JP2007263169A - Fluid bearing device - Google Patents

Fluid bearing device Download PDF

Info

Publication number
JP2007263169A
JP2007263169A JP2006086137A JP2006086137A JP2007263169A JP 2007263169 A JP2007263169 A JP 2007263169A JP 2006086137 A JP2006086137 A JP 2006086137A JP 2006086137 A JP2006086137 A JP 2006086137A JP 2007263169 A JP2007263169 A JP 2007263169A
Authority
JP
Japan
Prior art keywords
diameter portion
inner diameter
bearing
outer diameter
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006086137A
Other languages
Japanese (ja)
Other versions
JP5005242B2 (en
Inventor
Kenji Ito
健二 伊藤
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006086137A priority Critical patent/JP5005242B2/en
Priority to US12/281,555 priority patent/US8092090B2/en
Priority to CN2007800082777A priority patent/CN101400908B/en
Priority to PCT/JP2007/053139 priority patent/WO2007102312A1/en
Publication of JP2007263169A publication Critical patent/JP2007263169A/en
Application granted granted Critical
Publication of JP5005242B2 publication Critical patent/JP5005242B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device which can keep high rotation performance for a long period of time, at low cost. <P>SOLUTION: A bearing member 6 has an inner diameter part 8 having a radial bearing face, and an outer diameter part 7 having a mounting face for a bracket 5. The inner diameter part 8 and the outer diameter part 7 are made from resin, and they are formed by injection molding in which either the inner diameter part 8 or the outer diameter part 7 is inserted. Preferably, the inner diameter part 8 should be made from oleoresin, and more preferably, the inner diameter part should be made from porous resin. The outer diameter part 7 is made from non-porous resin. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、流体軸受装置に関するものである。   The present invention relates to a hydrodynamic bearing device.

流体軸受装置は、軸受部材と軸部材の相対回転により、軸受隙間に形成される油膜で軸部材を回転自在に支持する軸受装置である。この流体軸受装置は、高速回転、高回転精度、低騒音等の特徴を有するものであり、近年ではその特徴を活かして、情報機器、例えばHDD、FDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等に搭載するスピンドルモータ用、レーザビームプリンタ(LBP)などに搭載するポリゴンスキャナモータ用、パーソナルコンピュータ(PC)などに搭載するファンモータ用、あるいは軸流ファンなどの電気機器に搭載する小型モータ用の軸受として広く用いられている。   The hydrodynamic bearing device is a bearing device that rotatably supports a shaft member with an oil film formed in a bearing gap by relative rotation of the bearing member and the shaft member. This hydrodynamic bearing device has characteristics such as high-speed rotation, high rotation accuracy, and low noise. In recent years, by utilizing the characteristics, information devices such as magnetic disk devices such as HDD and FDD, CD-ROM, CD -For spindle motors mounted on optical disk devices such as R / RW and DVD-ROM / RAM, magneto-optical disk devices such as MD, MO, etc., for polygon scanner motors mounted on laser beam printers (LBP), etc., personal computers ( Widely used as a bearing for a fan motor mounted on a PC) or a small motor mounted on an electric device such as an axial fan.

この種の流体軸受は、軸受隙間内の流体(例えば、潤滑油)に動圧を発生させる動圧発生部を備えた動圧軸受と、動圧発生部を備えていない、いわゆる真円軸受(軸受面が真円形状である軸受)とに大別される。   This type of hydrodynamic bearing includes a hydrodynamic bearing provided with a dynamic pressure generating section that generates dynamic pressure in a fluid (for example, lubricating oil) in a bearing gap, and a so-called circular bearing (not provided with a dynamic pressure generating section). The bearing surface is roughly divided into a bearing having a perfect circular shape.

例えば、HDD等のスピンドルモータに組み込まれる流体軸受装置では、軸部材をラジアル方向に支持するラジアル軸受部と、軸部材をスラスト方向に支持するスラスト軸受部とが設けられる。ラジアル軸受部の軸受としては、ラジアル軸受隙間を介して対向する二面(軸部材の外周面、あるいは軸受部材の内周面)に動圧発生用の溝を設けた動圧軸受が用いられる場合が多い。一方、スラスト軸受部としては、動圧軸受が用いられる場合と、軸部材の一端を接触支持する構造の軸受(いわゆる、ピボット軸受)が用いられる場合とがある。   For example, in a hydrodynamic bearing device incorporated in a spindle motor such as an HDD, a radial bearing portion that supports a shaft member in the radial direction and a thrust bearing portion that supports the shaft member in a thrust direction are provided. As a bearing for the radial bearing portion, a dynamic pressure bearing in which a groove for generating dynamic pressure is provided on two surfaces (an outer peripheral surface of the shaft member or an inner peripheral surface of the bearing member) facing each other through the radial bearing gap is used. There are many. On the other hand, as the thrust bearing portion, there are a case where a dynamic pressure bearing is used and a case where a bearing (so-called pivot bearing) having a structure in which one end of a shaft member is contacted and supported is used.

この種の流体軸受装置に組み込まれる軸受部材は、ラジアル軸受面を有する内径部(特許文献中「軸受スリーブ」)と、外周面に他部材との取り付け面を有する外径部(特許文献中「ハウジング」)とを備えており、近年では低コスト化を図る目的で、外径部を樹脂製とした軸受装置が提案されている(例えば、特許文献1参照)。
特開2005−114164号公報
The bearing member incorporated in this type of hydrodynamic bearing device includes an inner diameter portion having a radial bearing surface (“bearing sleeve” in the patent document) and an outer diameter portion having an attachment surface with another member on the outer peripheral surface (in the patent document “ In recent years, a bearing device having an outer diameter portion made of resin has been proposed for the purpose of reducing costs (for example, see Patent Document 1).
JP 2005-114164 A

近年の情報機器の急速な低価格化に伴って、流体軸受装置には一層の低コスト化が望まれている。特許文献1に記載の軸受装置では、内径部と外径部とが別体構造とされ、外径部の所定箇所に内径部が接着等適宜の手段で固定されているが、内径部の組み付け精度は軸受隙間(ラジアル軸受隙間やスラスト軸受隙間)の幅精度、換言すると軸受装置の回転性能を左右するものであるから、その組立には格別の配慮を要し、その配慮が高コスト化を招く場合がある。   With the rapid price reduction of information equipment in recent years, further cost reduction is desired for the hydrodynamic bearing device. In the bearing device described in Patent Document 1, the inner diameter portion and the outer diameter portion are separate structures, and the inner diameter portion is fixed to a predetermined portion of the outer diameter portion by an appropriate means such as adhesion. The accuracy depends on the width accuracy of the bearing gap (radial bearing gap and thrust bearing gap), in other words, the rotational performance of the bearing device. Therefore, special consideration is required for the assembly, and this consideration increases the cost. May invite.

また、内径部は、軸部材との摺動接触に起因した潤滑不良や摩耗等を防止して高い軸受性能を長期に亘って維持するため、内部に潤滑油を保持可能な焼結金属の多孔質体で形成される場合が多い。しかしながら、焼結金属製の内径部を高精度に形成するには多くの工程が必要で、一般にその製造コストは高騰し易い。特に内径部に動圧溝等の動圧発生部を設ける場合には一層多くの工程が必要である。   In addition, the inner diameter part is made of a sintered metal porous material that can retain lubricating oil inside to prevent poor lubrication and wear due to sliding contact with the shaft member and maintain high bearing performance over a long period of time. It is often formed of a solid material. However, many steps are required to form an inner diameter portion made of sintered metal with high accuracy, and its manufacturing cost is generally likely to increase. In particular, when a dynamic pressure generating portion such as a dynamic pressure groove is provided in the inner diameter portion, more steps are required.

本発明の課題は、高い軸受性能を長期に亘って維持可能な流体軸受装置を低コストに提供することである。   The subject of this invention is providing the low-cost hydrodynamic bearing apparatus which can maintain high bearing performance over a long period of time.

