JP2007265793A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2007265793A
JP2007265793A JP2006089248A JP2006089248A JP2007265793A JP 2007265793 A JP2007265793 A JP 2007265793A JP 2006089248 A JP2006089248 A JP 2006089248A JP 2006089248 A JP2006089248 A JP 2006089248A JP 2007265793 A JP2007265793 A JP 2007265793A
Authority
JP
Japan
Prior art keywords
fuel
power generation
fuel cell
supply space
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089248A
Other languages
English (en)
Other versions
JP5188031B2 (ja
Inventor
Kazuyuki Ueda
和幸 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006089248A priority Critical patent/JP5188031B2/ja
Priority to US11/683,798 priority patent/US20070231665A1/en
Priority to CNB2007100918901A priority patent/CN100539284C/zh
Publication of JP2007265793A publication Critical patent/JP2007265793A/ja
Priority to US12/858,148 priority patent/US7993790B2/en
Application granted granted Critical
Publication of JP5188031B2 publication Critical patent/JP5188031B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】発電セルの面積に占める発電領域の割合を高めて、燃料電池の体積当たり、重量当たり出力を大きくできる燃料電池を提供する。
【解決手段】発電セル3の四隅に酸化剤極外囲部材9を配置して酸化剤極外囲部材9の間隔の酸化剤取入口10から大気中の酸素を取り入れる。酸化剤極外囲部材9の内側に各段の発電セル3に対する水素ガスの供給経路と発電セルの積み重ね方向の締結とを兼ねた貫通孔が形成されている。エンドプレート4、セパレータ6、燃料極シール7の貫通孔を重ねてスタック締結部品5を貫通させることにより、全体を圧縮付勢して組み立てる。貫通孔の内壁面とスタック締結部品5との隙間を通じて外部燃料タンク2から水素ガスが供給される。
【選択図】図2

