装置用カテーテル
ES2913531T3 (es) 2015-04-16 2022-06-02 Gentuity Llc Sondas microópticas para neurología
WO2017040484A1 (en) 2015-08-31 2017-03-09 Gentuity, Llc Imaging system includes imaging probe and delivery devices
JP2017056156A (ja) * 2015-09-18 2017-03-23 テルモ株式会社 画像診断用カテーテル
CN106419853B (zh) * 2016-11-30 2018-03-30 苏州阿格斯医疗技术有限公司 闭环oct导管自动回撤方法及其装置
JP7160935B2 (ja) 2017-11-28 2022-10-25 ジェンテュイティ・リミテッド・ライアビリティ・カンパニー 撮像システム
JP7299090B2 (ja) * 2019-07-18 2023-06-27 富士フイルムヘルスケア株式会社 ガイドワイヤコネクタ、超音波撮像装置
US20230218861A1 (en) * 2022-01-12 2023-07-13 Canon U.S.A., Inc. Ergonomic catheter handle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3306291A (en) * 1964-04-14 1967-02-28 Burron Medical Prod Inc Disposable sterile syringes, needle containers and the like having prestressed frangible portions therein
US4434904A (en) * 1980-06-09 1984-03-06 Baxter Travenol Laboratories, Inc. Bottle closure
US4669999A (en) * 1984-08-22 1987-06-02 Sundstrand Corporation Lubricant delivering and containment overload shearable coupling
DE69227902T3 (de) * 1991-04-29 2010-04-22 Massachusetts Institute Of Technology, Cambridge Vorrichtung für optische abbildung und messung
US5913437A (en) * 1997-08-01 1999-06-22 Portola Packaging, Inc. Tamper evident bottle cap
US6217518B1 (en) * 1998-10-01 2001-04-17 Situs Corporation Medical instrument sheath comprising a flexible ultrasound transducer
US6445939B1 (en) * 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
US6413222B1 (en) * 2000-04-13 2002-07-02 Boston Scientific Corporation Catheter drive shaft clutch

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009240709A (ja) * 2008-03-31 2009-10-22 Terumo Corp 生体内画像診断プローブ
JP2009240710A (ja) * 2008-03-31 2009-10-22 Terumo Corp 生体内挿入用プローブ
JP2009240711A (ja) * 2008-03-31 2009-10-22 Terumo Corp 生体内挿入用プローブ装置
US9259184B2 (en) 2008-03-31 2016-02-16 Terumo Kabushiki Kaisha Probe for insertion into a living body
JP5563582B2 (ja) * 2009-09-30 2014-07-30 テルモ株式会社 画像診断装置
JP2011200596A (ja) * 2010-03-26 2011-10-13 Terumo Corp 光干渉断層像形成装置及びその制御方法
JP2013070814A (ja) * 2011-09-27 2013-04-22 Terumo Corp ドライブ装置およびカテーテルユニット
WO2013133356A1 (ja) * 2012-03-09 2013-09-12 テルモ株式会社 カテーテル
JPWO2013133356A1 (ja) * 2012-03-09 2015-07-30 テルモ株式会社 カテーテル
US9872665B2 (en) 2012-03-09 2018-01-23 Terumo Kabushiki Kaisha Catheter
US10130337B2 (en) 2012-03-09 2018-11-20 Terumo Kabushiki Kaisha Catheter
US11076829B2 (en) 2012-03-09 2021-08-03 Terumo Kabushiki Kaisha Catheter
WO2014089162A1 (en) * 2012-12-05 2014-06-12 Volcano Corporation Self-flushing intravascular catheter apparatus and associated methods
JP2016515876A (ja) * 2013-03-15 2016-06-02 ボルケーノ コーポレイション 汎用患者インタフェースモジュール及び関連装置、システム、及び方法
US11375881B2 (en) 2018-02-22 2022-07-05 Canon U.S.A., Inc. Catheter apparatus to control torque

Also Published As

Publication number Publication date
US20070232893A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP2007268133A (ja) カテーテル装置
JP4768494B2 (ja) 画像診断装置およびその処理方法
US11013491B2 (en) Method for focused acoustic computed tomography (FACT)
US7905838B2 (en) Image diagnostic system and apparatus, and processing method therefor
JP6482695B2 (ja) 光音響画像生成装置及び挿入物
US20120172698A1 (en) Imaging system
US5254112A (en) Device for use in laser angioplasty
US8100833B2 (en) Diagnostic imaging system and processing method for producing reduced frame rate images from data collected at a higher frame rates
JP5819387B2 (ja) 光音響画像生成装置及び挿入物
US20080108867A1 (en) Devices and Methods for Ultrasonic Imaging and Ablation
US9295450B2 (en) Imaging apparatus and control method thereof
JP6117772B2 (ja) プローブ及び画像診断装置
US20110144502A1 (en) Imaging guidewire
US20070232891A1 (en) Image diagnostic system and processing method therefor
JP2010508973A (ja) 光−音響イメージングデバイスおよび方法
JPWO2008081653A1 (ja) 光プローブ
JPH1156786A (ja) 光走査プローブ装置
JP5689728B2 (ja) 光干渉断層像形成装置及びその制御方法
WO2013145690A1 (ja) 断層画像生成装置および制御方法
JP5524947B2 (ja) 画像診断装置及びその作動方法
JPH11148897A (ja) 光イメージング装置
JP5718819B2 (ja) 画像診断装置及びその制御方法
JP6125615B2 (ja) 画像診断装置及びプログラム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602