JP2007263469A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2007263469A
JP2007263469A JP2006089189A JP2006089189A JP2007263469A JP 2007263469 A JP2007263469 A JP 2007263469A JP 2006089189 A JP2006089189 A JP 2006089189A JP 2006089189 A JP2006089189 A JP 2006089189A JP 2007263469 A JP2007263469 A JP 2007263469A
Authority
JP
Japan
Prior art keywords
water
pipe
refrigerant
heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006089189A
Other languages
Japanese (ja)
Inventor
Tetsuo Hosoki
哲郎 細木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2006089189A priority Critical patent/JP2007263469A/en
Publication of JP2007263469A publication Critical patent/JP2007263469A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger which heats water by heat exchange made between water and a refrigerant, and prevents scale from adhering to a part where hot water comes into contact to maintain the heat exchange performance. <P>SOLUTION: This heat exchanger 10 includes: a heat exchange part 1 for making heat exchange between water and a refrigerant; a water inflow pipe 6a for causing water to flow into the heat exchange part 1; a water outflow pipe 6b for causing water heat-exchanged by the refrigerant to flow out from the heat exchange part 1; a refrigerant inflow pipe 9a for causing the refrigerant to flow into the heat exchange part 1; and a refrigerant outflow pipe 9b for causing the refrigerant heat-exchanged by water to flow out from the heat exchange part 1. At least one of the water inflow part 6a and the water outflow part 6b has a flat part 7 provided with a set of flat surfaces formed along the pipe axial direction in a part thereof, a magnetic field generating means M is installed on the flat surfaces so that N pole and S pole are opposite to each other with the flat part 7 interposed between them, and the magnetic flux density of the magnetic field generating means M is 3,000 gauss or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水と冷媒を熱交換させ、特に、給湯、床暖房等の用途に使用される熱交換器に関する。   The present invention relates to a heat exchanger for exchanging heat between water and a refrigerant, and particularly used for applications such as hot water supply and floor heating.

最近、超臨界状態の二酸化炭素冷媒やフロン系冷媒により水が加熱される熱交換器が実用化され、給湯、床暖房等の用途に多用されるようになってきた。このような熱交換器は、貯湯タンクに貯めた水を熱交換部で加熱し、加熱された水は温水となって再び貯湯タンクに戻り、また、給湯の際には、貯湯タンクから温水が供給される。   Recently, a heat exchanger in which water is heated by a supercritical carbon dioxide refrigerant or a chlorofluorocarbon refrigerant has been put into practical use, and has come to be widely used in applications such as hot water supply and floor heating. In such a heat exchanger, the water stored in the hot water storage tank is heated in the heat exchanging section, and the heated water becomes warm water and returns to the hot water storage tank again. Supplied.

このような熱交換器においては、水は循環して加熱されるため、貯湯タンク内の水に含まれる炭酸化合物が濃縮され、通常のガス式の瞬間湯沸器に比べ、熱交換部、配管(水流入管、水流出管)及び貯湯タンクの内部に炭酸カルシウムを主体とするスケールが付着しやすくなるという問題があった。また、熱交換器の設置スペースが限定されることが多く、限られた体積でできるだけ高温の水を得られるよう、加熱される水の流速は一般に小さく設計されている。このため、熱交換器の水と接触する部分に炭酸カルシウムまたはこれを主体とするスケールが付着しやすくなる。   In such a heat exchanger, since water is circulated and heated, the carbonate compound contained in the water in the hot water storage tank is concentrated, and compared with a normal gas type instantaneous water heater, the heat exchange section, piping There has been a problem that scales mainly composed of calcium carbonate easily adhere to the inside of the (water inflow pipe, water outflow pipe) and hot water storage tank. In addition, the installation space for the heat exchanger is often limited, and the flow rate of the heated water is generally designed to be small so that water as hot as possible can be obtained with a limited volume. For this reason, calcium carbonate or a scale mainly composed of this easily adheres to the portion of the heat exchanger that comes into contact with water.

さらに、炭酸カルシウムの水への溶解度は水温が高いほど低下するため、水温が高くなる部分において炭酸カルシウムが特に析出しやすい。このため、水温が高温になる部分ほどスケール付着が発生しやすくなる。そして、一旦スケールが付着した部分では、付着したスケールの温度が高いこと、水の流速が小さいこと等からスケールの更なる付着が進み、スケールが厚く成長してしまう。このように形成されたスケールにより、熱交換効率の低下、配管における水通路の断面積減少による流通水量の低下、ポンプ圧の上昇、ポンプの消費電力増大等の問題が発生するため、熱交換器におけるスケール付着性の改善が求められている。   Furthermore, since the solubility of calcium carbonate in water decreases as the water temperature increases, calcium carbonate is particularly likely to precipitate in the portion where the water temperature increases. For this reason, scale adhesion tends to occur as the temperature of the water becomes higher. In the portion where the scale has once adhered, the scale further adheres due to the high temperature of the adhered scale and the low flow rate of water, and the scale grows thick. The scale formed in this way causes problems such as a decrease in heat exchange efficiency, a decrease in the amount of circulating water due to a decrease in the cross-sectional area of the water passage in the piping, an increase in pump pressure, and an increase in power consumption of the pump. There is a need for improvement in scale adhesion.

従来、水を冷却媒体または加熱媒体として循環して用いる熱交換器においては、炭酸カルシウム系スケールの防止のため、マレイン酸、アクリル酸、イタコン酸などを重合したカルボキシル基を有する重合体等のスケール防止剤が循環水に添加されている。   Conventional heat exchangers that circulate water as a cooling medium or a heating medium are scales such as polymers having carboxyl groups obtained by polymerizing maleic acid, acrylic acid, itaconic acid, etc. to prevent calcium carbonate scales. An inhibitor is added to the circulating water.

一方、飲用や風呂用の給湯水を加熱する熱交換器においては、その性質上、スケール防止剤を添加することができない。そのため、スケール防止剤の添加以外のスケール付着防止方法として、特許文献1では、熱交換器内面へのフロロシリコンまたはフッ素樹脂を被覆することが記載されている。また、特許文献2では、二重管式熱交換器において、外管の曲げ半径を該外管の内径の3倍以上とすることにより、スケールによる管の閉塞までの期間を延長することが記載されている。さらに、特許文献3では、冷却水が流通する管内にねじり板を回転自在に設け、該ねじり板により形成される乱流により、スケール付着を防止することが記載されている。
特開昭61−149794号公報(第2頁右上欄5行〜17行) 特開2005−69620号公報(段落0015) 実開平2−109190号公報(第3頁17行〜第4頁5行、第1図、第5図)
On the other hand, in a heat exchanger for heating hot water for drinking or bathing, a scale inhibitor cannot be added due to its nature. Therefore, as a method for preventing the adhesion of scale other than the addition of the scale inhibitor, Patent Document 1 describes that the inner surface of the heat exchanger is coated with fluorosilicone or a fluororesin. Patent Document 2 describes that in a double-tube heat exchanger, the bend radius of the outer tube is set to be three times or more the inner diameter of the outer tube, thereby extending the period until the tube is blocked by the scale. Has been. Further, Patent Document 3 describes that a torsion plate is rotatably provided in a pipe through which cooling water flows, and scale adhesion is prevented by turbulent flow formed by the torsion plate.
JP 61-149794 (2nd page, upper right column, lines 5 to 17) JP 2005-69620 A (paragraph 0015) Japanese Utility Model Laid-Open No. 2-109190 (page 3, line 17 to page 4, line 5, FIGS. 1 and 5)

しかしながら、特許文献1に記載の発明は、自動車のラジエーターのスケール付着を防止するためになされたものであり、炭酸カルシウムを主体とするスケールの防止に対しては効果がないものである。また、特許文献2に記載の発明は、スケール付着を積極的に防止するものではなく、スケールが付着することを前提として熱交換器の使用可能期間の延長を図るものである。実際には、水温が高くなる部分に炭酸カルシウムを主体とするスケールの付着が避けられず、それによる熱交換性能の低下、流通水量の低下等を防止することは難しい。さらに、特許文献3に記載の発明は、管内に回転可能なねじり板を設置するものであるが、二重管式伝熱管、管に曲がり部がある場合、管の内径が小さい場合には適用できず実用的ではない。   However, the invention described in Patent Document 1 has been made in order to prevent scale adhesion of a radiator of an automobile, and has no effect on prevention of scale mainly composed of calcium carbonate. Further, the invention described in Patent Document 2 does not actively prevent scale adhesion, but is intended to extend the usable period of the heat exchanger on the assumption that the scale adheres. Actually, the scale mainly composed of calcium carbonate is unavoidably attached to the portion where the water temperature is high, and it is difficult to prevent the heat exchange performance and the flow rate from decreasing due to this. Furthermore, the invention described in Patent Document 3 is to install a rotatable torsion plate in the pipe, but it is applicable when the double pipe heat transfer pipe, the pipe has a bent portion, or the inner diameter of the pipe is small. Not practical.

本発明は、上記問題を解決するためになされたものであり、その目的は、水と冷媒とを熱交換させて水を加熱する熱交換器において、温水が接触する部分にスケールが付着せず、熱交換性能が低下しない熱交換器を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent a scale from adhering to a portion where hot water contacts in a heat exchanger that heats water by exchanging heat between water and a refrigerant. An object of the present invention is to provide a heat exchanger in which the heat exchange performance does not deteriorate.

前記課題を解決するため、請求項1の発明は、水と冷媒を熱交換する熱交換部と、前記水を前記熱交換部に流入する水流入管と、前記冷媒で熱交換された水を前記熱交換部から流出する水流出管と、前記冷媒を前記熱交換部に流入する冷媒流入管と、前記水で熱交換された冷媒を前記熱交換部から流出する冷媒流出管とを備える熱交換器であって、前記水流入管および前記水流出管の少なくとも一方の管が、その一部に管軸方向に沿って1組の扁平面が形成された扁平部を有し、前記扁平部を挟んでN極とS極が対向するように前記扁平面に磁場発生手段が設置され、前記磁場発生手段の磁束密度が3000ガウス以上である熱交換器として構成したものである。   In order to solve the above-mentioned problem, the invention of claim 1 is directed to a heat exchange part that exchanges heat between water and a refrigerant, a water inflow pipe that flows the water into the heat exchange part, and water that is heat-exchanged by the refrigerant. Heat exchange comprising a water outflow pipe flowing out from the heat exchange section, a refrigerant inflow pipe through which the refrigerant flows into the heat exchange section, and a refrigerant outflow pipe through which the refrigerant heat-exchanged with the water flows out from the heat exchange section And at least one of the water inflow pipe and the water outflow pipe has a flat portion in which a set of flat surfaces is formed along a tube axis direction at a part thereof, and sandwiches the flat portion. The magnetic field generating means is installed on the flat surface so that the N pole and the S pole face each other, and the magnetic flux density of the magnetic field generating means is configured as a heat exchanger of 3000 gauss or more.

このように構成すれば、水流入管および水流出管の少なくとも一方の管に、管の扁平部を挟んで磁場発生手段が設置されていることによって、管内部を流れる水に直角方向の磁場が作用し、熱交換器内部を循環する水に磁場が付与される。それにより、循環する水にCa2+、およびCO3 2-イオンが含まれていても、水に可溶であるCa(HCO)が生成し、スケールの原因であるCaCO(炭酸カルシウム)の生成が防止される。その結果、炭酸カルシウムを主体とするスケールの熱交換器内部への付着が抑制される。また、熱交換部へ磁場発生手段を設置する必要がなくなるため、熱交換部の設計の自由度が高くなる。 With this configuration, the magnetic field generating means is installed on at least one of the water inflow pipe and the water outflow pipe with the flat portion of the pipe interposed therebetween, so that a perpendicular magnetic field acts on the water flowing inside the pipe. Then, a magnetic field is applied to the water circulating inside the heat exchanger. As a result, even if Ca 2+ and CO 3 2- ions are contained in the circulating water, Ca (HCO 3 ) that is soluble in water is generated, and CaCO 3 (calcium carbonate), which is the cause of scale, is generated. Generation is prevented. As a result, the adhesion of the scale mainly composed of calcium carbonate to the inside of the heat exchanger is suppressed. In addition, since it is not necessary to install a magnetic field generating means in the heat exchange part, the degree of freedom in designing the heat exchange part is increased.

請求項2の発明は、前記扁平部の内表面に多数のフィンが形成されている熱交換器として構成したものである。
このように構成すれば、扁平部の内表面にフィンが形成されていることによって、フィン先端間に磁場が発生し、磁場のN極とS極との間の距離が短くなり、熱交換器内部を循環する水に付与される磁場が強くなる。
The invention of claim 2 is configured as a heat exchanger in which a large number of fins are formed on the inner surface of the flat portion.
If comprised in this way, since the fin is formed in the inner surface of a flat part, a magnetic field will generate | occur | produce between fin tips, the distance between the N pole of a magnetic field, and a S pole will become short, and a heat exchanger The magnetic field applied to the water circulating inside becomes stronger.

請求項3の発明は、前記扁平部の内表面に磁性を有する金属または合金の皮膜が形成されている熱交換器として構成したものである。
このように構成すれば、扁平部の内表面に形成された皮膜の磁性によって、扁平部の内部の磁場の減衰が少なくなり、熱交換器内部を循環する水に付与される磁場が強くなる。
The invention of claim 3 is configured as a heat exchanger in which a film of magnetic metal or alloy is formed on the inner surface of the flat portion.
If comprised in this way, attenuation | damping of the magnetic field inside a flat part will decrease with the magnetism of the film | membrane formed in the inner surface of a flat part, and the magnetic field provided to the water which circulates the inside of a heat exchanger will become strong.

請求項1に係る熱交換器においては、水と冷媒とを熱交換させる熱交換部に水を流入する水流入管、および、熱交換された水を熱交換部から流出する水流出管の少なくとも一方の管に扁平部を設け、その扁平部を挟んで磁束密度が3000ガウス以上の磁場発生手段を設置することによって、水と冷媒とを熱交換させる熱交換部、水流出管、熱交換された水(温水)を貯留する貯湯タンク等の温水が接触する部分へのスケール付着を半永久的に防止することが可能になる。   In the heat exchanger according to claim 1, at least one of a water inflow pipe that flows water into a heat exchange section that exchanges heat between water and a refrigerant, and a water outflow pipe that flows out heat-exchanged water from the heat exchange section. A heat exchanging unit, a water outflow pipe, and a heat exchanging unit for heat exchange between water and a refrigerant are provided by providing a flat part in the pipe and installing magnetic field generation means having a magnetic flux density of 3000 gauss or more across the flat part. It becomes possible to semi-permanently prevent the scale from adhering to a portion where hot water contacts, such as a hot water storage tank for storing water (hot water).

また、水と冷媒とを熱交換させる熱交換部は、熱交換器の形式により二重管形式、冷媒管と水管とを接触させる形式、冷媒管と内部を水が流れる箱体とを接触させる形式等、種々の形式があるが、これらの熱交換部に磁場発生手段を設置する必要がなく、例えば、水流入管に磁場発生手段を設置すればよいため、熱交換部の設計の自由度が高くなり、熱交換部(熱交換器)のコンパクト化に貢献する。   In addition, the heat exchanging section for exchanging heat between water and the refrigerant is a double pipe type depending on the type of the heat exchanger, a type in which the refrigerant pipe and the water pipe are brought into contact, and a refrigerant pipe and a box through which water flows inside. There are various types, such as types, but it is not necessary to install magnetic field generating means in these heat exchange units. For example, it is only necessary to install magnetic field generating means in the water inflow pipe. It becomes higher and contributes to the downsizing of the heat exchanger (heat exchanger).

請求項2に係る熱交換器においては、磁場発生手段を設置する扁平部の内表面に多数のフィンが形成されていることによって、対向するフィン先端間の磁場が強くなり、スケール付着の防止効果がより一層大きくなる。   In the heat exchanger according to claim 2, since a large number of fins are formed on the inner surface of the flat portion where the magnetic field generating means is installed, the magnetic field between the fin tips facing each other becomes stronger, and the effect of preventing scale adhesion is achieved. Becomes even larger.

請求項3に係る熱交換器においては、磁場発生手段を設置する扁平部の内表面に磁性を有する金属または合金の皮膜が形成されていることによって、水に付与される磁場の影響を強くするため、スケール付着の防止効果がより一層大きくなる。   In the heat exchanger according to claim 3, the effect of the magnetic field applied to the water is strengthened by forming a magnetic metal or alloy film on the inner surface of the flat portion where the magnetic field generating means is installed. Therefore, the effect of preventing scale adhesion is further increased.

また、本発明の熱交換器においては、熱交換部および水流出管のスケール付着を有効に防止することができると共に、貯湯タンクでのスケール付着も防止されるため、長期間使用による熱交換効率の低下、水通路の断面積減少による流通水量の低下、ポンプ圧の上昇、ポンプの消費電力増大等の問題の発生が防止され、省エネルギーに貢献することができる。   Further, in the heat exchanger of the present invention, scale adhesion of the heat exchanging part and the water outflow pipe can be effectively prevented, and scale adhesion in the hot water storage tank is also prevented. Occurrence of problems such as a decrease in water flow rate, a decrease in the amount of circulating water due to a reduction in the cross-sectional area of the water passage, an increase in pump pressure, and an increase in power consumption of the pump can be prevented.

以下に本発明の実施形態について図面を参照して詳細に説明する。
図1は本発明の熱交換器を使用した給湯システムを模式的に示す図、図2(a)は水流入管(水流出管)の管軸方向に沿った断面図、(b)は(a)のX1−X1線における端面図、(c)は扁平部の他の形態を示す管軸方向に沿った断面図、図3(a)は扁平部の他の形態を示す管軸方向に沿った断面図、(b)は(a)のX2−X2線における端面図、図4は図3(b)のフィンの部分拡大図、図5(a)は熱交換部の一例を示す部分破断斜視図、(b)は(a)の小径管の他の形態を示す管軸直交断面図、図6(a)は熱交換部の他の形態を示す側面図、(b)は(a)のX3−X3線における端面図、図7(a)、(b)は巻回部を有する熱交換部の斜視図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a view schematically showing a hot water supply system using the heat exchanger of the present invention, FIG. 2 (a) is a cross-sectional view along the tube axis direction of a water inflow pipe (water outflow pipe), and FIG. ) In the X1-X1 line, (c) is a cross-sectional view along the tube axis direction showing another form of the flat part, and FIG. 3 (a) is along the tube axis direction showing another form of the flat part. (B) is an end view taken along line X2-X2 of (a), FIG. 4 is a partially enlarged view of the fin of FIG. 3 (b), and FIG. 5 (a) is a partially broken view showing an example of a heat exchange section. The perspective view, (b) is a cross-sectional view perpendicular to the tube axis showing another form of the small-diameter pipe of (a), FIG. 6 (a) is a side view showing another form of the heat exchange section, and (b) is (a). FIG. 7: (a), (b) is a perspective view of the heat exchange part which has a winding part.

<熱交換器>
図1に示すように、本発明の熱交換器10は、例えば、給湯システム30に使用されるもので、水ユニット21の貯湯タンク23から供給される水を、冷媒ユニット22から供給される冷媒(図1ではCO2)との熱交換によって湯(温水)となし、その湯(温水)を貯湯タンク23に戻している。
<Heat exchanger>
As shown in FIG. 1, the heat exchanger 10 of the present invention is used in, for example, a hot water supply system 30, and water supplied from a hot water storage tank 23 of a water unit 21 is supplied from a refrigerant unit 22. The hot water (warm water) is made by heat exchange with (CO 2 in FIG. 1), and the hot water (warm water) is returned to the hot water storage tank 23.

熱交換器10は、熱交換部1と、水流入管6aと、水流出管6bと、冷媒流入管9aと、冷媒流出管9bとを備えるものである。以下、各構成について説明する。   The heat exchanger 10 includes a heat exchange unit 1, a water inflow pipe 6a, a water outflow pipe 6b, a refrigerant inflow pipe 9a, and a refrigerant outflow pipe 9b. Each configuration will be described below.

(1)熱交換部
本発明の熱交換器10に適用できる熱交換部1には、以下のような形態のものがあるが、冷媒により水が加熱される形式の熱交換部であれば形態を問わず適用が可能である。なお、水と熱交換する冷媒としては二酸化炭素(CO2)、フロン系冷媒等がある。
(1) Heat Exchanger The heat exchanger 1 that can be applied to the heat exchanger 10 of the present invention includes the following forms, but any form can be used as long as the heat exchanger is of a type in which water is heated by a refrigerant. It can be applied regardless of Note that the refrigerant that exchanges heat with water includes carbon dioxide (CO 2 ), a fluorocarbon refrigerant, and the like.

(二重管式熱交換部)
図5(a)に示すように、大径管2の内部に小径管3Aが挿入され、大径管2内を流れる媒体W(水)と小径管3A内を流れる冷媒Xとが熱交換する形式の熱交換部1Aであり、冷媒として超臨界のCO等を使用する場合、小径管3A内にCOを流通させ、大径管2内(小径管3Aの外側の領域)に水を流通させることが通常行われる。
(Double tube heat exchange part)
As shown in FIG. 5A, the small diameter pipe 3A is inserted into the large diameter pipe 2, and the medium W (water) flowing in the large diameter pipe 2 and the refrigerant X flowing in the small diameter pipe 3A exchange heat. When the superheated CO 2 or the like is used as a refrigerant in the heat exchange section 1A of the type, CO 2 is circulated in the small diameter pipe 3A, and water is supplied into the large diameter pipe 2 (region outside the small diameter pipe 3A). Distribution is usually performed.

熱交換部1Aの伝熱量を大きくするには、小径管3Aの数を2本以上とすること、大径管2内を流れる媒体Wと小径管3A内を流れる冷媒Xの流れの向きを逆向き(対向流)にすることが望ましい。また、図示しないが、小径管3Aの内側または/および大径管2の内側に直線状/らせん状などの溝を設ける、小径管3Aの外側に直線状またはらせん状のフィンを設ける、大径管2または/および小径管3Aをコルゲート管にする等の方法により、管内の面積を増加させ、熱伝達を促進させてもよい。さらに、図示しないが、大径管内にバッフル材等を挿入して、流体(媒体W)の流れを乱すことにより、熱伝達を促進させてもよい。   In order to increase the heat transfer amount of the heat exchanging portion 1A, the number of the small diameter pipes 3A is set to two or more, and the flow direction of the medium W flowing in the large diameter pipe 2 and the flow of the refrigerant X flowing in the small diameter pipe 3A is reversed. It is desirable to set the direction (opposite flow). Further, although not shown in the drawing, a large diameter is provided in which a linear / spiral groove or the like is provided inside the small diameter pipe 3A or / and the large diameter pipe 2 or a linear or helical fin is provided outside the small diameter pipe 3A. The area in the tube may be increased to promote heat transfer by a method such as making the tube 2 or / and the small diameter tube 3A into a corrugated tube. Further, although not shown, heat transfer may be promoted by inserting a baffle material or the like into the large-diameter pipe to disturb the flow of the fluid (medium W).

また、腐食などにより小径管内が破れた場合は、管内の流体が大径管内の流体と混じり合うことから、これを避けるには小径管を検知構造を有する二重構造とすることが好ましい。具体的には、図5(b)に示すように、外管3aの内側に、外管3aより小さい外径を有する内管3bを、空間部4が形成されるように嵌合した小径管3Bとすることが好ましい。また、空間部4を形成するために、外管3aの内側または/および内管3bの外側に直線状/らせん状などの溝を設けることが好ましい。
なお、上記構成において、大径管2内と小径管3A、小径管3B(内管3b)内の流体を逆に、すなわち、大径管2内に冷媒X、小径管3A(内管3b)内に媒体Wを流してもよい。
Further, when the inside of the small-diameter pipe is torn due to corrosion or the like, the fluid in the pipe mixes with the fluid in the large-diameter pipe. Therefore, in order to avoid this, it is preferable that the small-diameter pipe has a double structure having a detection structure. Specifically, as shown in FIG. 5B, a small-diameter tube in which an inner tube 3b having an outer diameter smaller than that of the outer tube 3a is fitted inside the outer tube 3a so that a space 4 is formed. 3B is preferable. Moreover, in order to form the space part 4, it is preferable to provide a linear / spiral groove on the inner side of the outer tube 3a and / or the outer side of the inner tube 3b.
In the above configuration, the fluid in the large-diameter pipe 2 and the small-diameter pipe 3A and the small-diameter pipe 3B (inner pipe 3b) are reversed, that is, the refrigerant X and the small-diameter pipe 3A (inner pipe 3b) in the large-diameter pipe 2. The medium W may flow inside.

図7(a)、(b)に示すように、大径管2の少なくとも一部にらせん状に巻回した巻回部5A、渦巻状に巻回した巻回部5B等を設けて、熱交換部1Aのスペースを節約してもよい。なお、巻回部5A、5Bの巻回軸Yに対して直交する断面形状は、円形形状(図7(a)参照)、直線路とその直線路の両側に形成された半円状の湾曲路とからなる小判形状(図7(b)参照)であることが好ましい。   As shown in FIGS. 7A and 7B, a winding part 5A spirally wound around at least a part of the large-diameter tube 2, a winding part 5B spirally wound, and the like are provided. You may save the space of the exchange part 1A. The cross-sectional shape orthogonal to the winding axis Y of the winding portions 5A and 5B is a circular shape (see FIG. 7A), a straight path and a semicircular curve formed on both sides of the straight path. It is preferable that it is an oval shape (refer FIG.7 (b)) which consists of a road.

(冷媒管と水管が接触する形式の熱交換部)
この形式の熱交換部は、図6(a)、(b)に示すような大径管2の外側に設けた溝に小径管3Cが嵌合されている熱交換部1B、図示しないが大径管の外側に小径管がろう付けされている熱交換部等である。冷媒として超臨界のCO等を使用する場合、小径管3C内にCOを流通させ、大径管2内(小径管3Cの外側の領域)に水を流通させることが通常行われる。
(Heat exchange part in which refrigerant pipe and water pipe are in contact)
This type of heat exchanging part is a heat exchanging part 1B in which a small diameter pipe 3C is fitted in a groove provided outside the large diameter pipe 2 as shown in FIGS. 6 (a) and 6 (b). It is a heat exchanging part or the like in which a small diameter pipe is brazed to the outside of the diameter pipe. When supercritical CO 2 or the like is used as a refrigerant, it is usually performed that CO 2 is circulated in the small-diameter pipe 3C and water is circulated in the large-diameter pipe 2 (region outside the small-diameter pipe 3C).

熱交換部1Bの伝熱量を大きくするには、小径管3Cの数を2本以上とすること、大径管2内を流れる水と小径管3C内を流れる冷媒の流れの向きを逆向き(対向流)にすることが好ましい。また、図示しないが、小径管3Cの内側または/および大径管2の内側に直線状/らせん状などの溝を設ける等の方法により、管内の面積を増加させ、熱伝達性を促進させてもよい。また、図示しないが、大径管内にバッフル材等を挿入して、水の流れを乱すことにより、熱伝達を促進させてもよい。さらに、大径管2と小径管3Cの接触を長くして伝熱面積を増大させるために、大径管2の外側に小径管3Cをらせん状に配置することが好ましい。そして、前記した熱交換部1Aと同様に、熱交換部1Bの大径管2の少なくとも一部にらせん状、渦巻状等の巻回部を有することが、熱交換部1Bのスペース節約のために好ましい。   In order to increase the heat transfer amount of the heat exchanging section 1B, the number of the small diameter pipes 3C is set to two or more, and the direction of the flow of water flowing in the large diameter pipe 2 and the flow of the refrigerant flowing in the small diameter pipe 3C is reversed ( It is preferable to use a counter flow. Although not shown, by increasing the area in the tube and promoting heat transfer by a method such as providing a linear / spiral groove inside the small-diameter tube 3C or / and inside the large-diameter tube 2, etc. Also good. Although not shown, heat transfer may be promoted by inserting a baffle material or the like into the large-diameter tube to disturb the flow of water. Furthermore, in order to lengthen the contact between the large diameter pipe 2 and the small diameter pipe 3C and increase the heat transfer area, it is preferable to arrange the small diameter pipe 3C in a spiral shape outside the large diameter pipe 2. And like the above-mentioned heat exchanging part 1A, at least a part of the large-diameter pipe 2 of the heat exchanging part 1B has a winding part such as a spiral shape or a spiral to save space of the heat exchanging part 1B. Is preferable.

(箱型筐体と前記箱型筐体に管が接触する形式の熱交換部)
この形式の熱交換部は、図示しないが、例えば、箱型筐体に適当な寸法の管を巻き付けてろう付けし、箱型筐体内に水、管内に冷媒を流す組合せのものがある。また、箱型筐体内にバッフル材等を設けて、水の流路を定めてやるほうが熱交換効率が向上する。
(Heat exchange part in which the tube contacts the box-shaped housing and the box-shaped housing)
Although this type of heat exchange section is not shown in the figure, for example, there is a combination in which a tube of an appropriate size is wound around a box-shaped housing and brazed, and water is supplied into the box-shaped housing and a refrigerant is passed through the tube. In addition, heat exchange efficiency is improved by providing a baffle material or the like in the box-shaped housing and determining the flow path of water.

前記した大径管2、小径管3A、3B(外管3a、内管3b)、3C、筐体には、熱伝導性、曲げ加工性、ろう付け性、水、冷媒、設置環境等に対する耐食性、耐圧強度等が求められることから、銅または銅合金を用いることが好ましい。即ち、無酸素銅、脱酸銅等の銅、またはSn、P、Ni、Fe、Co、Zn、Zr、Cr、Ti、Mg、Mn、Si等より選択した元素を含み、前記特性を満足する銅合金より適当なものを選択してもよい。   The large diameter pipe 2, small diameter pipes 3A, 3B (outer pipe 3a, inner pipe 3b), 3C, and the casing have heat conductivity, bending workability, brazing property, corrosion resistance against water, refrigerant, installation environment, etc. From the viewpoint of pressure resistance and the like, it is preferable to use copper or a copper alloy. That is, it contains copper, such as oxygen-free copper and deoxidized copper, or an element selected from Sn, P, Ni, Fe, Co, Zn, Zr, Cr, Ti, Mg, Mn, Si, etc., and satisfies the above characteristics An appropriate material may be selected from copper alloys.

(2) 水流入管、水流出管
水流入管は、熱交換器の熱交換部に水を流入するための配管であり、水流出管は、熱交換部で熱交換された水(湯)を熱交換部から流出するための配管である。例えば、図1に示すように、給湯システム30において、水流入管6aは、水ユニット21の貯湯タンク23、水道管(図示せず)等より熱交換部1(1A、1B)に水を流入するための配管であり、水流出管6bは、熱交換された水(湯)を貯湯タンク23に流出するための配管である。そして、水流入管6aおよび水流出管6bは、熱交換部1(1A、1B)の大径管2(図5、図6参照)、および、箱型筐体(図示せず)に接合されている。なお、水流入管6aおよび水流出管6bの管形状は、大径管および箱型筐体と接合できれば特に限定されない。
(2) Water inflow pipe, water outflow pipe The water inflow pipe is a pipe for flowing water into the heat exchange part of the heat exchanger, and the water outflow pipe heats the water (hot water) heat-exchanged in the heat exchange part. It is piping for flowing out from the exchange part. For example, as shown in FIG. 1, in the hot water supply system 30, the water inflow pipe 6 a flows water into the heat exchange unit 1 (1 </ b> A, 1 </ b> B) from the hot water storage tank 23, water pipe (not shown) of the water unit 21. The water outflow pipe 6b is a pipe through which heat-exchanged water (hot water) flows out to the hot water storage tank 23. The water inflow pipe 6a and the water outflow pipe 6b are joined to the large-diameter pipe 2 (see FIGS. 5 and 6) of the heat exchange unit 1 (1A, 1B) and a box-shaped housing (not shown). Yes. The tube shapes of the water inflow tube 6a and the water outflow tube 6b are not particularly limited as long as they can be joined to the large diameter tube and the box-type housing.

図1、図2(a)、(b)に示すように、水流入管6aおよび水流出管6bは、その少なくとも一方の管が、その一部に管軸方向に沿って1組の扁平面7aが形成された扁平部7を有する。熱交換部1(1A、1B)の上流に設けられた水流入管6aが扁平部7を有することが、スケール付着防止には有利である。扁平部7を設ける理由は、後記する磁場発生手段M(磁石等)と水流入管6aまたは/および水流出管6bとの接触面積を増大させ、扁平部7の外面(扁平面7a)に設置した磁場発生手段MのN極とS極の間隔を小さくすることにより、より強い磁場が管内の水に伝わるようにするためである。   As shown in FIGS. 1, 2 (a), and 2 (b), at least one of the water inflow pipe 6a and the water outflow pipe 6b is a part of the flat surface 7a along the tube axis direction. The flat portion 7 is formed. It is advantageous for prevention of scale adhesion that the water inflow pipe 6a provided upstream of the heat exchange part 1 (1A, 1B) has the flat part 7. The reason why the flat portion 7 is provided is that the contact area between the magnetic field generating means M (magnet or the like) described later and the water inflow pipe 6a or / and the water outflow pipe 6b is increased and installed on the outer surface (flat surface 7a) of the flat portion 7. This is because a stronger magnetic field is transmitted to the water in the tube by reducing the distance between the N pole and the S pole of the magnetic field generating means M.

水流入管6aおよび水流出管6bの材質としては、耐食性が必要であるため、銅、銅合金、ステンレス鋼等を使用することが好ましい。管の肉厚は、薄いほうが管内の磁場の減衰が少なく有利であり、管内の水圧、長時間使用後の肉厚減少を考慮して定めればよい。通常は、0.2〜1.5mm程度の厚さを採用すればよい。   As the material of the water inflow pipe 6a and the water outflow pipe 6b, since corrosion resistance is required, it is preferable to use copper, copper alloy, stainless steel or the like. The thinner the tube, the smaller the magnetic field attenuation in the tube, and the more advantageous. The tube thickness may be determined in consideration of the water pressure in the tube and the decrease in wall thickness after prolonged use. Usually, a thickness of about 0.2 to 1.5 mm may be employed.

図2(a)、(b)に示すように、扁平部7Aの幅D1と管軸方向の長さLは大きいほうが、磁場発生手段Mの磁場が広くなる(大型の磁石を設置することができる)ため、スケール付着防止には有利である。水流入管6aおよび水流出管6bの外径は通常7〜30mm程度であり、これらの管の一部を、扁平部7Aの幅D1が5〜12mm、管内面の間隔D2が1〜10mm程度になるように扁平化させればよい。なお、扁平部7Aの長さLは20〜200mm程度にすればよい。あるいは、前記寸法の扁平部7Aを有する管を、ろう付け等の方法で水流入管6aまたは/および水流出管6bに組み込んでもよい。   As shown in FIGS. 2 (a) and 2 (b), the magnetic field of the magnetic field generating means M becomes wider as the width D1 of the flat portion 7A and the length L in the tube axis direction are larger (a large magnet may be installed). Therefore, it is advantageous for preventing scale adhesion. The outer diameters of the water inflow pipe 6a and the water outflow pipe 6b are usually about 7 to 30 mm, and a part of these pipes has a width D1 of the flat portion 7A of 5 to 12 mm and a space D2 between the pipe inner surfaces of about 1 to 10 mm. What is necessary is just to make it flat. Note that the length L of the flat portion 7A may be about 20 to 200 mm. Or you may incorporate the pipe | tube which has the flat part 7A of the said dimension in the water inflow pipe 6a or / and the water outflow pipe 6b by methods, such as brazing.

図2(a)に示すように、扁平部7Aは、平行に対面する扁平面7aを有する形態が好ましい。しかしながら、管内の水に十分な磁場が付与されれば、図2(c)に示すように、扁平面7aが管軸方向に沿って傾斜した、すなわち、扁平部7Aの外径が水(媒体W)の流れ方向に拡大または縮小した形態であってもよい。   As shown in FIG. 2A, the flat portion 7A preferably has a flat surface 7a facing in parallel. However, if a sufficient magnetic field is applied to the water in the tube, as shown in FIG. 2C, the flat surface 7a is inclined along the tube axis direction, that is, the outer diameter of the flat portion 7A is water (medium It may be a form enlarged or reduced in the flow direction of W).

図1に示すように、扁平部7に磁場発生手段Mを設置した際、扁平部内部の磁力線は最短距離を結ぶような軌跡を描くため、図3(a)、(b)に示すように、扁平部7Bの内表面に多数のフィン7bを設けておくと、管内の磁場が強くなり、スケール付着防止に有利である。フィン7bは、例えば内面溝付管を転造する方法で形成すればよい。   As shown in FIG. 1, when the magnetic field generating means M is installed in the flat part 7, the magnetic lines of force inside the flat part draw a trajectory that connects the shortest distance. If a large number of fins 7b are provided on the inner surface of the flat portion 7B, the magnetic field in the tube becomes stronger, which is advantageous for preventing scale adhesion. The fins 7b may be formed, for example, by a method of rolling an internally grooved tube.

図4に示すように、フィン7bの管内面よりのフィン高さhは0.1〜1.0mm程度とすればよい。フィン高さhが0.1mm未満ではフィン7bを設けることによるスケール付着防止効果が小さく、フィン高さhが1.0mmを超えると、特に管内面のフィン先端間の距離が小さい場合、水の流動に対する圧力損失が大きくなる。フィン先端のピッチPfは、フィン数n、フィン高さh、底肉厚T、管外径D(扁平部7を形成する前の管外径)とすると、ピッチPf=π×(D−2×h−2×T)/n)で定義され、0.2〜3mm程度でよい。フィン先端のピッチPfが3mmを超えると、フィン7bを設けることによるスケール付着防止効果が小さく、フィン先端のピッチPfが0.2mm未満であると、特に管内面のフィン先端間の距離が小さい場合、水の流動に対する圧力損失が大きくなる。フィン7b間に形成される溝7cの底肉厚Tは、薄いほうが管内の磁場の減衰が少なく有利である。また、溝7cのリード角θ(図3(a)参照)は磁気的にはあまり大きな影響を及ぼさず、0〜45°の範囲より適当な値を選定すればよい(θ=0°は管軸に平行な溝を意味する)。   As shown in FIG. 4, the fin height h from the inner surface of the fin 7b may be about 0.1 to 1.0 mm. When the fin height h is less than 0.1 mm, the effect of preventing scale adhesion due to the provision of the fins 7b is small. When the fin height h exceeds 1.0 mm, particularly when the distance between the fin tips on the inner surface of the pipe is small, Increased pressure loss for flow. The pitch Pf at the tip of the fin is assumed to be the pitch Pf = π × (D−2) where the number of fins n, the fin height h, the bottom wall thickness T, and the tube outer diameter D (the tube outer diameter before the flat portion 7 is formed). Xh-2 × T) / n), and may be about 0.2 to 3 mm. When the pitch Pf at the fin tip exceeds 3 mm, the effect of preventing scale adhesion due to the provision of the fin 7b is small, and when the pitch Pf at the fin tip is less than 0.2 mm, the distance between the fin tips on the inner surface of the pipe is particularly small. , The pressure loss with respect to the flow of water increases. A thinner bottom wall thickness T of the groove 7c formed between the fins 7b is advantageous because the magnetic field in the tube is less attenuated. Further, the lead angle θ of the groove 7c (see FIG. 3A) does not have a large magnetic effect, and an appropriate value may be selected from the range of 0 to 45 ° (θ = 0 ° is a tube). Meaning a groove parallel to the axis).

図2(b)に示すように、扁平部7A内表面に磁性を有する金属または合金の皮膜8を形成すると、管内の磁場の減衰が少なく、スケール付着防止に更に有利である。前記金属または合金は、耐食性がよい強磁性体より選択すればよく、例えば、Ni、Ni−Co等より選択すればよい。なお、図3(b)に示すように、扁平部7B内部に多数のフィン7b(溝7c)を形成した場合にも、フィン7bおよび溝7cの表面に磁性を有する皮膜(図示せず)を形成することが好ましい。   As shown in FIG. 2B, when a magnetic metal or alloy film 8 is formed on the inner surface of the flat part 7A, the attenuation of the magnetic field in the tube is small, which is further advantageous for preventing scale adhesion. The metal or alloy may be selected from ferromagnetic materials having good corrosion resistance, for example, Ni, Ni—Co, or the like. As shown in FIG. 3B, even when a large number of fins 7b (grooves 7c) are formed inside the flat portion 7B, a magnetic film (not shown) is provided on the surfaces of the fins 7b and the grooves 7c. It is preferable to form.

(3)冷媒流入管、冷媒流出管
冷媒流入管は、熱交換器の熱交換部に冷媒を流入するための配管であり、冷媒流出管は、熱交換された冷媒を熱交換部から流出するための配管である。例えば、図1に示すように、給湯システム30において、冷媒流入管9aは、冷媒ユニット22の圧縮器25より熱交換器10に冷媒を流入するための配管であり、冷媒流出管9bは、熱交換された冷媒を膨張弁26に流出するための配管である。そして、冷媒流入管9aおよび冷媒流出管9bは、熱交換部1(1A、1B)の小径管3A、3B、3C(図5、図6参照)に接合されている。なお、冷媒流入管9aおよび冷媒流出管9bの管形状は、小径管3A、3B、3Cと接合できれば特に限定されない。
(3) Refrigerant inflow pipe, refrigerant outflow pipe The refrigerant inflow pipe is a pipe for flowing the refrigerant into the heat exchange part of the heat exchanger, and the refrigerant outflow pipe flows out the heat exchanged refrigerant from the heat exchange part. It is piping for. For example, as shown in FIG. 1, in the hot water supply system 30, the refrigerant inflow pipe 9 a is a pipe for allowing the refrigerant to flow into the heat exchanger 10 from the compressor 25 of the refrigerant unit 22, and the refrigerant outflow pipe 9 b This is a pipe for allowing the exchanged refrigerant to flow out to the expansion valve 26. And the refrigerant | coolant inflow tube 9a and the refrigerant | coolant outflow tube 9b are joined to the small diameter pipe | tube 3A, 3B, 3C (refer FIG. 5, FIG. 6) of the heat exchange part 1 (1A, 1B). The pipe shapes of the refrigerant inflow pipe 9a and the refrigerant outflow pipe 9b are not particularly limited as long as they can be joined to the small diameter pipes 3A, 3B, and 3C.

(4)磁場発生手段
図2(a)、(b)に示すように、磁場発生手段Mは、扁平部7Aを挟んでN極とS極が対向するように扁平面7aに設置されている。磁場発生手段Mは、磁場を発生するものであれば特に限定されず、永久磁石、電磁コイル(電磁石)が好ましい。磁場発生手段Mの設置方法は、扁平面7aと隙間なく設置されていることが好ましいので、万力等で扁平面7aに固定する。
(4) Magnetic field generating means As shown in FIGS. 2A and 2B, the magnetic field generating means M is installed on the flat surface 7a so that the N pole and the S pole face each other across the flat portion 7A. . The magnetic field generating means M is not particularly limited as long as it generates a magnetic field, and a permanent magnet or an electromagnetic coil (electromagnet) is preferable. Since the installation method of the magnetic field generating means M is preferably installed with no gap from the flat surface 7a, it is fixed to the flat surface 7a with a vise or the like.

磁場発生手段Mの磁束密度は、3000ガウス(0.3テスラ)以上である必要がある。管内を流れる水に磁気を照射すると、スケール付着の防止に有効であることが知られている。本発明の水と冷媒とを熱交換させる熱交換器においては、一般に水の流速が小さいこと、また貯湯タンクの温水が循環して加熱される場合は水に含まれるCaやSi濃度が高くなり、水温も高いことから、通常の水配管に比べてスケールが一層付着しやすくなる。したがって、磁束密度が3000ガウス(0.3テスラ)未満であると、長期間にわたり、スケール付着を防止することが難しいため、本発明においては、磁場発生手段の磁束密度を3000ガウス(0.3テスラ)以上とした。   The magnetic flux density of the magnetic field generating means M needs to be 3000 gauss (0.3 Tesla) or more. It is known that irradiating water flowing in a pipe with magnetism is effective in preventing scale adhesion. In the heat exchanger for exchanging heat between the water and the refrigerant of the present invention, the flow rate of water is generally small, and when the hot water in the hot water storage tank is circulated and heated, the concentration of Ca and Si contained in the water increases. Also, since the water temperature is high, the scale is more easily adhered as compared to normal water piping. Therefore, if the magnetic flux density is less than 3000 gauss (0.3 Tesla), it is difficult to prevent scale adhesion over a long period of time. Therefore, in the present invention, the magnetic flux density of the magnetic field generating means is 3000 gauss (0.3 Tesla)

<給湯システム> <Hot water supply system>

つぎに、本発明の熱交換器を給湯システムに使用した例を図1で説明する。熱交換器10において、熱交換部1(1A、1B)の大径管(図示せず)に水を流通させ、熱交換部1(1A、1B)の小径管(図示せず)にCO2を流通させる。CO2は、冷媒ユニット22の蒸発器24において大気熱を吸収した後、圧縮器25により圧縮され、高温高圧の流体として、熱交換器10の冷媒流入管9aに送られる。冷媒流入管9aを介して小径管に供給されたCO2は、大径管内の水と熱交換して低温の流体となって冷媒流出管9bを介して冷媒ユニット22の膨張弁26に送られる。CO2は膨張弁26により膨張し、蒸発器24で再度吸熱する。一方、水ユニット21の貯湯タンク23の水は、ポンプPで熱交換器10の水流入管6aに送られる。水流入管6aに送られた水は、扁平部7に設置された磁場発生手段Mにより磁気が付与される。磁気が付与された低温の水は、水流入管6aを介して大径管に供給され、小径管と接触することにより加熱され、高温の水(湯)となって、水流出管6bを介して水ユニット21の貯湯タンク23に戻る。ここで、熱交換器10(熱交換部1)の内部を循環する水に磁気が付与されているため、温水と接触する熱交換部1、水流出管6bおよび貯湯タンク23の内部にスケールが付着することが防止される。 Next, an example in which the heat exchanger of the present invention is used in a hot water supply system will be described with reference to FIG. In the heat exchanger 10, water is circulated through a large diameter pipe (not shown) of the heat exchange section 1 (1A, 1B), and CO 2 is passed through a small diameter pipe (not shown) of the heat exchange section 1 (1A, 1B). Circulate. The CO 2 absorbs atmospheric heat in the evaporator 24 of the refrigerant unit 22, is then compressed by the compressor 25, and is sent to the refrigerant inflow pipe 9 a of the heat exchanger 10 as a high-temperature and high-pressure fluid. The CO 2 supplied to the small diameter pipe via the refrigerant inflow pipe 9a exchanges heat with the water in the large diameter pipe and becomes a low-temperature fluid and is sent to the expansion valve 26 of the refrigerant unit 22 via the refrigerant outflow pipe 9b. . CO 2 expands by the expansion valve 26 and absorbs heat again by the evaporator 24. On the other hand, the water in the hot water storage tank 23 of the water unit 21 is sent to the water inflow pipe 6 a of the heat exchanger 10 by the pump P. The water sent to the water inflow pipe 6 a is magnetized by the magnetic field generating means M installed in the flat part 7. The low-temperature water to which magnetism has been applied is supplied to the large-diameter pipe via the water inflow pipe 6a, heated by contacting with the small-diameter pipe, and becomes hot water (hot water) through the water outflow pipe 6b. Return to the hot water storage tank 23 of the water unit 21. Here, since magnetism is imparted to the water circulating inside the heat exchanger 10 (heat exchanging unit 1), a scale is formed inside the heat exchanging unit 1, the water outflow pipe 6b and the hot water storage tank 23 in contact with the hot water. It is prevented from adhering.

本発明の実施例について説明する。
実施例(No.1〜6)として、以下の熱交換部、水流入管、水流出管、冷媒流入管、冷媒流出管および磁場発生手段を備える熱交換器を作製した。
Examples of the present invention will be described.
As an example (No. 1-6), the heat exchanger provided with the following heat exchange parts, a water inflow pipe, a water outflow pipe, a refrigerant inflow pipe, a refrigerant outflow pipe, and a magnetic field generation means was produced.

<熱交換部>
熱交換部として、大径管の内部に小径管を3本配置した二重管式熱交換部(図5(a)参照)を作製した。なお、大径管の一部に内径250mmのらせん状巻回部(図7(a)参照)を設けた。
<Heat exchange part>
As a heat exchange part, a double pipe type heat exchange part (see FIG. 5A) in which three small diameter pipes were arranged inside a large diameter pipe was produced. In addition, the spiral winding part (refer FIG. 7 (a)) with an internal diameter of 250 mm was provided in a part of large diameter pipe | tube.

(1)大径管
JIS規定のりん脱酸銅(C1220)からなる、外径15mm、肉厚0.8mm、長さ8mの平滑管を使用した。
(1) Large-diameter pipe A smooth pipe made of JIS-regulated phosphorus-deoxidized copper (C1220) having an outer diameter of 15 mm, a thickness of 0.8 mm, and a length of 8 m was used.

(2)小径管
図5(b)に示すように、外管と内管よりなる検知構造(空間部)を有する2重管を使用した。
(2) Small-diameter pipe As shown in FIG. 5B, a double pipe having a detection structure (space part) composed of an outer pipe and an inner pipe was used.

(外管)
JIS規定のりん脱酸銅(C1220)からなる、外径5.5mm、底肉厚(T)0.5mm、フィン高さ(h)0.25mm、溝数50、溝リード角(θ)18°、山頂角(δ)35°、長さ8mの内面溝付管を使用した(溝形状は、図3(a)、図4に示す扁平部と同様である)。
(Outer pipe)
Made of JIS stipulated phosphorous deoxidized copper (C1220), outer diameter 5.5mm, bottom thickness (T) 0.5mm, fin height (h) 0.25mm, number of grooves 50, groove lead angle (θ) 18 An internally grooved tube with a peak angle (δ) of 35 ° and a length of 8 m was used (the groove shape is the same as the flat portion shown in FIGS. 3A and 4).

(内管)
JIS規定のりん脱酸銅(C1220)からなる、外径4.0mm、肉厚0.5mm、長さ8mの平滑管を使用した。
(Inner pipe)
A smooth tube made of JIS-defined phosphorous deoxidized copper (C1220) having an outer diameter of 4.0 mm, a thickness of 0.5 mm, and a length of 8 m was used.

<水流入管>
JIS規定のりん脱酸銅(C1220)からなる、外径15mm、肉厚0.8mm、長さ2mの平滑管を使用した。水流入管の長さ方向の中央部に、種々の寸法の扁平部を有する扁平状水管をろう付けした。次に、扁平状水管の扁平部に、N極とS極が扁平部を挟んで対向するように後記する磁場発生手段(永久磁石)を固定して磁気設置部とした。
<Water inflow pipe>
A smooth tube made of JIS-defined phosphorous deoxidized copper (C1220) having an outer diameter of 15 mm, a wall thickness of 0.8 mm, and a length of 2 m was used. A flat water pipe having a flat part of various dimensions was brazed to the central part in the length direction of the water inflow pipe. Next, a magnetic field generating means (permanent magnet), which will be described later, is fixed to the flat portion of the flat water tube so that the N pole and the S pole face each other with the flat portion interposed therebetween, thereby forming a magnetic installation portion.

(扁平状水管)
JIS規定のりん脱酸銅(C1220)からなる、長さ200mm、外径15mm、肉厚0.8mmの平滑管を準備した。次に、図2(a)、(b)に示すように、平滑管の中央部に幅(D1)5〜12mm、長さ(L)120mmの扁平部を加工した扁平状水管(No.1〜3)、さらに、扁平部加工後に管内表面に電気メッキにより厚さ1.5μmのNi皮膜を形成した扁平状水管(No.4)を作製した。
(Flat water pipe)
A smooth tube having a length of 200 mm, an outer diameter of 15 mm, and a wall thickness of 0.8 mm made of JIS-defined phosphorous deoxidized copper (C1220) was prepared. Next, as shown in FIGS. 2 (a) and 2 (b), a flat water tube (No. 1) in which a flat portion having a width (D1) of 5 to 12 mm and a length (L) of 120 mm is processed at the center of the smooth tube. -3) Further, a flat water tube (No. 4) in which a Ni film having a thickness of 1.5 μm was formed on the inner surface of the tube by electroplating after the flat part was processed was produced.

また、前記平滑管の内表面に溝付加工を施した内面溝付管を準備した。内面溝付管の中央部に幅(D1)12mm、長さ(L)120mmの扁平部を加工した扁平状水管(No.5)、さらに、扁平部加工後に管内表面に電気メッキにより厚さ1.5μmのNi皮膜を形成した扁平状水管(No.6)を作製した。なお、内面溝付管の溝形状はフィン高さ(h)0.4mm、溝数80、溝リード角(θ)18°、山頂角(δ)25°、底肉厚(T)0.4mm、フィンピッチ(Pf)0.5mmとした(図3(a)、図4参照)。   Moreover, the inner surface grooved tube which prepared the grooved process on the inner surface of the said smooth tube was prepared. A flat water tube (No. 5) in which a flat portion having a width (D1) of 12 mm and a length (L) of 120 mm is processed at the center portion of the inner grooved tube, and the inner surface of the tube is electroplated to a thickness of 1 after the flat portion is processed. A flat water tube (No. 6) on which a 5 μm Ni film was formed was prepared. The groove shape of the internally grooved tube is fin height (h) 0.4 mm, number of grooves 80, groove lead angle (θ) 18 °, peak angle (δ) 25 °, bottom wall thickness (T) 0.4 mm. The fin pitch (Pf) was 0.5 mm (see FIGS. 3A and 4).

<水流出管>
JIS規定のりん脱酸銅(C1220)からなる、外径15mm、肉厚0.8mm、長さ2mの平滑管を使用した。
<Water outflow pipe>
A smooth tube made of JIS-defined phosphorous deoxidized copper (C1220) having an outer diameter of 15 mm, a wall thickness of 0.8 mm, and a length of 2 m was used.

<冷媒流入管、冷媒流出管>
JIS規定のりん脱酸銅(C1220)からなる、外径5.5mm、肉厚0.75mm、長さ2mの平滑管を使用した。
<Refrigerant inflow pipe, refrigerant outflow pipe>
A smooth tube made of JIS stipulated phosphorous deoxidized copper (C1220) having an outer diameter of 5.5 mm, a wall thickness of 0.75 mm, and a length of 2 m was used.

<磁場発生手段>
長さ100mm、幅25mm、厚さ25mmの永久磁石を使用した。永久磁石の磁束密度は3000〜6000ガウス(0.3〜0.6テスラ)のものを使用した。
<Magnetic field generation means>
A permanent magnet having a length of 100 mm, a width of 25 mm, and a thickness of 25 mm was used. The magnetic flux density of the permanent magnet was 3000 to 6000 gauss (0.3 to 0.6 Tesla).

<熱交換器の作製>
熱交換部の大径管に、水流入管(扁平状水管をろう付け、磁場発生手段を設置)および水流出管を接続、小径管に冷媒流入管および冷媒流出管を接続して熱交換器とした。
<Production of heat exchanger>
Connect the water inflow pipe (with a flat water pipe and braze the magnetic field generator) and the water outflow pipe to the large diameter pipe of the heat exchange section, and connect the refrigerant inflow pipe and the refrigerant outflow pipe to the small diameter pipe. did.

比較例(No.7)として、磁束密度2000ガウス(0.2テスラ)の永久磁石を使用した以外は実施例(No.2)と同様にして熱交換器を作製した。また、比較例(No.8)として扁平状水管、永久磁石を使用しないこと以外は実施例(No.1)と同様にして熱交換器を作製した。   As a comparative example (No. 7), a heat exchanger was produced in the same manner as in Example (No. 2) except that a permanent magnet having a magnetic flux density of 2000 gauss (0.2 Tesla) was used. Moreover, the heat exchanger was produced like Example (No. 1) except not using a flat water pipe and a permanent magnet as a comparative example (No. 8).

次に、以下の条件で熱交換器(No.1〜8)を4000時間運転し、温水を循環させた。試験後、最もスケールの付着しやすい熱交換部のスケール付着状況を確認した。なお、熱交換部の小径管と大径管の内部に流通する媒体の流れは互いに逆向きとした。   Next, the heat exchangers (No. 1 to 8) were operated for 4000 hours under the following conditions, and hot water was circulated. After the test, the scale adhesion state of the heat exchange part where the scale is most likely to adhere was confirmed. In addition, the flow of the medium which distribute | circulates the inside of the small diameter pipe | tube of a heat exchange part and a large diameter pipe | tube was made into the reverse direction mutually.

<熱交換器の運転条件>
・水のCaCO濃度:800mg/l
・水流量(大径管):1.2l/min
・冷媒(小径管):超臨界CO
・冷媒流量(小径管):1.3kg/min
・熱交換部の水入側温度:20℃
・熱交換部の水出側温度:85℃
<Operating conditions of heat exchanger>
-CaCO 3 concentration in water: 800 mg / l
・ Water flow rate (large diameter pipe): 1.2 l / min
・ Refrigerant (small-diameter pipe): Supercritical CO 2
-Refrigerant flow rate (small diameter pipe): 1.3kg / min
・ Water inlet side temperature of heat exchanger: 20 ℃
・ Water outlet temperature of heat exchanger: 85 ℃

<スケール付着の評価方法>
運転前後の熱交換器の質量を測定し、運転後の質量増加量をスケール付着量とした。スケール付着量が5g/mを超えた場合をスケール付着が「あり」、5g/m以下の場合をスケール付着が「なし」と判断した。
運転前の質量は、熱交換部(全長8m)の質量を測定し、1mあたりの質量に換算した。運転後の質量は、水温が高くなる熱交換部の水出側部より長さ約1m切出して、その質量を測定し、長さで割って1mあたりの質量とした。その結果を表1に示す。
<Evaluation method of scale adhesion>
The mass of the heat exchanger before and after operation was measured, and the amount of mass increase after operation was taken as the amount of scale adhesion. When the scale adhesion amount exceeded 5 g / m, the scale adhesion was judged as “Yes”, and when it was 5 g / m or less, the scale adhesion was judged as “None”.
The mass before the operation was measured by measuring the mass of the heat exchange part (total length: 8 m) and converted to a mass per 1 m. The mass after operation was cut out by about 1 m in length from the water discharge side of the heat exchanging part where the water temperature becomes high, the mass was measured, and divided by the length to obtain the mass per 1 m. The results are shown in Table 1.

Figure 2007263469
Figure 2007263469

表1に示すように、実施例(No.1〜6)の熱交換器は、熱交換部にスケール付着が発生しなかった。一方、比較例(No.7)の熱交換器は、磁石の磁束密度が本発明の下限値より小さいため、熱交換部にスケールが発生した。比較例(No.8)の熱交換器は、扁平部および磁石を設置しなかったため、熱交換部に大量のスケールが発生した。   As shown in Table 1, in the heat exchangers of Examples (Nos. 1 to 6), scale adhesion did not occur in the heat exchange part. On the other hand, since the magnetic flux density of the magnet of the heat exchanger of the comparative example (No. 7) is smaller than the lower limit value of the present invention, a scale is generated in the heat exchange part. Since the flat part and the magnet were not installed in the heat exchanger of the comparative example (No. 8), a large amount of scale was generated in the heat exchange part.

これらの熱交換器の熱交換部について、大径管内面及び小径管外面を目視観察したところ、実施例(No.2〜6)では殆どスケール付着が見られなかった。実施例(No.1)ではわずかなスケール付着が見られた。それに対し、比較例(No.7)では実施例(No.1)に比べて大量のスケール付着が見られ、比較例(No.8)では管内の水の流路が狭くなるほど大量のスケール付着が見られた。   About the heat exchange part of these heat exchangers, when the large-diameter pipe inner surface and the small-diameter pipe outer surface were visually observed, scale adhesion was hardly seen in the examples (Nos. 2 to 6). In the example (No. 1), slight scale adhesion was observed. On the other hand, in the comparative example (No. 7), a large amount of scale adheres as compared to the example (No. 1), and in the comparative example (No. 8), a larger amount of scale adheres as the flow path of the water in the pipe becomes narrower. It was observed.

本発明の熱交換器を使用した給湯システムを模式的に示す図である。It is a figure which shows typically the hot water supply system which uses the heat exchanger of this invention. (a)は水流入管(水流出管)の管軸方向に沿った断面図、(b)は(a)のX1−X1線における端面図、(c)は扁平部の他の形態を示す管軸方向に沿った断面図である。(A) is sectional drawing along the pipe-axis direction of a water inflow pipe (water outflow pipe), (b) is an end view in the X1-X1 line | wire of (a), (c) is a pipe | tube which shows the other form of a flat part It is sectional drawing along an axial direction. (a)は扁平部の他の形態を示す管軸方向に沿った断面図、(b)は(a)のX2−X2線における端面図である。(A) is sectional drawing along the pipe-axis direction which shows the other form of a flat part, (b) is an end elevation in X2-X2 line of (a). 図3(b)のフィンの部分拡大図である。It is the elements on larger scale of the fin of FIG.3 (b). (a)は熱交換部の一例を示す部分破断斜視図、(b)は(a)の小径管の他の形態を示す管軸直交断面図である。(A) is a partial fracture perspective view which shows an example of a heat exchange part, (b) is a pipe axis orthogonal sectional view which shows the other form of the small diameter pipe | tube of (a). (a)は熱交換部の他の形態を示す側面図、(b)は(a)のX3−X3線における端面図である。(A) is a side view which shows the other form of a heat exchange part, (b) is an end elevation in the X3-X3 line of (a). (a)、(b)は巻回部を有する熱交換部の斜視図である。(A), (b) is a perspective view of the heat exchange part which has a winding part.

符号の説明Explanation of symbols

1、1A、1B 熱交換部
6a 水流入管
6b 水流出管
9a 冷媒流入管
9b 冷媒流出管
7、7A、7B 扁平部
7a 扁平面
10 熱交換器
M 磁場発生手段
DESCRIPTION OF SYMBOLS 1, 1A, 1B Heat exchange part 6a Water inflow pipe 6b Water outflow pipe 9a Refrigerant inflow pipe 9b Refrigerant outflow pipe 7, 7A, 7B Flat part 7a Flat surface 10 Heat exchanger M Magnetic field generation means

Claims (3)

水と冷媒を熱交換する熱交換部と、前記水を前記熱交換部に流入する水流入管と、前記冷媒で熱交換された水を前記熱交換部から流出する水流出管と、前記冷媒を前記熱交換部に流入する冷媒流入管と、前記水で熱交換された冷媒を前記熱交換部から流出する冷媒流出管とを備える熱交換器であって、
前記水流入管および前記水流出管の少なくとも一方の管が、その一部に管軸方向に沿って1組の扁平面が形成された扁平部を有し、
前記扁平部を挟んでN極とS極が対向するように前記扁平面に磁場発生手段が設置され、
前記磁場発生手段の磁束密度が3000ガウス以上であることを特徴とする熱交換器。
A heat exchanging section for exchanging heat between water and the refrigerant, a water inflow pipe for flowing the water into the heat exchanging section, a water outflow pipe for flowing out the water heat-exchanged with the refrigerant from the heat exchanging section, and the refrigerant. A heat exchanger comprising a refrigerant inflow pipe flowing into the heat exchange section and a refrigerant outflow pipe for flowing out the refrigerant heat-exchanged with the water from the heat exchange section,
At least one of the water inflow pipe and the water outflow pipe has a flat portion in which one set of flat surfaces is formed along a tube axis direction in a part thereof,
Magnetic field generating means is installed on the flat surface so that the N pole and the S pole face each other across the flat portion,
The heat exchanger according to claim 1, wherein the magnetic field generating means has a magnetic flux density of 3000 gauss or more.
前記扁平部の内表面に多数のフィンが形成されていることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein a large number of fins are formed on an inner surface of the flat portion. 前記扁平部の内表面に磁性を有する金属または合金の皮膜が形成されていることを特徴とする請求項1または請求項2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein a film of magnetic metal or alloy is formed on an inner surface of the flat portion.
JP2006089189A 2006-03-28 2006-03-28 Heat exchanger Pending JP2007263469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089189A JP2007263469A (en) 2006-03-28 2006-03-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089189A JP2007263469A (en) 2006-03-28 2006-03-28 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2007263469A true JP2007263469A (en) 2007-10-11

Family

ID=38636626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089189A Pending JP2007263469A (en) 2006-03-28 2006-03-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2007263469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583668A (en) * 2012-03-08 2012-07-18 蒋家响 Scale and corrosion prevention device for inner wall of aqueous medium circulating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583668A (en) * 2012-03-08 2012-07-18 蒋家响 Scale and corrosion prevention device for inner wall of aqueous medium circulating system

Similar Documents

Publication Publication Date Title
JP6172950B2 (en) Double tube for heat exchanger
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP4921410B2 (en) Copper alloy member and heat exchanger
JP2008164245A (en) Heat exchanger
JP2009243715A (en) Leakage detecting tube and heat exchanger
WO2008131001A1 (en) Method of producing a corrosion resistant aluminum heat exchanger
JP2008261566A (en) Double-pipe heat exchanger
JP2010043766A (en) Heat exchanger and water heater equipped therewith
JP2007271122A (en) Heat exchanger
JP2009235428A (en) Copper alloy member and heat-exchanger
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP2009250562A (en) Heat exchanger
JP2006046888A (en) Composite heat exchanger tube
WO2011162170A1 (en) Double tube for heat exchanger
JP2007263469A (en) Heat exchanger
JP2005201625A (en) Heat exchanger and its manufacturing method
JP5719107B2 (en) Stainless steel flexible tube
JP2010163665A (en) Copper alloy member and heat exchanger
JP2006234355A (en) Heat exchanger
JP2007298266A (en) Water heat exchanger for water heater
JP2007218523A (en) Heat exchanger
JP2007271238A (en) Heat exchanger
WO2012017777A1 (en) Double pipe for heat exchanger
JP2006162165A (en) Heat exchanger
JP2005009832A (en) Double pipe type heat exchanger