Description

本発明は、固体電解質層を用いて気体燃料と大気中の酸素とを電気化学反応させる燃料電池、詳しくは発電セルを厚み方向に圧縮付勢する構造に関する。
フッ化炭素高分子にスルホン酸基を担持させた固体高分子電解質膜を用いて水素ガスと大気中の酸素とを電気化学反応させる発電セルを積み重ねた燃料電池が実用化されている。
特許文献1には、このような発電セルを多数段積み重ねた燃料電池が示される。発電セルは、大気から隔離された水素ガス供給空間と、大気に連通した酸化剤供給空間とを固体高分子電解質膜を挟んで配置している。ここでは、貫通孔が燃料供給空間の外側に配置され、積み重ねた多数段の発電セルを一体に締結して圧縮方向に付勢する締結部材(通しボルト)が貫通孔に挿入される。そして、燃料供給空間の内側に配置された別の貫通孔を通じて各段の水素ガス供給空間に水素ガスが供給される。水素ガスの供給専用の貫通孔と重なる平面位置には、酸化剤供給空間を横断する貫通孔(管路)が形成される。酸化剤供給空間を横断する貫通孔(管路)の周囲には、水素ガスを漏らさないためのシール構造が設けられている。
特許文献2には、発電セルの酸化剤供給空間の中心位置に配置されて酸化剤供給空間の厚みを保持する間隔保持部材が示される。間隔保持部材は、大気から隔離された積み重ね方向の貫通孔を内側に有しており、中心の貫通孔に挿入された太い締結ネジによって多数の発電セルが積み重ね方向に圧縮付勢されている。貫通孔は、水素ガス供給空間に連通しており、多数の発電セルへ水素ガスを分配供給する主流路となっている。従って、特許文献1に示されるような、水素ガス供給空間の外側に配置された締結専用の領域が不要である。
特許文献3には、方形平面の発電セルの対向する縁に大気から隔離された水素ガスの供給専用の一対の貫通孔を形成して積み重ねた燃料電池が示される。ここでは、貫通孔を積み重ねて多数の発電セルへ水素ガスを分配供給する主流路を形成している。積み重ねた発電セルの水素ガス供給空間は、相互に並列接続された水素ガス供給空間の数を下流側へ向かって次第に減少させて直列に接続するカスケード方式で連通している。
特開2000−285934号公報 特開2004−171967号公報 特表2004−536438号公報
実用化された従来の燃料電池は、車載用または家庭用の小型発電設備なので、個別の電子機器に搭載して従来の二次電池を置き換えるほどには小型化されていない。従来の燃料電池の構造のまま、電子機器に搭載される従来の二次電池並みの大きさに小型化すると種々の不都合を生じてしまう。
特許文献1に示される燃料電池では、水素ガスを供給する専用の貫通孔と、酸化剤供給空間を横断する貫通孔の周囲のシール構造とが発電セルの面積に占める発電領域の割合を低下させている。水素ガス供給空間の外側に配置された締結専用の領域と、水素ガス供給空間の内側に配置された水素ガス供給専用の領域とが、水素ガス供給空間と酸化剤供給空間とが高分子電解質膜を介して対向する発電領域の面積を侵食している。
従って、発電セル全体の面積に比較して小さな発電領域しか得られず、発電セルを積み重ねた燃料電池の体積当たり、重量当たり、ひいては製造コスト当たりの出力が小さくなる。
特許文献2に示される燃料電池では、燃料供給空間の外側の密封構造から離れた位置に水素ガス供給路の密封構造が必要である。従って、水素ガス供給空間を大気から隔離するためのシールやスペーサの数が多くなり、シール長さが増える分、密封の信頼性が低下する。また、中心の1本の締結部材(通しボルト)で燃料供給空間の圧力を担って発電セルの平面の位置決めも行うため、太くて凹凸の多い(従って高価な)締結部材が必要である。太い締結部材は、貫通孔の面積を拡大して、発電セルの面積に占める発電領域の割合を低下させている。
特許文献3に示される燃料電池では、発電セルの締結構造が発電セルの外側に配置されるので、部品点数は特許文献1、2に比較してさらに多くなる。締結構造を含めた発電セルの占有面積に占める発電領域の割合もさらに低下する。
本発明は、発電セルの面積に占める発電領域の割合を高めて、特許文献1、2の構造に比較して燃料電池の体積当たり、重量当たり出力を大きくできる燃料電池を提供することを目的としている。少ない部品点数で高精度な加工組み立てを要することなく製造して、特許文献1、2の構造に比較して製造コスト当たりの出力を大きくできる燃料電池を提供することを目的としている。
本発明の燃料電池は、固体電解質層の一方の面側に配置されて大気から隔離された燃料供給空間と、前記固体電解質層の他方の面側に配置されて大気に連通した酸化剤供給空間とを備えた発電セルを1段以上積み重ねたものである。また、本発明の燃料電池は、前記固体電解質層の発電領域の外側位置に配置されて、前記酸化剤供給空間の厚みを保持し、内側に前記積み重ね方向の貫通孔を有する間隔保持部材を有する。前記燃料供給空間と前記酸化剤供給空間とを前記積み重ね方向に圧縮付勢する締結部材が、前記貫通孔に配置されている。そして、大気から隔離して前記燃料供給空間に連通させた前記貫通孔が前記発電領域を挟む平面位置に一対以上配置されている。
本発明の燃料電池によれば、発電セルを締結して燃料電池スタックを組み立てるための貫通孔を、各段の燃料供給空間に対する燃料供給経路として利用できるので、燃料供給空間の内側にも外側にも独立した燃料供給経路を設ける必要が無い。
また、貫通孔が発電領域(固体電解質層を挟んで燃料供給空間と酸化剤供給空間が対峙する平面領域)を挟んで配置されるので、発電領域の外側を大気から隔離する外壁に、間隔保持部材の貫通孔と連通する燃料供給空間側貫通孔を形成できる。外壁に圧力を負担させることにより、燃料供給空間の中空部分に不必要な圧力を及ぼすことなく、発電セルを強固に締結できる。発電領域を挟む一対の締結部材によって発電セルが両持ち式に締結されるので、小さな締結力、燃料供給空間の薄い外壁、発電セルの小さな曲げ強度でも燃料供給空間に大きな耐圧性と密封性とを付与できる。
燃料供給空間の外壁に燃料供給空間側貫通孔を形成すれば、少なくとも燃料供給空間側貫通孔の壁厚分、発電領域の面積を外側へ拡張できる。固体電解質層に燃料供給経路用の貫通孔を形成する必要が無い。燃料供給空間の外壁のシール構造と燃料供給空間側貫通孔のシール構造とを無理なく連続させて一体化できる。
従って、薄い外壁の内側で燃料供給空間の平面全体を固体電解質層を介して酸化剤供給空間に対向させて発電領域とする設計上の選択が可能になる。燃料供給空間の外壁の外側に燃料供給経路や発電セルの締結構造を配置する必要も無い。これにより、燃料供給経路や発電セルの締結構造を含む発電セルの面積に占める発電領域の割合は、特許文献1、2に示される構造に比較して大きくできる。
従って、少ない材料、簡単な部品加工、少ない部品点数、低い組み立て精度、小さな面積でも、大きな発電領域と大きな強度とを確保した高出力で出力安定性も高い燃料電池を実現できる。これにより、小型軽量安価で高品質の燃料電池を提供できる。
以下、本発明の燃料電池の一実施形態である燃料電池について、図面を参照して詳細に説明する。本発明の燃料電池は、以下に説明する各実施形態の限定的な構成には限定されない。締結部材を配置する貫通孔を通じて気体燃料が供給される限りにおいて、各実施形態の構成の一部または全部を、その代替的な構成で置き換えた別の実施形態でも実現可能である。
本実施形態では、燃料タンクに貯蔵した水素ガスを用いて発電を行うが、水素原子を含むメタノール等の液体燃料を燃料タンクに貯蔵して、刻々必要なだけ水素ガスに改質反応させて発電セルの燃料供給空間に供給してもよい。外部のボンベ等から配管を経由して水素ガスの供給を受ける発電ユニットとしても実施できる。
本実施形態の燃料電池装置は、デジタルビデオカメラ、プロジェクタ、プリンタ、ノート型パソコン等の持ち運び可能な電子機器に着脱可能に装備される独立したユニットとしても実施できる。また、燃料電池搭載装置に燃料電池の発電部だけを一体に組み込んで、燃料タンクを着脱させる形式でも実施できる。電子機器の内蔵用途に限らず、自家発電装置、家庭用の発電設備等としても実施できる。
なお、特許文献1〜3に示される燃料電池の構造、運転方法、触媒層、高分子電解質膜、膜電極接合体等については、繰り返しの煩雑を回避すべく一部図示を省略し、詳細な説明も省略する。
<第1実施形態>
図1は第1実施形態の燃料電池を装着したデジタルカメラの説明図、図2は第1実施形態の燃料電池の外観の斜視図、図3は燃料極の水平断面図、図4は酸化剤極の水平断面図である。図3は図2中のA面の断面図、図4は図2中のB面の断面図である。
図1に示すように、第1実施形態の燃料電池92は、外寸法が縦30mm×横50mm×高さ10mmであり、通常のコンパクトデジタルカメラで使用されているリチウムイオン電池の大きさとほぼ同じである。小型で一体化されている燃料電池92は、小型電気機器の1つである携帯機器のデジタルカメラ91の収納部91Hに、蓋91Fを開けて装着される。燃料電池92の薄型直方体の外観形状は、さらに厚みのある直方体や円筒形の外観形状に比べて小型電気機器に組み込み易い。
図2に示すように、第1実施形態の燃料電池92は、大きく分けて2つの部分から構成されている。1つ目は発電部である燃料電池スタック1であり、2つ目は燃料供給源である外部燃料タンク2である。
燃料電池スタック1は、発電セル3を複数段積み重ねて構成される。発電セル3は、固体高分子電解質膜を挟んで燃料供給空間と酸化剤供給空間とを配置した燃料電池の単セルである。平面形状を揃え、それぞれの部材の貫通孔を連通させて積み重ねた発電セル3の両端にエンドプレート4が接する。両端のエンドプレート4と燃料電池スタック1とを貫通する貫通孔の連続構造にスタック締結部品5が挿入されている。スタック締結部品5は、両側のエンドプレート4を圧縮付勢して、両端のエンドプレート4と燃料電池スタック1とを密着させる。
スタック締結部品5は、M3の通しネジである。スタック締結部品5は、絶縁材料で形成されたエンドプレート4のメネジ穴または、導電体材料で形成されたエンドプレート4の貫通後に配置された絶縁材料のナット(不図示)とネジ締結する。これにより、燃料電池スタック1の両端を短絡させることなく、エンドプレート4に圧縮力を加えることができる。
発電セル3は、電極であるセパレータ6、燃料極シール7、燃料極拡散層(不図示)、燃料極カーボンクロス(不図示)、膜電極接合体(MEA)8、酸化極カーボンクロス(不図示)、酸化材極外囲部材9、酸化剤取入口10、セパレータ6を積層することで構成されている。
セパレータ6は、材料がSUS304で板厚は3mmとした。しかし、材料は強度が高くて導電性のものであればよく、表面粗度がRa10μm以下であればこれに限るものではない。板厚は、強度が確保できればこれに限るものではない。
燃料極シール7は、材料がブタジエンゴムでゴム板厚は3mmとした。しかし、材料は高温(120℃程度)に耐えられるものならばよく、ゴム板厚も、燃料極拡散層(不図示)、と燃料極カーボンクロスの厚みと同等であればこれに限るものではない。
膜電極接合体8は、高分子電解質膜であるデュポン社製のナフィオン膜(登録商標)の両面に白金−カーボン触媒層を担持させたものである。
酸化剤極外囲部材9は、材料がブタジエンゴムでゴム板厚は6mmとした。しかし、材料は高温(120℃程度)に耐えられるものならばよく、ゴム板厚も、酸化剤取入口10と酸化極極カーボンクロスとの厚み合計と同等であればこれに限るものではない。
燃料極拡散層(不図示)と、酸化剤取入口10とは、気孔率が高くて導電性のあるものならばよく、ここではスポンジ状組織の多孔質金属板を用いた。
外部燃料タンク2は、気体燃料である水素ガスを貯蔵して燃料電池スタック1に供給するタンクである。外部燃料タンク2の内部には、チタン−鉄系合金やランタンーニッケル系合金などの水素吸蔵合金やカーボンナノチューブやグラファイトナノファイバー、カーボンナノホーンなど水素吸蔵材料(不図示)が充填されている。これらの材料は0.4MPaの圧力において、水素を10wt%程度吸蔵可能である。
燃料電池スタック1の体積を考慮して、水素タンク3の外寸法は、25mm×30mm×10mmとする。外壁にはアルミ合金を使用し、外部燃料タンク2の容器肉厚は1mmとする。外部燃料タンク2の重量は15g程度となり、また、外部燃料タンク2の体積は5.2cmとなる。
第1実施形態では、外部燃料タンク2の内部の水素吸蔵材料には、ランタンーニッケル系合金を用いている。外部燃料タンク2に蓄えられているエネルギーは、約7.0[W・hr]であり、従来のリチウムイオン電池の約2.5倍となる。
外部燃料タンク2の燃料取出口(不図示)は、外部燃料タンク2側のエンドプレート4の燃料流路機能を持つスタック締結部品(パイプコネクタ)と接続されて、燃料を燃料電池スタック1に送り込む。スタック締結部品との接続は、気体燃料を外部に漏洩しないものでなければならない。
次に、燃料電池スタック1内部の燃料流路の構造を説明する。燃料極の断面であるA面の断面図を図3、同じく酸化材極の断面であるB面の断面を図4にそれぞれ示す。
図3に示すように、燃料極シール7に形成されたスタック締結部品挿入部31a、31bは、発電セル3を締結するスタック締結部品5の挿入孔である。
発電セル3の一方の対角線上に位置するスタック締結部品挿入部31aは、燃料流路機能を持ち、燃料極シール7により大気から閉ざされた燃料極室32に連通している。発電セル3の他方の対角線上に位置するスタック締結部品挿入部31bは、燃料極シール7によって燃料極室32から隔離されている。
燃料極シール7の内側の燃料極室32には、膜電極接合体8に重ねて燃料極カーボンクロスが配置され、燃料極カーボンクロスに重ねて燃料極拡散層が配置される。スタック締結部品挿入部31aから燃料極室32に流入した水素ガスは、燃料極拡散層を通じて燃料極カーボンクロスの表面全体に行き渡り、燃料極カーボンクロスを通じて膜電極接合体8に供給される。
膜電極接合体8では、表面の触媒層によって水素ガスが水素イオンと電子とに分解される。水素イオンは膜電極接合体8の高分子電解質膜を通って酸化剤取入口10側へ移動する。電子は隣接する発電セルを介して燃料電池スタック1のマイナス極から取り出され、外部の負荷を流れて燃料電池スタック1のプラス極を経て酸化剤取入口10側へ移動する。
膜電極接合体8の反対側表面の触媒層では、酸化剤取入口10から酸化剤極カーボンクロスを通じて供給された酸素が高分子電解質膜の水素イオンと反応して水分子を生成する。このとき、電子が水分子に吸収される。
図4に示すように、酸化剤極外囲部材9に形成されたスタック締結部品挿入部31cは、発電セル3を締結するスタック締結部品5の挿入孔である。スタック締結部品挿入部31cは、酸化剤極外囲部材9によって大気から隔離されている。スタック締結部品挿入部31cと燃料極シール7との間は、燃料極シール7のシール性によって密封される。スタック締結部品挿入部31cとセパレータ6との間はシール性の接着剤により接着されている。セパレータ6の四隅にも、発電セル3を締結するスタック締結部品5の挿入孔が形成されている。
外部燃料タンク2側のエンドプレート4から流入した気体燃料である水素ガスは、スタック締結部品5と締結部品挿入部31cの隙間を流路として酸化材極外囲部材9の内側を通り、燃料極シール7に達したところで燃料極室32に入る。各発電セル3毎にこれを繰り返すことで、燃料電池スタック1のすべての燃料極室32内に水素を供給することが可能となる。
これにより、燃料供給路とスタック締結部品挿入部31a、31cとを共用できるため、安価で小型な燃料電池スタック1を作ることができる。また、燃料極室23の面積が燃料極シール7の内側の面積一杯に広がるため、膜電極接合体8の反応面積を拡大でき、出力密度も高くすることができる。
第1実施形態の燃料電池92では、燃料電池スタック1の周辺部に配置されたスタック締結部品挿入部31a、31b、31cに燃料電池スタック締結部品5を挿入して燃料電池スタックを締結する。スタック締結部品5とスタック締結部品挿入部31a、31cの隙間が、外部燃料タンク2より発電セル3へ気体燃料を導く燃料流路を兼ねている。これにより、セパレータ6の面内に独立した燃料供給経路を配置する必要がなくなるため、燃料供給経路の周辺に配置されるべきシール機能が占める体積が不要となり、燃料電池92を小型化できる。また、燃料供給経路を構成する部材が必要なくなるので安価に燃料電池92を提供できる。
<第2実施形態>
図5は第2実施形態の燃料電池における燃料極の水平断面図、図6は酸化剤極の水平断面図である。第2実施形態は、第1実施形態の内部構造のみ変更して、より性能を高めており、図5は図2中の燃料極の断面であるA面の断面図、図6は図2中の酸化極の断面であるB面の断面図である。第2実施形態は、表面に絶縁層を形成したスタック締結ネジ51を用いて図2に示す発電セル3を締結する。それ以外の構成は第1実施形態と同様であるので、図2〜図4と共通する構成には共通の符号を付して詳細な説明を省略する。
第2実施形態は、第1実施形態と異なり、スタック締結部品として、スタック締結ネジ51を用いる。燃料極シール71(図2の7に相当)には、四隅に、燃料極室32に連通したスタック締結部品挿入部31aが形成されている。スタック締結ネジ51は、全長に渡ってネジ加工を施したM4ネジであって、表面に絶縁層を形成して発電セル3の燃料極と酸化剤極とを短絡しないようにしてある。スタック締結ネジ51は、Φ4.1mmで加工されたスタック締結ネジ挿入部31aに緊密に挿入される。
気体燃料である水素ガスは、スタック締結ネジ51のネジ山間の空間を流路として、渦巻き状に流れるため、スタック締結ネジ51とスタック締結ネジ挿入部32aの隙間がわずかでも、確実に流路が形成される。また、スタック締結ネジ51とスタック締結ネジ挿入部32aの隙間が小さいため、各積層部品の位置決めとしての機能も発揮でき、燃料電池スタック1を精度良く組み立てることができる。これにより、各積層部品のズレによる。水素ガスの漏洩などの可能性が低下するため、高精度で信頼性の高い燃料電池スタック1を形成できる。
第2実施形態の燃料電池は、スタック締結部品51がネジによる締結機構を備える。そして、各段の燃料極室32に対する燃料供給経路は、スタック締結部品51のネジ山同士の間とスタック締結部品挿入部31a、31cとの隙間である。これにより、燃料供給経路を構成する。スタック締結部品挿入部31a、31cとスタック締結部材51の隙間を非常に小さくしても、ネジ山の間隔にある螺旋状空間を燃料供給経路として利用できる。このため、汎用ネジ部品により、安価にスタック締結部品51と、燃料供給経路機能とを実現できる。そのうえ、スタック締結部品挿入部31a、31cとスタック締結部品51とを使って嵌合させることで、積層される部品同士の位置決めが可能である。よって、高い組立精度で構成された燃料電池を安価に提供できる。
第2実施形態の燃料電池は、スタック締結部品51と発電セル3内のスタック締結部品挿入部31a、31b、31cが電気的に絶縁されている。これにより、燃料電池スタック1を構成している各電極とスタック締結部品51とが接触して短絡する確率が大幅に低減できるため、信頼性の高い燃料電池を実現できる。
<第3実施形態>
図7は第3実施形態の燃料電池の外観の斜視図、図8は燃料電池スタックの縦断面、図9はエンドプレート締結部の拡大図である。図8には図7におけるC面の断面図が示される。第3実施形態の燃料電池92Bは、第2実施形態のスタック締結ネジ51の挿入端の封止構造を変更して性能を高めたもので、スタック締結ネジ5の端部に封止ネジ82を配置している。これ以外は第2実施形態と同様に構成されるので、図2と共通する構成には共通の符号を付して詳細な説明を省略する。
図7に示すように、スタック締結ネジ51は、燃料電池スタック1を貫通して複数段の発電セル3を締結し、外部燃料タンク2の反対側のエンドプレート4の上にネジ頭51aを配置する。
図8に示すように、スタック締結ネジ51のネジ頭51aとエンドプレート4とが対峙する面にOリング81を挟み込んで封止構造としている。一方、スタック締結ネジ51が外部燃料タンク2側のエンドプレート4を貫通した側では、スタック締結ネジ51が封止ネジ82に組み立てられる。封止ネジ82とエンドプレート4とが対峙する面にOリング81を挟み込んで封止構造としている。
図9に示すように、封止ネジ82の挿入端をスタック締結ネジ51にねじ込むことで、燃料電池スタック1(図7)に圧縮力を加える。その際、Oリング81がスタック締結ネジ51とスタック締結ネジ挿入部31a、31c(図5、図6)との隙間にある水素ガスがエンドプレート4部から漏洩することを防止する。
また、封止ネジ82の一部に外部燃料タンク2からの燃料流路(不図示)と連結される燃料取入口83を設けることで、安価に燃料電池スタック1内に燃料を補給することが可能となる。
なお、ここでは、気体燃料に水素ガスを用いているが、固体高分子形燃料電池で反応が可能な燃料ならば何でも良く、メタノール等でも実施可能である。
さらに、スタック締結ネジ51の表面に電気的絶縁処理を施すことで、スタック締結ネジ51とセパレータ6およびエンドプレート4が接触してショートするようなことのない燃料電池スタック1を構成することが可能となる。
<第4実施形態>
図10は第4実施形態の燃料電池における燃料極の水平断面図、図11は酸化剤極の水平断面図である。第4実施形態は、第2実施形態の内部構造のみ変更して性能を高めており、図10は図2中の燃料極の断面であるA面の断面図、図11は図2中の酸化剤極の断面であるB面の断面図である。第4実施形態は、表面に絶縁層を形成したスタック締結ネジ51に軸方向に連続した溝構造が形成されている。それ以外の構成は第2実施形態と同様であるので、図2〜図4と共通する構成には共通の符号を付して詳細な説明を省略する。
図10に示すように、第4実施形態では、スタック締結ネジ51の外周の一部に、ネジ長さ全域に渡って切り欠き部93を設けたものである。切り欠き部93の切り欠き形状は、安価で簡単に加工できるものならば良く、ここでは、ネジ長さ全体に渡って幅0.5mm、深さ0.8mmの二等辺三角形断面のV字溝を加工した。
これにより、第2実施形態よりもスタック締結部品挿入部31a、31cを通じた燃料供給に係る流路断面積が拡大されるため、流路抵抗が小さくなり、燃料電池スタック1が大電流を発生した際も十分な水素ガスの供給が可能になる。
切り欠き部断面は、必ずしも均一でなくても良く、切り欠き大きさを該当する発電セル3により変化させることで、各発電セル3への燃料の流路抵抗を調整することも可能である。これにより、燃料の供給流路抵抗が均一の場合、上流下流で燃料供給が不均一となり、複数の発電セル3の発電量がばらつくことを抑制することができる。よって、安定した出力が得られる燃料電池92を実現できる。
第4実施形態の燃料電池では、スタック締結部品52に燃料供給経路機能を持つ切り欠き部93がある。これにより、第2実施形態よりも流路抵抗の低い燃料供給経路を安価で簡易に実現できるため、燃料電池が高出力を発生した際に燃料供給による出力の律速が発生しにくい。
<開発の経緯>
従来、小型の電気機器を持ち運んで使用するためには、種々の一次電池、二次電池が使用されてきた。しかし、最近の小型電気機器の高性能化に伴い、消費電力が大きくなり、一次電池では、小型軽量で、十分なエネルギーを供給できなくなっている。一方、二次電池においては、繰り返し充電して使用できるという利点はあるものの、一回の充電で使用できるエネルギーは一次電池よりも更に少ない。そして、二次電池の充電の為には、別の電源が必要である上、充電には通常数十分から数時間かかり、いつでもどこでもすぐに使用できる様にするということは困難である。今後、電気機器のますますの小型、軽量化が進み、ワイヤレスのネットワーク環境が整うことにより、機器を持ち運んで使用する傾向が高まる中で、従来の一次電池、二次電池では機器の駆動に十分なエネルギーを供給することは困難である。
このような問題の解決策として、小型の燃料電池が注目されている。燃料電池は従来、大型の発電機、自動車用の駆動源として開発が進められてきた。これは燃料電池が、従来の発電システムに比べて、発電効率が高く、しかも廃棄物がクリーンであることが主な理由である。
一方、燃料電池が小型電気機器の駆動源として有用な理由に、体積当たり、重量当たりの供給可能なエネルギー量が従来の電池に比べて、数倍から十倍近くであることが挙げられる。さらに、燃料のみを交換すれば連続して使用が可能であるため、他の二次電池の様に充電に時間がかかることもない。
燃料電池には、様々な方式のものが発明されているが、小型電気機器、とりわけ持ち運びして使用する機器に対しては、固体高分子型燃料電池が適している。これは、常温に近い温度で使用でき、また、電解質が液体ではなく固体であるので、安全に持ち運べるという利点を有しているためである。
小型電気機器用の燃料電池の燃料としては、従来メタノールが使用されてきた。これは、メタノールが保存しやすく、また入手しやすい燃料であることが主な理由であった。しかし、メタノールを使用したダイレクトメタノール型の燃料電池は、出力が小さいという原理的な欠点がある。燃料のメタノールが高分子電解質膜を透過して酸化剤極側で酸素と直接反応してしまうクロスオーバー現象や、反応で生成する一酸化炭素が電極触媒を被毒してしまうという問題もある。
また、燃料が液体であるため、高分子電解質膜全体に均一に燃料であるメタノールを供給するためには、燃料タンクを燃料電池スタックよりも高い位置に配置する必要がある。燃料供給経路の抵抗が高くならないように、十分な断面積の燃料供給経路を確保する必要がある。液体燃料をポンプで強制循環させる場合は、この制約を受けないが、ポンプ搭載によるシステム全体の体積増加や、ポンプ駆動の電力消費に起因する発電効率低下などの問題もある。
体積当りで大きな出力を出す燃料電池には、水素ガスを気体燃料として利用するのが最適である。しかし、水素ガスは常温で気体であり、小型の燃料タンクの中に高密度に水素を貯蔵することは非常に困難である。
水素ガスを圧縮して高圧ガスとして保存する場合、圧力を200気圧まで高めても体積水素密度は18mg/cm程度である。高圧の燃料タンクを安全に扱うためには、燃料タンクの肉厚を大きくする必要があるので小型化、軽量化に向かない。
水素ガスを低温液化して液体として貯蔵する場合、高密度な保存が可能であるが、水素を液化するために大きなエネルギーが必要である。液体水素が自然気化して、漏れ出すことも問題である。
水素吸蔵合金を使用して水素を貯蔵する場合、体積ベースでの吸蔵量は大きいが、水素吸蔵合金の比重が大きいため、重量ベースでは、2wt%程度の水素しか吸蔵できないので、燃料タンクが重たくなる。
メタノールやガソリンなどを燃料タンクに積み、改質して水素に変換し使用する場合、改質反応は100℃以上の高温であること、改質器が必要となることから、小型電気機器用には向かない。
そこで、水素ガスを高密度に貯蔵するために、炭素系材料を使用する方法が注目されている。炭素系材料にはカーボンナノチューブ、グラファイトナノファイバー、カーボンナノホーンなどがある。これらの炭素系材料では、重量当たり約10wt%の水素を吸蔵可能である。これにより、例えばデジタルカメラ用の電源として使用する場合、従来のリチウムイオン電池を用いた場合に比べ、3〜5倍程度の回数の撮影が可能である。
気体燃料である水素の吸蔵に炭素系材料を使用した場合、十分な吸蔵量を得るためには、燃料タンク内の圧力を数MPaにする必要がある。一方、酸化剤極側の酸化剤としては外気を利用するため、その圧力は約0.1MPa(1気圧)程度である。発電セルにおいて、酸化剤と燃料との圧力差が大きいと、発電セルに応力が発生し、破損し易くなる。従って、水素ガスは、発電セルに供給される以前に約0.1MPa(1気圧)程度まで減圧されている必要がある。
水素ガスを大気中の酸素と反応させる燃料電池が特許文献1、2に示される。特許文献1に示される燃料電池では、発電セル内に燃料ガス導入口を配置し、発電セル内に設けられた燃料ガス導入路を通じたガス拡散により発電セル全体に瞬時に燃料供給できる。しかし、発電セル面内に酸化剤、燃料流路を、発電セル外部に燃料電池スタック締結部品を配置するため、それぞれの区画分割し、シールするのためのシール面積を必要とする。そのため、燃料電池スタックを小型化する際に障害となっていた。
また、特許文献2に示される燃料電池では、発電セル中央部に配置されたスタック締結部品である燃料分配マニホルドの内部に中心孔を形成している。このため、燃料分配マニホルドにネジ加工、面取り加工、穴加工、ブローチ加工等多数の加工が必要なためコスト低減の妨げとなっていた。
すなわち、従来の小型燃料電池は、大型燃料電池の構造を小型化して構成されたものが多く、小型化する際に各部が最適化されていなかった。そのため、同じ出力でもリチウム電池に比較して体積が大きく、小型高容量電池とすることは困難であった。
特許文献1に示されるように発電セル内の燃料流路を特殊な形状にした場合、小型部品に多くの加工プロセスが必要となり、高い加工、組立精度を求められるため、安価な提供が難しかった。また、スタック締結部品と燃料流路が独立していると、それぞれの区画を独立させるためのシール部材配置部分が必要なため、小型化の妨げの要因となっていた。
特許文献2に示されるように発電セルの中心に燃料分配マニホルドを配置する場合、1つのマニホルドに穴加工、ネジ加工、面取り加工等多種の加工を施す必要があるためコスト低減が難しい。
<発明との対応>
第1実施形態の燃料電池92は、膜電極接合体8の一方の面側に配置されて大気から隔離された燃料極室32と、膜電極接合体8の他方の面側に配置されて大気に連通した酸化剤取入口10とが積み重ね方向に配置されている。燃料電池92は、膜電極接合体8の発電領域の外側位置で酸化剤取入口10の厚みを支持し、内側に前記積み重ね方向のスタック締結部品挿入部31cを有する酸化剤極外囲部材9を有する。燃料極室32と酸化剤取入口10とを前記積み重ね方向に圧縮付勢するスタック締結部品5が、スタック締結部品挿入部31cに配置されている。そして、大気から隔離して燃料極室32に連通させたスタック締結部品挿入部31cが発電領域を挟む平面位置に一対以上配置されている。スタック締結部品5は、すべての発電セル3と一対のエンドプレート4とを貫通して、燃料電池スタック1を組み立てている。
燃料電池92によれば、発電セル3を締結して燃料電池スタックを組み立てるためのスタック締結部品挿入部31cを、各段の燃料極室32に対する燃料供給経路として利用できるので、燃料極室32の内側にも外側にも独立した燃料供給経路を設ける必要が無い。
また、スタック締結部品挿入部31cが発電領域を挟んで配置されるので、発電領域の外側を大気から隔離する燃料極シール7に、酸化剤極外囲部材9のスタック締結部品挿入部31cと連通する燃料極室32側のスタック締結部品挿入部31aを形成できる。燃料極シール7に締結圧力を負担させることにより、燃料極室32の中空部分に不必要な圧力を及ぼすことなく、発電セル3を強固に締結できる。発電領域を挟む一対のスタック締結部品5によって発電セル3が両持ち式に締結されるので、小さな締結力、燃料極室32の薄い燃料極シール7、発電セル3の小さな曲げ強度でも燃料極室32に大きな耐圧性と密封性とを付与できる。
燃料極室32の外壁である燃料極シール7に燃料極室32側のスタック締結部品挿入部31aを形成すれば、少なくとも燃料極室32側のスタック締結部品挿入部31aの壁厚分、発電領域の面積を外側へ拡張できる。膜電極接合体8に燃料供給経路用の貫通孔を形成する必要が無い。燃料極室32の燃料極シール7のシール構造と燃料極室32側のスタック締結部品挿入部31aのシール構造とを無理なく連続させて一体化できる。
従って、薄い燃料極シール7の内側で燃料極室32の平面全体を膜電極接合体8を介して酸化剤取入口10に対向させて発電領域とする設計上の選択が可能になる。燃料極室32の外壁である燃料極シール7の外側に燃料供給経路や発電セル3の締結構造を配置する必要も無い。これにより、燃料供給経路や発電セル3の締結構造を含む発電セル3の占有面積に占める発電領域の割合は、特許文献1、2に示される構造に比較して大きくできる。
従って、少ない材料、簡単な部品加工、少ない部品点数、低い組み立て精度、小さな面積でも、大きな発電領域と大きな強度とを確保した高出力で出力安定性も高い燃料電池92を実現できる。これにより、小型軽量安価で高品質の燃料電池92を提供できる。
燃料電池92は、発電領域を挟んで一対配置されたスタック締結部品挿入部31aの一方から他方へ向かう燃料流路が燃料極室32に形成されている。従って、燃料極室内に水素ガスの流れが形成されて窒素等の不純物ガスが蓄積しにくい。
燃料電池92は、酸化剤極外囲部材9は、酸化剤取入口10の四隅で酸化剤取入口10の厚みを保持し、四隅の一方の対角線に位置する一対のスタック締結部品挿入部31bは、燃料極室32から隔離されている。従って、スタック締結部品挿入部31bを用いて、締結専用のスタック締結部品5を配置できる。
燃料電池92の酸化剤取入口10は、四隅の酸化剤極外囲部材9の間で四方向の側面側を大気に連通させている。
ただし、酸化剤極外囲部材9は各々独立した部材とする必要は無く、凹凸の凸部分で膜電極接合体8に接する一体の部材としてもよい。発電領域に相当する開口を形成した発電セル3と同一平面形状の板材に複数の凸部分を一体に支持させて膜電極接合体8を板材とセパレータ6との間に挟み込む構成としてもよい。
図12は酸化剤極外囲部材9の変形例の説明図である。図12に示すように、酸化剤取入口10Bをまたぐ下駄状の酸化剤極外囲部材9Bは、図2に示すセパレータ6、燃料極シール7を一体に形成している。酸化剤極外囲部材9Bの片面に凹所を形成して燃料極室32Bとしているので、酸化剤極外囲部材9Bと膜電極接合体8とを交互に積み重ねて複数段の発電セルを形成できる。酸化剤極外囲部材9Bの下駄の歯に相当して対向する2辺に燃料極室32Bと連通したスタック締結部品挿入部31aを配置している。すなわち、酸化剤極外囲部材9は、膜電極接合体8の反対側でセパレータ6に接続した一体型形状、さらに燃料極シール7に相当する凹所を厚めのセパレータ6に形成した一体構造としてもよい。
燃料電池92のスタック締結部品5は、金属材料で形成されて、スタック締結部品挿入部31a、31cに対して非接触に配置される。スタック締結部品5の前記積み重ね方向における少なくとも一端側に、電気的な絶縁状態で締結力を支持する絶縁支持構造を有する。これにより、スタック締結部品5を介した燃料電池スタック1の出力端子間の短絡を防止できる。
なお、酸化剤極外囲部材9が絶縁材料で形成されている場合、スタック締結部品5を金属材料で形成してスタック締結部品挿入部31cの内壁面に接触して配置してもよい。ただし、燃料電池スタック1の出力端子間の短絡を防止するために、スタック締結部品5の前記積み重ね方向における少なくとも一端側に、電気的な絶縁状態で締結力を支持する絶縁支持構造を有することが望ましい。
第3実施形態の燃料電池92Bは、積み重ねた複数の発電セル3の両端に配置されて発電セル3を積み重ね方向に押圧する一対のエンドプレート4を備える。絶縁支持構造は、エンドプレート4を貫通したスタック締結部品51の一端を、エンドプレート4の外側で、密封状態にて着脱可能に保持する封止ネジ82を有する。
燃料電池92Bは、燃料極室32に連通したスタック締結部品挿入部31cの内壁面とスタック締結部品5との間隔が、酸化剤極外囲部材9を隔てた一対の発電セル3を連絡する燃料供給経路である。
第4実施形態では、燃料極室32に連通したスタック締結部品挿入部31cに配置されたスタック締結部品52は、軸方向に連続した切り欠き部93を有する。
第1実施形態の燃料電池92は、発電セル3と平面形状を揃えて積み重ねられ、燃料極室32に連通したスタック締結部品挿入部31cに気体燃料を供給する燃料タンクを備える。
第1実施形態の燃料電池を装着したデジタルカメラの説明図である。 第1実施形態の燃料電池の外観の斜視図である。 燃料極の水平断面図である。 酸化剤極の水平断面図である。 第2実施形態の燃料電池における燃料極の水平断面図である。 酸化剤極の水平断面図である。 第3実施形態の燃料電池の外観の斜視図である。 燃料電池スタックの縦断面である。 エンドプレート締結部の拡大図である。 第4実施形態の燃料電池における燃料極の水平断面図である。 酸化剤極の水平断面図である。 間隔保持部材の変形例の説明図である。
符号の説明
1 燃料電池スタック
2 外部燃料タンク
3 発電セル
4 エンドプレート
5、51、52 締結部材(スタック締結部品、スタック締結ネジ)
6 セパレータ
7 燃料極シール
8 固体電解質層(膜電極接合体)
9 間隔保持部材(酸化剤極外囲部材)
10 酸化剤供給空間(酸化剤取入口)
31a、31c 燃料供給経路を兼ねた貫通孔(スタック締結部品挿入部)
31b 対角線に位置する貫通孔(スタック締結部品挿入部)
32 燃料供給空間(燃料極室)
81 封止部材(Oリング)
82 保持部材(封止ネジ)
83 燃料取入口
91 デジタルカメラ
92 燃料電池
93 溝構造(切り欠き部)

Claims (9)

  1. 固体電解質層の一方の面側に配置されて大気から隔離された燃料供給空間と、前記固体電解質層の他方の面側に配置されて大気に連通した酸化剤供給空間と、が積み重ね方向に配置された発電セルを有する燃料電池において、
    前記固体電解質層の発電領域の外側位置で前記酸化剤供給空間の厚みを支持し、内側に前記積み重ね方向の貫通孔を有する間隔保持部材と、
    前記貫通孔に配置されて、前記燃料供給空間と前記酸化剤供給空間とを前記積み重ね方向に圧縮付勢する締結部材と、を備え、
    大気から隔離して前記燃料供給空間に連通させた前記貫通孔が前記発電領域を挟む平面位置に一対以上配置されていることを特徴とする燃料電池。
  2. 前記発電領域を挟んで一対配置された前記貫通孔の一方から他方へ向かう燃料流路が前記燃料供給空間に形成されていることを特徴とする請求項1記載の燃料電池。
  3. 前記間隔保持部材は、前記酸化剤供給空間の四隅で前記厚みを保持し、
    前記四隅の一方の対角線に位置する一対の前記貫通孔は、前記燃料供給空間から隔離されていることを特徴とする請求項2記載の燃料電池。
  4. 前記締結部材は、金属材料で形成されて、前記貫通孔に対して非接触に配置され、
    前記締結部材の前記積み重ね方向における少なくとも一端側に、電気的な絶縁状態で締結力を支持する絶縁支持構造を有することを特徴とする請求項2または3記載の燃料電池。
  5. 前記間隔保持部材が絶縁材料で形成され、
    前記締結部材は、金属材料で形成されて、前記貫通孔の内壁面に接触して配置され、
    前記締結部材の前記積み重ね方向における少なくとも一端側に、電気的な絶縁状態で締結力を支持する絶縁支持構造を有することを特徴とする請求項2または3記載の燃料電池。
  6. 積み重ねた複数の前記発電セルの両端に配置されて前記発電セルを前記積み重ね方向に押圧する一対のエンドプレート部材を備え、
    前記絶縁支持構造は、前記エンドプレート部材を貫通した前記締結部材の一端を、前記エンドプレート部材の外側で、密封状態にて着脱可能に保持する保持部材を有することを特徴とする請求項4または5記載の燃料電池。
  7. 前記燃料供給空間に連通した前記貫通孔の内壁面と前記締結部材との間隔が、前記間隔保持部材を隔てた一対の発電セルを連絡する燃料流路であることを特徴とする請求項2乃至6いずれか1項記載の燃料電池。
  8. 前記燃料供給空間に連通した前記貫通孔に配置された前記締結部材は、軸方向に連続した溝構造を有することを特徴とする請求項2乃至7いずれか1項記載の燃料電池。
  9. 前記発電セルと平面形状を揃えて積み重ねられ、前記燃料供給空間に連通した前記貫通孔に気体燃料を供給する燃料タンクを備えたことを特徴とする請求項2乃至8いずれか1項記載の燃料電池。
JP2006089248A 2006-03-28 2006-03-28 燃料電池 Expired - Fee Related JP5188031B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006089248A JP5188031B2 (ja) 2006-03-28 2006-03-28 燃料電池
US11/683,798 US20070231665A1 (en) 2006-03-28 2007-03-08 Fuel cell
CNB2007100918901A CN100539284C (zh) 2006-03-28 2007-03-28 燃料电池
US12/858,148 US7993790B2 (en) 2006-03-28 2010-08-17 Fuel cell with stacked fuel cell units, space holding member, and fastening member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089248A JP5188031B2 (ja) 2006-03-28 2006-03-28 燃料電池

Publications (2)

Publication Number Publication Date
JP2007265793A true JP2007265793A (ja) 2007-10-11
JP5188031B2 JP5188031B2 (ja) 2013-04-24

Family

ID=38559473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089248A Expired - Fee Related JP5188031B2 (ja) 2006-03-28 2006-03-28 燃料電池

Country Status (3)

Country Link
US (2) US20070231665A1 (ja)
JP (1) JP5188031B2 (ja)
CN (1) CN100539284C (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361127B2 (ja) * 2006-12-07 2013-12-04 キヤノン株式会社 燃料電池
US7914944B2 (en) * 2006-12-07 2011-03-29 Canon Kabushiki Kaisha Atmosphere open type fuel cell
US8753768B2 (en) * 2011-06-29 2014-06-17 Lite-On Technology Corporation Electrical connection structure for increasing the securing reliability and method of manufacturing the same, and battery pack structure
US11728496B2 (en) * 2021-03-09 2023-08-15 GM Global Technology Operations LLC Propulsion battery packs with integrated fuel tank mounting systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115736A (ja) * 1994-08-23 1996-05-07 Osaka Gas Co Ltd 燃料電池
JP2000123857A (ja) * 1998-10-14 2000-04-28 Fuji Electric Co Ltd 固体高分子型燃料電池
JP2000357531A (ja) * 1999-06-15 2000-12-26 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2001006715A (ja) * 1999-06-21 2001-01-12 Daihatsu Motor Co Ltd 燃料電池スタック
JP2001093546A (ja) * 1999-09-27 2001-04-06 Daihatsu Motor Co Ltd 燃料電池
JP2004192985A (ja) * 2002-12-12 2004-07-08 Sony Corp 燃料電池用セパレータ及びこれを用いた燃料電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484666A (en) * 1994-09-20 1996-01-16 Ballard Power Systems Inc. Electrochemical fuel cell stack with compression mechanism extending through interior manifold headers
ATE216137T1 (de) * 1997-02-11 2002-04-15 Fucellco Inc Brennstoffzellenstapel mit festen elektrolyten und deren anordnung
US6190793B1 (en) * 1997-07-16 2001-02-20 Ballard Power Systems Inc. Electrochemical fuel cell stack with an improved compression assembly
US6210823B1 (en) * 1998-08-19 2001-04-03 Matsushita Electric Industrial Co. Ltd. Polymer electrolyte fuel cell
US6194095B1 (en) * 1998-12-15 2001-02-27 Robert G. Hockaday Non-bipolar fuel cell stack configuration
JP3936095B2 (ja) 1999-03-31 2007-06-27 株式会社東芝 燃料電池
US6960401B2 (en) 2001-07-25 2005-11-01 Ballard Power Systems Inc. Fuel cell purging method and apparatus
JP3665769B2 (ja) * 2002-03-22 2005-06-29 大同メタル工業株式会社 セル分割型燃料電池
JP3616065B2 (ja) * 2002-03-22 2005-02-02 大同メタル工業株式会社 空気吸い込み式燃料電池
US6960402B2 (en) * 2002-06-28 2005-11-01 Advanced Energy Technology Inc. Perforated cylindrical fuel cells
JP3658390B2 (ja) * 2002-11-21 2005-06-08 大同メタル工業株式会社 空気吸込み式燃料電池
JP2006040641A (ja) * 2004-07-23 2006-02-09 Canon Inc 燃料電池装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08115736A (ja) * 1994-08-23 1996-05-07 Osaka Gas Co Ltd 燃料電池
JP2000123857A (ja) * 1998-10-14 2000-04-28 Fuji Electric Co Ltd 固体高分子型燃料電池
JP2000357531A (ja) * 1999-06-15 2000-12-26 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
JP2001006715A (ja) * 1999-06-21 2001-01-12 Daihatsu Motor Co Ltd 燃料電池スタック
JP2001093546A (ja) * 1999-09-27 2001-04-06 Daihatsu Motor Co Ltd 燃料電池
JP2004192985A (ja) * 2002-12-12 2004-07-08 Sony Corp 燃料電池用セパレータ及びこれを用いた燃料電池

Also Published As

Publication number Publication date
CN100539284C (zh) 2009-09-09
CN101055931A (zh) 2007-10-17
US20100310963A1 (en) 2010-12-09
US7993790B2 (en) 2011-08-09
US20070231665A1 (en) 2007-10-04
JP5188031B2 (ja) 2013-04-24

Similar Documents

Publication Publication Date Title
US8580458B2 (en) Fuel cell system with a cell unit and fuel tank unit in a housing and electronic device
EP1962358B1 (en) Fuel cell stack and fuel cell system having the same
US20050019643A1 (en) Fuel cell stack
JP6263638B2 (ja) セルシステムに関する組立方法及び配置
US7491454B2 (en) All-in-one type hybrid fuel cell system
JP7460323B2 (ja) モジュール式のベース活性領域を有する燃料電池
JP2012212678A (ja) 燃料電池
US20080299435A1 (en) Fuel cell
JP2006294366A (ja) 燃料電池装置
CN113383112A (zh) 压缩装置
JP2010027476A (ja) 燃料電池スタックとそれを用いた燃料電池
JP5188031B2 (ja) 燃料電池
JP4165876B2 (ja) 燃料電池スタック
US7758987B2 (en) Fuel cell system
US20060216568A1 (en) Fuel cell unit, fuel cell unit assembly and electronic equipment
JP5084201B2 (ja) 燃料電池のセル構造及び燃料電池スタック
CN113383113A (zh) 压缩装置
JP4643393B2 (ja) 燃料電池
JP5235581B2 (ja) 燃料電池セパレータ
JP2008010158A (ja) 燃料電池及び燃料電池を備える電子機器
KR20090068262A (ko) 연료 전지
JP4643394B2 (ja) 燃料電池
JP5361127B2 (ja) 燃料電池
JP2004281417A (ja) 燃料電池発電装置とそれを用いた装置
US20060051653A1 (en) Fuel cell system and stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090326

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20120125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees