JP2008025404A - Calibrating device for cylinder pressure sensor - Google Patents

Calibrating device for cylinder pressure sensor Download PDF

Info

Publication number
JP2008025404A
JP2008025404A JP2006197060A JP2006197060A JP2008025404A JP 2008025404 A JP2008025404 A JP 2008025404A JP 2006197060 A JP2006197060 A JP 2006197060A JP 2006197060 A JP2006197060 A JP 2006197060A JP 2008025404 A JP2008025404 A JP 2008025404A
Authority
JP
Japan
Prior art keywords
cylinder
sensor
cylinder pressure
pressure
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006197060A
Other languages
Japanese (ja)
Other versions
JP4747977B2 (en
Inventor
Sakanori Moriya
栄記 守谷
Masahiro Wanibe
昌博 鰐部
Hiromichi Yasuda
宏通 安田
Ryusuke Ogino
隆介 荻野
Akira Tadokoro
亮 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006197060A priority Critical patent/JP4747977B2/en
Publication of JP2008025404A publication Critical patent/JP2008025404A/en
Application granted granted Critical
Publication of JP4747977B2 publication Critical patent/JP4747977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate the variation of the sensitivity of cylinder pressure sensors provided at a plurality of cylinders. <P>SOLUTION: This calibrating device for the cylinder pressure sensor includes a means S103 for measuring cylinder pressure at each cylinder at predetermined two points of timing by means of the cylinder pressure sensors, a means S104 for calculating the differential pressure of the measured cylinder pressure at each cylinder, and a means S108 for calculating sensor sensitivity correction coefficients of the cylinder pressure sensors of the cylinders other than a predetermined reference cylinder on the basis of the differential pressure of the predetermined reference cylinder and the differential pressure of the cylinders other than the reference cylinder. Based on the cylinder pressure sensor of the reference cylinder, the sensor sensitivity correction coefficients of the cylinder pressure sensors of the cylinders other than the reference cylinder are calculated and the variation of the sensor sensitivity between and among the cylinders can be eliminated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は筒内圧センサの校正装置に係り、特に、多気筒内燃機関の少なくとも二つの気筒に設けられた筒内圧センサを校正する装置に関する。   The present invention relates to a calibration apparatus for an in-cylinder pressure sensor, and more particularly to an apparatus for calibrating an in-cylinder pressure sensor provided in at least two cylinders of a multi-cylinder internal combustion engine.

近年、筒内圧センサにより検出される筒内圧を利用して筒内の燃焼状態を検知し、その結果に基づいて点火時期等の各種制御量を制御する内燃機関の制御装置が開発されるに至っている。多気筒内燃機関の場合、各気筒に筒内圧センサが設けられ、検出された筒内圧に基づく制御が気筒毎に行われる。この筒内圧センサに関連する従来技術として、特許文献1には、燃焼圧力から算出した吸入空気量と吸気管圧力より算出した吸入空気量とを比較し、後者を基準として燃焼圧力センサの感度を算出し、この燃焼圧力センサの感度の算出値が所定範囲に入るか否かにより燃焼圧力センサの異常判断を行う技術が開示されている。   2. Description of the Related Art In recent years, control devices for internal combustion engines have been developed that detect in-cylinder combustion states using in-cylinder pressure detected by an in-cylinder pressure sensor and control various control amounts such as ignition timing based on the results. Yes. In the case of a multi-cylinder internal combustion engine, an in-cylinder pressure sensor is provided in each cylinder, and control based on the detected in-cylinder pressure is performed for each cylinder. As a related art related to this in-cylinder pressure sensor, Patent Document 1 compares the intake air amount calculated from the combustion pressure with the intake air amount calculated from the intake pipe pressure, and the sensitivity of the combustion pressure sensor is based on the latter. There is disclosed a technique for calculating an abnormality of a combustion pressure sensor based on whether or not the calculated value of the sensitivity of the combustion pressure sensor falls within a predetermined range.

実公平7−55303号公報No. 7-55303

ところで、筒内圧センサの感度には個体差や取付荷重等に起因するばらつきが存在する。よって、筒内圧センサにより計測された筒内圧にも気筒間のばらつきが存在する。一方、計測された筒内圧値は全気筒同一の制御ロジックによって処理されるため、かかる筒内圧値にばらつきが存在すると、演算結果としての各種制御量も必然的にばらつき、燃費やエミッションの向上に支障をきたす。   Incidentally, the sensitivity of the in-cylinder pressure sensor has variations due to individual differences, mounting loads, and the like. Therefore, there is variation among cylinders in the in-cylinder pressure measured by the in-cylinder pressure sensor. On the other hand, the measured in-cylinder pressure value is processed by the same control logic for all cylinders. Therefore, if there is a variation in the in-cylinder pressure value, various control amounts as a result of the calculation will inevitably vary, which improves fuel consumption and emissions. It will cause trouble.

また、一般に筒内圧センサの測定レンジは0〜数MPaというように比較的広範な範囲に亘る。しかしながら、近年では筒内圧センサの応用制御の一つとして筒内空気量を計測することが行われおり、この場合、筒内圧センサの測定レンジのうち数100kPa以下の低圧部分が利用され、数kPaオーダーの計測精度が要求される。よって、このような低圧部分での使用では筒内圧センサの感度ばらつきの影響が必然的に大きくなり、効果的な改善策が待ち望まれている。   In general, the measurement range of the in-cylinder pressure sensor covers a relatively wide range of 0 to several MPa. However, in recent years, in-cylinder air amount is measured as one of the application controls of the in-cylinder pressure sensor. In this case, a low pressure portion of several hundred kPa or less is used in the measurement range of the in-cylinder pressure sensor, and several kPa is used. Order measurement accuracy is required. Therefore, the use of such a low pressure part inevitably increases the influence of sensitivity variations of the in-cylinder pressure sensor, and an effective improvement measure is awaited.

本発明はこのような実情に鑑みてなされたもので、その目的は、筒内圧センサの感度ばらつきを効果的に解消することができる筒内圧センサの校正装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to provide a calibration apparatus for an in-cylinder pressure sensor that can effectively eliminate variations in sensitivity of the in-cylinder pressure sensor.

上記目的を達成するため、本発明の一形態に係る筒内圧センサの校正装置は、多気筒内燃機関の少なくとも二つの気筒に設けられた筒内圧センサを校正する装置であって、前記筒内圧センサにより、所定の2点のタイミングにおける筒内圧を気筒毎に計測する計測手段と、該計測手段により計測された前記2点のタイミングの筒内圧の差圧を気筒毎に算出する差圧算出手段と、所定の基準気筒の前記差圧と、前記基準気筒以外の気筒の前記差圧とに基づいて、前記基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を算出する非基準気筒センサ感度補正係数算出手段とを備えたことを特徴とする。   In order to achieve the above object, an in-cylinder pressure sensor calibration apparatus according to an aspect of the present invention is an apparatus for calibrating an in-cylinder pressure sensor provided in at least two cylinders of a multi-cylinder internal combustion engine, the in-cylinder pressure sensor. Measuring means for measuring in-cylinder pressure at each predetermined timing for each cylinder, and differential pressure calculating means for calculating, for each cylinder, a differential pressure between the in-cylinder pressure at the two timings measured by the measuring means. A non-reference cylinder sensor sensitivity correction for calculating a sensor sensitivity correction coefficient of an in-cylinder pressure sensor of a cylinder other than the reference cylinder based on the differential pressure of a predetermined reference cylinder and the differential pressure of a cylinder other than the reference cylinder And a coefficient calculating means.

この本発明の一形態によれば、基準気筒の筒内圧センサを基準として、基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を算出することができる。即ち、機関運転状態が定常の場合、同一の2点のタイミング間での筒内圧の差圧は基準気筒と基準気筒以外の気筒とで同一となる。よってこのことを利用し、基準気筒の筒内圧センサで計測された筒内圧の差圧と、基準気筒以外の気筒の筒内圧センサで計測された筒内圧の差圧とに基づき、基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を算出することができる。この算出された基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を用いれば、基準気筒の筒内圧センサと基準気筒以外の気筒の筒内圧センサとのセンサ感度を等しくすることができ、これにより気筒間でのセンサ感度ばらつき、ひいてはこれに基づく筒内圧計測値のばらつきを解消することができる。   According to this aspect of the present invention, it is possible to calculate the sensor sensitivity correction coefficient of the in-cylinder pressure sensors of cylinders other than the reference cylinder with reference to the in-cylinder pressure sensor of the reference cylinder. That is, when the engine operating state is steady, the in-cylinder pressure differential pressure between the same two timings is the same for the reference cylinder and the cylinders other than the reference cylinder. Therefore, using this, based on the differential pressure between the in-cylinder pressure measured by the in-cylinder pressure sensor of the reference cylinder and the in-cylinder pressure difference measured by the in-cylinder pressure sensor of the cylinder other than the reference cylinder, The sensor sensitivity correction coefficient of the cylinder pressure sensor of the cylinder can be calculated. By using the calculated sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the cylinder other than the reference cylinder, the sensor sensitivity of the in-cylinder pressure sensor of the reference cylinder and the in-cylinder pressure sensor of the cylinder other than the reference cylinder can be equalized. Thus, variations in sensor sensitivity among cylinders, and in other words, variations in in-cylinder pressure measurement values based on this can be eliminated.

ここで、前記所定の2点のタイミングが、圧縮行程中の2点のタイミングであるのが好ましい。こうすることで2点のタイミング間の差圧を大きくすることができ、算出精度を向上できる。   Here, it is preferable that the timing of the two predetermined points is a timing of two points during the compression stroke. By doing so, the differential pressure between the timings of the two points can be increased, and the calculation accuracy can be improved.

或いは、前記所定の2点のタイミングのうち、一方が、排気行程中であって排気弁が開、吸気弁が閉であるタイミングであり、他方が、吸気行程中であって排気弁が閉、吸気弁が開であるタイミングであるのも好ましい。こうすることで、寸法公差等に起因する製造上のばらつきの影響を解消することができ、センサ感度補正係数が高精度で算出可能となる。   Alternatively, one of the two predetermined timings is a timing during the exhaust stroke and the exhaust valve is open and the intake valve is closed, and the other is during the intake stroke and the exhaust valve is closed, It is also preferable that the timing when the intake valve is opened. By doing so, it is possible to eliminate the influence of manufacturing variations caused by dimensional tolerances and the like, and the sensor sensitivity correction coefficient can be calculated with high accuracy.

この場合、前記計測手段による前記筒内圧の計測時にフュエルカットを実行するフュエルカット実行手段を備えるのも好ましい。フュエルカットの実行により差圧を増大することができるからである。   In this case, it is preferable to provide a fuel cut execution means for executing fuel cut when the in-cylinder pressure is measured by the measurement means. This is because the differential pressure can be increased by executing the fuel cut.

好ましくは、前記基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数が、前記基準気筒の差圧を前記基準気筒以外の気筒の差圧で除することにより得られる値からなる。   Preferably, a sensor sensitivity correction coefficient of an in-cylinder pressure sensor of a cylinder other than the reference cylinder is a value obtained by dividing a differential pressure of the reference cylinder by a differential pressure of a cylinder other than the reference cylinder.

また好ましくは、前記計測手段が、前記内燃機関の定常運転時に前記筒内圧の計測を複数回繰り返し実行し、前記差圧算出手段が、前記計測手段により計測された各回の筒内圧に基づいて各回の差圧を算出し、且つ、これら各回の差圧を平均化して最終的な前記差圧を算出する。このような平均化処理を行うことにより算出精度を向上することが可能となる。   Preferably, the measuring means repeatedly performs the measurement of the in-cylinder pressure a plurality of times during steady operation of the internal combustion engine, and the differential pressure calculating means performs each time based on each in-cylinder pressure measured by the measuring means. The final differential pressure is calculated by averaging the differential pressure at each time. By performing such an averaging process, the calculation accuracy can be improved.

また、排気空燃比を検出する空燃比センサと、前記基準気筒の筒内圧センサのセンサ感度補正係数を算出する基準気筒センサ感度補正係数算出手段とを備え、前記計測手段が、圧縮行程中の所定の2点のタイミングにおいて前記筒内圧を計測し、前記基準気筒センサ感度補正係数算出手段が、前記差圧算出手段によって算出された前記基準気筒の筒内圧の差圧と、前記空燃比センサによって検出された排気空燃比とに基づいて、前記基準気筒の筒内圧センサのセンサ感度補正係数を算出するのが好ましい。   And an air-fuel ratio sensor for detecting an exhaust air-fuel ratio, and a reference cylinder sensor sensitivity correction coefficient calculating means for calculating a sensor sensitivity correction coefficient of an in-cylinder pressure sensor of the reference cylinder, wherein the measuring means is a predetermined unit during the compression stroke. The in-cylinder pressure is measured at the timing of the two points, and the reference cylinder sensor sensitivity correction coefficient calculating means detects the differential pressure of the in-cylinder pressure of the reference cylinder calculated by the differential pressure calculating means and the air-fuel ratio sensor. The sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the reference cylinder is preferably calculated based on the exhaust air / fuel ratio.

即ち、内燃機関の固体間でも基準気筒の筒内圧センサのセンサ感度にばらつきがあるが、この好ましい形態は、そのばらつきを無くすような基準気筒の筒内圧センサのセンサ感度補正係数の算出に有効である。そのばらつきを無くせれば、別々の内燃機関で基準気筒の筒内圧センサのセンサ感度を等しくすることができ、同一の制御ロジックや制御データを共用して別々のエンジンを精度良く制御できるようになる。   That is, the sensor sensitivity of the in-cylinder pressure sensor of the reference cylinder varies even between the solids of the internal combustion engine. This preferred embodiment is effective in calculating the sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the reference cylinder so as to eliminate the variation. is there. If the variation is eliminated, the sensor sensitivity of the in-cylinder pressure sensor of the reference cylinder can be made equal in different internal combustion engines, and the same control logic and control data can be shared to control different engines with high accuracy. .

この場合、排気空燃比が所定の目標空燃比となるように予め設定された燃料噴射量を噴射する燃料噴射手段を備え、前記基準気筒センサ感度補正係数算出手段が、前記燃料噴射手段により燃料噴射されたときに前記空燃比センサによって検出された排気空燃比を、前記目標空燃比で除して得られる値を、前記基準気筒の筒内圧センサのセンサ感度補正係数として算出するのが好ましい。   In this case, fuel injection means for injecting a fuel injection amount set in advance so that the exhaust air-fuel ratio becomes a predetermined target air-fuel ratio is provided, and the reference cylinder sensor sensitivity correction coefficient calculation means performs fuel injection by the fuel injection means. Preferably, a value obtained by dividing the exhaust air-fuel ratio detected by the air-fuel ratio sensor by the target air-fuel ratio is calculated as a sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the reference cylinder.

さらに、前記基準気筒センサ感度補正係数算出手段によって算出された前記基準気筒のセンサ感度補正係数に基づき、前記基準気筒以外の気筒のセンサ感度補正係数を補正する補正手段を備えるのが好ましい。これにより、別々の内燃機関の全ての筒内圧センサのセンサ感度を等しくすることができ、気筒間及びエンジン固体間でのセンサ感度ばらつきを解消できる。   Furthermore, it is preferable that correction means for correcting sensor sensitivity correction coefficients of cylinders other than the reference cylinder is provided based on the sensor sensitivity correction coefficient of the reference cylinder calculated by the reference cylinder sensor sensitivity correction coefficient calculation means. Thereby, the sensor sensitivities of all in-cylinder pressure sensors of different internal combustion engines can be made equal, and variations in sensor sensitivity between cylinders and between engine solids can be eliminated.

本発明によれば、筒内圧センサの感度ばらつきを効果的に解消することができるという、優れた効果が発揮される。   According to the present invention, an excellent effect is exhibited that sensitivity variations of the in-cylinder pressure sensor can be effectively eliminated.

以下、本発明を実施するための最良の形態を添付図面に基づき説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1は、本発明に係る筒内圧センサの校正装置を含む内燃機関の制御装置を概略的に示している。この制御装置は、一般的な従来装置と異なり、筒内圧センサにより検出される筒内圧に基づいて各種制御量を制御する。即ち、従来装置では、エンジンの各運転状態について、最適と思われる制御量を予め実験等により求めてマップ化しておき、実際のエンジンの運転時に各マップ値を当てはめてエンジンの制御を行うマップ制御が一般的であった。これに対し、本実施形態の制御装置では、エンジン運転時における筒内の燃焼状態を筒内圧センサにより直接的に検出し、この検出された燃焼状態を、予め定められた最適な燃焼状態に合わせ込むように各種制御量を制御する。この新たな手法によれば、従来多大な時間と労力とが費やされていた各種マップの作成、即ち適合という作業を大幅に簡略化することができ、開発期間の大幅な短縮等を図れる利点がある。また、各部の個体差等に起因する気筒間ばらつきをなくし、各気筒で個別に最適な燃焼状態を得られるという利点がある。制御される制御量としては、燃焼開始時期(火花点火式エンジンの場合は点火時期、圧縮着火式エンジンの場合は燃料噴射時期)、燃料噴射量、燃料噴射時期(火花点火式エンジンの場合)等が代表的である。   FIG. 1 schematically shows a control device for an internal combustion engine including a calibration device for an in-cylinder pressure sensor according to the present invention. Unlike a general conventional device, this control device controls various control amounts based on the in-cylinder pressure detected by the in-cylinder pressure sensor. That is, in the conventional apparatus, map control is performed in which the control amount that seems to be optimal for each operating state of the engine is obtained by an experiment in advance and mapped, and the engine is controlled by applying each map value during actual engine operation. Was common. In contrast, in the control device of the present embodiment, the in-cylinder combustion state during engine operation is directly detected by the in-cylinder pressure sensor, and the detected combustion state is matched with a predetermined optimum combustion state. Control various control amounts. According to this new method, it is possible to greatly simplify the process of creating various maps, that is, the adaptation, which has conventionally required a lot of time and labor, and to greatly shorten the development period. There is. In addition, there is an advantage that variations among cylinders due to individual differences of each part are eliminated, and an optimal combustion state can be obtained individually for each cylinder. Control amount to be controlled includes combustion start timing (ignition timing for spark ignition type engine, fuel injection timing for compression ignition type engine), fuel injection amount, fuel injection timing (for spark ignition type engine), etc. Is representative.

図示されるように、内燃機関1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。内燃機関1は多気筒エンジンとして構成され(但し、1気筒のみ図示)、本実施形態の場合4気筒エンジンとして構成される。本実施形態の内燃機関1は火花点火式内燃機関、より具体的にはガソリンエンジンである。   As shown in the figure, the internal combustion engine 1 generates power by burning a mixture of fuel and air inside a combustion chamber 3 formed in a cylinder block 2 and reciprocating a piston 4 in the combustion chamber 3. To do. The internal combustion engine 1 is configured as a multi-cylinder engine (however, only one cylinder is shown), and in the present embodiment, is configured as a 4-cylinder engine. The internal combustion engine 1 of the present embodiment is a spark ignition internal combustion engine, more specifically a gasoline engine.

内燃機関1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。少なくとも吸気側のカムシャフトは、図示しない可変バルブタイミング機構(VVT)によってクランク軸との位相差が可変とされており、よって少なくとも吸気弁のバルブタイミングが可変とされている。   In the cylinder head of the internal combustion engine 1, an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port are provided for each cylinder. Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown). At least the camshaft on the intake side has a variable phase difference with the crankshaft by a variable valve timing mechanism (VVT) (not shown), so that at least the valve timing of the intake valve is variable.

各気筒の吸気ポートは気筒毎の枝管を介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管L1が接続されており、吸気管L1の上流端にはエアクリーナ9が設けられている。そして吸気管L1には、上流側から順に、吸入空気量を検出するためのエアフローメータ5と、スロットルバルブ(本実施形態では電子制御式)10とが組み込まれている。一方、各気筒の排気ポートは気筒毎の枝管を介して排気集合通路をなす排気管6に接続されており、排気管6には、三元触媒を含む前段触媒装置11aおよびNOx吸蔵還元触媒を含む後段触媒装置11bが取り付けられている。前段触媒装置11aの上流側の排気管6に、排気ガスの空燃比を検出するための空燃比センサ13が設置されている。   The intake port of each cylinder is connected to a surge tank 8 serving as an intake air collecting chamber via a branch pipe for each cylinder. An intake pipe L1 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe L1. An air flow meter 5 for detecting the intake air amount and a throttle valve (electronically controlled in this embodiment) 10 are incorporated in the intake pipe L1 in order from the upstream side. On the other hand, the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through a branch pipe for each cylinder. The exhaust pipe 6 includes a front-stage catalyst device 11a including a three-way catalyst and a NOx storage reduction catalyst. A post-catalyst device 11b including is attached. An air-fuel ratio sensor 13 for detecting the air-fuel ratio of the exhaust gas is installed in the exhaust pipe 6 on the upstream side of the upstream catalyst device 11a.

シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が取り付けられている。更に、内燃機関1は、気筒毎にインジェクタ(燃料噴射弁)12を有し、インジェクタ12は、対応する燃焼室3内に臨むようにシリンダヘッドに配設されている。また、内燃機関1の各ピストン4は、いわゆる深皿頂面型に構成されており、その上面には、凹部4aが形成されている。そして、内燃機関1では、各燃焼室3内に空気を吸入させた状態で、各インジェクタ12から各燃焼室3内のピストン4の凹部4aに向けて燃料が直接噴射される。これにより、内燃機関1では、点火プラグ7の近傍に、燃料と空気との混合気の層が周囲の空気層と分離された状態で形成(成層化)されるので、全体として極めて希薄な混合気を用いて安定した成層燃焼を実行することが可能となる。   A spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head. Further, the internal combustion engine 1 has an injector (fuel injection valve) 12 for each cylinder, and the injector 12 is disposed in the cylinder head so as to face the corresponding combustion chamber 3. Each piston 4 of the internal combustion engine 1 is configured as a so-called deep dish top surface type, and a recess 4a is formed on the upper surface thereof. In the internal combustion engine 1, fuel is directly injected from each injector 12 toward the recess 4 a of the piston 4 in each combustion chamber 3 in a state where air is sucked into each combustion chamber 3. As a result, in the internal combustion engine 1, the fuel / air mixture layer is formed (stratified) in the vicinity of the spark plug 7 in a state of being separated from the surrounding air layer. Stable stratified combustion can be executed using the gas.

上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。ECU20には、図示されるように、前述のエアフローメータ5、空燃比センサ13、内燃機関1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ7、及びその他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、スロットルバルブ10、インジェクタ12等を制御する。   The spark plug 7, the throttle valve 10, the injector 12, and the like described above are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means. The ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown. As shown in the figure, the ECU 20 includes an air flow meter 5, an air-fuel ratio sensor 13, a crank angle sensor 14 that detects the crank angle of the internal combustion engine 1, an accelerator opening sensor 7 that detects the accelerator opening, and other components. Various sensors are electrically connected via an A / D converter (not shown) or the like. The ECU 20 controls the spark plug 7, the throttle valve 10, the injector 12, and the like so as to obtain a desired output based on detection values of various sensors.

また、内燃機関1は、半導体素子、圧電素子あるいは光ファイバ検出素子等を含む筒内圧センサ15を各気筒に有している。各筒内圧センサ15は、対応する燃焼室3内に受圧面が臨むようにシリンダヘッドに配設されており、図示されないA/D変換器等を介してECU20に電気的に接続されている。各筒内圧センサ15は、対応する燃焼室3における筒内圧(相対圧)に比例した電圧信号をECU20に与える。更に、内燃機関1は、吸気圧を絶対圧として検出する吸気圧センサ16を有している。吸気圧センサ16は、サージタンク8に取り付けられ、図示されないA/D変換器等を介してECU20に電気的に接続されており、サージタンク8内の圧力に比例した電圧信号をECU20に与える。各筒内圧センサ15および吸気圧センサ16の検出値は、微小時間おきにECU20に順次与えられ、ECU20の所定の記憶領域(バッファ)に所定量ずつ格納保持される。   The internal combustion engine 1 has an in-cylinder pressure sensor 15 including a semiconductor element, a piezoelectric element, an optical fiber detection element, or the like in each cylinder. Each in-cylinder pressure sensor 15 is disposed on the cylinder head so that the pressure receiving surface faces the corresponding combustion chamber 3, and is electrically connected to the ECU 20 via an A / D converter (not shown). Each in-cylinder pressure sensor 15 provides the ECU 20 with a voltage signal proportional to the in-cylinder pressure (relative pressure) in the corresponding combustion chamber 3. Furthermore, the internal combustion engine 1 has an intake pressure sensor 16 that detects the intake pressure as an absolute pressure. The intake pressure sensor 16 is attached to the surge tank 8 and is electrically connected to the ECU 20 via an A / D converter (not shown) or the like, and gives a voltage signal proportional to the pressure in the surge tank 8 to the ECU 20. The detection values of the in-cylinder pressure sensor 15 and the intake pressure sensor 16 are sequentially given to the ECU 20 every minute time, and are stored and held by a predetermined amount in a predetermined storage area (buffer) of the ECU 20.

次に、筒内圧センサの校正について説明する。   Next, calibration of the in-cylinder pressure sensor will be described.

本実施形態の筒内圧センサの校正装置によれば、以下のステップ1〜3を経て全気筒の筒内圧センサが校正される。   According to the in-cylinder pressure sensor calibration apparatus of this embodiment, the in-cylinder pressure sensors of all cylinders are calibrated through the following steps 1 to 3.

ステップ1:所定の基準気筒の筒内圧センサを基準として、基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を算出・決定する。なお便宜上、基準気筒の筒内圧センサを「基準気筒センサ」、基準気筒以外の気筒を「非基準気筒」、基準気筒以外の気筒の筒内圧センサを「非基準気筒センサ」と適宜称する。このステップ1により、基準気筒センサと非基準気筒センサとのセンサ感度が等しくされ、気筒間でのセンサ感度ばらつきひいてはこれに基づく筒内圧計測値のばらつきが解消される。基準気筒は任意に設定できるが、本実施形態では1番気筒に設定される。本実施形態の4気筒エンジンの点火順序は1番気筒→3番気筒→4番気筒→2番気筒である。   Step 1: Calculate / determine a sensor sensitivity correction coefficient for in-cylinder pressure sensors of cylinders other than the reference cylinder with reference to an in-cylinder pressure sensor of a predetermined reference cylinder. For convenience, an in-cylinder pressure sensor of the reference cylinder is appropriately referred to as a “reference cylinder sensor”, a cylinder other than the reference cylinder is referred to as a “non-reference cylinder”, and an in-cylinder pressure sensor of a cylinder other than the reference cylinder is appropriately referred to as a “non-reference cylinder sensor”. By this step 1, the sensor sensitivities of the reference cylinder sensor and the non-reference cylinder sensor are made equal, and the sensor sensitivity variation among the cylinders, and hence the variation of the in-cylinder pressure measurement value based on this is eliminated. Although the reference cylinder can be arbitrarily set, in the present embodiment, it is set to the first cylinder. The ignition order of the 4-cylinder engine of the present embodiment is as follows: No. 1 cylinder → No. 3 cylinder → No. 4 cylinder → No. 2 cylinder.

ステップ2:基準気筒の筒内圧センサのセンサ感度補正係数を算出・決定する。エンジンの固体間でも基準気筒の筒内圧センサのセンサ感度にばらつきがあることから、このばらつきを無くすように基準気筒センサのセンサ感度補正係数を算出・決定する。このステップ2により、エンジン固体間でのセンサ感度ばらつきひいてはこれに基づく筒内圧計測値ばらつきの抑制に有利となる。また、同一の制御ロジックや制御データを共用して別々のエンジンを制御した場合に所望の性能を個々のエンジンで得るのに有利となる。   Step 2: Calculate and determine the sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the reference cylinder. Since there is a variation in the sensor sensitivity of the in-cylinder pressure sensor of the reference cylinder even between the engine solids, the sensor sensitivity correction coefficient of the reference cylinder sensor is calculated and determined so as to eliminate this variation. This step 2 is advantageous for suppressing variations in sensor sensitivity among engine solids, and hence in-cylinder pressure measurement values based on this. Further, when different engines are controlled by sharing the same control logic and control data, it is advantageous to obtain desired performance in each engine.

ステップ3:ステップ2で算出・決定された基準気筒の筒内圧センサのセンサ感度補正係数に基づき、基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を補正する。このステップ3により、別々のエンジンの各気筒の筒内圧センサのセンサ感度を等しくすることができ、気筒間及びエンジン固体間でのセンサ感度ばらつきひいてはこれに基づく筒内圧計測値のばらつきを解消できる。   Step 3: Based on the sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the reference cylinder calculated and determined in Step 2, the sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the cylinders other than the reference cylinder is corrected. This step 3 makes it possible to equalize the sensor sensitivities of the in-cylinder pressure sensors of the cylinders of different engines, and to eliminate variations in sensor sensitivity between cylinders and between engine solids, and hence variations in in-cylinder pressure measurement values based on the sensor sensitivities.

ここで、筒内圧センサのセンサ感度及びその補正係数について説明する。図2は筒内圧センサの出力特性を示し、横軸が出力電圧E(V)、縦軸が入力としての筒内圧P(MPa)を示す。図示されるように、筒内圧Pと出力電圧Eとは比例関係にあり、これらの関係はΔP=k・G・ΔEで表される。Gは、出力電圧Eを筒内圧Pに変換するための変換係数即ち固有センサ感度であり、筒内圧センサが本来的に有する固有の一定値である。即ち、筒内圧センサの出力特性を言うとき一般的にはΔP=G・ΔE±α(%)と表され、α(%)(通常は2〜3%の値である)の製造誤差を含むのが通常である。しかしながら、前述のように高精度の筒内圧計測を行おうとするとき、特に筒内圧センサの測定レンジのうち低圧部分を高精度で計測しようとするとき、その製造誤差が計測精度に大きく影響するようになる。よって、その製造誤差をなくすようにセンサ感度Gを補正するのが補正係数kである。ここで筒内圧センサは圧力変化量の計測を主目的とするものである。従って筒内圧センサの出力特性も圧力変化量と出力電圧変化量との関係で規定されている。   Here, the sensor sensitivity of the in-cylinder pressure sensor and its correction coefficient will be described. FIG. 2 shows the output characteristics of the in-cylinder pressure sensor, where the horizontal axis represents the output voltage E (V) and the vertical axis represents the in-cylinder pressure P (MPa) as an input. As shown in the figure, the in-cylinder pressure P and the output voltage E are in a proportional relationship, and these relationships are represented by ΔP = k · G · ΔE. G is a conversion coefficient for converting the output voltage E into the in-cylinder pressure P, that is, a specific sensor sensitivity, and is a specific fixed value inherent in the in-cylinder pressure sensor. That is, the output characteristic of the in-cylinder pressure sensor is generally expressed as ΔP = G · ΔE ± α (%), and includes a manufacturing error of α (%) (usually a value of 2 to 3%). It is normal. However, when high-precision in-cylinder pressure measurement is performed as described above, especially when an attempt is made to measure the low-pressure portion of the in-cylinder pressure sensor with high accuracy, the manufacturing error greatly affects the measurement accuracy. become. Therefore, the correction coefficient k corrects the sensor sensitivity G so as to eliminate the manufacturing error. Here, the in-cylinder pressure sensor is mainly intended for measuring the amount of pressure change. Therefore, the output characteristic of the in-cylinder pressure sensor is also defined by the relationship between the pressure change amount and the output voltage change amount.

図2において、製造誤差が0%である中間品としての筒内圧センサの出力特性がIで示される。この場合、筒内圧変化量ΔPに対し出力電圧変化量ΔEとなり、センサ補正係数k=1.0となる。しかしながら、IIで示される筒内圧センサの場合、筒内圧変化量ΔPに対し出力電圧変化量ΔE+e1となっており、中間品より大きい出力電圧変化量が得られている。両者のセンサ感度を等しくしようとした場合、出力電圧変化量ΔE+e1を筒内圧変化量ΔPに対応づけるため、1.0より小さいセンサ補正係数kを設定しなければならない。具体的にはk=ΔE/(ΔE+e1)としなければならない。逆に、IIIで示される筒内圧センサの場合、筒内圧変化量ΔPに対し出力電圧変化量ΔE−e2となっており、中間品より小さい出力電圧変化量が得られている。この筒内圧センサのセンサ感度を中間品と揃えようとした場合、出力電圧変化量ΔE−e2を筒内圧変化量ΔPに対応づけるため、1.0より大きいセンサ補正係数kを設定しなければならない。具体的にはk=ΔE/(ΔE−e2)としなければならない。   In FIG. 2, the output characteristic of the in-cylinder pressure sensor as an intermediate product with a manufacturing error of 0% is indicated by I. In this case, the output voltage change amount ΔE with respect to the in-cylinder pressure change amount ΔP, and the sensor correction coefficient k = 1.0. However, in the case of the in-cylinder pressure sensor indicated by II, the output voltage change amount ΔE + e1 with respect to the in-cylinder pressure change amount ΔP, and an output voltage change amount larger than the intermediate product is obtained. If the two sensor sensitivities are to be made equal, a sensor correction coefficient k smaller than 1.0 must be set in order to associate the output voltage change amount ΔE + e1 with the in-cylinder pressure change amount ΔP. Specifically, k = ΔE / (ΔE + e1). On the contrary, in the case of the in-cylinder pressure sensor indicated by III, the output voltage change amount ΔE-e2 with respect to the in-cylinder pressure change amount ΔP, and an output voltage change amount smaller than the intermediate product is obtained. When the sensor sensitivity of this in-cylinder pressure sensor is to be aligned with that of the intermediate product, a sensor correction coefficient k greater than 1.0 must be set in order to associate the output voltage change amount ΔE-e2 with the in-cylinder pressure change amount ΔP. . Specifically, k = ΔE / (ΔE−e2).

[ステップ1:非基準気筒センサのセンサ感度補正係数の算出]
次に、前記ステップ1に関する非基準気筒センサのセンサ感度補正係数の算出について説明する。
[Step 1: Calculation of sensor sensitivity correction coefficient of non-reference cylinder sensor]
Next, calculation of the sensor sensitivity correction coefficient of the non-reference cylinder sensor related to Step 1 will be described.

まずこの算出の第1の態様を説明する。この第1の態様は、概していうと、圧縮行程中の2点のタイミングにおける筒内圧を気筒毎に計測し、これら2点のタイミングの筒内圧の差圧が全気筒で等しいと仮定して、基準気筒の差圧と非基準気筒の差圧とに基づいて非基準気筒センサのセンサ感度補正係数を算出する、というものである。   First, the first aspect of this calculation will be described. Generally speaking, this first mode measures the in-cylinder pressure at each of the two timings during the compression stroke for each cylinder, and assumes that the differential pressure between the in-cylinder pressures at these two timings is the same for all cylinders. The sensor sensitivity correction coefficient of the non-reference cylinder sensor is calculated based on the differential pressure of the reference cylinder and the differential pressure of the non-reference cylinder.

図3にはある特定気筒のクランク角θに対する筒内圧(実線)、吸気圧(一点鎖線)及び排気圧(破線)の変化が示されている。なおクランク角θ=0°が圧縮上死点である。見られるように、筒内圧は圧縮行程(−180°〜0°)において上昇し、圧縮上死点付近でピークを迎える。本態様では、図中P1,P2で示されるように、圧縮行程中の2点のタイミングにおいて筒内圧センサにより筒内圧が計測される。この2点のタイミングは、計測される筒内圧の間にできるだけ大きな差圧が生じるようなタイミングとされ、且つ、後のタイミングについては点火時期の前とされる。よって、前のタイミングは、筒内圧が上昇開始する時期付近又はその以前とされ、後のタイミングは点火時期の直前とされるのが好ましい。   FIG. 3 shows changes in in-cylinder pressure (solid line), intake pressure (one-dot chain line), and exhaust pressure (broken line) with respect to a crank angle θ of a specific cylinder. The crank angle θ = 0 ° is the compression top dead center. As can be seen, the in-cylinder pressure rises in the compression stroke (−180 ° to 0 °) and peaks near the compression top dead center. In this aspect, as indicated by P1 and P2 in the figure, the in-cylinder pressure is measured by the in-cylinder pressure sensor at two timings during the compression stroke. The timings at these two points are such that a differential pressure as large as possible is generated between the measured in-cylinder pressures, and the later timing is before the ignition timing. Therefore, it is preferable that the previous timing is near or before the timing when the in-cylinder pressure starts to rise, and the subsequent timing is immediately before the ignition timing.

さて、エンジンが定常運転している状態で、2点のタイミングにおける筒内圧P1(i)、P2(i)が気筒毎に計測される。ここでiは気筒番号でi=1,2,3,4である。基準気筒についてはi=ix=1とし、非基準気筒についてはi=iy=2,3,4とする。P1(i)、P2(i)は、センサ出力電圧との関係では次のように表される(図2参照)。
P1(i)=k(i)・G・E1(i)
P2(i)=k(i)・G・E2(i)
・・・(2)
k(i)はi番気筒のセンサ感度補正係数である。ここでは基準気筒のセンサ感度補正係数k(ix)を初期値1.0とする。
Now, in a state where the engine is in steady operation, the in-cylinder pressures P1 (i) and P2 (i) at two timings are measured for each cylinder. Here, i is a cylinder number, i = 1, 2, 3, 4. For the reference cylinder, i = ix = 1, and for the non-reference cylinder, i = iy = 2, 3, and 4. P1 (i) and P2 (i) are expressed as follows in relation to the sensor output voltage (see FIG. 2).
P1 (i) = k (i) · G · E1 (i)
P2 (i) = k (i) · G · E2 (i)
... (2)
k (i) is a sensor sensitivity correction coefficient of the i-th cylinder. Here, the sensor sensitivity correction coefficient k (ix) of the reference cylinder is set to an initial value 1.0.

2点のタイミング間における各気筒の筒内圧の差圧Psub(i)は
Psub(i)=P2(i)−P1(i)
=k(i)・G・(E2(i)−E1(i))・・・(3)
で表される。ここで、非基準気筒の差圧Psub(iy)は基準気筒の差圧Psub(ix)に等しいとみなせるから、次式が成立する。
k(iy)・Psub(iy)=Psub(ix)・・・(4)
The in-cylinder pressure differential pressure Psub (i) between the timings of the two points is Psub (i) = P2 (i) −P1 (i)
= K (i) .G. (E2 (i) -E1 (i)) (3)
It is represented by Here, since the differential pressure Psub (ii) of the non-reference cylinder can be regarded as being equal to the differential pressure Psub (ix) of the reference cylinder, the following equation is established.
k (ii) · Psub (iy) = Psub (ix) (4)

従って、非基準気筒のセンサ感度補正係数k(iy)は次式(5)に基づいて算出される。
k(iy)=Psub(ix)/Psub(iy)・・・(5)
Accordingly, the sensor sensitivity correction coefficient k (iy) of the non-reference cylinder is calculated based on the following equation (5).
k (ii) = Psub (ix) / Psub (iy) (5)

こうして算出された非基準気筒のセンサ感度補正係数k(iy)は、既存の値(例えば初期値1.0)と置き換えられる。   The sensor sensitivity correction coefficient k (iy) of the non-reference cylinder calculated in this way is replaced with an existing value (for example, an initial value of 1.0).

以上の説明で理解されるように、この第1の態様によれば、非基準気筒のセンサ感度(k(iy)・G)を基準気筒のセンサ感度(k(ix)・G)と等しくすることができ、筒内圧センサの気筒間感度ばらつきをなくすことができる。そして、内燃機関の制御において、このように算出されたセンサ感度補正係数k(iy)を非基準気筒の筒内圧センサに関して用いることにより、筒内圧計測値の気筒間ばらつきをなくし、精度の高い制御を実現することが可能になる。   As understood from the above description, according to the first aspect, the sensor sensitivity (k (ix) · G) of the non-reference cylinder is made equal to the sensor sensitivity (k (ix) · G) of the reference cylinder. This can eliminate variations in sensitivity among cylinders of the in-cylinder pressure sensor. Then, in the control of the internal combustion engine, the sensor sensitivity correction coefficient k (iy) calculated in this way is used for the in-cylinder pressure sensor of the non-reference cylinder, thereby eliminating the inter-cylinder variation in the in-cylinder pressure measurement value and controlling with high accuracy. Can be realized.

次に、ここで述べた第1の態様のより具体的な算出処理を図4のフローチャートに基づいて説明する。図示される処理はECU20により実行されるもので、ここでは主に精度向上や信頼性確保等の観点から平均化処理が追加されている。この平均化処理によりセンサノイズの影響を少なくできるなどの利点が奏される。   Next, a more specific calculation process of the first aspect described here will be described based on the flowchart of FIG. The illustrated process is executed by the ECU 20, and an averaging process is added here mainly from the viewpoint of improving accuracy and ensuring reliability. This averaging process has the advantage that the influence of sensor noise can be reduced.

まずステップS101では、処理サイクル数をカウントするカウンタのカウント値jが初期値1にセットされる。次にステップS102では、内燃機関の運転状態が定常運転状態か否かが判断される。定常運転状態とは、エンジン回転速度及びアクセル開度の変動幅が所定値以内にあるときをいい、例えばアイドル運転状態である。ECU20は、クランク角センサ14の検出値に基づいて算出するエンジン回転速度NEが所定のアイドル回転速度NEiを中心に所定回転速度α以内(例えば700±50rpm)にあり、且つアクセル開度センサ7によって検出されるアクセル開度が全閉であるとき、定常運転状態であると判断する。   First, in step S101, a count value j of a counter that counts the number of processing cycles is set to an initial value 1. Next, in step S102, it is determined whether or not the operating state of the internal combustion engine is a steady operating state. The steady operation state is when the fluctuation range of the engine speed and the accelerator opening is within a predetermined value, for example, an idle operation state. The ECU 20 has an engine rotational speed NE calculated based on a detection value of the crank angle sensor 14 within a predetermined rotational speed α (for example, 700 ± 50 rpm) centered on a predetermined idle rotational speed NEi. When the detected accelerator opening is fully closed, it is determined that the vehicle is in a steady operation state.

定常運転状態はアイドル以外の運転状態であってもよい。例えば、吸気脈動が小さく筒内空気量が多い中回転高負荷での定常運転状態であるのも好ましい。吸気脈動が小さい方が筒内圧の変動が少なく、筒内圧計測値がぶれないで済むからであり、また、筒内空気量が多い方が2点間の差圧が大きくなり、誤差が少なくなるからである。このような定常運転状態は、例えば車両の場合、高速道路を登坂走行しているような場合に実現可能である。また、好ましくは、吸排気弁がオーバーラップしないこと、或いはそうなるように可変バルブタイミング機構が制御されていることを条件に含む。これを含めると排気ガスの吹き返しを無くし、各気筒の筒内空気量ひいては差圧を定常に保持することができるからである。   The steady operation state may be an operation state other than idle. For example, it is also preferable that the vehicle is in a steady operation state at a medium rotation and high load with a small intake pulsation and a large amount of cylinder air. This is because the smaller the intake pulsation, the less the variation in the in-cylinder pressure, and the less the in-cylinder pressure measurement value will be, and the more the in-cylinder air amount, the greater the differential pressure between the two points and the smaller the error. Because. Such a steady operation state can be realized when, for example, the vehicle is traveling uphill on a highway. Preferably, the condition includes that the intake / exhaust valves do not overlap or that the variable valve timing mechanism is controlled so as to do so. This is because if this is included, exhaust gas blow-back is eliminated, and the in-cylinder air amount of each cylinder, and thus the differential pressure, can be kept constant.

ステップS102で定常運転状態でないと判断された場合、ステップS101に戻る。他方、ステップS102で定常運転状態であると判断された場合、ステップS103において2点のタイミングの筒内圧P1(i,j)、P2(i,j)を筒内圧センサ15により計測する。この計測は点火気筒順に行われ、全気筒の計測が終わるとステップS103が終了する。これら筒内圧P1(i,j)、P2(i,j)は記憶装置(バッファ)に一時的に記憶される。   If it is determined in step S102 that the vehicle is not in a steady operation state, the process returns to step S101. On the other hand, if it is determined in step S102 that the vehicle is in the steady operation state, in-cylinder pressures P1 (i, j) and P2 (i, j) at two timings are measured by the in-cylinder pressure sensor 15 in step S103. This measurement is performed in the order of the ignition cylinder, and when all the cylinders are measured, step S103 is completed. These in-cylinder pressures P1 (i, j) and P2 (i, j) are temporarily stored in a storage device (buffer).

次いで、ステップS104において、これら筒内圧P1(i,j)、P2(i,j)に基づき、差圧Psub(i,j)が次式により算出される。
Psub(i,j)=P2(i,j)−P1(i,j)・・・(6)
Next, in step S104, based on these in-cylinder pressures P1 (i, j) and P2 (i, j), the differential pressure Psub (i, j) is calculated by the following equation.
Psub (i, j) = P2 (i, j) −P1 (i, j) (6)

こうして得られた今回サイクルの差圧Psub(i,j)は記憶装置(バッファ)に一時的に記憶される。なお差圧Psub(i,j)を記憶装置にサイクル毎に順次記憶していく様子を図5に示す。   The differential pressure Psub (i, j) of the current cycle thus obtained is temporarily stored in a storage device (buffer). FIG. 5 shows how the differential pressure Psub (i, j) is sequentially stored in the storage device for each cycle.

この後、ステップS105においてカウンタのカウント値jが1だけカウントアップされ、ステップS106ではこのカウント値jが所定値N(例えば128)と比較される。カウント値jが所定値Nを超えていなければステップS102に戻ってステップS102〜S105が繰り返し実行される。なお、この反復処理の最中でエンジンが定常運転状態でなくなったときは処理は中止され(S102:NO)、処理はS101からやり直しとなる。また、反復処理の途中で得られた差圧Psub(i,j)が初回の差圧Psub(i,1)に対し所定値以上乖離したとき、差圧変動が大きすぎるとみなして処理を中止してもよい。   Thereafter, in step S105, the count value j of the counter is incremented by 1, and in step S106, the count value j is compared with a predetermined value N (for example, 128). If the count value j does not exceed the predetermined value N, the process returns to step S102 and steps S102 to S105 are repeatedly executed. When the engine is not in a steady operation state during this iterative process, the process is stopped (S102: NO), and the process starts again from S101. Further, when the differential pressure Psub (i, j) obtained during the iterative process deviates from the initial differential pressure Psub (i, 1) by a predetermined value or more, it is considered that the differential pressure fluctuation is too large and the process is stopped. May be.

カウント値jが所定値Nを超えた場合、図5に示すように、ECU20の記憶装置には各気筒N個ずつの差圧データが格納されることになる。そしてステップS107が実行され、これら各気筒N個ずつの差圧データに基づき、各気筒の平均差圧Psubav(i)が次式により算出される。
Psubav(i)=ΣPsub(i,j)/N・・・(7)
When the count value j exceeds the predetermined value N, as shown in FIG. 5, differential pressure data for N cylinders is stored in the storage device of the ECU 20. Then, step S107 is executed, and the average differential pressure Psubav (i) of each cylinder is calculated by the following equation based on the differential pressure data of each N cylinders.
Psubav (i) = ΣPsub (i, j) / N (7)

そして次に、ステップS108において、各気筒の平均差圧Psubav(i)に基づき、非基準気筒のセンサ感度補正係数k(iy)が次式(8)により算出される。
k(iy)=Psubav(ix)/Psubav(iy)・・・(8)
Then, in step S108, the sensor sensitivity correction coefficient k (iy) of the non-reference cylinder is calculated by the following equation (8) based on the average differential pressure Psubav (i) of each cylinder.
k (ii) = Psubav (ix) / Psubav (ii) (8)

こうして算出された非基準気筒のセンサ感度補正係数k(iy)は、既存の値(例えば初期値1.0)と置き換えられ、以降の筒内圧計測に用いられる。   The sensor sensitivity correction coefficient k (iy) of the non-reference cylinder thus calculated is replaced with an existing value (for example, an initial value of 1.0), and is used for subsequent in-cylinder pressure measurement.

次に、非基準気筒センサのセンサ感度補正係数算出の第2の態様を説明する。   Next, a second mode of calculating the sensor sensitivity correction coefficient of the non-reference cylinder sensor will be described.

前記第1の態様では、2点のタイミングの筒内圧の差圧が全気筒で等しいという仮定の下で処理が行われている。即ち、エンジン運転状態が定常である限り、筒内には全気筒同一の空気量が流入し、同一タイミングで筒内圧を計測する限り全気筒の筒内圧の差圧は等しいという前提がある。しかしながら、寸法公差等に起因する製造上のばらつきが気筒間に存在し、例えば同一タイミングでも筒内容積が異なるなどの理由で筒内空気量が等しくならない場合がある。こうなると、同一の2点のタイミング間における筒内圧差圧は気筒間で異なり、最終的に算出されるセンサ感度補正係数に誤差が生じる。   In the first aspect, the processing is performed under the assumption that the differential pressure between the in-cylinder pressures at two timings is the same for all cylinders. In other words, as long as the engine operating state is steady, the same amount of air flows into all cylinders, and as long as the in-cylinder pressure is measured at the same timing, the differential pressure between the in-cylinder pressures of all cylinders is assumed to be equal. However, manufacturing variations due to dimensional tolerances and the like exist between cylinders. For example, the in-cylinder air amount may not be equal because the in-cylinder volume is different even at the same timing. In this case, the in-cylinder pressure differential pressure between the same two timings differs between the cylinders, and an error occurs in the finally calculated sensor sensitivity correction coefficient.

そこでこの問題を解決するため、第2の態様は、前記第1の態様と比較して2点のタイミングを異ならせている。   Therefore, in order to solve this problem, the timing of the two points in the second mode is different from that in the first mode.

図6には第2の態様における2点のタイミングを示す。図から理解されるように、2点のタイミングのうち、先に筒内圧P1が計測される1点は、排気行程中(−540〜−360°)であって排気弁Veが開、吸気弁Viが閉であるタイミングである。また、後に筒内圧P2が計測される1点は、吸気行程中(−360〜−180°)であって排気弁が閉、吸気弁が開であるタイミングである。本実施形態では、先の1点及び後の1点ともに、筒内の空気流動の影響を無くすためできるだけ遅いタイミングとされ、先の1点については排気弁Veが閉じる直前のタイミング、後の1点については吸気下死点(−180°)のタイミングに設定されている。   FIG. 6 shows the timing of two points in the second mode. As can be seen from the figure, one of the timings at which the in-cylinder pressure P1 is measured first is during the exhaust stroke (−540 to −360 °), the exhaust valve Ve is opened, and the intake valve This is the timing when Vi is closed. Further, one point where the in-cylinder pressure P2 is measured later is the timing when the exhaust valve is closed and the intake valve is open during the intake stroke (−360 to −180 °). In this embodiment, both the first point and the subsequent one point are set as late as possible in order to eliminate the influence of the air flow in the cylinder, and the previous one point is a timing immediately before the exhaust valve Ve is closed, and the subsequent one point. The point is set at the timing of the intake bottom dead center (−180 °).

先の1点について、排気弁Veが開、吸気弁Viが閉の場合だと、燃焼室3は排気系に開放されており、筒内圧は排気圧と平衡している。また、後の1点について、排気弁Veが閉、吸気弁Viが開の場合だと、燃焼室3は吸気系に開放されており、筒内圧は吸気圧と平衡している。エンジン運転状態が定常である限り、排気圧及び吸気圧は全気筒で同一とみなせるから、これら2点のタイミングを採用することにより、製造ばらつきの影響を無くし、同一条件で各気筒の筒内圧を計測することができる。   For the previous point, when the exhaust valve Ve is open and the intake valve Vi is closed, the combustion chamber 3 is open to the exhaust system, and the in-cylinder pressure is balanced with the exhaust pressure. Further, when the exhaust valve Ve is closed and the intake valve Vi is opened at the later one point, the combustion chamber 3 is opened to the intake system, and the in-cylinder pressure is balanced with the intake pressure. As long as the engine operating state is steady, the exhaust pressure and the intake pressure can be regarded as the same for all cylinders. By adopting these two timings, the effects of manufacturing variations are eliminated, and the in-cylinder pressure of each cylinder is adjusted under the same conditions. It can be measured.

非基準気筒センサのセンサ感度補正係数は、以下の点を除き、前記第1の態様と同様の方法で算出される。即ち、この第2の態様では先後のタイミングの筒内圧P1,P2の大小関係が第1の態様と逆であるから、前記ステップS104に関する差圧Psubの算出の際には、先のタイミングの筒内圧P1から後のタイミングの筒内圧P2を減じた値か、又は(P2−P1)の絶対値を差圧Psubとする。   The sensor sensitivity correction coefficient of the non-reference cylinder sensor is calculated by the same method as in the first aspect except for the following points. That is, in the second mode, the magnitude relationship between the in-cylinder pressures P1 and P2 at the previous and subsequent timings is opposite to that in the first mode. Therefore, when calculating the differential pressure Psub related to step S104, A value obtained by subtracting the in-cylinder pressure P2 at a later timing from the internal pressure P1 or an absolute value of (P2−P1) is defined as a differential pressure Psub.

また、前記ステップS102に関連して、定常運転状態としては、スロットルバルブ開度が最小で吸気圧が低く、比較的大きな差圧が得られるアイドル運転状態であるのが好ましい。   In relation to step S102, the steady operation state is preferably an idle operation state in which the throttle valve opening is minimum, the intake pressure is low, and a relatively large differential pressure is obtained.

吸気の排気系への吹き抜け或いは排気の吸気系への吹き返しを防止するため、吸排気弁がオーバーラップされない状態、或いはそうなるように可変バルブタイミング機構が制御されている状態で算出が実行される。これら吹き抜けや吹き返しがあると排気圧又は吸気圧と筒内圧との平衡状態が気筒間でばらつく可能性があるからである。   In order to prevent blow-in of the intake air into the exhaust system or return of the exhaust gas to the intake system, the calculation is executed in a state where the intake / exhaust valves are not overlapped or the variable valve timing mechanism is controlled so as to do so. . This is because there is a possibility that the equilibrium state between the exhaust pressure or the intake pressure and the in-cylinder pressure varies between the cylinders if there is a blow-through or blow-back.

次に、非基準気筒センサのセンサ感度補正係数算出の第3の態様を説明する。   Next, a third mode of calculating the sensor sensitivity correction coefficient of the non-reference cylinder sensor will be described.

前記第2の態様において説明したように、センサ感度補正係数を精度良く算出するためには、吸気圧と排気圧との差圧ができるだけ大きいのが望ましい。前記第2の態様ではスロットルバルブ開度が最小で吸気圧が低くなるアイドル運転時に筒内圧計測を行うようにしたが、この第3の態様ではさらに差圧を大きくするため、フュエルカット時に筒内圧計測を行うようにする。即ち、フュエルカット時もスロットルバルブ開度が最小であり、しかもエンジン回転速度がアイドル回転速度よりも高速であることから、吸気圧はより低くなり、排気圧はより高くなる。よって、差圧をより大きくし、センサ感度補正係数算出精度を向上することが可能になる。   As described in the second aspect, in order to calculate the sensor sensitivity correction coefficient with high accuracy, it is desirable that the differential pressure between the intake pressure and the exhaust pressure is as large as possible. In the second aspect, the in-cylinder pressure is measured during idling when the throttle valve opening is minimum and the intake pressure is low. In this third aspect, the in-cylinder pressure is increased during fuel cut in order to further increase the differential pressure. Make measurements. That is, the throttle valve opening is minimum even during fuel cut, and the engine rotation speed is higher than the idle rotation speed, so that the intake pressure becomes lower and the exhaust pressure becomes higher. Therefore, the differential pressure can be increased and the sensor sensitivity correction coefficient calculation accuracy can be improved.

図7には、第3の態様の算出処理に関するフローチャートが示されている。この図示される処理は図4に示した第1の態様の処理と大略同様であり、以下相違点を中心に説明する。   FIG. 7 shows a flowchart relating to the calculation process of the third aspect. The illustrated process is substantially the same as the process of the first mode shown in FIG. 4, and the difference will be mainly described below.

この第3の態様において、ステップS201、S203〜S208は第1の態様のステップS101、S103〜S108と同様である。但しステップS204において、先後のタイミングの筒内圧P1,P2の大小関係が第1の態様と逆であるため、差圧Psubが次式(6)’により算出されるようになっている。
Psub(i,j)=P1(i,j)−P2(i,j)・・・(6)’
In this third aspect, steps S201 and S203 to S208 are the same as steps S101 and S103 to S108 of the first aspect. However, in step S204, since the magnitude relationship between the in-cylinder pressures P1 and P2 at the previous and subsequent timings is opposite to that in the first mode, the differential pressure Psub is calculated by the following equation (6) ′.
Psub (i, j) = P1 (i, j) −P2 (i, j) (6) ′

第3の態様では、以下のステップS202が第1の態様のステップS102に置き換わる。即ち、ステップS202では、内燃機関の運転状態がフュエルカット状態か否かが判断される。本実施形態の制御装置において、ECU20は、アイドル回転速度よりも僅かに高い所定回転速度に比べて実際のエンジン回転速度が高く、且つアクセル開度が全閉(即ちスロットルバルブ開度が全閉)のとき、インジェクタ12への通電を停止しフュエルカットを行う。従ってECU20は、自らがフュエルカットを行っているときフュエルカット状態であると判断する。   In the third mode, the following step S202 is replaced with step S102 of the first mode. That is, in step S202, it is determined whether the operating state of the internal combustion engine is a fuel cut state. In the control device of the present embodiment, the ECU 20 has a higher actual engine speed than the predetermined rotation speed slightly higher than the idle rotation speed, and the accelerator opening is fully closed (that is, the throttle valve opening is fully closed). At this time, the energization to the injector 12 is stopped and fuel cut is performed. Therefore, the ECU 20 determines that it is in the fuel cut state when it is performing the fuel cut.

或いは、次のような方法でエンジンのフュエルカット状態を判断してもよい。即ち、図8には、燃焼が行われているとき(ファイアリング時)の筒内圧波形と、燃焼が行われていないとき(モータリング時、即ちこれはフュエルカット時に相当)の筒内圧波形とが示される。これから分かるように、圧縮上死点TDC付近の波形は、ファイアリング時では圧縮上死点TDCの前から後にかけて徐々に圧力値が上昇しているのに対し、モータリング時では圧縮上死点TDCでピークとなりその前後で圧力値が上昇・下降している。   Alternatively, the fuel cut state of the engine may be determined by the following method. That is, FIG. 8 shows the in-cylinder pressure waveform when combustion is being performed (during firing) and the in-cylinder pressure waveform when combustion is not being performed (during motoring, that is, during fuel cut). Is shown. As can be seen, the waveform near the compression top dead center TDC increases gradually before and after the compression top dead center TDC at the time of firing, whereas the waveform near the compression top dead center TDC at the time of motoring. It reaches a peak at TDC, and the pressure value increases and decreases before and after that.

そこでこの特性を利用し、図9に示されるように、ECU20は、ある所定気筒(例えば基準気筒)において圧縮上死点TDCで計測した筒内圧力Pc(TDC)と、圧縮上死点TDCからd1(°)前のタイミングで計測した筒内圧力Pc(TDC−d1)と、圧縮上死点からd2(°)後のタイミングで計測した筒内圧力Pc(TDC+d2)との間に以下の関係が成立したとき、エンジンがフュエルカット状態であると判断する。なお、本実施形態ではd1=d2=5(°)であるが、他の値にも設定可能である。
(TDC−d1)<Pc(TDC)且つ(TDC+d2)<Pc(TDC)
・・・(9)
Therefore, using this characteristic, as shown in FIG. 9, the ECU 20 calculates the in-cylinder pressure Pc (TDC) measured at the compression top dead center TDC and the compression top dead center TDC in a predetermined cylinder (for example, the reference cylinder). The following relationship between the in-cylinder pressure Pc (TDC−d1) measured at the timing before d1 (°) and the in-cylinder pressure Pc (TDC + d2) measured at the timing after d2 (°) from the compression top dead center When is established, it is determined that the engine is in a fuel cut state. In this embodiment, d1 = d2 = 5 (°), but other values can be set.
(TDC-d1) <Pc (TDC) and (TDC + d2) <Pc (TDC)
... (9)

また、図7に戻って、この第3の態様では、ステップS204とステップS205の間にステップS204Aが追加されている。このステップS204Aでは、jサイクル目の処理で得られた各気筒の差圧Psub(i,j)と、1サイクル目の処理で得られた各気筒の差圧Psub(i,1)との差ΔPsub(i,j)=(Psub(i,j)−Psub(i,1)の絶対値が計算されると共に、この差ΔPsub(i,j)の絶対値が比較的小さな値である所定のしきい値εと比較される。   Returning to FIG. 7, in the third mode, step S204A is added between step S204 and step S205. In this step S204A, the difference between the differential pressure Psub (i, j) of each cylinder obtained by the j-th cycle process and the differential pressure Psub (i, 1) of each cylinder obtained by the first-cycle process. An absolute value of ΔPsub (i, j) = (Psub (i, j) −Psub (i, 1) is calculated, and the absolute value of the difference ΔPsub (i, j) is a relatively small value. It is compared with the threshold value ε.

差ΔPsub(i,j)がしきい値εより小さい場合、筒内圧の差圧Psubの変動が許容範囲内、即ちエンジンの運転状態が定常であるとして処理を続行し、ステップS205に進む。他方、差ΔPsub(i,j)がしきい値ε以上の場合、筒内圧の差圧Psubの変動が許容範囲外、即ちエンジンの運転状態が定常でないとして処理を中止し、ステップS201に進む。このように本実施形態においては、筒内圧の差圧の差に基づいて内燃機関が定常運転状態にあるか否かを判断する手段が設けられている。   If the difference ΔPsub (i, j) is smaller than the threshold value ε, the process is continued assuming that the variation of the in-cylinder pressure difference Psub is within an allowable range, that is, the engine operating state is steady, and the process proceeds to step S205. On the other hand, if the difference ΔPsub (i, j) is greater than or equal to the threshold value ε, the process is stopped assuming that the fluctuation of the in-cylinder pressure difference Psub is outside the allowable range, that is, the engine operating state is not steady, and the process proceeds to step S201. As described above, in this embodiment, there is provided means for determining whether or not the internal combustion engine is in a steady operation state based on the difference in the in-cylinder pressure.

以上説明したように、このステップ1によれば、非基準気筒センサのセンサ感度を基準気筒センサのセンサ感度と等しくなるように設定することができ、言い換えれば、基準気筒センサのセンサ感度を基準として非基準気筒センサのセンサ感度のばらつきを無くすことができる。よって、気筒間でのセンサ感度のばらつきひいてはこれに基づく筒内圧計測値のばらつきを解消することが可能となる。   As described above, according to Step 1, the sensor sensitivity of the non-reference cylinder sensor can be set to be equal to the sensor sensitivity of the reference cylinder sensor. In other words, the sensor sensitivity of the reference cylinder sensor is used as a reference. Variation in sensor sensitivity of the non-reference cylinder sensor can be eliminated. Therefore, it is possible to eliminate variations in sensor sensitivity among cylinders and in-cylinder pressure measurement values based on the variations.

[ステップ2:基準気筒センサのセンサ感度補正係数の算出]
次に、前記ステップ2に関する基準気筒センサのセンサ感度補正係数の算出について説明する。この算出は、空燃比センサ13により検出された排気空燃比を利用する点に主な特徴がある。また、ここでの算出処理は機関運転状態がアイドル運転状態のような定常運転状態のときに実行される。
[Step 2: Calculation of sensor sensitivity correction coefficient of reference cylinder sensor]
Next, calculation of the sensor sensitivity correction coefficient of the reference cylinder sensor related to Step 2 will be described. This calculation is mainly characterized in that the exhaust air-fuel ratio detected by the air-fuel ratio sensor 13 is used. The calculation process here is executed when the engine operation state is a steady operation state such as an idle operation state.

図3を参照して、圧縮行程における圧縮が断熱圧縮であるとみなすと、圧縮行程中の2点のタイミングにおける筒内圧P1,P2の間には次式が成立する。
(P1+ΔP)V1κ=(P2+ΔP)V2κ ・・・(10)
ここで、筒内圧P1,P2は筒内圧センサ15で検出されるような相対圧であり、ΔPは絶対圧補正値である。なお吸気圧センサ16によって検出される絶対圧としての吸気圧を用いることにより筒内圧センサ15で検出される圧力値を絶対圧補正することが可能である。V1,V2はそれぞれ先後のタイミングにおける筒内容積で、クランク角θに基づいて算出可能である。
Referring to FIG. 3, if the compression in the compression stroke is regarded as adiabatic compression, the following equation is established between the in-cylinder pressures P1 and P2 at two timings during the compression stroke.
(P1 + ΔP) V1κ = (P2 + ΔP) V2κ (10)
Here, the in-cylinder pressures P1 and P2 are relative pressures as detected by the in-cylinder pressure sensor 15, and ΔP is an absolute pressure correction value. By using the intake pressure as the absolute pressure detected by the intake pressure sensor 16, the pressure value detected by the in-cylinder pressure sensor 15 can be corrected by the absolute pressure. V1 and V2 are in-cylinder volumes at the previous and later timings, and can be calculated based on the crank angle θ.

(10)式を変形すると次式(11)が得られ、圧縮行程中の筒内圧P1,P2(相対圧)の差圧が筒内圧P2の絶対圧に比例することが分かる。
P2−P1=(P2+ΔP){1−(V2/V1)κ} ・・・(11)
When the equation (10) is modified, the following equation (11) is obtained, and it can be seen that the differential pressure between the in-cylinder pressures P1 and P2 (relative pressure) during the compression stroke is proportional to the absolute pressure of the in-cylinder pressure P2.
P2−P1 = (P2 + ΔP) {1− (V2 / V1) κ } (11)

ここで、基準気筒に関し、基準気筒センサのセンサ感度補正係数k(ix)=1.0(初期値)とすると、(11)式左辺の筒内圧P1,P2(相対圧)の差圧は次式(12)で表される(図2参照)。
P2−P1=k(ix)・G・E2−k(ix)・G・E1
=k(ix)・G・(E2−E1) ・・・(12)
Here, regarding the reference cylinder, if the sensor sensitivity correction coefficient k (ix) of the reference cylinder sensor is 1.0 (initial value), the differential pressure between the cylinder pressures P1 and P2 (relative pressure) on the left side of the equation (11) is It is expressed by equation (12) (see FIG. 2).
P2-P1 = k (ix) .G.E2-k (ix) .G.E1
= K (ix) · G · (E2-E1) (12)

一方、筒内空気量の充填率KL(%)が圧縮圧に比例することから、充填率KLがECU20により筒内圧計測値の差圧(P2−P1)を用いて次式(13)により算出される。
KL=a・(P2−P1)+b ・・・(13)
On the other hand, since the filling rate KL (%) of the in-cylinder air amount is proportional to the compression pressure, the filling rate KL is calculated by the ECU 20 using the differential pressure (P2-P1) of the in-cylinder pressure measurement value by the following equation (13). Is done.
KL = a · (P2−P1) + b (13)

a,bは所定の定数で、実験等により予め求められる。充填率とは、筒内に実際に入っている空気量と筒内に入り得る最大空気量との比であり、例えば筒内に最大空気量が実際に入っていると充填率は100%となる。ここで、吸排気弁のバルブタイミングにオーバーラップがあると残留ガスによる筒内圧上昇分を差し引く必要がある。オーバーラップがないとき、例えばアイドル運転時には、そのような残留ガスによる筒内圧上昇分がないので、かかる減算を省略できる。   a and b are predetermined constants, which are obtained in advance by experiments or the like. The filling rate is the ratio between the amount of air actually contained in the cylinder and the maximum amount of air that can enter the cylinder. For example, when the maximum amount of air is actually contained in the cylinder, the filling rate is 100%. Become. Here, if there is an overlap in the valve timing of the intake / exhaust valves, it is necessary to subtract the increase in the cylinder pressure due to the residual gas. When there is no overlap, for example, during idling, there is no increase in the in-cylinder pressure due to such residual gas, so this subtraction can be omitted.

ところで、本実施形態においては、実際の排気空燃比が所定の目標空燃比となるような燃料噴射量が予め設定されている。即ち、ECU20は、所定の目標空燃比AFt(例えばストイキ空燃比=14.6)に実際の排気空燃比AFを一致させるような燃料噴射量Qを、(13)式により求められた充填率KLに基づき、所定のマップ又は関数を用いて決定し、且つその燃料噴射量Qをインジェクタ12から噴射させる。   By the way, in the present embodiment, the fuel injection amount is set in advance such that the actual exhaust air-fuel ratio becomes a predetermined target air-fuel ratio. That is, the ECU 20 sets the fuel injection amount Q that makes the actual exhaust air-fuel ratio AF coincide with a predetermined target air-fuel ratio AFt (for example, stoichiometric air-fuel ratio = 14.6) by the filling rate KL calculated by the equation (13). Is determined using a predetermined map or function, and the fuel injection amount Q is injected from the injector 12.

そしてECU20は、このときに空燃比センサ13により排気空燃比AFを計測する。そして基準気筒の筒内圧センサのセンサ感度補正係数k(ix)を次式(14)により算出する。
k(ix)=AF/AFt ・・・(14)
At this time, the ECU 20 measures the exhaust air-fuel ratio AF by the air-fuel ratio sensor 13. Then, the sensor sensitivity correction coefficient k (ix) of the in-cylinder pressure sensor of the reference cylinder is calculated by the following equation (14).
k (ix) = AF / AFt (14)

そしてECU20は、基準気筒センサのセンサ感度補正係数k(ix)を、既存の値(例えば初期値1.0)から(14)式により算出された値へと変更する。   Then, the ECU 20 changes the sensor sensitivity correction coefficient k (ix) of the reference cylinder sensor from the existing value (for example, the initial value 1.0) to a value calculated by the equation (14).

ここで一例を挙げて説明すると、例えば目標空燃比AFtがストイキ空燃比=14.6であると仮定して、計測された実際の排気空燃比AFが目標空燃比AFtよりリッチ側(AF<14.6、例えばAF=13)であった場合を考える。排気空燃比を14.6にする燃料噴射量Qが噴射されているにも拘わらず実際の排気空燃比AFが13になっていることから、筒内空気量の実際量は予定量よりも少なかったことを意味する。よって(13)式により、筒内圧の差圧(P2−P1)は予定値より少ない値を示していたことになる。従って(12)式により、k(ix)を初期値1.0より小さい値に変更すればよいことになる。一方、ECU20は、(14)式により求めたセンサ感度補正係数k(ix)=13/14.6=0.89を初期値1.0と置き換える。こうすることによりセンサ感度補正係数k(ix)はより小さな適切な値に変更されることになり、以降、正確な筒内圧計測値を得て正確な制御を実現することが可能になる。そしてこの例でいえば、排気空燃比を14.6にする燃料噴射量Qを噴射したときに実際の排気空燃比AFも14.6にすることができる。   For example, assuming that the target air-fuel ratio AFt is stoichiometric air-fuel ratio = 14.6, the measured actual exhaust air-fuel ratio AF is richer than the target air-fuel ratio AFt (AF <14 .6, for example AF = 13). Since the actual exhaust air-fuel ratio AF is 13 even though the fuel injection amount Q that makes the exhaust air-fuel ratio 14.6 is injected, the actual amount of in-cylinder air amount is less than the expected amount Means that. Therefore, from the equation (13), the in-cylinder pressure differential pressure (P2−P1) is less than the expected value. Therefore, k (ix) may be changed to a value smaller than the initial value 1.0 by the equation (12). On the other hand, the ECU 20 replaces the sensor sensitivity correction coefficient k (ix) = 13 / 14.6 = 0.89 obtained by the equation (14) with the initial value 1.0. By doing so, the sensor sensitivity correction coefficient k (ix) is changed to a smaller appropriate value. Thereafter, it is possible to obtain an accurate in-cylinder pressure measurement value and realize an accurate control. In this example, the actual exhaust air-fuel ratio AF can also be set to 14.6 when the fuel injection amount Q that makes the exhaust air-fuel ratio 14.6 is injected.

また、逆の場合、即ち計測された実際の排気空燃比AFが目標空燃比AFtよりリーン側(AF>14.6、例えばAF=16)であった場合を考える。排気空燃比を14.6にする燃料噴射量Qが噴射されているにも拘わらず実際の排気空燃比AFが16になっていることから、筒内空気量の実際量は予定量よりも多かったことを意味する。よって(13)式により、筒内圧の差圧(P2−P1)は予定値より多い値を示していたことになる。従って(12)式により、k(ix)を初期値1.0より大きい値に変更すればよいことになる。一方、ECU20は、(14)式により求めたセンサ感度補正係数k(ix)=16/14.6=1.10を初期値1.0と置き換える。こうすることによりセンサ感度補正係数k(ix)はより大きな適切な値に変更されることになり、以降、正確な筒内圧計測値を得て正確な制御を実現することが可能になる。そして、排気空燃比を14.6にする燃料噴射量Qを噴射したときに実際の排気空燃比AFも14.6にすることができる。   Also, consider the reverse case, that is, the measured actual exhaust air-fuel ratio AF is leaner than the target air-fuel ratio AFt (AF> 14.6, for example AF = 16). Since the actual exhaust air-fuel ratio AF is 16, even though the fuel injection amount Q that makes the exhaust air-fuel ratio 14.6 is injected, the actual amount of in-cylinder air amount is larger than the expected amount. Means that. Therefore, the differential pressure (P2-P1) of the in-cylinder pressure shows a value larger than the planned value according to the equation (13). Therefore, k (ix) may be changed to a value larger than the initial value 1.0 by the equation (12). On the other hand, the ECU 20 replaces the sensor sensitivity correction coefficient k (ix) = 16 / 14.6 = 1.10 obtained by the equation (14) with the initial value 1.0. By doing so, the sensor sensitivity correction coefficient k (ix) is changed to a larger appropriate value, and thereafter, it is possible to obtain an accurate in-cylinder pressure measurement value and realize an accurate control. The actual exhaust air-fuel ratio AF can also be set to 14.6 when the fuel injection amount Q that makes the exhaust air-fuel ratio 14.6 is injected.

以上説明したように、このステップ2にかかる基準気筒センサのセンサ感度補正係数の算出処理によれば、エンジン固体間における基準気筒センサのセンサ感度ばらつきを解消することができ、エンジン固体間でのセンサ感度ばらつきひいてはこれに基づく筒内圧計測値ばらつきの抑制に有利となる。また、同一の制御ロジックや制御データを共用して別々のエンジンを制御した場合に所望の性能を個々のエンジンで得るのに有利となる。   As described above, according to the calculation process of the sensor sensitivity correction coefficient of the reference cylinder sensor according to step 2, the sensor sensitivity variation of the reference cylinder sensor among the engine solids can be eliminated. This is advantageous for suppressing variations in sensitivity, and in other words, variations in in-cylinder pressure measurement values based thereon. Further, when different engines are controlled by sharing the same control logic and control data, it is advantageous to obtain desired performance in each engine.

[ステップ3:非基準気筒センサのセンサ感度補正係数の補正]
次に、前記ステップ3に関する非基準気筒センサのセンサ感度補正係数の補正について説明する。ここでは単純に、ECU20が、(14)式により求めた基準気筒センサのセンサ感度補正係数k(ix)に基づき、ステップ1で算出・決定された非基準気筒センサのセンサ感度補正係数k(iy)を次式(15)の通り補正ないし更新する。
k(iy)=k(ix)・k(iy) ・・・(15)
[Step 3: Correction of sensor sensitivity correction coefficient of non-reference cylinder sensor]
Next, correction of the sensor sensitivity correction coefficient of the non-reference cylinder sensor related to Step 3 will be described. Here, simply, the ECU 20 calculates the sensor sensitivity correction coefficient k (iy) of the non-reference cylinder sensor calculated and determined in step 1 based on the sensor sensitivity correction coefficient k (ix) of the reference cylinder sensor obtained by the equation (14). ) Is corrected or updated as shown in the following equation (15).
k (ii) = k (ix) · k (ii) (15)

このステップ3により、別々のエンジンの全ての筒内圧センサ、特に非基準気筒の筒内圧センサのセンサ感度をも等しくすることができ、気筒間及びエンジン固体間でのセンサ感度ばらつきひいてはこれに基づく筒内圧計測値のばらつきを解消できる。   By this step 3, the sensor sensitivities of all the cylinder pressure sensors of different engines, in particular, the cylinder pressure sensors of the non-reference cylinders, can be made equal. Variations in internal pressure measurement values can be eliminated.

以上、本発明の好適な実施形態を詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば上述の内燃機関1は火花点火式内燃機関(ガソリンエンジン)であったが、これに限られるものではなく、本発明は圧縮着火式内燃機関(ディーゼルエンジン)にも適用可能である。また、前記実施形態では検出された筒内圧に基づいて各制御量をいわば直接的に制御する例を示したが、本発明の適用はこれのみに限られず、従来より一般的なマップ制御方式を採用する制御装置にも本発明は適用可能である。前記実施形態では多気筒内燃機関の全気筒に筒内圧センサを設けたが、必ずしも全気筒とする必要はなく、二以上の気筒に筒内圧センサが設けられていれば本発明は適用可能である。   The preferred embodiment of the present invention has been described in detail above, but various other embodiments of the present invention are conceivable. For example, the internal combustion engine 1 described above is a spark ignition type internal combustion engine (gasoline engine), but is not limited thereto, and the present invention can also be applied to a compression ignition type internal combustion engine (diesel engine). In the embodiment, the control amount is directly controlled based on the detected in-cylinder pressure. However, the application of the present invention is not limited to this, and a conventional map control method is conventionally used. The present invention can also be applied to a control device to be employed. In the embodiment, the in-cylinder pressure sensors are provided in all the cylinders of the multi-cylinder internal combustion engine. However, it is not always necessary to provide all the cylinders, and the present invention can be applied if the in-cylinder pressure sensors are provided in two or more cylinders. .

本発明の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が本発明に含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。   The embodiment of the present invention is not limited to the above-described embodiment, and includes all modifications, applications, and equivalents included in the concept of the present invention defined by the claims. Therefore, the present invention should not be construed as being limited, and can be applied to any other technique belonging to the scope of the idea of the present invention.

本発明に係る筒内圧センサの校正装置を含む内燃機関の制御装置を概略的に示す構成図である。It is a block diagram which shows roughly the control apparatus of the internal combustion engine containing the calibration apparatus of the cylinder pressure sensor which concerns on this invention. 筒内圧センサの出力特性を示すグラフである。It is a graph which shows the output characteristic of a cylinder pressure sensor. ある特定気筒のクランク角に対する筒内圧、吸気圧及び排気圧の変化と、ステップ1の第1の態様における2点のタイミングとを示すグラフである。4 is a graph showing changes in in-cylinder pressure, intake pressure, and exhaust pressure with respect to a crank angle of a specific cylinder, and timings of two points in the first mode of Step 1; ステップ1の第1の態様の処理を示すフローチャートである。It is a flowchart which shows the process of the 1st aspect of step 1. FIG. ECUの記憶装置に各サイクル毎に記憶されていく各気筒の筒内圧の差圧Psub(i,j)と、これから求められる平均差圧Psubav(i)とを示す図である。It is a figure which shows the differential pressure Psub (i, j) of the in-cylinder pressure of each cylinder memorize | stored for every cycle in the memory | storage device of ECU, and the average differential pressure Psubav (i) calculated | required from this. ある特定気筒のクランク角に対する筒内圧、吸気圧及び排気圧の変化と、ステップ1の第1の態様における2点のタイミングとを示すグラフである。4 is a graph showing changes in in-cylinder pressure, intake pressure, and exhaust pressure with respect to a crank angle of a specific cylinder, and timings of two points in the first mode of Step 1; ステップ1の第3の態様の処理を示すフローチャートである。It is a flowchart which shows the process of the 3rd aspect of step 1. ファイアリング時とモータリング時との筒内圧波形を示すグラフである。It is a graph which shows the cylinder pressure waveform at the time of firing and at the time of motoring. 図8のモータリング時筒内圧波形のTDC付近の拡大図であって、フュエルカット判断を説明するための図である。FIG. 9 is an enlarged view in the vicinity of TDC of the in-cylinder pressure waveform at the time of motoring in FIG. 8, for explaining fuel cut determination.

符号の説明Explanation of symbols

1 内燃機関
3 燃焼室
7 点火プラグ
12 インジェクタ
13 空燃比センサ
15 筒内圧センサ
Vi 吸気弁
Ve 排気弁
P1,P2 2点のタイミングにおける筒内圧
k センサ感度補正係数
Psub 筒内圧の差圧
Psubav 平均差圧
i 気筒番号
ix 基準気筒の気筒番号
iy 基準気筒以外の気筒(非基準気筒)の気筒番号
AF 排気空燃比
AFt 目標空燃比
Q 燃料噴射量
KL 充填率
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 3 Combustion chamber 7 Spark plug 12 Injector 13 Air-fuel ratio sensor 15 In-cylinder pressure sensor Vi Intake valve Ve Exhaust valves P1 and P2 In-cylinder pressure k Sensor sensitivity correction coefficient Psub In-cylinder pressure differential pressure Psubav Average differential pressure i Cylinder number ix Cylinder number iy of reference cylinder Cylinder number AF of cylinder (non-reference cylinder) other than reference cylinder Exhaust air / fuel ratio AFt Target air / fuel ratio Q Fuel injection amount KL Filling rate

Claims (9)

多気筒内燃機関の少なくとも二つの気筒に設けられた筒内圧センサを校正する装置であって、
前記筒内圧センサにより、所定の2点のタイミングにおける筒内圧を気筒毎に計測する計測手段と、
該計測手段により計測された前記2点のタイミングの筒内圧の差圧を気筒毎に算出する差圧算出手段と、
所定の基準気筒の前記差圧と、前記基準気筒以外の気筒の前記差圧とに基づいて、前記基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数を算出する非基準気筒センサ感度補正係数算出手段と
を備えたことを特徴とする筒内圧センサの校正装置。
An apparatus for calibrating an in-cylinder pressure sensor provided in at least two cylinders of a multi-cylinder internal combustion engine,
Measuring means for measuring the in-cylinder pressure for each cylinder at the timing of two predetermined points by the in-cylinder pressure sensor;
Differential pressure calculation means for calculating, for each cylinder, a differential pressure between in-cylinder pressures at the timing of the two points measured by the measurement means;
A non-reference cylinder sensor sensitivity correction coefficient for calculating a sensor sensitivity correction coefficient of an in-cylinder pressure sensor of a cylinder other than the reference cylinder based on the differential pressure of a predetermined reference cylinder and the differential pressure of a cylinder other than the reference cylinder An in-cylinder pressure sensor calibration apparatus comprising: a calculating means.
前記所定の2点のタイミングが、圧縮行程中の2点のタイミングであることを特徴とする請求項1記載の筒内圧センサの校正装置。   2. The in-cylinder pressure sensor calibration device according to claim 1, wherein the timing of the two predetermined points is a timing of two points during the compression stroke. 前記所定の2点のタイミングのうち、一方が、排気行程中であって排気弁が開、吸気弁が閉であるタイミングであり、他方が、吸気行程中であって排気弁が閉、吸気弁が開であるタイミングであることを特徴とする請求項1記載の筒内圧センサの校正装置。   Of the two predetermined timings, one is during the exhaust stroke and the exhaust valve is open and the intake valve is closed, and the other is during the intake stroke and the exhaust valve is closed and the intake valve is closed. The in-cylinder pressure sensor calibration device according to claim 1, wherein the timing is an open timing. 前記計測手段による前記筒内圧の計測時にフュエルカットを実行するフュエルカット実行手段を備えることを特徴とする請求項3記載の筒内圧センサの校正装置。   4. The in-cylinder pressure sensor calibration apparatus according to claim 3, further comprising a fuel cut executing unit that executes fuel cut when the in-cylinder pressure is measured by the measuring unit. 前記基準気筒以外の気筒の筒内圧センサのセンサ感度補正係数が、前記基準気筒の差圧を前記基準気筒以外の気筒の差圧で除することにより得られる値からなることを特徴とする請求項1乃至4いずれかに記載の筒内圧センサの校正装置。   The sensor sensitivity correction coefficient of an in-cylinder pressure sensor of a cylinder other than the reference cylinder is a value obtained by dividing a differential pressure of the reference cylinder by a differential pressure of a cylinder other than the reference cylinder. The in-cylinder pressure sensor calibration apparatus according to any one of 1 to 4. 前記計測手段が、前記内燃機関の定常運転時に前記筒内圧の計測を複数回繰り返し実行し、前記差圧算出手段が、前記計測手段により計測された各回の筒内圧に基づいて各回の差圧を算出し、且つ、これら各回の差圧を平均化して最終的な前記差圧を算出することを特徴とする請求項1乃至5いずれかに記載の筒内圧センサの校正装置。   The measuring means repeatedly executes the in-cylinder pressure measurement a plurality of times during steady operation of the internal combustion engine, and the differential pressure calculating means calculates the differential pressure of each time based on the in-cylinder pressure of each time measured by the measuring means. 6. The in-cylinder pressure sensor calibration apparatus according to claim 1, wherein the final differential pressure is calculated by calculating and averaging the differential pressure of each time. 排気空燃比を検出する空燃比センサと、前記基準気筒の筒内圧センサのセンサ感度補正係数を算出する基準気筒センサ感度補正係数算出手段とを備え、
前記計測手段が、圧縮行程中の所定の2点のタイミングにおいて前記筒内圧を計測し、
前記基準気筒センサ感度補正係数算出手段が、前記差圧算出手段によって算出された前記基準気筒の筒内圧の差圧と、前記空燃比センサによって検出された排気空燃比とに基づいて、前記基準気筒の筒内圧センサのセンサ感度補正係数を算出する
ことを特徴とする請求項1記載の筒内圧センサの校正装置。
An air-fuel ratio sensor for detecting an exhaust air-fuel ratio, and a reference cylinder sensor sensitivity correction coefficient calculating means for calculating a sensor sensitivity correction coefficient of an in-cylinder pressure sensor of the reference cylinder,
The measuring means measures the in-cylinder pressure at two predetermined timings during the compression stroke,
The reference cylinder sensor sensitivity correction coefficient calculating means calculates the reference cylinder based on the differential pressure of the in-cylinder pressure of the reference cylinder calculated by the differential pressure calculating means and the exhaust air / fuel ratio detected by the air / fuel ratio sensor. The in-cylinder pressure sensor calibration apparatus according to claim 1, wherein a sensor sensitivity correction coefficient of the in-cylinder pressure sensor is calculated.
排気空燃比が所定の目標空燃比となるように予め設定された燃料噴射量を噴射する燃料噴射手段を備え、
前記基準気筒センサ感度補正係数算出手段が、前記燃料噴射手段により燃料噴射されたときに前記空燃比センサによって検出された排気空燃比を、前記目標空燃比で除して得られる値を、前記基準気筒の筒内圧センサのセンサ感度補正係数として算出する
ことを特徴とする請求項7記載の筒内圧センサの校正装置。
Fuel injection means for injecting a fuel injection amount set in advance so that the exhaust air-fuel ratio becomes a predetermined target air-fuel ratio;
The reference cylinder sensor sensitivity correction coefficient calculation means obtains a value obtained by dividing the exhaust air-fuel ratio detected by the air-fuel ratio sensor when the fuel is injected by the fuel injection means by the target air-fuel ratio. The in-cylinder pressure sensor calibration device according to claim 7, wherein the calibration is performed as a sensor sensitivity correction coefficient of the in-cylinder pressure sensor of the cylinder.
前記基準気筒センサ感度補正係数算出手段によって算出された前記基準気筒のセンサ感度補正係数に基づき、前記基準気筒以外の気筒のセンサ感度補正係数を補正する補正手段を備えることを特徴とする請求項7又は8記載の筒内圧センサの校正装置。   8. A correction means for correcting sensor sensitivity correction coefficients of cylinders other than the reference cylinder based on the sensor sensitivity correction coefficient of the reference cylinder calculated by the reference cylinder sensor sensitivity correction coefficient calculation means. Or the in-cylinder pressure sensor calibration device according to 8.
JP2006197060A 2006-07-19 2006-07-19 In-cylinder pressure sensor calibration device Expired - Fee Related JP4747977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197060A JP4747977B2 (en) 2006-07-19 2006-07-19 In-cylinder pressure sensor calibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006197060A JP4747977B2 (en) 2006-07-19 2006-07-19 In-cylinder pressure sensor calibration device

Publications (2)

Publication Number Publication Date
JP2008025404A true JP2008025404A (en) 2008-02-07
JP4747977B2 JP4747977B2 (en) 2011-08-17

Family

ID=39116310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197060A Expired - Fee Related JP4747977B2 (en) 2006-07-19 2006-07-19 In-cylinder pressure sensor calibration device

Country Status (1)

Country Link
JP (1) JP4747977B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080402A (en) * 2009-10-06 2011-04-21 Toyota Motor Corp Sensitivity correction device for cylinder internal pressure sensor
GB2477122A (en) * 2010-01-22 2011-07-27 Gm Global Tech Operations Inc Determining the pressure offset of an in-cylinder pressure sensor of an i.c. engine
WO2011101984A1 (en) 2010-02-16 2011-08-25 トヨタ自動車株式会社 In-cylinder pressure estimation device for internal combustion engine
WO2012063362A1 (en) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 Control device for internal combustion engines
JP2014152682A (en) * 2013-02-07 2014-08-25 Toyota Motor Corp Control device of internal combustion engine
JP2015197083A (en) * 2014-04-02 2015-11-09 本田技研工業株式会社 Internal combustion engine cylinder internal pressure detector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493633A (en) * 1990-08-03 1992-03-26 Japan Electron Control Syst Co Ltd Cylinder internal pressure detection device for internal combustion engine
JPH04314951A (en) * 1991-01-30 1992-11-06 Mazda Motor Corp Pressure detector for engine
JPH09126041A (en) * 1995-11-07 1997-05-13 Unisia Jecs Corp Indicated mean effective pressure detecting device of internal combustion engine
JP2002276455A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Cylinder internal pressure detecting device for internal combustion engine
JP2005194966A (en) * 2004-01-08 2005-07-21 Honda Motor Co Ltd Cylinder inner pressure detecting device of internal combustion engine
JP2005201163A (en) * 2004-01-16 2005-07-28 Honda Motor Co Ltd Control device for internal combustion engine
JP2006029171A (en) * 2004-07-14 2006-02-02 Honda Motor Co Ltd Control device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493633A (en) * 1990-08-03 1992-03-26 Japan Electron Control Syst Co Ltd Cylinder internal pressure detection device for internal combustion engine
JPH04314951A (en) * 1991-01-30 1992-11-06 Mazda Motor Corp Pressure detector for engine
JPH09126041A (en) * 1995-11-07 1997-05-13 Unisia Jecs Corp Indicated mean effective pressure detecting device of internal combustion engine
JP2002276455A (en) * 2001-03-19 2002-09-25 Unisia Jecs Corp Cylinder internal pressure detecting device for internal combustion engine
JP2005194966A (en) * 2004-01-08 2005-07-21 Honda Motor Co Ltd Cylinder inner pressure detecting device of internal combustion engine
JP2005201163A (en) * 2004-01-16 2005-07-28 Honda Motor Co Ltd Control device for internal combustion engine
JP2006029171A (en) * 2004-07-14 2006-02-02 Honda Motor Co Ltd Control device for internal combustion engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080402A (en) * 2009-10-06 2011-04-21 Toyota Motor Corp Sensitivity correction device for cylinder internal pressure sensor
GB2477122A (en) * 2010-01-22 2011-07-27 Gm Global Tech Operations Inc Determining the pressure offset of an in-cylinder pressure sensor of an i.c. engine
WO2011101984A1 (en) 2010-02-16 2011-08-25 トヨタ自動車株式会社 In-cylinder pressure estimation device for internal combustion engine
US8495909B2 (en) 2010-02-16 2013-07-30 Toyota Jidosha Kabushiki Kaisha Cylinder pressure estimation device of internal combustion engine
WO2012063362A1 (en) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 Control device for internal combustion engines
CN102822487A (en) * 2010-11-12 2012-12-12 丰田自动车株式会社 Control device for internal combustion engines
JP5273317B2 (en) * 2010-11-12 2013-08-28 トヨタ自動車株式会社 Control device for internal combustion engine
US8651088B2 (en) 2010-11-12 2014-02-18 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN102822487B (en) * 2010-11-12 2014-09-24 丰田自动车株式会社 Control device for internal combustion engines
JP2014152682A (en) * 2013-02-07 2014-08-25 Toyota Motor Corp Control device of internal combustion engine
JP2015197083A (en) * 2014-04-02 2015-11-09 本田技研工業株式会社 Internal combustion engine cylinder internal pressure detector

Also Published As

Publication number Publication date
JP4747977B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
US7861690B2 (en) Device and method for controlling internal combustion engine
EP1589207B1 (en) Internal EGR parameter estimating device for internal combustion engine
US20070240679A1 (en) Control Apparatus and Control Method for Engine
EP2142781A1 (en) Control device for internal combustion engine
JP4602402B2 (en) Internal combustion engine
KR100827587B1 (en) Apparatus and method for controlling internal combustion engine
KR101481931B1 (en) Method and device for controlling pilot injection timing when engine combustion diagnosis signal is abnormal
JP4747977B2 (en) In-cylinder pressure sensor calibration device
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
US6810855B2 (en) 4-Stroke engine control device and control method
JPWO2003038262A1 (en) Apparatus and method for detecting atmospheric pressure of 4-stroke engine
JP2010174705A (en) Control device for internal combustion engine
JP4000952B2 (en) Fuel injection control device
JP4470765B2 (en) Control device for multi-cylinder internal combustion engine
JP5182646B2 (en) In-cylinder pressure sensor sensitivity degradation determination device
JP4385323B2 (en) Control device and control method for internal combustion engine
JP4345723B2 (en) Method for estimating the indicated mean effective pressure of an internal combustion engine
JP5126104B2 (en) Deterioration judgment device for intake pressure sensor
JP2008297922A (en) Internal combustion engine controlling device
JP5218913B2 (en) In-cylinder pressure sensor deterioration determination device
JP4281063B2 (en) Crank angle sensor correction device and correction method
JP4244851B2 (en) Engine internal EGR amount estimation device
JP4269931B2 (en) In-cylinder pressure measuring device and in-cylinder pressure measuring method
JP2010071107A (en) Control device for internal combustion engine
JP4327678B2 (en) Control device for hydrogenated internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R151 Written notification of patent or utility model registration

Ref document number: 4747977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees