JP2007262941A - Control device of internal combustion engine - Google Patents

Control device of internal combustion engine Download PDF

Info

Publication number
JP2007262941A
JP2007262941A JP2006086970A JP2006086970A JP2007262941A JP 2007262941 A JP2007262941 A JP 2007262941A JP 2006086970 A JP2006086970 A JP 2006086970A JP 2006086970 A JP2006086970 A JP 2006086970A JP 2007262941 A JP2007262941 A JP 2007262941A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
learning
control
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006086970A
Other languages
Japanese (ja)
Inventor
Sakanori Moriya
栄記 守谷
Akira Tadokoro
亮 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006086970A priority Critical patent/JP2007262941A/en
Publication of JP2007262941A publication Critical patent/JP2007262941A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device of an internal combustion engine capable of smoothly controlling the internal combustion engine, by reducing the division number of maps used when determining a control quantity. <P>SOLUTION: This control device of the internal combustion engine 1 has a state detecting means 15 detecting a state of the internal combustion engine, and a control means 20 controlling the internal combustion engine by determining the control quantity reflected on torque by using a predetermined map, by confirming an operation state of the internal combustion engine on the basis of output of the state detecting means. The map is a learning map divided in response to an operation area of the internal combustion engine and capable of updating a condition of determining the control quantity set with every operation area by the control means. The control means 20 updates the condition by changing a learning reflection factor in response to an operation performing frequency, by performing learning with every operation area in the learning map. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内燃機関の制御装置に関する。より詳細には、内燃機関の運転状況に応じて最適な制御を行う制御装置に関する。   The present invention relates to a control device for an internal combustion engine. More specifically, the present invention relates to a control device that performs optimal control according to the operating state of an internal combustion engine.

内燃機関の運転状況により負荷の状態が刻々と変化する。よって、従来から運転状況に応じて内燃機関の状態を適正な状態に制御する制御装置が種々提案されている。そして、近年にあっては、内燃機関が実際に運転されたときの状況を制御に反映させるようにした、いわゆる学習型の制御を行うようにした内燃機関の制御装置も提案されるようになっている。このような学習機能を備えた制御装置であれば、予めインストールされていた制御用データ(点火時期マップなど)が実際の運転状況により逐次更新(変更)されるので、内燃機関が運転される状態(使用環境)に応じて効率のよい制御を行える。これにより内燃機関の燃費や排気の改善を図ることができると共にドライバビリティの向上を図ることもできる。   The state of the load changes every moment depending on the operating condition of the internal combustion engine. Therefore, conventionally, various control devices for controlling the state of the internal combustion engine to an appropriate state according to the operating state have been proposed. In recent years, a control device for an internal combustion engine that performs so-called learning-type control in which the state when the internal combustion engine is actually operated is reflected in the control has been proposed. ing. In the case of a control device having such a learning function, control data (such as an ignition timing map) that has been installed in advance is sequentially updated (changed) according to actual operating conditions, so that the internal combustion engine is in operation. Efficient control can be performed according to (use environment). As a result, it is possible to improve the fuel consumption and exhaust of the internal combustion engine and improve drivability.

特許文献1は、上記学習機能を備えた内燃機関の制御装置について開示している。この制御装置は、学習マップ上のある領域を学習するときに、他の領域の学習補正値についても適正値に推定学習させることで空燃比を制御する。より具体的に説明すると、この制御装置は運転領域を複数の領域に区分した空燃比学習マップを備えている。ある領域(A、B)の学習を行うときに、領域(A、B)の学習補正係数α0を、領域(A、B)と等吸入空気流量である運転領域の学習補正係数として推定学習させる。そして、領域(A、B)と同一のTp格子及びその上下のTp格子に属する運転領域についても、領域(A、B)の学習補正係数α0を学習補正係数として推定学習させる。これにより、空燃比を学習する際に、未学習領域を学習領域の値で補間して補正レベルの段差を解消できるので、良好に内燃機関を制御できる。   Patent Document 1 discloses a control device for an internal combustion engine having the learning function. When learning a certain region on the learning map, the control device controls the air-fuel ratio by causing the learning correction values of other regions to be estimated and learned to appropriate values. More specifically, this control device includes an air-fuel ratio learning map in which the operation region is divided into a plurality of regions. When learning a certain region (A, B), the learning correction coefficient α0 of the region (A, B) is estimated and learned as a learning correction coefficient of the operation region having the same intake air flow rate as the region (A, B). . The learning correction coefficient α0 of the area (A, B) is estimated and learned as the learning correction coefficient for the operation areas belonging to the same Tp lattice as the regions (A, B) and the Tp lattices above and below the Tp lattice. Thereby, when learning the air-fuel ratio, the step of the correction level can be eliminated by interpolating the unlearned region with the value of the learning region, so that the internal combustion engine can be controlled satisfactorily.

特開平9−79072号公報JP-A-9-79072

しかしながら、特許文献1では学習マップをどのように設定するか、すなわち学習マップの区分をどのように設定するのが内燃機関の制御に適切であるかについて検討がなされていない。例えば設定する区分を比較的大きく分割すると境界部でのトルク段差が生じてしまう場合がある。その一方で、多数の区分を設定して細分化するとメモリの不足などの問題が発生する。   However, Patent Document 1 does not discuss how to set the learning map, that is, how to set the learning map classification is appropriate for the control of the internal combustion engine. For example, if the set division is relatively large, a torque step at the boundary may occur. On the other hand, if a large number of sections are set and subdivided, problems such as memory shortage occur.

したがって、本発明の目的は、制御量を求める際に用いるマップの区分数を低減すると共に、内燃機関の円滑な制御を実現できる内燃機関の制御装置を提供することである。   Accordingly, an object of the present invention is to provide a control device for an internal combustion engine that can reduce the number of map sections used when determining a control amount and can realize smooth control of the internal combustion engine.

上記目的は、内燃機関の状態を検出する状態検出手段と、前記状態検出手段の出力に基づいて内燃機関の運転状況を確認し、所定のマップを用いてトルクに反映される制御量を求めて内燃機関を制御する制御手段とを、備えている内燃機関の制御装置であって、前記マップは、内燃機関の運転領域に応じて区分されていると共に、前記運転領域毎に設定した前記制御量を求める条件を前記制御手段により更新可能な学習マップであり、前記制御手段は、前記学習マップ内の前記運転領域ごとに学習を実施して、運転実施頻度に応じて学習反映係数を変化させて前記条件を更新する内燃機関の制御装置により達成される。   The object is to detect a state of the internal combustion engine and to check the operating state of the internal combustion engine based on the output of the state detector and to obtain a control amount reflected in the torque using a predetermined map. A control unit for controlling the internal combustion engine, wherein the map is divided according to an operation region of the internal combustion engine, and the control amount set for each operation region Is a learning map that can be updated by the control means, and the control means performs learning for each of the driving regions in the learning map and changes a learning reflection coefficient according to the driving execution frequency. This is achieved by an internal combustion engine controller that updates the conditions.

本発明によると、内燃機関の運転領域により区分されている学習マップを用いるので従来のマップより区分数を大幅に減少させることができる。よって、メモリ不足という問題が生じることがない。さらに、制御手段が学習マップの運転領域ごとに学習を実施し、運転実施頻度に応じて学習反映係数を変化させて制御量を求める条件を更新するので常に適切に内燃機関を制御できる。   According to the present invention, since the learning map divided by the operation region of the internal combustion engine is used, the number of divisions can be greatly reduced as compared with the conventional map. Therefore, the problem of insufficient memory does not occur. Furthermore, since the control means performs learning for each operation region of the learning map and updates the condition for obtaining the control amount by changing the learning reflection coefficient according to the operation execution frequency, the internal combustion engine can always be controlled appropriately.

また、前記制御手段は、隣接する第1の運転領域と第2の運転領域との間の境界を跨る運転状況でトルク段差が所定値より大きいときに、前記トルク段差を解消する補間処理を行うことが望ましい。このようにすれば学習頻度の相違により大きなトルク段差が発生しても内燃機関を円滑に制御できる。   Further, the control means performs an interpolation process to eliminate the torque step when the torque step is larger than a predetermined value in the driving situation across the boundary between the adjacent first driving region and the second driving region. It is desirable. In this way, the internal combustion engine can be smoothly controlled even if a large torque step occurs due to the difference in learning frequency.

また前記制御手段は、前記運転領域の出現頻度に応じて、前記学習反映係数を重み付けする補正をしてから、内燃機関を制御するようにするのがより好ましい。この場合には出現頻度の少ない運転領域の重み付けを大きくし、出現頻度の多い運転領域の重み付けを小さくできる。これにより学習による効果を高めて内燃機関を精度良く制御できる。   Further, it is more preferable that the control means controls the internal combustion engine after correcting the learning reflection coefficient according to the appearance frequency of the operation region. In this case, it is possible to increase the weighting of the operation region with a low appearance frequency and reduce the weighting of the operation region with a high appearance frequency. Thereby, the effect by learning can be enhanced and the internal combustion engine can be accurately controlled.

そして、前記制御量は内燃機関の点火時期とすることが好ましいが、吸入空気量、燃料噴射量、空燃比(A/F)などとしてもよい。   The control amount is preferably the ignition timing of the internal combustion engine, but may be an intake air amount, a fuel injection amount, an air-fuel ratio (A / F), or the like.

本発明によると、制御量を求める際に用いる学習マップの領域数を低減すると共に、内燃機関の円滑な制御を実現できる内燃機関の制御装置を提供できる。   According to the present invention, it is possible to provide a control device for an internal combustion engine that can reduce the number of regions of a learning map used when obtaining a control amount and can realize smooth control of the internal combustion engine.

以下、図面を参照して本発明を実施するための最良の形態について説明する。図1は、本発明による制御装置を備えた内燃機関について示した概略ブロック図である。内燃機関1は、シリンダブロック2内にピストン3が往復移動可能に配置されている。ピストン3の上部に形成される燃焼室4の内部で燃料(例えばガソリン)および空気の混合気を燃焼させ、ピストン3を往復移動させることにより動力を発生するものである。なお、図1には1気筒のみが示されるが、内燃機関1は多気筒エンジンとして構成されると好ましく、本実施形態の内燃機関1は、例えば4気筒エンジンとして形成される。   The best mode for carrying out the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram showing an internal combustion engine equipped with a control device according to the present invention. In the internal combustion engine 1, a piston 3 is disposed in a cylinder block 2 so as to be capable of reciprocating. Power is generated by reciprocating the piston 3 by burning a mixture of fuel (for example, gasoline) and air inside a combustion chamber 4 formed at the top of the piston 3. Although only one cylinder is shown in FIG. 1, the internal combustion engine 1 is preferably configured as a multi-cylinder engine, and the internal combustion engine 1 of the present embodiment is formed as a four-cylinder engine, for example.

各燃焼室4の吸気ポートは、吸気マニホールドを介して吸気管5に接続されている。排気側についても同様であり、各燃焼室4の排気ポートは排気マニホールドを介して排気管6に接続されている。また、内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁16と、排気ポートを開閉する排気弁17とが燃焼室4ごとに配設されている。各吸気弁16および各排気弁17は、例えば可変バルブタイミング機能を有する動弁機構(図示せず)によって開閉させられる。更に、内燃機関1は、気筒数に応じた数の点火プラグ7を有し、この点火プラグ7は対応する燃焼室4内に臨むようにシリンダヘッドに配設されている。   An intake port of each combustion chamber 4 is connected to an intake pipe 5 via an intake manifold. The same applies to the exhaust side, and the exhaust port of each combustion chamber 4 is connected to the exhaust pipe 6 via an exhaust manifold. In addition, an intake valve 16 that opens and closes an intake port and an exhaust valve 17 that opens and closes an exhaust port are disposed for each combustion chamber 4 in the cylinder head of the internal combustion engine 1. Each intake valve 16 and each exhaust valve 17 are opened and closed by a valve operating mechanism (not shown) having a variable valve timing function, for example. Further, the internal combustion engine 1 has a number of spark plugs 7 corresponding to the number of cylinders, and the spark plugs 7 are arranged on the cylinder heads so as to face the corresponding combustion chambers 4.

吸気管5には、上流側からエアクリーナ9、スロットルバルブ(本実施形態では、電子制御式スロットルバルブ)10及びサージタンク8が配置してある。一方、排気管6には三元触媒を含む前段触媒装置11aおよびNOx吸蔵還元触媒を含む後段触媒装置11bが配置してある。   An air cleaner 9, a throttle valve (in this embodiment, an electronically controlled throttle valve) 10 and a surge tank 8 are arranged in the intake pipe 5 from the upstream side. On the other hand, the exhaust pipe 6 is provided with a front-stage catalyst device 11a including a three-way catalyst and a rear-stage catalyst device 11b including a NOx storage reduction catalyst.

また、内燃機関1は複数のインジェクタ12を有している。各インジェクタ12は、対応する吸気管5の内部(吸気ポート内)に臨むように配設されており、各吸気ポート内にガソリン等の燃料を噴射する。なお、本実施形態の内燃機関1は、いわゆるポート噴射式のガソリンエンジンとして説明されるが、これに限られるものではなく、本発明がいわゆる直噴式内燃機関に適用され得ることはいうまでもない。また、本発明が、ガソリンエンジンだけではなくディーゼルエンジンにも適用され得ることはいうまでもない。   The internal combustion engine 1 has a plurality of injectors 12. Each injector 12 is disposed so as to face the corresponding intake pipe 5 (inside the intake port), and injects fuel such as gasoline into each intake port. Although the internal combustion engine 1 of the present embodiment is described as a so-called port injection type gasoline engine, the present invention is not limited to this, and it goes without saying that the present invention can be applied to a so-called direct injection type internal combustion engine. . Needless to say, the present invention can be applied not only to a gasoline engine but also to a diesel engine.

上記点火プラグ7、スロットルバルブ10、各インジェクタ12および動弁機構等は、内燃機関1の制御装置として機能するECU20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポートおよび記憶装置等を含むものである。ECU20には、図1に示されるように、燃焼室4内の圧力を検出する筒内圧センサ15を始めとした各種センサが電気的に接続されている。筒内圧センサ15は、半導体素子、圧電素子あるいは光ファイバ検出素子等を含んで形成されており、気筒数に応じた数だけ配置されている。各筒内圧センサ15は、対応する燃焼室4内に受圧面が臨むようにシリンダヘッドに配設されており、ECU20に電気的に接続されている。各筒内圧センサ15の検出値は、所定時間おきにECU20に順次与えられ、ECU20の所定の記憶領域(バッファ)に所定量ずつ格納保持される。ECU20は、記憶装置に記憶されている各種マップ等を用いると共に各種センサの検出値等に基づいて、所望の出力(トルク)が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12、動弁機構等を制御する。   The spark plug 7, the throttle valve 10, each injector 12, the valve operating mechanism and the like are electrically connected to an ECU 20 that functions as a control device for the internal combustion engine 1. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, etc., all not shown. As shown in FIG. 1, the ECU 20 is electrically connected to various sensors including an in-cylinder pressure sensor 15 that detects the pressure in the combustion chamber 4. The in-cylinder pressure sensor 15 is formed including a semiconductor element, a piezoelectric element, an optical fiber detection element, or the like, and is arranged in a number corresponding to the number of cylinders. Each in-cylinder pressure sensor 15 is disposed on the cylinder head so that the pressure receiving surface faces the corresponding combustion chamber 4, and is electrically connected to the ECU 20. The detection value of each in-cylinder pressure sensor 15 is sequentially given to the ECU 20 every predetermined time, and is stored and held by a predetermined amount in a predetermined storage area (buffer) of the ECU 20. The ECU 20 uses various types of maps and the like stored in the storage device, and based on the detection values of various sensors and the like, a spark plug 7, a throttle valve 10, an injector 12, Control the valve mechanism.

上記では内燃機関の状態を検出するためのセンサとして筒内圧センサ15について説明したが、従来の内燃機関と同様に種々のセンサを配置して状態を検出するようにしてもよい。例えば、クランク角の回転数を検出するクランク角センサ14を配備することで、内燃機関の回転数を検出できる。更に、例えば吸入空気量を検出するエアフロメータ、吸入空気圧を検出する吸気圧センサ、吸入空気の温度を検出する吸気温センサなどを吸気管5に配置してもよい。また、排気官6側には排気ガス圧を検出するための排気圧センサや、排気浄化触媒11bの下流側で排気ガス中の酸素濃度と未燃ガス濃度から内燃機関の空燃比(A/F)を検出するA/Fセンサを配備してもよい。さらに、クランクシャフトの周辺には、循環させている冷却水の温度を検出する水温センサ、循環させている潤滑オイルの温度を検出する油温センサを配置してもよい。   In the above description, the in-cylinder pressure sensor 15 has been described as a sensor for detecting the state of the internal combustion engine. However, various sensors may be arranged to detect the state as in the case of a conventional internal combustion engine. For example, the rotational speed of the internal combustion engine can be detected by providing a crank angle sensor 14 that detects the rotational speed of the crank angle. Further, for example, an air flow meter that detects the amount of intake air, an intake pressure sensor that detects intake air pressure, an intake air temperature sensor that detects the temperature of intake air, and the like may be arranged in the intake pipe 5. Further, an exhaust pressure sensor for detecting the exhaust gas pressure is provided on the exhaust officer 6 side, and an air-fuel ratio (A / F) of the internal combustion engine is determined from the oxygen concentration and unburned gas concentration downstream of the exhaust purification catalyst 11b. A / F sensor for detecting) may be provided. Further, a water temperature sensor for detecting the temperature of the circulating cooling water and an oil temperature sensor for detecting the temperature of the circulating lubricating oil may be disposed around the crankshaft.

筒内圧センサ15及び必要に応じて複数箇所に配置した各種センサからの信号はECU20に供給されている。よって、ECU20は各センサから検出信号に基づいて内燃機関の運転状況を正確に確認できる。内燃機関1には運転領域に応じて点火時期を最適に調整する制御装置が組込まれている。この制御装置は筒内圧センサ15などによる状態検出手段、及びこの状態検出手段の出力に基づいて内燃機関の対応する運転領域を確認し、マップから点火時期を特定して内燃機関の制御を実行する制御手段を含んで構成されている。制御手段は上記ECU20の一部によって実現される。制御装置用のECUを独立に設けてもよいが、本実施例のように内燃機関1のECU20を兼用することで構成を簡素化できる。   Signals from the in-cylinder pressure sensor 15 and various sensors arranged at a plurality of locations as needed are supplied to the ECU 20. Therefore, the ECU 20 can accurately check the operation status of the internal combustion engine based on the detection signals from the sensors. The internal combustion engine 1 incorporates a control device that optimally adjusts the ignition timing in accordance with the operating region. This control device confirms the state detection means by the in-cylinder pressure sensor 15 and the like and the corresponding operation region of the internal combustion engine based on the output of this state detection means, specifies the ignition timing from the map, and executes the control of the internal combustion engine. It includes a control means. The control means is realized by a part of the ECU 20. Although the ECU for the control device may be provided independently, the configuration can be simplified by using the ECU 20 of the internal combustion engine 1 as in the present embodiment.

ここで、上記マップは更新が可能な学習マップとして構成されている。この学習マップMPは、例えば図2で示すように内燃機関の運転領域により区別して点火時期SAを求めることができるように設計されている。ECU20は、センサ出力から内燃機関の状況を確認して、学習マップMP内のどの運転領域に属するかを判断して点火時期SAを決定する。さらに、ECU20は、センサ出力に基づいて内燃機関の点火時期SAを決定するときに、運転実施頻度に応じて学習反映係数を変化させる。これにより学習マップMPによって点火時期SAを求める条件を運転状況に応じて更新させる。なお、このような学習マップはROMなどのメモリに格納しておけばよい。   Here, the map is configured as a learning map that can be updated. This learning map MP is designed so that the ignition timing SA can be obtained by distinguishing it according to the operating region of the internal combustion engine, for example, as shown in FIG. The ECU 20 confirms the state of the internal combustion engine from the sensor output, determines which operating region in the learning map MP belongs, and determines the ignition timing SA. Further, when the ECU 20 determines the ignition timing SA of the internal combustion engine based on the sensor output, the ECU 20 changes the learning reflection coefficient according to the operation execution frequency. Thereby, the conditions for obtaining the ignition timing SA by the learning map MP are updated according to the driving situation. Note that such a learning map may be stored in a memory such as a ROM.

図2で示す学習マップMPは、負荷率KLと内燃機関の回転数NEとによって、運転領域を区分した場合について示している。なお、負荷率KLとは、負荷状態を数値で表したものであり、内燃機関1の吸入空気量が排気量と等しいときの負荷率を100%としたときにおける相対的な負荷の大きさである。負荷率KLは無負荷のときに0%となり全負荷のときに100%となる。特に、負荷率KLは筒内への吸入空気の充填率(吸入空気量)と相関があり、負荷率KLが大きくなると筒内への吸入空気の充填率が高くなる。   The learning map MP shown in FIG. 2 shows a case where the operation region is divided by the load factor KL and the rotational speed NE of the internal combustion engine. The load factor KL is a numerical value representing the load state, and is the relative load when the load factor when the intake air amount of the internal combustion engine 1 is equal to the exhaust amount is 100%. is there. The load factor KL is 0% when there is no load and 100% when the load is full. In particular, the load factor KL is correlated with the intake air filling rate (intake air amount) into the cylinder, and the intake air filling rate into the cylinder increases as the load factor KL increases.

この学習マップMPは、従来の一般的な点火時期マップが数十から数百の領域に区分されていたのと比較して、負荷率KLと回転数NEとによる運転領域を規定することにより極めて少ない6区分になっている。具体的には、負荷率KLと回転数NEとに応じて区分され、第1領域AR1は負荷率KLが「低」で回転数NEが「小」のアイドル領域、第2領域AR2は負荷率KLが「中」で回転数NEが「小」の過渡領域、第3領域AR3は負荷率KLが「高」で回転数NEが「小」の高負荷領域に設定してある。同様に、第4領域AR4は負荷率KLが「低」で回転数NEが「大」の減速領域、第5領域AR5は負荷率KLが「中」で回転数NEが「大」のパーシャル領域、第6領域AR6は負荷率KLが「高」で回転数NEが「大」の加速時領域に設定してある。   This learning map MP is extremely different from the conventional general ignition timing map, which is divided into several tens to several hundreds of regions, by defining the operation region based on the load factor KL and the rotational speed NE. There are 6 categories. Specifically, it is classified according to the load factor KL and the rotational speed NE, the first area AR1 is an idle area where the load ratio KL is “low” and the rotational speed NE is “small”, and the second area AR2 is a load factor. The transition region where KL is “medium” and the rotational speed NE is “small” is set, and the third region AR3 is set as a high load region where the load factor KL is “high” and the rotational speed NE is “small”. Similarly, the fourth area AR4 is a deceleration area where the load factor KL is “low” and the rotational speed NE is “large”, and the fifth area AR5 is a partial area where the load factor KL is “medium” and the rotational speed NE is “large”. The sixth area AR6 is set as an acceleration area where the load factor KL is “high” and the rotational speed NE is “large”.

そして、各領域には負荷率KLと回転数NEによって規定される条件として関数式fが初期設定されている。関数式fの一般式は、例えばf=Pa×KL+Pb×NEのように規定されている。そして、アイドル領域(第1領域AR1)には初期に関数式f1=Pa1×KL+Pb1×NEが設定されている。他の領域についても同様であり、加速時領域(第6領域AR6)には関数式f6=Pa6×KL+Pb6×NEが設定されている。各式のPa、Pbは学習反映係数であり、内燃機関の運転状況を学習して更新が繰返される。学習反映係数Pa、Pbは各センサの出力に基づいて設計した共分散行列であり、この共分散行列は運転状況に応じて点火時期を最適なものに補正するデータ列である。共分散行列は、ECU20が負荷率KL及び回転数NEを取得して点火時期SAを決定したときに、学習に基づいて更新する。この共分散行列は、例えば逐次最小二乗法(RLS:Recursive Least-Squares)を用いる公知のRLS学習によって更新させることができる。   In each region, a function formula f is initially set as a condition defined by the load factor KL and the rotational speed NE. The general expression of the function expression f is defined as f = Pa × KL + Pb × NE, for example. The functional expression f1 = Pa1 × KL + Pb1 × NE is initially set in the idle region (first region AR1). The same applies to the other regions, and the functional equation f6 = Pa6 × KL + Pb6 × NE is set in the acceleration region (sixth region AR6). Pa and Pb in each equation are learning reflection coefficients, and the update is repeated after learning the operating state of the internal combustion engine. The learning reflection coefficients Pa and Pb are covariance matrices designed based on the output of each sensor, and this covariance matrix is a data string that corrects the ignition timing to an optimum one according to the driving situation. The covariance matrix is updated based on learning when the ECU 20 acquires the load factor KL and the rotational speed NE and determines the ignition timing SA. This covariance matrix can be updated by publicly known RLS learning using, for example, a recursive least-squares (RLS) method.

なお、図2では、負荷率KLについては「高」「中」「低」、回転数NEについては「大」「小」のように抽象的に規定しているが、実際には負荷率KLについて0〜100(%)の範囲が3つの範囲に分割される。同様に、回転数NEについては、所定の回転数(rmp)を境界として「大」「小」が規定される。   In FIG. 2, the load factor KL is abstractly defined as “high”, “medium”, and “low”, and the rotational speed NE is abstractly defined as “large” and “small”. The range of 0 to 100 (%) is divided into three ranges. Similarly, the rotation speed NE is defined as “large” or “small” with a predetermined rotation speed (rmp) as a boundary.

図3は、図2の学習マップMPを用いて、ECU20が学習しながら内燃機関を制御する場合について示したフローチャートである。ECU20は、まず各種センサからエンジン条件を読込む(S11)。例えば筒内圧センサ15の出力から負荷率KLを算出すると共に、クランク角センサ14の出力から回転数NEを確認する。そして、負荷率KLが「高」、「中」、「低」のいずれに属するか、及び回転数NEが「大」、「小」のどちらに属するかによって、内燃機関の運転状態が第1〜第6運転領域のいずれかであるかが決定される(S12)。   FIG. 3 is a flowchart showing a case where the ECU 20 controls the internal combustion engine while learning using the learning map MP of FIG. The ECU 20 first reads engine conditions from various sensors (S11). For example, the load factor KL is calculated from the output of the in-cylinder pressure sensor 15 and the rotational speed NE is confirmed from the output of the crank angle sensor 14. The operating state of the internal combustion engine is the first depending on whether the load factor KL belongs to “high”, “medium”, or “low” and whether the rotational speed NE belongs to “large” or “small”. -It is determined whether it is in any of the sixth operating regions (S12).

そして、ECU20は、負荷率KLと回転数NEに基づいて決定した運転領域(例えば第1領域AR1のアイドル領域)に設定されている関数式f1=Pa1×KL+Pb1×NEに基づいて点火時期SAを算出し(S13)、内燃機関の制御を実行する。   Then, the ECU 20 sets the ignition timing SA based on the functional expression f1 = Pa1 × KL + Pb1 × NE set in the operation region (for example, the idle region of the first region AR1) determined based on the load factor KL and the rotational speed NE. Calculation (S13) and control of the internal combustion engine is executed.

さらに、このときにECU20は負荷率KL、回転数NE、点火時期SAを用い、RLS学習により(S14)、学習反映係数Pa、Pbを更新して関数式fを運転状態に対応したものに変更する。よって、頻繁に出現する運転領域の関数式fは高い頻度で学習されて更新される、これに対して出現頻度の低い運転領域は学習の機会が低くなる。よって、本実施例の制御装置によると、内燃機関の運転状況を反映して点火時期についての学習が行えるので、精度の高い内燃機関制御を行える。   Further, at this time, the ECU 20 uses the load factor KL, the rotational speed NE, and the ignition timing SA, and by RLS learning (S14), the learning reflection coefficients Pa and Pb are updated and the function formula f is changed to one corresponding to the operating state. To do. Therefore, the function expression f of the driving region that frequently appears is learned and updated at a high frequency, whereas the driving region having a low appearance frequency has a low learning opportunity. Therefore, according to the control apparatus of the present embodiment, the ignition timing can be learned by reflecting the operation state of the internal combustion engine, so that the internal combustion engine control with high accuracy can be performed.

ところで、学習頻度の高い運転領域(I)と学習頻度の低い運転領域(II)とが接している場合には、領域間での点火時期SAのずれが徐々に大きなものとなってトルク段差が発生することが懸念される。本実施例の制御装置は、ECU20がこのようなトルク段差の発生を抑制する。この点について図4を参照して説明する。   By the way, when the operation region (I) having a high learning frequency and the operation region (II) having a low learning frequency are in contact with each other, the deviation of the ignition timing SA between the regions becomes gradually large, resulting in a torque step. There are concerns about the occurrence. In the control device of this embodiment, the ECU 20 suppresses the occurrence of such a torque step. This point will be described with reference to FIG.

各領域の関数式fは隣接する領域間で、点火時期SAにずれが発生しないように初期設定されている。しかし、上記のように内燃機関の運転状況に応じて学習が行われるので、出現頻度の高い領域の関数式は繰り返し更新されることになる。これによって、図4(A)で模式的に示すように学習頻度の高い運転領域(I)と頻度の低い運転領域(II)との間にトルク段差STが発生してしまうことが想定される。このようなトルク段差STは、ECU20が図4(B)で示すように段差部分を解消するような緩やか曲線CVを設定して解消する。例えば、ECU20は領域境界BLから等距離で運転領域(I)に点AP、運転領域(II)に点BP、及び領域境界BL上に段差量の中間点CPを設定する。そして、トルク段差STを解消するように補間した値を用いて曲線CVを設計する。このようにして、制御装置は内燃機関のトルク段差の発生を抑制することもできる。なお、予め定めた所定値以上のトルク段差が発生していることを確認したときに、ECU20が図4(B)に示したトルク段差解消の処理(スムージング処理)を実行するように設定しておくことが好ましい。このように設定しておけば、許容範囲を超えたトルク段差が発生したときにだけスムージング処理が実行される。   The function formula f in each region is initially set so that there is no deviation in the ignition timing SA between adjacent regions. However, since learning is performed according to the operating state of the internal combustion engine as described above, the function formula in the region where the appearance frequency is high is repeatedly updated. As a result, as schematically shown in FIG. 4A, it is assumed that a torque step ST occurs between the operation region (I) having a high learning frequency and the operation region (II) having a low frequency. . Such a torque step ST is eliminated by setting a gentle curve CV that the ECU 20 eliminates the step portion as shown in FIG. 4B. For example, the ECU 20 sets a point AP in the driving region (I), a point BP in the driving region (II), and an intermediate point CP of the step amount on the region boundary BL at equal distances from the region boundary BL. Then, the curve CV is designed using the values interpolated so as to eliminate the torque step ST. In this way, the control device can also suppress the occurrence of torque steps in the internal combustion engine. Note that when it is confirmed that a torque step greater than a predetermined value is generated, the ECU 20 is set to execute the torque step elimination process (smoothing process) shown in FIG. It is preferable to keep. With this setting, the smoothing process is executed only when a torque step exceeding the allowable range occurs.

更に、図2の学習マップMPを用いる場合には、次の点についても考慮することが必要である。内燃機関により各運転領域が出現する頻度はほぼ決まってくる。アイドル領域(第1領域AR1)はどのような内燃機関でも出現する頻度が高い。これに対して、高負荷領域(第3領域AR3)は内燃機関が運転される環境によって頻度が異なる。例えば、高速運転される内燃機関は高負荷領域が出現することが度々あるが、市外地のみで運転される内燃機関は高負荷領域が出現することが殆どないというになる。このような内燃機関それぞれが運転される状況を考慮すると、出現頻度の低い運転領域に関する情報の重み付けを大きく、出現頻度の高い運転領域に関する情報の重み付けを小さくするように補正することで、精度を高めた内燃機関制御を行える。   Further, when the learning map MP of FIG. 2 is used, it is necessary to consider the following points. The frequency at which each operating region appears by the internal combustion engine is almost determined. The idle region (first region AR1) frequently appears in any internal combustion engine. In contrast, the frequency of the high load region (third region AR3) varies depending on the environment in which the internal combustion engine is operated. For example, a high load region often appears in an internal combustion engine that operates at a high speed, but a high load region hardly appears in an internal combustion engine that operates only in outlying areas. Considering the situation in which each of such internal combustion engines is operated, the accuracy is improved by correcting the weighting of the information related to the operation region having a low appearance frequency to be large and the weighting of the information related to the operation region having a high appearance frequency to be small. Enhanced internal combustion engine control.

よって、内燃機関の運転状況に応じて、学習マップの運転領域別に補正係数Kを設定して学習による効果を調整するのが好ましい。図5は、図2で示した学習マップの各運転領域に学習効果の重み付けする補正係数Kを設定した様子を示した図である。この図5は高負荷運転される機会が少ない内燃機関についての補正係数Kの設定例を示している。ここでK1は小さな値、K2は大きな値である。補正係数K1が設定された運転領域では学習によって更新される関数式fの学習反映係数Pa、Pbが相対的に小さく変更される。すなわち、補正係数K1が設定された運転領域は頻度が高いので学習の収束度を遅くする。このようにすることで、出現頻度の高い運転領域で多く取得される情報で関数式fが過度に更新されてしまうことを防止できる。   Therefore, it is preferable to adjust the effect of learning by setting the correction coefficient K for each operation region of the learning map in accordance with the operation state of the internal combustion engine. FIG. 5 is a diagram showing a state in which a correction coefficient K for weighting the learning effect is set in each operation region of the learning map shown in FIG. FIG. 5 shows an example of setting the correction coefficient K for an internal combustion engine with few opportunities for high load operation. Here, K1 is a small value and K2 is a large value. In the operation region in which the correction coefficient K1 is set, the learning reflection coefficients Pa and Pb of the function formula f updated by learning are changed relatively small. That is, since the operation region in which the correction coefficient K1 is set has a high frequency, the learning convergence is slowed down. By doing in this way, it can prevent that the function formula f is updated too much with the information acquired much in the driving | running area | region where appearance frequency is high.

一方、補正係数K2が設定された運転領域は前述した学習に基づいて関数式fが素早く変更される。すなわち、補正係数K2が設定された運転領域については学習の収束度が早くなるように設定してある。これによって出現頻度の低い運転領域に関する情報の重みを増している。このように運転領域の出現頻度を考慮した補正係数Kを用いて学習の重み付けすることで内燃機関の点火時期をより精度良く制御できる。   On the other hand, in the operation region in which the correction coefficient K2 is set, the function formula f is quickly changed based on the learning described above. That is, the operation region in which the correction coefficient K2 is set is set so that the learning convergence degree becomes faster. As a result, the weight of information related to the operation region having a low appearance frequency is increased. Thus, the ignition timing of the internal combustion engine can be controlled with higher accuracy by weighting the learning using the correction coefficient K in consideration of the appearance frequency of the operation region.

以上で説明した内燃機関の制御装置は、運転領域に基づいて6つに分割した学習マップで内燃機関の点火時期を求めると共に、各領域の関数式(条件)を学習により順次に更新する。よって、多数の領域に区分したマップで点火時期制御を行う従来装置と比較して、少ないメモリで効率よく着火時期制御を行える。しかも、運転領域間に発生するトルク段差を抑制することもできるので内燃機関をスムーズに運転できる。さらに、出現頻度に応じて学習の重み付けすることで、内燃機関が運転される状況により即した点火時期制御を行える。   The control device for an internal combustion engine described above obtains the ignition timing of the internal combustion engine from a learning map divided into six based on the operation region, and sequentially updates the function formula (condition) of each region by learning. Therefore, ignition timing control can be performed efficiently with a small amount of memory, compared to a conventional device that performs ignition timing control using a map divided into a large number of regions. In addition, since the torque step generated between the operation regions can be suppressed, the internal combustion engine can be operated smoothly. Furthermore, by weighting learning according to the appearance frequency, ignition timing control can be performed in accordance with the situation in which the internal combustion engine is operated.

以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。例えば上記実施例では学習マップを6個に区分する場合を例示したがこれに限らない。例えば上記では回転数NEを大、小としたが、大、中、小としてもよいし、負荷率を更に小さく分割してもよい。これにより区分数は増加することになるが、従来の場合と比較した場合には大幅に区分数が低減されているのでメモリ不足の問題が生じることはない。また、上記実施例ではプラグ7による点火時期をトルクに反映される制御量とした場合の例を説明したがこれに限らず、制御量を吸入空気量、燃料噴射量、A/F値などとしてもよい。   Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed. For example, in the above embodiment, the case where the learning map is divided into six is illustrated, but the present invention is not limited to this. For example, in the above description, the rotational speed NE is large or small, but may be large, medium, or small, and the load factor may be further divided. As a result, the number of divisions increases, but the number of divisions is greatly reduced as compared with the conventional case, so that the problem of insufficient memory does not occur. In the above embodiment, an example in which the ignition timing by the plug 7 is a control amount reflected in the torque has been described. However, the present invention is not limited to this, and the control amount is an intake air amount, a fuel injection amount, an A / F value, and the like. Also good.

本発明による制御装置を備えた内燃機関について示した概略ブロック図である。It is the schematic block diagram shown about the internal combustion engine provided with the control apparatus by this invention. 運転領域により区別した点火時期を求める学習マップの一例を示した図である。It is the figure which showed an example of the learning map which calculates | requires the ignition timing distinguished according to the driving | operation area | region. 学習マップを用いたECUによる内燃機関の運転状態に応じた点火制御のルーチンを示したフローチャートである。It is the flowchart which showed the routine of ignition control according to the driving | running state of the internal combustion engine by ECU using a learning map. 領域で発生するトルク段差を説明するために示した図である。It is the figure shown in order to demonstrate the torque level difference which generate | occur | produces in an area | region. 図2で示す学習マップの各領域に補正係数を設定した様子を示した図である。It is the figure which showed a mode that the correction coefficient was set to each area | region of the learning map shown in FIG.

符号の説明Explanation of symbols

1 内燃機関
5 吸気管
6 排気官
15 筒内圧センサ(状態検出手段)
20 ECU(制御手段)
MP 学習マップ
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 5 Intake pipe 6 Exhaust officer 15 In-cylinder pressure sensor (state detection means)
20 ECU (control means)
MP learning map

Claims (4)

内燃機関の状態を検出する状態検出手段と、
前記状態検出手段の出力に基づいて内燃機関の運転状況を確認し、所定のマップを用いてトルクに反映される制御量を求めて内燃機関を制御する制御手段とを、備えている内燃機関の制御装置であって、
前記マップは、内燃機関の運転領域に応じて区分されていると共に、前記運転領域毎に設定した前記制御量を求める条件を前記制御手段により更新可能な学習マップであり、
前記制御手段は、前記学習マップ内の前記運転領域ごとに学習を実施して、運転実施頻度に応じて学習反映係数を変化させて前記条件を更新する、ことを特徴とする内燃機関の制御装置。
State detecting means for detecting the state of the internal combustion engine;
An internal combustion engine comprising: control means for confirming an operating state of the internal combustion engine based on an output of the state detection means and obtaining a control amount reflected in the torque using a predetermined map to control the internal combustion engine. A control device,
The map is a learning map that is divided according to the operation region of the internal combustion engine and that can update the condition for obtaining the control amount set for each operation region by the control means,
The control unit performs learning for each of the operation regions in the learning map, and updates the condition by changing a learning reflection coefficient according to an operation execution frequency. .
前記制御手段は、隣接する第1の運転領域と第2の運転領域との間の境界を跨る運転状況でトルク段差が所定値より大きいときに、前記トルク段差を解消する補間処理を行う、ことを特徴とする請求項1に記載の内燃機関の制御装置。 The control means performs an interpolation process to eliminate the torque step when the torque step is larger than a predetermined value in an operation situation across a boundary between the adjacent first operation region and the second operation region. The control device for an internal combustion engine according to claim 1. 前記制御手段は、前記運転領域の出現頻度に応じて、前記学習反映係数を重み付けする補正をしてから、内燃機関を制御することを特徴とする請求項1に記載の内燃機関の制御装置。 2. The control device for an internal combustion engine according to claim 1, wherein the control unit controls the internal combustion engine after correcting the weighting of the learning reflection coefficient in accordance with the appearance frequency of the operation region. 前記制御量は内燃機関の点火時期を含む、ことを特徴とする請求項1から3のいずれかに記載の内燃機関の制御装置。
4. The control device for an internal combustion engine according to claim 1, wherein the control amount includes an ignition timing of the internal combustion engine.
JP2006086970A 2006-03-28 2006-03-28 Control device of internal combustion engine Withdrawn JP2007262941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086970A JP2007262941A (en) 2006-03-28 2006-03-28 Control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086970A JP2007262941A (en) 2006-03-28 2006-03-28 Control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007262941A true JP2007262941A (en) 2007-10-11

Family

ID=38636178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086970A Withdrawn JP2007262941A (en) 2006-03-28 2006-03-28 Control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007262941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096362A (en) * 2011-11-04 2013-05-20 Iida Denki Kogyo Kk Fuel control method for handheld engine operating machine
US8447493B2 (en) 2008-12-02 2013-05-21 Toyota Jidosha Kabushiki Kaisha Ignition timing controller of internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447493B2 (en) 2008-12-02 2013-05-21 Toyota Jidosha Kabushiki Kaisha Ignition timing controller of internal combustion engine
JP2013096362A (en) * 2011-11-04 2013-05-20 Iida Denki Kogyo Kk Fuel control method for handheld engine operating machine

Similar Documents

Publication Publication Date Title
JP2011027059A (en) Engine cotrol apparatus
JP4050229B2 (en) Control apparatus and control method for 4-stroke engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
US7100572B2 (en) Fuel injection system and fuel injecting method for internal combustion engine
JP2007285194A (en) Control device of internal combustion engine
JP2008025404A (en) Calibrating device for cylinder pressure sensor
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JP4387384B2 (en) Control device for internal combustion engine
JP2006299833A (en) Fuel injection quantity control device in diesel engine
JP2007262941A (en) Control device of internal combustion engine
JP4871307B2 (en) Engine fuel control device
US7363889B2 (en) Control device for multicylinder internal combustion engine
JP2010174737A (en) Control device for diesel engine
JP4859525B2 (en) Misfire detection device for internal combustion engine
JP5925641B2 (en) Intake control device for internal combustion engine
JP4232710B2 (en) Control device for hydrogenated internal combustion engine
JP5182646B2 (en) In-cylinder pressure sensor sensitivity degradation determination device
JP2009275694A (en) Control device for internal combustion engine
JP5260770B2 (en) Engine control device
JP4327678B2 (en) Control device for hydrogenated internal combustion engine
JP2011052616A (en) Device for controlling fuel injection for multiple cylinder internal combustion engine
JP2009062899A (en) Control device
JP2006316655A (en) Control device for internal combustion engine
JP2011085064A (en) Fuel injection control device for internal combustion engine
JP5439228B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090114