上記課題を解決するため、本発明にかかる流体軸受装置は、ラジアル軸受面を有する内径部、および他部材との取り付け面を有する外径部を備えた軸受部材と、ラジアル軸受面が面するラジアル軸受隙間に形成される油膜で支持すべき軸をラジアル方向に支持するラジアル軸受部とを備え、軸受部材は、内径部と外径部が何れも樹脂製で、かつ内径部または外径部の何れか一方をインサート部品とした射出成形品であることを特徴とするものである。なお、上記の「他部材」として、モータのベースとなるブラケットやステータコイル等を挙げることができる。   In order to solve the above-mentioned problems, a hydrodynamic bearing device according to the present invention includes a bearing member having an inner diameter portion having a radial bearing surface and an outer diameter portion having a mounting surface with another member, and a radial surface facing the radial bearing surface. A radial bearing portion that supports a shaft to be supported by an oil film formed in the bearing gap in the radial direction, and the bearing member is made of resin, and the inner diameter portion or the outer diameter portion It is an injection-molded product in which either one is an insert part. Examples of the “other member” include a bracket and a stator coil that serve as a motor base.

上記のように、本発明において、軸受部材は内径部と外径部の双方が樹脂製となるから、内径部を焼結金属製とした従来構成と比べ、製造工程の簡略化と材料コストの低減とにより製造コストの低廉化が図られる。また、この軸受部材は、内径部または外径部の何れか一方をインサートして射出成形されたものである。インサート成形であれば、型精度を高めておくだけで内径部と外径部の組み付け精度を高めることができるだけでなく、内径部あるいは外径部の成形と、両者の組み付けとを一工程で行うことができるので、製造コストの更なる低廉化を図ることができる。   As described above, in the present invention, both the inner diameter portion and the outer diameter portion of the bearing member are made of resin. Therefore, compared with the conventional configuration in which the inner diameter portion is made of sintered metal, the manufacturing process is simplified and the material cost is reduced. By reducing the cost, manufacturing costs can be reduced. Further, this bearing member is injection-molded by inserting either the inner diameter portion or the outer diameter portion. In insert molding, it is possible not only to improve the assembly accuracy of the inner diameter part and the outer diameter part by increasing the mold accuracy, but also to form the inner diameter part or the outer diameter part and assemble them in one step. Therefore, the manufacturing cost can be further reduced.

ところで、インサート部品の一部がキャビティに露出する部材を射出成形(インサート成形)する場合、インサート成形時の熱による精度悪化を回避するため、インサート部品は射出材料よりも高融点のものを用いるのが一般的であるが、これだとインサート部品を高精度に形成しつつ、高精度な射出成形型も準備しなければならないため、インサート成形によるコストメリットを十分に享受できないおそれがある。   By the way, when injection molding (insert molding) a member in which a part of the insert part is exposed to the cavity, in order to avoid deterioration of accuracy due to heat during insert molding, the insert part should have a melting point higher than that of the injection material. However, since it is necessary to prepare an injection mold with high accuracy while forming insert parts with high accuracy, there is a possibility that the cost merit by insert molding cannot be fully enjoyed.

そこで、本発明では、内径部と外径部を異なる樹脂で形成し、内径部および外径部のうち、融点の低い方をインサート部品として用いることとした。かかる構成とすれば、インサート部品となる側の部材表面をインサート成形時の熱や加圧力で変形させ、インサート成形型の表面(例えば、内型の表面)に倣わせることができる。したがってインサート成形型を高精度に形成しておけば、インサート部品の成形段階ではその部品精度をラフなものとすることができるので、製造コストの更なる低廉化を図ることができる。なお、上記の「異なる樹脂」というのは、「ベース樹脂が異なる」もののみならず、「充填材等を含めた樹脂組成物全体の組成が異なる」ものも含む意である。すなわち、内径部と外径部を構成するベース樹脂は同一のものであっても構わない。充填材の種類や配合比によって融点を異ならせることができるからである。   Therefore, in the present invention, the inner diameter portion and the outer diameter portion are formed of different resins, and the lower melting point of the inner diameter portion and the outer diameter portion is used as the insert part. With such a configuration, the surface of the member to be the insert part can be deformed by heat or pressure applied during insert molding to follow the surface of the insert mold (for example, the surface of the inner mold). Therefore, if the insert mold is formed with high accuracy, the accuracy of the part can be roughened at the stage of forming the insert part, so that the manufacturing cost can be further reduced. The above-mentioned “different resin” includes not only “different base resins” but also “different resin compositions as a whole including fillers”. That is, the base resin constituting the inner diameter portion and the outer diameter portion may be the same. This is because the melting point can be varied depending on the type and blending ratio of the filler.

例えば、内径部を外径部よりも低融点の樹脂組成物で成形し、これをインサート部品として用いれば、予め内型に動圧発生部の形状に対応した成形型を形成しておくことにより、上記の特徴を利用して、内径部のラジアル軸受面に、インサート成形と同時に動圧発生部を設けることもできる。この場合、焼結金属にこの種の動圧発生部を予め設ける場合に比べ、工程数を減じることができる。   For example, if the inner diameter part is molded with a resin composition having a lower melting point than the outer diameter part, and this is used as an insert part, a mold corresponding to the shape of the dynamic pressure generating part is formed in the inner mold in advance. By utilizing the above features, the dynamic pressure generating portion can be provided simultaneously with the insert molding on the radial bearing surface of the inner diameter portion. In this case, the number of steps can be reduced as compared with the case where this kind of dynamic pressure generating portion is provided in advance in the sintered metal.

また、このとき、インサート成形時に付与される熱によってインサート部品の表面が溶融して溶融結合の状態となる、もしくは成形側部材との結合界面が凹凸状となるので、いわゆるアンカー効果によって内径部と外径部の結合強度は強固なものとなる。   Further, at this time, the surface of the insert part is melted by heat applied at the time of insert molding to be in a melt-bonded state, or the bonding interface with the molding-side member becomes uneven, so that the inner diameter portion is formed by a so-called anchor effect. The bond strength of the outer diameter portion is strong.

内径部は、軸受隙間に潤滑油を供給することができる含油樹脂で形成するのが望ましく、特に、焼結金属同様の多孔質体で、十分量の潤滑油を保持可能な樹脂の多孔質体(多孔質樹脂)で形成するのがより望ましい。樹脂の多孔質体は、例えば、気孔形成材を含有した樹脂を用いて射出成形を行い、その後気孔形成材を除去することによって形成可能で、焼結金属に比べ、その製造工程は簡易なものとなる。   The inner diameter portion is preferably formed of an oil-containing resin capable of supplying lubricating oil to the bearing gap, and in particular, a porous body similar to a sintered metal and a resin porous body capable of holding a sufficient amount of lubricating oil It is more desirable to form with (porous resin). A porous resin body can be formed by, for example, injection molding using a resin containing a pore-forming material and then removing the pore-forming material, and its manufacturing process is simple compared to sintered metal. It becomes.

上記構成の流体軸受装置は、ロータマグネットとステータコイルとを有するモータ、例えばHDD用のスピンドルモータ等に好ましく用いることができる。   The hydrodynamic bearing device having the above configuration can be preferably used for a motor having a rotor magnet and a stator coil, for example, a spindle motor for HDD.

以上より、本発明によれば、高い軸受性能を長期に亘って維持可能な流体軸受装置を低コストに提供することができる。   As described above, according to the present invention, it is possible to provide a hydrodynamic bearing device capable of maintaining high bearing performance over a long period of time at a low cost.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係る流体軸受装置1を組み込んだ情報機器用スピンドルモータの一構成例を概念的に示している。このスピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に支持する流体軸受装置1と、軸部材2に装着されたロータ(ディスクハブ)3と、例えば半径方向のギャップを介して対向させたステータコイル4aおよびロータマグネット4bを備えている。ステータコイル4aはブラケット5の外周に取付けられ、ロータマグネット4bはディスクハブ3の内周に取付けられる。流体軸受装置1の軸受部材6は、ブラケット5の内周に装着される。ディスクハブ3には、磁気ディスク等のディスクDが一又は複数枚保持される。ステータコイル4aに通電すると、ステータコイル4aとロータマグネット4bとの間の電磁力でロータマグネット4bが回転し、それによって、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to the present invention. This spindle motor is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2, a rotor (disk hub) 3 mounted on the shaft member 2, and a radial direction, for example. The stator coil 4a and the rotor magnet 4b are opposed to each other through the gap. The stator coil 4 a is attached to the outer periphery of the bracket 5, and the rotor magnet 4 b is attached to the inner periphery of the disk hub 3. The bearing member 6 of the hydrodynamic bearing device 1 is mounted on the inner periphery of the bracket 5. The disk hub 3 holds one or more disks D such as magnetic disks. When the stator coil 4a is energized, the rotor magnet 4b is rotated by the electromagnetic force between the stator coil 4a and the rotor magnet 4b, whereby the disk hub 3 and the shaft member 2 are rotated together.

図2は、上記スピンドルモータで使用される流体軸受装置1の一例を示すものである。この動圧軸受装置1は、回転側の軸部材2と、固定側の軸受部材6とを主要な構成部品として備える。なお、以下説明の便宜上、軸受部材6の開口部から軸部材2の端部が突出している側を上側、その軸方向反対側を下側として説明を進める。   FIG. 2 shows an example of the hydrodynamic bearing device 1 used in the spindle motor. The hydrodynamic bearing device 1 includes a rotation-side shaft member 2 and a fixed-side bearing member 6 as main components. For convenience of explanation, the description will be given with the side where the end of the shaft member 2 protrudes from the opening of the bearing member 6 being the upper side and the opposite side in the axial direction being the lower side.

本実施形態では、軸受部材6を構成する内径部8の内周面8aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1と第2ラジアル軸受部R2とが軸方向に離隔して設けられる。また、内径部8の上側端面8bと第1フランジ部9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、内径部8の下側端面8cと第2フランジ部10の上側端面10bとの間に第2スラスト軸受部T2が設けられる。   In the present embodiment, the first radial bearing portion R1 and the second radial bearing portion R2 are separated in the axial direction between the inner peripheral surface 8a of the inner diameter portion 8 constituting the bearing member 6 and the outer peripheral surface 2a of the shaft member 2. Provided. A first thrust bearing portion T1 is provided between the upper end surface 8b of the inner diameter portion 8 and the lower end surface 9b of the first flange portion 9, and the lower end surface 8c of the inner diameter portion 8 and the upper side of the second flange portion 10 are provided. A second thrust bearing portion T2 is provided between the end surface 10b.

軸部材2は、ステンレス鋼等の金属材料で形成される。軸部材2は全体として概ね同径の軸状をなし、その中間部分には、他所よりも僅かに小径の逃げ部2bが形成されている。軸部材2の外周面2aのうち、第1および第2フランジ部9、10の固定位置には、凹部、例えば円周溝2cが形成されている。   The shaft member 2 is formed of a metal material such as stainless steel. The shaft member 2 as a whole has a shaft shape with substantially the same diameter, and an intermediate portion is formed with a relief portion 2b having a slightly smaller diameter than other portions. In the outer peripheral surface 2a of the shaft member 2, a recessed portion, for example, a circumferential groove 2c is formed at a fixing position of the first and second flange portions 9 and 10.

軸受部材6は、樹脂の多孔質体(多孔質樹脂)で形成された円筒状の内径部8と、該内径部8をインサートして樹脂で射出成形された外径部7とで構成される。多孔質樹脂からなる内径部8は、例えば、気孔形成材を配合した樹脂組成物を用いて射出成形した後、気孔形成材を水、アルコール等の溶媒で除去して形成される。なお内径部8の成形には、上記の射出成形の他、内径部8の形状や選定される樹脂の材質等に応じて圧縮成形、押出し成形、ブロー成形、真空成形、トランスファ成形などの手法を用いることもできる。   The bearing member 6 includes a cylindrical inner diameter portion 8 formed of a resin porous body (porous resin), and an outer diameter portion 7 that is inserted into the inner diameter portion 8 and injection-molded with resin. . The inner diameter portion 8 made of a porous resin is formed by, for example, injection molding using a resin composition containing a pore forming material, and then removing the pore forming material with a solvent such as water or alcohol. In addition to the above-described injection molding, the inner diameter portion 8 may be molded by methods such as compression molding, extrusion molding, blow molding, vacuum molding, transfer molding, etc. according to the shape of the inner diameter portion 8 and the resin material selected. It can also be used.

内径部8の内周面8aには、第1ラジアル軸受部R1と第2ラジアル軸受部R2のラジアル軸受面となる上下2つの領域が軸方向に離隔して設けられ、該2つの領域には動圧発生部として、例えば図3(a)に示すようなヘリングボーン形状の動圧溝8a1、8a2がそれぞれ形成される。図示例では、動圧溝8a1、8a2を軸方向中心に対して対称形状としているが、例えば上側の動圧溝8a1のうち軸方向中心に対して上側領域の溝を下側領域の溝よりも軸方向幅を長大化することにより、軸部材2の回転時、潤滑油に軸方向下方の押し込み力(ポンピング力)を付与することもできる。動圧溝8a1、8a2はラジアル軸受隙隙間を介して対向する軸部材2の外周面2aに形成することもできる。動圧溝はヘリングボーン形状だけでなく、その他の形状、例えばスパイラル形状等など任意の形状に形成することもできる。   The inner peripheral surface 8a of the inner diameter portion 8 is provided with two upper and lower regions which are radial bearing surfaces of the first radial bearing portion R1 and the second radial bearing portion R2, and are provided in the axial direction apart from each other. For example, herringbone-shaped dynamic pressure grooves 8a1 and 8a2 as shown in FIG. In the illustrated example, the dynamic pressure grooves 8a1 and 8a2 are symmetrical with respect to the axial center. For example, in the upper dynamic pressure groove 8a1, the groove in the upper region with respect to the axial center is more than the groove in the lower region. By increasing the axial width, it is possible to apply a downward pushing force (pumping force) to the lubricating oil when the shaft member 2 rotates. The dynamic pressure grooves 8a1 and 8a2 can also be formed on the outer peripheral surface 2a of the shaft member 2 facing each other through a radial bearing gap. The dynamic pressure grooves can be formed not only in a herringbone shape but also in other shapes such as a spiral shape.

また、内径部8の上側端面8bの一部または全部環状領域には、第1スラスト軸受部T1のスラスト軸受面が形成され、当該スラスト軸受面となる領域には動圧発生部として、例えば図3(b)に示すようなスパイラル形状の動圧溝8b1が形成される。同様に、内径部8の下側端面8cの一部または全部環状領域には、第2スラスト軸受部T2のスラスト軸受面が形成され、当該スラスト軸受面となる領域には動圧発生部として、例えば図3(c)に示すようなスパイラル形状の動圧溝8c1が形成される。動圧発生部は、スラスト軸受隙間を介して対向する面、すなわち第1フランジ部9の下側端面9bおよび第2フランジ部10の上側端面10bに形成することもできる。なお、動圧溝形状は、上記スパイラル形状の他、例えばヘリングボーン形状等任意の形状に形成することもできる。   Further, a thrust bearing surface of the first thrust bearing portion T1 is formed in a part or all of the annular region of the upper end surface 8b of the inner diameter portion 8, and a dynamic pressure generating portion is formed in the region that becomes the thrust bearing surface, for example, as shown in FIG. A spiral-shaped dynamic pressure groove 8b1 as shown in 3 (b) is formed. Similarly, a thrust bearing surface of the second thrust bearing portion T2 is formed in a part or all of the annular region of the lower end surface 8c of the inner diameter portion 8, and a dynamic pressure generating portion is formed in the region that becomes the thrust bearing surface. For example, a spiral-shaped dynamic pressure groove 8c1 as shown in FIG. 3C is formed. The dynamic pressure generating portion can also be formed on the surfaces facing through the thrust bearing gap, that is, the lower end surface 9 b of the first flange portion 9 and the upper end surface 10 b of the second flange portion 10. The dynamic pressure groove shape can be formed in an arbitrary shape such as a herringbone shape in addition to the spiral shape.

内径部8を形成するのに用いるベース樹脂としては、射出成形可能で、かつ求められる耐熱性、耐油性、機械的強度等を満足できれば熱可塑性樹脂、熱硬化性樹脂を問わず使用可能で、例えば、以下例示する汎用プラスチック、汎用エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチックから選定された一または複数種混合したものが使用可能で、上記の要求特性に優れたスーパーエンジニアリングプラスチックを少なくとも一種混合するのが望ましい。ベース樹脂には、強化材や潤滑剤、導電材等の各種充填材を一または複数種配合させることもできる。   The base resin used to form the inner diameter portion 8 can be used regardless of thermoplastic resin or thermosetting resin as long as it can be injection-molded and satisfies the required heat resistance, oil resistance, mechanical strength, and the like. For example, a mixture of one or a plurality of types selected from general-purpose plastics, general-purpose engineering plastics and super-engineering plastics exemplified below can be used, and it is desirable to mix at least one super-engineering plastic having the above required characteristics. One or more kinds of various fillers such as a reinforcing material, a lubricant, and a conductive material can be blended in the base resin.

使用可能な汎用プラスチックとして、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、エポキシ(EP)等を挙げることができ、また汎用エンジニアリングプラスチックとして、例えば、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)等を挙げることができる。   Usable general-purpose plastics include, for example, polyethylene (PE), polypropylene (PP), polystyrene (PS), epoxy (EP) and the like, and general-purpose engineering plastics include, for example, polyacetal (POM), polyethylene terephthalate. (PET), polybutylene terephthalate (PBT), polycarbonate (PC) and the like.

また、使用可能なスーパーエンジニアリングプラスチックとして、例えば、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)、熱可塑性ポリイミド(TPI)、熱硬化性ポリイミド、ポリアミド(PA)、ポリアミド6T、ポリアミド9T等の芳香族ポリアミド、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)等のフッ素系共重合体樹脂等が挙げられる。   Examples of usable super engineering plastics include polyphenylene sulfide (PPS), polyether ketone (PEK), polyether ether ketone (PEEK), polyether imide (PEI), polyether sulfone (PES), and polyamide imide. (PAI), thermoplastic polyimide (TPI), thermosetting polyimide, polyamide (PA), polyamide 6T, polyamide 9T and other aromatic polyamides, tetrafluoroethylene / hexafluoropropylene copolymer (PFA), ethylene / tetrafluoro Examples thereof include fluorine copolymer resins such as ethylene copolymer (ETFE).

上記のベース樹脂に、ドライブレンド、溶融混錬等、樹脂の混合に一般に使用する混錬法で気孔形成材、充填材を混合させることにより、樹脂組成物(射出材料)が生成される。気孔形成材としては、成形時の融解を防止するため、選定されるベース樹脂の成形温度よりも高い融点を有し、該ベース樹脂に配合して内径部8を成形した後、ベース樹脂を溶解しない溶媒を用いて除去可能なものを使用することができる。この中でも、特に、成形後の除去作業を容易に行い得る水溶性で、また、防錆剤として使用できる弱アルカリ性物質を好ましく使用することができる。   A resin composition (injection material) is produced by mixing the pore-forming material and filler with the base resin by a kneading method generally used for resin mixing such as dry blending or melt kneading. As a pore forming material, in order to prevent melting at the time of molding, it has a melting point higher than the molding temperature of the selected base resin, and after blending with the base resin and molding the inner diameter portion 8, the base resin is dissolved. Those that can be removed using non-solvents can be used. Among these, in particular, a weakly alkaline substance that is water-soluble and can be used as a rust preventive can be preferably used because it can be easily removed after molding.

気孔形成材としては、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、コハク酸ナトリウム、あるいはステアリン酸ナトリウム等に代表される有機アルカリ金属塩や、炭酸カリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウム等に代表される無機アルカリ金属塩等を使用することができる。この中でも、高融点で、ベース樹脂の選定自由度を高められ、かつ水溶性に優れる安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウムが特に好ましい。これらの金属塩は一種のみ使用する他、二種以上混合して使用しても良い。なお、使用する気孔形成材の平均粒径は、0.1〜500μmとするのが望ましい。気孔形成材の粒径、すなわち内径部8に形成される空孔径が0.1μm以下となると、潤滑油の表面張力によって軸受隙間への潤滑油の供給が円滑に行われず、空孔径が500μm以上となると、表面積が小さくなって所期の軸受剛性が得られないからである。   As the pore forming material, organic alkali metal salts such as sodium benzoate, sodium acetate, sodium sebacate, sodium succinate or sodium stearate, potassium carbonate, sodium molybdate, potassium molybdate, sodium tungstate Inorganic alkali metal salts such as sodium triphosphate and sodium pyrophosphate can be used. Among these, sodium benzoate, sodium acetate, and sodium sebacate are particularly preferable because they have a high melting point, increase the degree of freedom in selecting a base resin, and are excellent in water solubility. These metal salts may be used alone or in combination of two or more. The average particle size of the pore-forming material used is preferably 0.1 to 500 μm. When the particle diameter of the pore forming material, that is, the hole diameter formed in the inner diameter portion 8 is 0.1 μm or less, the lubricating oil is not smoothly supplied to the bearing gap due to the surface tension of the lubricating oil, and the hole diameter is 500 μm or more. This is because the surface area becomes small and the desired bearing rigidity cannot be obtained.

また、気孔形成材の配合割合は、ベース樹脂、気孔形成材および充填材などを含めた全量に対して、10vol%〜90vol%とするのが好ましく、含油量を最低限に抑えたい場合には10vol%〜30vol%、また、含油量を多くする場合には40vol%〜60vol%とするのが一層好ましい。10vol%以下では十分量の空孔を確保することができず、90vol%以上では所期の機械的強度が得られないからである。   In addition, the mixing ratio of the pore forming material is preferably 10 vol% to 90 vol% with respect to the total amount including the base resin, the pore forming material, the filler, and the like. 10 vol% to 30 vol%, and when increasing the oil content, it is more preferably 40 vol% to 60 vol%. This is because a sufficient amount of pores cannot be ensured at 10 vol% or less, and an expected mechanical strength cannot be obtained at 90 vol% or more.

外径部7は、上記内径部8をインサートして射出成形された樹脂の非孔質体で、略円筒状に形成される。この外径部7の外周面には図1に示すブラケット5の取り付け面が形成され、この取り付け面がブラケット5の内周面に圧入、接着、圧入接着等の手段で固定される。   The outer diameter portion 7 is a non-porous body of resin that is injection-molded by inserting the inner diameter portion 8 and is formed in a substantially cylindrical shape. A mounting surface of the bracket 5 shown in FIG. 1 is formed on the outer peripheral surface of the outer diameter portion 7, and this mounting surface is fixed to the inner peripheral surface of the bracket 5 by means such as press-fitting, bonding, and press-fitting adhesion.

外径部7を構成するベース樹脂は、内径部8同様射出成形可能で、かつ求められる耐熱性、耐油性、機械的強度等を満足できれば熱可塑性樹脂、熱硬化性樹脂を問わず使用可能で、上述した汎用プラスチック、汎用エンジニアリングプラスチックおよびスーパーエンジニアリングプラスチック等から選定された一または複数種混合したものが使用可能である。ベース樹脂には、強化材(繊維状、粉末上等の形態は問わない)や潤滑剤、導電材等の各種充填材が一種または二種以上配合され、これにより外径部7を形成する樹脂組成物が生成される。本実施形態では、外径部7を形成する樹脂組成物が、内径部8を形成する樹脂組成物よりも高融点となるように生成される。   The base resin constituting the outer diameter portion 7 can be used regardless of thermoplastic resin or thermosetting resin as long as the inner diameter portion 8 can be injection-molded and satisfies the required heat resistance, oil resistance, mechanical strength, and the like. One or a plurality of types selected from the above-mentioned general-purpose plastics, general-purpose engineering plastics and super-engineering plastics can be used. Resin that forms the outer diameter portion 7 by mixing one or two or more kinds of fillers such as a reinforcing material (in any form such as fibrous or powder), a lubricant, and a conductive material in the base resin. A composition is produced. In this embodiment, the resin composition that forms the outer diameter portion 7 is generated so as to have a higher melting point than the resin composition that forms the inner diameter portion 8.

上記のように、外径部7を内径部8よりも高融点の樹脂組成物で形成すれば、外径部7の成形時、インサート部品として金型内に配置した内径部8の表面(外周面8d)は溶融して溶融結合の状態となるか、もしくは図2の拡大図(図中、右側の拡大図)に示すような凹凸面となる。そのため、射出された樹脂組成物は外周面8dの凹凸に入り込み、いわゆるアンカー効果によって外径部7と内径部8とは相互に強固に固着する。これにより、耐衝撃性に優れた軸受部材6が得られる。   If the outer diameter portion 7 is formed of a resin composition having a melting point higher than that of the inner diameter portion 8 as described above, the surface (outer periphery) of the inner diameter portion 8 disposed in the mold as an insert part when the outer diameter portion 7 is molded. The surface 8d) is melted to be in a melt-bonded state, or is an uneven surface as shown in the enlarged view of FIG. 2 (the enlarged view on the right side in the figure). Therefore, the injected resin composition enters the unevenness of the outer peripheral surface 8d, and the outer diameter portion 7 and the inner diameter portion 8 are firmly fixed to each other by a so-called anchor effect. Thereby, the bearing member 6 excellent in impact resistance is obtained.

なお、外径部7と内径部8の結合強度を一層高めるため、外径部7の成形時、内径部8の上下端面8b、8cを被覆するように樹脂を射出することもできる。また、結合強度を一層高めるため、例えば外周面8dに、間欠的あるいは連続的に円環溝を設けた内径部8をインサート部品として用いることもできる(図示省略)。   In order to further increase the bonding strength between the outer diameter portion 7 and the inner diameter portion 8, it is possible to inject resin so as to cover the upper and lower end surfaces 8b and 8c of the inner diameter portion 8 when the outer diameter portion 7 is molded. Further, in order to further increase the bonding strength, for example, the inner diameter portion 8 provided with an annular groove intermittently or continuously on the outer peripheral surface 8d can be used as an insert part (not shown).

また、図示は省略するが、本実施形態では、内径部8の内周面8a、上側端面8b、および下側端面8cの各動圧溝形状に対応した型部を内面に設けた射出成形型を用いて外径部7を射出成形した。上記のように外径部7は内径部8よりも高融点の樹脂組成物で形成されるから、内径部8を成形型に投入した際には、外周面8d同様、内径部8の各面8a〜8cを溶融(軟化)させて成形型の表面形状に倣わせることができる。このようにして外径部7の成形と同時に上述した各動圧溝8a1、8a2、8b1、8c1を形成することができる。このように本実施形態では、求められる軸受部材6の形状を、全てインサート成形時に確保したので、内径部8の成形段階でその成形精度はラフなものであっても問題なく、内径部8は低コストに形成することができる。   Although not shown, in the present embodiment, an injection mold in which mold parts corresponding to the dynamic pressure groove shapes of the inner peripheral surface 8a, the upper end surface 8b, and the lower end surface 8c of the inner diameter portion 8 are provided on the inner surface. Was used to injection-mold the outer diameter portion 7. Since the outer diameter portion 7 is formed of a resin composition having a higher melting point than the inner diameter portion 8 as described above, each surface of the inner diameter portion 8 is the same as the outer peripheral surface 8d when the inner diameter portion 8 is put into a mold. 8a-8c can be melted (softened) to follow the surface shape of the mold. In this manner, the dynamic pressure grooves 8a1, 8a2, 8b1, and 8c1 described above can be formed simultaneously with the formation of the outer diameter portion 7. As described above, in the present embodiment, all the required shapes of the bearing member 6 are ensured at the time of insert molding, so there is no problem even if the molding accuracy of the inner diameter portion 8 is rough at the molding stage. It can be formed at low cost.

第1フランジ部9および第2フランジ部10は、何れも黄銅等の軟質金属材料やその他の金属材料、あるいは樹脂材料で軸部材2とは別体のリング状に形成され、軸部材2の所定位置に接着固定される。このとき、軸部材2に塗布した接着剤が、接着剤溜りとしての円周溝2cに充填されて固化することにより、フランジ部9、10の軸部材2に対する接着強度が向上する。   The first flange portion 9 and the second flange portion 10 are both formed of a soft metal material such as brass, other metal materials, or a resin material in a ring shape that is separate from the shaft member 2, and the shaft member 2 has a predetermined shape. Glued in place. At this time, the adhesive applied to the shaft member 2 is filled and solidified in the circumferential groove 2c as an adhesive reservoir, whereby the adhesive strength of the flange portions 9 and 10 to the shaft member 2 is improved.

第1フランジ部9の外周面9aは、外径部7の上端開口部の内周面7aとの間に所定容積の第1シール空間S1を形成し、また第2フランジ部10の外周面10aは、外径部7の下端開口部の内周面7aとの間に所定容積の第2シール空間S2を形成する。本実施形態において、第1フランジ部9の外周面9aおよび第2フランジ部10の外周面10aは、それぞれ軸受装置の外部側に向かって漸次縮径したテーパ面状に形成される。そのため、両シール空間S1、S2は、互いに接近する方向(軸受部材6の内部方向)に漸次縮径したテーパ形状となる。軸部材2の回転時、両シール空間S1、S2内の潤滑油は毛細管力による引き込み作用と、回転時の遠心力により引き込み作用とにより、シール空間が狭くなる方向(軸受部材6の内部方向)に向けて引き込まれる。これにより、装置内部からの潤滑油の漏れ出しが効果的に防止される。油漏れを確実に防止するため、図2の拡大図(図中、左側の拡大図)に示すように、外径部7の上側端面7bと下側端面7c、第1フランジ部9の上側端面9c、および第2フランジ部10の下側端面10cにそれぞれ撥油剤からなる被膜11を形成することもできる。   A first seal space S1 having a predetermined volume is formed between the outer peripheral surface 9a of the first flange portion 9 and the inner peripheral surface 7a of the upper end opening of the outer diameter portion 7, and the outer peripheral surface 10a of the second flange portion 10 is also formed. Forms a second seal space S2 having a predetermined volume between the inner peripheral surface 7a of the lower end opening of the outer diameter portion 7. In this embodiment, the outer peripheral surface 9a of the 1st flange part 9 and the outer peripheral surface 10a of the 2nd flange part 10 are each formed in the taper surface shape gradually diameter-reduced toward the outer side of the bearing apparatus. Therefore, both the seal spaces S1 and S2 have a tapered shape that is gradually reduced in diameter in a direction approaching each other (inner direction of the bearing member 6). When the shaft member 2 rotates, the lubricating oil in the seal spaces S1 and S2 is narrowed by the pulling action by capillary force and by the pulling action by the centrifugal force during rotation (inner direction of the bearing member 6). It is drawn toward. Thereby, the leakage of the lubricating oil from the inside of the apparatus is effectively prevented. In order to reliably prevent oil leakage, as shown in the enlarged view of FIG. 2 (the enlarged view on the left side in the figure), the upper end surface 7b and the lower end surface 7c of the outer diameter portion 7, and the upper end surface of the first flange portion 9 A film 11 made of an oil repellent agent can also be formed on the lower end surface 10c of the second flange portion 10 and 9c.

第1および第2シール空間S1、S2は、軸受部材6の内部空間に充満された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有する。想定される温度変化の範囲内では、油面は常時両シール空間S1、S2内にある。これを実現するために、両シール空間S1、S2の容積の総和は、少なくとも内部空間に充満された潤滑油の温度変化に伴う容積変化量よりも大きく設定される。   The first and second seal spaces S <b> 1 and S <b> 2 have a buffer function that absorbs a volume change amount associated with a temperature change of the lubricating oil filled in the internal space of the bearing member 6. Within the assumed temperature change range, the oil level is always in both seal spaces S1, S2. In order to achieve this, the sum of the volumes of both the seal spaces S1, S2 is set to be larger than at least the volume change amount associated with the temperature change of the lubricating oil filled in the internal space.

上記のようにして、軸受部材6(内径部8)の内周に軸部材2を挿入した後、内径部8を挟むように第1フランジ部9および第2フランジ部10を軸部材2の所定箇所に接着固定する。このようにして組立が完了すると、両フランジ部9、10で密閉された軸受部材6の内部空間に、内径部8の内部気孔も含め、潤滑流体として例えば潤滑油を充満させる。   As described above, after the shaft member 2 is inserted into the inner periphery of the bearing member 6 (inner diameter portion 8), the first flange portion 9 and the second flange portion 10 are fixed to the shaft member 2 so as to sandwich the inner diameter portion 8. Adhere and fix to the location. When the assembly is completed in this manner, the internal space of the bearing member 6 sealed by the flange portions 9 and 10 is filled with, for example, lubricating oil as a lubricating fluid including the internal pores of the inner diameter portion 8.

流体軸受装置1における潤滑油の注油は、例えば未注油状態の動圧軸受装置を真空槽内で潤滑油中に浸漬した後、大気圧に開放することにより行われる。本実施形態の流体軸受装置1は、軸受部材6の両端が開放されているので、その一端を閉じた構成(特許文献1参照)に比べ、内部空間のエアを確実に潤滑油で置換することができ、残存エアによる弊害、例えば高温時の油漏れ等を確実に回避することができる。また、このような減圧を利用した注油方法だけでなく、常圧下での注油(例えば、潤滑油の加圧注油)も可能となり、注油装置および工程を簡略化して製造コストの低廉化を図ることができる。   Lubricating oil in the hydrodynamic bearing device 1 is performed by, for example, immersing an unlubricated hydrodynamic bearing device in the lubricating oil in a vacuum chamber and then releasing it to atmospheric pressure. In the hydrodynamic bearing device 1 of the present embodiment, since both ends of the bearing member 6 are open, the air in the internal space is reliably replaced with lubricating oil as compared with a configuration in which one end is closed (see Patent Document 1). Thus, adverse effects caused by residual air, such as oil leakage at high temperatures, can be reliably avoided. In addition to such a lubrication method using reduced pressure, it is possible to lubricate under normal pressure (for example, pressurized lubrication of lubricating oil), simplifying the lubrication equipment and processes, and reducing manufacturing costs. Can do.

なお、本実施形態のように軸受部材6(外径部7)が軸方向中心に対して略対称形状をなす場合、上下を誤って組立を行うおそれがある。そのため、図示は省略するが、外径部7の外周面等には、上下を区別し得る識別記号を形成しておくのが望ましい。このような識別記号は、例えば外径部7の成形と同時に形成することができる。   In addition, when the bearing member 6 (outer diameter part 7) has a substantially symmetrical shape with respect to the axial center as in the present embodiment, there is a risk that assembly is performed upside down. Therefore, although not shown, it is desirable to form an identification symbol that can distinguish the upper and lower sides on the outer peripheral surface of the outer diameter portion 7 and the like. Such an identification symbol can be formed simultaneously with the molding of the outer diameter portion 7, for example.

上記構成の流体軸受装置1において、軸部材2が回転すると、内径部8の内周面8aのラジアル軸受面となる上下2箇所に離隔して設けられる領域は、それぞれ軸部材2の外周面2aとラジアル軸受隙間を介して対向する。そして、軸部材2の回転に伴い、上記ラジアル軸受隙間に形成された油膜は、動圧溝の動圧作用によってその油膜剛性が高められ、軸部材2がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。   In the hydrodynamic bearing device 1 having the above-described configuration, when the shaft member 2 rotates, the regions provided separately at the two upper and lower positions serving as the radial bearing surface of the inner peripheral surface 8a of the inner diameter portion 8 are the outer peripheral surface 2a of the shaft member 2, respectively. And through a radial bearing gap. As the shaft member 2 rotates, the oil film formed in the radial bearing gap is increased in rigidity by the dynamic pressure action of the dynamic pressure groove, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. The As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed.

また、軸部材2が回転すると、内径部8の上側端面8bのスラスト軸受面となる領域が第1フランジ部9の下側端面9bと所定のスラスト軸受隙間を介して対向し、内径部8の下側端面8cのスラスト軸受面となる領域が第2フランジ部10の上側端面10bと所定のスラスト軸受隙間を介して対向する。そして軸部材2の回転に伴い、上記スラスト軸受隙間に形成された油膜は、動圧溝の動圧作用によってその油膜剛性が高められ、軸部材2がスラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   Further, when the shaft member 2 rotates, the region that becomes the thrust bearing surface of the upper end surface 8b of the inner diameter portion 8 faces the lower end surface 9b of the first flange portion 9 via a predetermined thrust bearing gap, and the inner diameter portion 8 A region serving as a thrust bearing surface of the lower end surface 8c faces the upper end surface 10b of the second flange portion 10 via a predetermined thrust bearing gap. As the shaft member 2 rotates, the oil film formed in the thrust bearing gap is increased in rigidity by the dynamic pressure action of the dynamic pressure groove, and the shaft member 2 is supported in a non-contact manner so as to be rotatable in the thrust direction. . Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

以上に示すように、本発明では、内径部8と外径部7とが何れも樹脂となるから、内径部8を焼結金属製とした従来構成に比べ、製造工程の簡略化と材料コストの低減とにより軸受部材6の低コスト化を図ることができる。また、軸受部材6は、内径部8をインサートして外径部7を射出成形したものである。インサート成形であれば、型精度を高めておくだけで内径部8と外径部7の組み付け精度を高めることができ、さらに外径部7の成形と両者の組み付けとを一工程で行うことができるので、この点からも流体軸受装置1の低コスト化を図ることができる。   As described above, in the present invention, since the inner diameter portion 8 and the outer diameter portion 7 are both made of resin, the manufacturing process can be simplified and the material cost can be reduced as compared with the conventional configuration in which the inner diameter portion 8 is made of sintered metal. Thus, the cost of the bearing member 6 can be reduced. The bearing member 6 is formed by inserting the inner diameter portion 8 and injection molding the outer diameter portion 7. In the case of insert molding, it is possible to increase the assembly accuracy of the inner diameter portion 8 and the outer diameter portion 7 only by increasing the mold accuracy, and further, the molding of the outer diameter portion 7 and the assembly of both can be performed in one step. Therefore, the cost of the hydrodynamic bearing device 1 can be reduced also from this point.

また、本実施形態では内径部8が樹脂の多孔質体で形成されており、この樹脂の多孔質体は、上述したように、気孔形成材を含有した樹脂を用いて射出成形を行い、その後気孔形成材を除去することによって形成可能で、焼結金属よりも簡易な工程で製造することができる。したがって内径部8を樹脂の多孔質体で形成すれば、これを焼結金属で形成した従来構成に比べ製造コストの低廉化を図ることができる。また樹脂の多孔質体は、焼結金属同様内部空孔に潤滑油等を保持可能であるから、高い回転性能を長期に亘って維持可能な流体軸受装置1を低コストに提供することができる。   In the present embodiment, the inner diameter portion 8 is formed of a resin porous body, and the resin porous body is injection-molded using a resin containing a pore forming material as described above, and thereafter It can be formed by removing the pore forming material, and can be manufactured by a simpler process than the sintered metal. Therefore, if the inner diameter portion 8 is formed of a resin porous body, the manufacturing cost can be reduced as compared with the conventional configuration in which the inner diameter portion 8 is formed of sintered metal. In addition, since the resin porous body can hold lubricating oil or the like in the internal pores as in the case of the sintered metal, the hydrodynamic bearing device 1 capable of maintaining high rotational performance for a long period can be provided at low cost. .

なお、以上の説明では、内径部8を多孔質樹脂で形成する場合について説明を行ったが、内径部8を非孔質樹脂で形成することもできる。この場合、内径部8は、多孔質樹脂同様軸受隙間に潤滑油を供給可能な、いわゆる含油樹脂で形成するのが望ましい。含油樹脂としては、例えば、潤滑成分(潤滑油または潤滑グリース)をベース樹脂中に分散保持した状態で固化(硬化)したものが使用可能であり、その成分となる樹脂や潤滑油、潤滑グリースの種類は特に限定しないで採用できる。このような含油樹脂の樹脂成分の具体例としては、超高分子量ポリオレフィン、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)などの熱可塑性樹脂が、また、潤滑成分の具体例としては、鉱油、合成炭化水素油、エステル油などの潤滑油が挙げられる。また、樹脂として熱可塑性樹脂を使用し、かつ潤滑成分として潤滑グリースを使用する場合には、熱可塑性樹脂の融点より高い滴点を有する潤滑グリースを採用することが好ましい。これらの樹脂材料には、必要に応じて強化材(繊維状、粉末上等の形態は問わない)や潤滑剤、導電材等等の各種充填材が一又は複数種配合される。   In the above description, the case where the inner diameter portion 8 is formed of a porous resin has been described. However, the inner diameter portion 8 can also be formed of a nonporous resin. In this case, the inner diameter portion 8 is desirably formed of a so-called oil-containing resin that can supply lubricating oil to the bearing gap as in the case of the porous resin. As the oil-impregnated resin, for example, one obtained by solidifying (curing) a lubricating component (lubricating oil or lubricating grease) dispersed and held in the base resin can be used. The type is not particularly limited and can be adopted. Specific examples of the resin component of such an oil-containing resin include thermoplastic resins such as ultrahigh molecular weight polyolefin, polyphenylene sulfide (PPS), and liquid crystal polymer (LCP). Specific examples of the lubricating component include mineral oil and synthetic resin. Examples include lubricating oils such as hydrocarbon oils and ester oils. Further, when a thermoplastic resin is used as the resin and a lubricating grease is used as the lubricating component, it is preferable to employ a lubricating grease having a dropping point higher than the melting point of the thermoplastic resin. These resin materials are blended with one or a plurality of various fillers such as a reinforcing material (regardless of the form of fiber, powder, etc.), a lubricant, and a conductive material as necessary.

また、以上の説明では、内径部8を外径部7よりも低融点の樹脂組成物で成形し、これをインサート部品として外径部7を射出成形する構成としたが、外径部7を内径部8よりも低融点の樹脂組成物で成形し、これをインサート部品として内径部8を射出成形することもできる。   In the above description, the inner diameter portion 8 is molded from a resin composition having a melting point lower than that of the outer diameter portion 7, and the outer diameter portion 7 is injection molded using this as an insert part. It is also possible to mold the resin composition having a melting point lower than that of the inner diameter portion 8 and to injection mold the inner diameter portion 8 using this as an insert part.

さらに、図示は省略するが、更なる低コスト化を図るため、外径部7を射出成形する際、図1に示すブラケット5を一体に成形することもできる。   Furthermore, although illustration is omitted, in order to further reduce the cost, the bracket 5 shown in FIG. 1 can be integrally formed when the outer diameter portion 7 is injection-molded.

以上、本発明の一実施形態について説明を行ったが、本発明は上記の流体軸受装置1に限定適用されるものでなく、他の形態の流体軸受装置にも好ましく適用できる。以下、流体軸受装置の他の構成例について説明を行うが、図2に示すものと同一の機能・作用を有する構成部材・要素には同一の参照番号を付与し、重複説明を省略する。   As mentioned above, although one Embodiment of this invention was described, this invention is not limitedly applied to said hydrodynamic bearing apparatus 1, It can apply preferably also to the hydrodynamic bearing apparatus of another form. Hereinafter, other configuration examples of the hydrodynamic bearing device will be described, but the same reference numerals are assigned to the components and elements having the same functions and operations as those shown in FIG.

図4は、流体軸受装置1の第2の実施形態を示している。この実施形態の流体軸受装置1が図2に示す実施形態と異なる点は、第1フランジ部9および第2フランジ部10の何れか一方(図4では第2フランジ部10)を軸部材2と一体形成した点にある。これにより、フランジ部10の固定時における軸部材2とフランジ部10との間の組み付け精度(例えば直角度)のばらつきを抑えることができ、組立時の精度管理を容易化することが可能となる。この場合、軸部材2と第2フランジ部10とは金属材料で一体形成する他、軸部材2を金属材料で、第2フランジ部10を樹脂材料で形成したハイブリッド構造とすることもできる。   FIG. 4 shows a second embodiment of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 of this embodiment is different from the embodiment shown in FIG. 2 in that one of the first flange portion 9 and the second flange portion 10 (the second flange portion 10 in FIG. 4) is replaced with the shaft member 2. It is in the point formed integrally. Thereby, the dispersion | variation in the assembly | attachment precision (for example, squareness) between the shaft member 2 and the flange part 10 at the time of fixation of the flange part 10 can be suppressed, and it becomes possible to facilitate the accuracy management at the time of an assembly. . In this case, the shaft member 2 and the second flange portion 10 may be integrally formed of a metal material, or may be a hybrid structure in which the shaft member 2 is formed of a metal material and the second flange portion 10 is formed of a resin material.

図5は、流体軸受装置1の第3の実施形態を示している。この流体軸受装置が図2に示す第1の実施形態と異なる点は、内径部8を上側の内径部81と下側の内径部82とで構成し、外径部7に両内径部81、82の間の空間を埋めるスペーサ部83を設けた点にある。本実施形態では、上側内径部81の内周面81aと軸部材2の外周面2aとの間に第1ラジアル軸受部R1が設けられ、下側内径部82の内周面82aと軸部2aの外周面2aとの間に第2ラジアル軸受部R2が設けられる。また、上側内径部81の上側端面81bと第1シール部材9の下側端面9bとの間に第1スラスト軸受部T1が設けられ、下側内径部82の下側端面82cと第2シール部材10の上側端面10bとの間に第2スラスト軸受部T2が設けられる。   FIG. 5 shows a third embodiment of the hydrodynamic bearing device 1. The hydrodynamic bearing device is different from the first embodiment shown in FIG. 2 in that the inner diameter portion 8 is composed of an upper inner diameter portion 81 and a lower inner diameter portion 82, and both inner diameter portions 81, The spacer portion 83 is provided to fill the space between the two. In the present embodiment, the first radial bearing portion R1 is provided between the inner peripheral surface 81a of the upper inner diameter portion 81 and the outer peripheral surface 2a of the shaft member 2, and the inner peripheral surface 82a of the lower inner diameter portion 82 and the shaft portion 2a. The second radial bearing portion R2 is provided between the outer peripheral surface 2a of the second radial bearing portion. A first thrust bearing portion T1 is provided between the upper end surface 81b of the upper inner diameter portion 81 and the lower end surface 9b of the first seal member 9, and the lower end surface 82c of the lower inner diameter portion 82 and the second seal member. A second thrust bearing portion T <b> 2 is provided between the upper end surface 10 b of 10.

図6は、流体軸受装置1の第4の実施形態を示している。この流体軸受装置1が上記の実施形態と異なる点は、主に、軸部材2に設けられたフランジ部10の両端に第1、第2スラスト軸受部T1、T2が設けられた点、およびシール空間Sが、軸部材2の外周面2aと外径部7の上端側内周面7aに固定されたシール部材13の内周面13aとの間にのみ設けられ、軸受部材6の下端側は蓋部材12で封口された点にある。なお、この形態では、軸部材2の下端側を凸球状に形成し、この軸端を蓋部材12の上端面で接触支持するピボット軸受でスラスト軸受部を構成することもできる。   FIG. 6 shows a fourth embodiment of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 is different from the above embodiment mainly in that first and second thrust bearing portions T1 and T2 are provided at both ends of a flange portion 10 provided in the shaft member 2, and a seal. The space S is provided only between the outer peripheral surface 2a of the shaft member 2 and the inner peripheral surface 13a of the seal member 13 fixed to the upper end side inner peripheral surface 7a of the outer diameter portion 7, and the lower end side of the bearing member 6 is It is in the point sealed with the lid member 12. In this embodiment, the thrust bearing portion can also be constituted by a pivot bearing in which the lower end side of the shaft member 2 is formed in a convex spherical shape and the shaft end is in contact with and supported by the upper end surface of the lid member 12.

図7は、流体軸受装置1の第5の実施形態を示している。同図に示す流体軸受装置1は、主に、第2スラスト軸受部T2が、軸部材2に固定されたハブ部14の下側端面14aと外径部7の上側端面7bとの間に設けられた点、およびシール空間Sが外径部7の外周面7dとハブ部14の内周面14bとの間に形成された点で以上に示す形態と構成を異にしている。   FIG. 7 shows a fifth embodiment of the hydrodynamic bearing device 1. In the hydrodynamic bearing device 1 shown in the figure, the second thrust bearing portion T2 is mainly provided between the lower end surface 14a of the hub portion 14 fixed to the shaft member 2 and the upper end surface 7b of the outer diameter portion 7. The configuration and configuration described above are different from each other in that the seal space S is formed between the outer peripheral surface 7d of the outer diameter portion 7 and the inner peripheral surface 14b of the hub portion 14.

以上の説明では、ラジアル軸受部R1、R2として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑油の動圧作用を発生させる構成を例示しているが、ラジアル軸受部R1、R2として、いわゆる多円弧軸受やステップ軸受を採用しても良い。多円弧軸受やステップ軸受は、ラジアル軸受面となる領域に、それぞれ複数の円弧面や軸方向溝を設けた構成の軸受である(図示省略)。   In the above description, the configuration in which the dynamic pressure action of the lubricating oil is generated by the herringbone-shaped or spiral-shaped dynamic pressure grooves is exemplified as the radial bearing portions R1, R2, but the radial bearing portions R1, R2 are so-called A multi-arc bearing or a step bearing may be adopted. A multi-arc bearing or a step bearing is a bearing having a configuration in which a plurality of arc surfaces and axial grooves are provided in a region serving as a radial bearing surface (not shown).

また、以上の説明では、ラジアル軸受部R1、R2のように、ラジアル軸受部を軸方向の2箇所に設けた構成としたが、軸方向の1箇所、あるいは3箇所以上のラジアル軸受部を設けた構成としても良い。   Further, in the above description, the radial bearing portions are provided at two locations in the axial direction as in the radial bearing portions R1 and R2, but one radial bearing portion or three or more radial bearing portions are provided. It is good also as a composition.

また、スラスト軸受部T1、T2の一方又は双方は、例えば、スラスト軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設けた、いわゆるステップ軸受、いわゆる波型軸受(ステップ型が波型になったもの)等で構成することもできる(図示省略)。   Further, one or both of the thrust bearing portions T1 and T2 are, for example, so-called step bearings, so-called wave bearings, in which a plurality of radial groove-shaped dynamic pressure grooves are provided at predetermined intervals in the circumferential direction in a region serving as a thrust bearing surface. It can also be constituted by a mold bearing (a step type having a wave shape) or the like (not shown).

また、以上の説明では、ラジアル軸受部R1、R2の双方を動圧軸受で構成する形態を示したが、ラジアル軸受部R1、R2の何れか一方または双方を真円軸受で構成することもできる(図示省略)。   Moreover, although the form which comprises both radial bearing part R1, R2 by a dynamic pressure bearing was shown in the above description, either one or both of radial bearing part R1, R2 can also be comprised by a perfect circle bearing. (Not shown).

以上の説明では、流体軸受装置1の内部に充満し、内径部8と軸部材2との間のラジアル軸受隙間や、内径部8と軸部材2(両フランジ部9、10)との間のスラスト軸受隙間に充満される流体として潤滑油を例示したが、潤滑油以外にも、例えば空気等の気体や、磁性流体等を使用することもできる。   In the above description, the inside of the hydrodynamic bearing device 1 is filled and a radial bearing gap between the inner diameter portion 8 and the shaft member 2 or between the inner diameter portion 8 and the shaft member 2 (both flange portions 9, 10) is filled. Although the lubricating oil is exemplified as the fluid filled in the thrust bearing gap, other than the lubricating oil, for example, a gas such as air, a magnetic fluid, or the like can be used.

本発明に係る流体軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the hydrodynamic bearing apparatus which concerns on this invention. 本発明に係る流体軸受装置の断面図である。It is sectional drawing of the hydrodynamic bearing apparatus which concerns on this invention. (a)図は内径部の断面図、(b)図は内径部の上側端面を示す図、(c)図は内径部の下側端面を示す図である。(A) A figure is sectional drawing of an internal diameter part, (b) A figure is a figure which shows the upper end surface of an internal diameter part, (c) A figure is a figure which shows the lower end surface of an internal diameter part. 流体軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the hydrodynamic bearing apparatus. 流体軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the hydrodynamic bearing apparatus. 流体軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the hydrodynamic bearing apparatus. 流体軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the hydrodynamic bearing apparatus.

符号の説明Explanation of symbols

1 流体軸受装置
2 軸部材
4a ステータコイル
4b ロータマグネット
5 ブラケット
6 軸受部材
7 外径部
8 内径部
9 第1フランジ部
10 第2フランジ部
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
S1、S2 シール空間
DESCRIPTION OF SYMBOLS 1 Fluid dynamic bearing apparatus 2 Shaft member 4a Stator coil 4b Rotor magnet 5 Bracket 6 Bearing member 7 Outer diameter part 8 Inner diameter part 9 First flange part 10 Second flange part R1, R2 Radial bearing part T1, T2 Thrust bearing part S1, S2 Seal space

Claims (5)

ラジアル軸受面を有する内径部、および他部材との取り付け面を有する外径部を備えた軸受部材と、ラジアル軸受面が面するラジアル軸受隙間に形成される油膜で支持すべき軸をラジアル方向に支持するラジアル軸受部とを備える流体軸受装置において、
軸受部材は、内径部および外径部が何れも樹脂製で、かつ内径部または外径部の何れか一方をインサート部品とした射出成形品であることを特徴とする流体軸受装置。
A bearing member having an inner diameter portion having a radial bearing surface and an outer diameter portion having a mounting surface with another member, and a shaft to be supported by an oil film formed in a radial bearing gap facing the radial bearing surface in the radial direction In a hydrodynamic bearing device comprising a radial bearing portion to support,
The hydrodynamic bearing device is characterized in that the bearing member is an injection-molded product in which both the inner diameter portion and the outer diameter portion are made of resin and either the inner diameter portion or the outer diameter portion is an insert part.
内径部と外径部とを異なる樹脂で形成し、内径部および外径部のうち、融点の低い方をインサート部品として用いた請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the inner diameter portion and the outer diameter portion are formed of different resins, and the lower melting point of the inner diameter portion and the outer diameter portion is used as an insert part. 内径部のラジアル軸受面に、ラジアル軸受隙間に流体動圧を発生させる動圧発生部を設けた請求項2記載の流体軸受装置。   The hydrodynamic bearing device according to claim 2, wherein a dynamic pressure generating portion that generates a fluid dynamic pressure in the radial bearing gap is provided on the radial bearing surface of the inner diameter portion. 内径部が含油樹脂で形成された請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the inner diameter portion is formed of an oil-containing resin. 内径部が多孔質体である請求項1記載の流体軸受装置。   The hydrodynamic bearing device according to claim 1, wherein the inner diameter portion is a porous body.
JP2006086137A 2006-03-06 2006-03-27 Hydrodynamic bearing device Expired - Fee Related JP5005242B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006086137A JP5005242B2 (en) 2006-03-27 2006-03-27 Hydrodynamic bearing device
US12/281,555 US8092090B2 (en) 2006-03-06 2007-02-21 Fluid dynamic bearing device
CN2007800082777A CN101400908B (en) 2006-03-06 2007-02-21 Fluid bearing device
PCT/JP2007/053139 WO2007102312A1 (en) 2006-03-06 2007-02-21 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086137A JP5005242B2 (en) 2006-03-27 2006-03-27 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2007263169A true JP2007263169A (en) 2007-10-11
JP5005242B2 JP5005242B2 (en) 2012-08-22

Family

ID=38636371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086137A Expired - Fee Related JP5005242B2 (en) 2006-03-06 2006-03-27 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP5005242B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108582B (en) * 2009-12-24 2012-12-26 北京五洲燕阳特种纺织品有限公司 Four-shuttle circular loom for weaving dual-layer tube cloth

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011721A (en) * 2002-06-05 2004-01-15 Ntn Corp Fluid bearing device
JP2004132402A (en) * 2002-10-08 2004-04-30 Ntn Corp Fluid bearing device and its manufacturing method
JP2004190786A (en) * 2002-12-11 2004-07-08 Ntn Corp Dynamic-pressure bearing device and manufacturing method therefor
JP2004301338A (en) * 2004-07-27 2004-10-28 Ntn Corp Dynamic pressure type sintering oil impregnation bearing unit
JP2005282779A (en) * 2004-03-30 2005-10-13 Ntn Corp Fluid bearing device
JP2005337490A (en) * 2005-01-18 2005-12-08 Ntn Corp Dynamic pressure bearing device
JP2006046461A (en) * 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011721A (en) * 2002-06-05 2004-01-15 Ntn Corp Fluid bearing device
JP2004132402A (en) * 2002-10-08 2004-04-30 Ntn Corp Fluid bearing device and its manufacturing method
JP2004190786A (en) * 2002-12-11 2004-07-08 Ntn Corp Dynamic-pressure bearing device and manufacturing method therefor
JP2005282779A (en) * 2004-03-30 2005-10-13 Ntn Corp Fluid bearing device
JP2004301338A (en) * 2004-07-27 2004-10-28 Ntn Corp Dynamic pressure type sintering oil impregnation bearing unit
JP2006046461A (en) * 2004-08-03 2006-02-16 Ntn Corp Dynamic pressure bearing device
JP2005337490A (en) * 2005-01-18 2005-12-08 Ntn Corp Dynamic pressure bearing device

Also Published As

Publication number Publication date
JP5005242B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5274820B2 (en) Hydrodynamic bearing device
JP5306747B2 (en) Hydrodynamic bearing device
JP2005321089A (en) Dynamic pressure bearing device
JP5318344B2 (en) Hydrodynamic bearing device and manufacturing method thereof
WO2007072775A1 (en) Fluid bearing device
US20090190869A1 (en) Fluid dynamic bearing device
JP2008069805A (en) Dynamic pressure bearing device
JP2008064302A (en) Hydrodynamic bearing device
US8092090B2 (en) Fluid dynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP5005235B2 (en) Hydrodynamic bearing device
JP2005121052A (en) Dynamic pressure bearing device
JP5005242B2 (en) Hydrodynamic bearing device
JP2007071274A (en) Dynamic pressure bearing device
JP4689283B2 (en) Hydrodynamic bearing device
JP2009103252A (en) Fluid bearing device and motor having the same
JP2009108877A (en) Fluid bearing device and its manufacturing method
JP2004052999A (en) Fluid bearing device
JP5133008B2 (en) Hydrodynamic bearing device
JP2009011018A (en) Fluid bearing device, and manufacturing method thereof
JP5101122B2 (en) Hydrodynamic bearing device
JP5133156B2 (en) Fluid dynamic bearing device
JP2007040527A (en) Fluid bearing device
JP2010096202A (en) Fluid bearing device and method of manufacturing the same
JP2006300178A (en) Fluid bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5005242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees