JP2007261863A - Piezoelectric ceramic composition and piezoelectric ceramic - Google Patents

Piezoelectric ceramic composition and piezoelectric ceramic Download PDF

Info

Publication number
JP2007261863A
JP2007261863A JP2006088043A JP2006088043A JP2007261863A JP 2007261863 A JP2007261863 A JP 2007261863A JP 2006088043 A JP2006088043 A JP 2006088043A JP 2006088043 A JP2006088043 A JP 2006088043A JP 2007261863 A JP2007261863 A JP 2007261863A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
constant
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088043A
Other languages
Japanese (ja)
Other versions
JP4726672B2 (en
JP2007261863A5 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Tomonobu Eguchi
知宣 江口
Shuichi Fukuoka
修一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006088043A priority Critical patent/JP4726672B2/en
Publication of JP2007261863A publication Critical patent/JP2007261863A/en
Publication of JP2007261863A5 publication Critical patent/JP2007261863A5/ja
Application granted granted Critical
Publication of JP4726672B2 publication Critical patent/JP4726672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric ceramic composition correspondable to reflow and containing potassium-sodium-lithium niobate as a main component, and to provide a piezoelectric ceramic formed of the composition. <P>SOLUTION: The piezoelectric ceramic is obtained from its composition containing potassium-sodium-lithium niobate, calcium titanate and bismuth ferrate as main components. The ceramic has a high electromechanical coupling coefficient, particularly a high piezoelectric constant g<SB>33</SB>, has no discontinuous part corresponding to a secondary phase transition in the temperature variation rate of resonant frequency, that of antiresonant frequency and that of piezoelectric constant g<SB>33</SB>in the temperature range of from -40 to +150°C, and also has excellent heat resistance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、圧電磁器組成物および圧電磁器に関し、特に、圧電センサ、圧電セラミックフィルタ、圧電セラミック発振子などの共振子用圧電セラミックスとして有用な圧電磁器組成物および圧電磁器に関するものである。   The present invention relates to a piezoelectric ceramic composition and a piezoelectric ceramic, and more particularly to a piezoelectric ceramic composition and a piezoelectric ceramic useful as piezoelectric ceramics for resonators such as piezoelectric sensors, piezoelectric ceramic filters, and piezoelectric ceramic oscillators.

圧電セラミックフィルタなどの圧電セラミック素子に用いられる圧電磁器として、チタン酸ジルコン酸鉛(Pb(TiZr1−X)O)あるいはチタン酸鉛(PbTiO)を主成分とする圧電磁器組成物が広く用いられている。 As a piezoelectric ceramic used for a piezoelectric ceramic element such as a piezoelectric ceramic filter, piezoelectric ceramic composition composed mainly of lead zirconate titanate (Pb (Ti X Zr 1- X) O 3) or lead titanate (PbTiO 3) Is widely used.

ところが、チタン酸ジルコン酸鉛あるいはチタン酸鉛を主成分とする圧電磁器は、融点が低く焼成時に蒸発しやすく、蒸発量が異なると組成がばらついて特性が変化するため、製品の均一性が低下するという課題があった。   However, piezoelectric ceramics mainly composed of lead zirconate titanate or lead titanate have a low melting point and are likely to evaporate during firing, and the composition varies depending on the amount of evaporation. There was a problem to do.

例えば、ニオブ酸アルカリ系の圧電磁器としては少なくとも下記の二つが例示される。ニオブ酸アルカリ系の圧電磁器の中でも、ニオブ酸ナトリウム(NaNbO)(例えば、非特許文献1参照)は、ぺロブスカイト(ABO)型の結晶構造を有する酸化物であるが、それ自身では、−133℃付近よりも低い温度下でのみ強誘電性を示し、圧電共振子および発振子用材料の一般的な使用温度である−20〜+80℃の範囲においては圧電性を示さず、圧電磁器としての利用ができない。 For example, at least the following two are exemplified as the alkaline niobate-based piezoelectric ceramic. Among the niobate-based piezoelectric ceramics, sodium niobate (NaNbO 3 ) (see, for example, Non-Patent Document 1) is an oxide having a perovskite (ABO 3 ) type crystal structure. Piezoelectric ceramics exhibit ferroelectricity only at temperatures lower than around −133 ° C., and do not exhibit piezoelectricity in the range of −20 to + 80 ° C., which is a general operating temperature of piezoelectric resonator and oscillator materials. Cannot be used as

また、ニオブ酸カリウム・ナトリウム・リチウム(KNaLiNbO)を主成分とする圧電磁器の中には、電気機械結合係数が大きく、圧電セラミックフィルタおよび圧電セラミック発振子等の共振子用材料として有望であると考えられるものが存在する(例えば、特許文献1、2参照)。
特開平11−228225号公報 特開平11−228227号公報
In addition, some piezoelectric ceramics mainly composed of potassium niobate / sodium / lithium (K x Na y Li z NbO 3 ) have a large electromechanical coupling coefficient, and resonators such as a piezoelectric ceramic filter and a piezoelectric ceramic oscillator. There are materials that are considered promising as materials for use (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 11-228225 Japanese Patent Laid-Open No. 11-228227

しかしながら、特許文献1、2のニオブ酸カリウム・ナトリウム・リチウムを主成分とする圧電磁器は、キュリー温度(第一次相転移)が約200℃以上と高いものの、約−40〜+150℃の温度範囲で、低温側の強誘電相から高温側の強誘電相に相変態する第二次相転移が存在するため、第二次相転移を通過する温度サイクル下においては、圧電特性や共振周波数の変化に不連続部分が存在することから、大きな温度ヒステリシスや特性劣化が起こりやすく、リフローに対応できない本質的な問題であるため実使用化における大きな障害となっていた。   However, the piezoelectric ceramics mainly composed of potassium niobate / sodium / lithium in Patent Documents 1 and 2 have a high Curie temperature (first-order phase transition) of about 200 ° C. or higher, but a temperature of about −40 to + 150 ° C. In the range, there is a secondary phase transition that undergoes a phase transformation from the low-temperature side ferroelectric phase to the high-temperature side ferroelectric phase. Since there is a discontinuous portion in the change, large temperature hysteresis and characteristic deterioration are likely to occur, and this is an essential problem that cannot cope with reflow, which has been a major obstacle in practical use.

従って本発明は、リフロー対応できるニオブ酸カリウム・ナトリウム・リチウムを主成分とする圧電磁器組成物および圧電磁器を提供することを目的とする。   Therefore, an object of the present invention is to provide a piezoelectric ceramic composition and a piezoelectric ceramic mainly composed of potassium, sodium niobate, lithium, and reflow capable.

本発明の圧電磁器組成物は、(1)ニオブ酸カリウム・ナトリウム・リチウムと、チタン酸カルシウムと、鉄酸ビスマスとを含むことを特徴とする。上記圧電磁器組成物は、(2)前記ニオブ酸カリウム・ナトリウム・リチウムを(KNaLi1−x−y)NbO、前記チタン酸カルシウムをCaTiO、鉄酸ビスマスをBiFeOとしたときに、前記ニオブ酸カリウム・ナトリウム・リチウムとチタン酸カルシウムと鉄酸ビスマスとが(1−a−b)(KNaLi1−x−y)NbO+aCaTiO+bBiFeO、0<a≦0.15、0<b≦0.1、0<x≦0.18、0.8<y<1で表されることが望ましい。 The piezoelectric ceramic composition of the present invention includes (1) potassium niobate / sodium / lithium, calcium titanate, and bismuth ferrate. The piezoelectric ceramic composition was the (2) the potassium sodium lithium niobate (K x Na y Li 1- x-y) NbO 3, CaTiO 3 the calcium titanate, BiFeO 3 and bismuth ferrite Occasionally, the potassium sodium-lithium and calcium titanate niobate and the bismuth ferrite (1-a-b) ( K x Na y Li 1-x-y) NbO 3 + aCaTiO 3 + bBiFeO 3, 0 <a It is desirable that ≦ 0.15, 0 <b ≦ 0.1, 0 <x ≦ 0.18, and 0.8 <y <1.

また本発明の圧電磁器は、(3)上記の圧電磁器組成物を焼成して得られ、電気機械結合係数k33が30%以上であり、かつ圧電g33定数が20×10−3V/N以上であるとともに、−40〜+150℃の温度範囲において共振周波数の温度変化率、反共振周波数の温度変化率および前記圧電g33定数の温度変化率のうち少なくとも1つの変化が2%/℃以下で変化することを特徴とする。 The piezoelectric ceramic of the present invention is (3) obtained by firing the above piezoelectric ceramic composition, has an electromechanical coupling coefficient k 33 of 30% or more, and a piezoelectric g 33 constant of 20 × 10 −3 V / N is equal to or higher than N, and at least one of a temperature change rate of the resonance frequency, a temperature change rate of the anti-resonance frequency, and a temperature change rate of the piezoelectric g 33 constant in a temperature range of −40 to + 150 ° C. is 2% / ° C. It changes in the following.

本発明によれば、ニオブ酸カリウム・ナトリウム・リチウムを主成分とする圧電磁器組成物に、Ca、TiおよびBi、Feの各酸化物を含有させた特定の組成とすることにより、−40〜+150℃の温度範囲において、共振周波数の温度変化率、反共振周波数の温度変化率、圧電g33定数の温度変化率に存在していた不連続な変化を解消し、圧電特性を安定化させることができ、リフローに対応することができる。即ち、(NaKLi)NbOのNaがリッチな組成系は、結晶構造が斜方晶で、−40〜+150℃の温度範囲に第二次相転移を有し、キュリー温度は約200〜400℃である。 According to the present invention, a piezoelectric ceramic composition mainly composed of potassium, sodium, and lithium niobate containing Ca, Ti, Bi, and Fe oxides has a specific composition, so that −40 to 40 In the temperature range of + 150 ° C., the temperature change rate of the resonance frequency, the temperature change rate of the anti-resonance frequency, and the temperature change rate of the piezoelectric g 33 constant are eliminated, and the piezoelectric characteristics are stabilized. Can cope with reflow. That is, the Na-rich composition system of (NaKLi) NbO 3 has an orthorhombic crystal structure, has a second-order phase transition in a temperature range of −40 to + 150 ° C., and has a Curie temperature of about 200 to 400 ° C. It is.

これに対して、チタン酸カルシウムとBiFeOとを導入することで、(NaKLi)NbOに対して、異なる結晶を複合的に固溶させた結果、相転移温度を−40〜+150℃の温度範囲外とすることができ、弾性定数の温度変化や圧電g33定数が、その温度範囲においてヒステリシスがなくなり、特性を安定化できる。つまり、弾性定数の温度変化や圧電g33定数の室温付近において不連続に変化する部分がなく連続的である場合に第二次相転移が存在しないものとなる。 In contrast, by introducing calcium titanate and BiFeO 3 , different crystals were combined and dissolved in (NaKLi) NbO 3 , resulting in a phase transition temperature of −40 to + 150 ° C. The temperature change of the elastic constant and the piezoelectric g 33 constant can be out of the range, and hysteresis is eliminated in the temperature range, and the characteristics can be stabilized. That is, there is no second-order phase transition when the elastic constant is continuous and there is no portion of the piezoelectric g 33 constant that changes discontinuously near room temperature.

本発明の圧電磁器組成物は、ニオブ酸カリウム・ナトリウム・リチウムと、チタン酸カルシウムと、鉄酸ビスマスとを含むことを特徴とする。その組成は、このニオブ酸カリウム・ナトリウム・リチウムを(KNaLi1−x−y)NbO、前記チタン酸カルシウムをCaTiO、鉄酸ビスマスをBiFeOとしたときに、前記ニオブ酸カリウム・ナトリウム・リチウムとチタン酸カルシウムと鉄酸ビスマスとが(1−a−b)(KNaLi1−x−y)NbO+aCaTiO+bBiFeO0<a≦0.15、0<b≦0.10<x≦0.18、0.8<y<1で表されることが望ましいものである。 The piezoelectric ceramic composition of the present invention is characterized by containing potassium niobate / sodium / lithium, calcium titanate, and bismuth ferrate. Its composition, the potassium niobate sodium-lithium (K x Na y Li 1- x-y) NbO 3, the calcium titanate CaTiO 3, when the bismuth ferrate and BiFeO 3, wherein niobate Potassium / sodium / lithium, calcium titanate and bismuth ironate are (1-ab) (K x Na y Li 1-xy ) NbO 3 + aCaTiO 3 + bBiFeO 3 0 <a ≦ 0.15, 0 < It is desirable that b ≦ 0.10 <x ≦ 0.18 and 0.8 <y <1.

上記組成式で表された化合物は、それに含まれるK、Na、Li、Nb、Ti、CaおよびFeの各酸化物を用いて上記組成になるように調整することにより、焼成後には不純物の殆どみられないほぼ単一相からなる圧電磁器を形成できる。   The compound represented by the above composition formula is adjusted to have the above composition by using oxides of K, Na, Li, Nb, Ti, Ca and Fe contained therein, so that most of the impurities after firing are obtained. A piezoelectric ceramic composed of a substantially single phase that cannot be seen can be formed.

即ち、本発明の圧電磁器組成物は、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOにおいて、Naリッチ側の特定の組成に対して、CaTiOとBiFeOとが複合的に化合するようにペロブスカイト型結晶構造を形成することで、電気機械結合係数が高く、特に圧電g33定数が大きく、かつ、−40〜+150℃の温度範囲において、圧電g33定数が連続的(図1)であり、不連続な変化(図2)を示す第二相転移を抑制でき、圧電g33定数の温度安定性に優れ、且つ耐熱性に優れた圧電磁器を得ることができる。ここで圧電定数の連続的な変化とは、圧電g33定数が0.2%/℃以下で変化するものをいう。本発明では圧電g33定数が0.2%/℃以下で変化することが重要である。一方、不連続な変化とは図2に示すような圧電g33定数の急激な変化をいう。つまり、−5℃から40℃の温度範囲において、圧電g33定数が12%変化しているものであり、本発明では圧電g33定数の変化率が0.27%/℃あるものを不連続という。 That is, the piezoelectric ceramic composition of the present invention, the potassium niobate sodium-lithium (K x Na y Li 1- x-y) NbO 3, for a particular composition of Na-rich side, CaTiO 3 and BiFeO 3 DOO by forms a perovskite crystal structure to compound in a complex manner, the electromechanical coupling factor is high, particularly large piezoelectric g 33 constant, and, in the temperature range of -40 to + 0.99 ° C., the piezoelectric g 33 constant Is a continuous (FIG. 1), can suppress the second phase transition showing a discontinuous change (FIG. 2), and can obtain a piezoelectric ceramic having excellent piezoelectric g 33 constant temperature stability and excellent heat resistance. Can do. Here, the continuous change of the piezoelectric constant means that the piezoelectric g 33 constant changes at 0.2% / ° C. or less. In the present invention, it is important that the piezoelectric g 33 constant changes at 0.2% / ° C. or less. On the other hand, the discontinuous change means an abrupt change of the piezoelectric g 33 constant as shown in FIG. That is, in the temperature range of −5 ° C. to 40 ° C., the piezoelectric g 33 constant is changed by 12%. In the present invention, the piezoelectric g 33 constant change rate is 0.27% / ° C. That's it.

そして本発明の圧電磁器組成物は、特に、1−a−b(KNaLi1−x−y)NbO+aCaTiO+bBiFeO、0.01<a≦0.12、0.01<b≦0.09、0<x≦0.18、0.8<y<0.98で表される範囲の組成物を主成分とすることが望ましいものである。 The piezoelectric ceramic composition of the present invention, in particular, 1-a-b (K x Na y Li 1-x-y) NbO 3 + aCaTiO 3 + bBiFeO 3, 0.01 <a ≦ 0.12,0.01 < It is desirable that the main component is a composition in the range represented by b ≦ 0.09, 0 <x ≦ 0.18, and 0.8 <y <0.98.

上記の特定の組成範囲においては、電気機械結合係数k33が30%以上であり、かつ圧電g33定数が20×10−3V/N以上であり、さらに、共振周波数の温度変化率、反共振周波数の温度変化率または圧電g33定数のうち少なくとも一方について、−40〜+150℃の温度範囲において第二次相転移といわれる不連続部が存在せず圧電特性に優れた圧電磁器を形成できる。 In the above specific composition range, the electromechanical coupling coefficient k 33 is 30% or more, the piezoelectric g 33 constant is 20 × 10 −3 V / N or more, and the temperature change rate of the resonance frequency, For at least one of the temperature change rate of the resonance frequency and the piezoelectric g 33 constant, a discontinuous portion called a second-order phase transition does not exist in the temperature range of −40 to + 150 ° C., and a piezoelectric ceramic having excellent piezoelectric characteristics can be formed. .

本発明では、ニオブ酸カリウム・ナトリウム・リチウム(KNaLi1−x−y)NbOにABO型ペロブスカイト構造化合物であるCaTiOを加えることが重要である。例えば、BaTiOなどの他のABO型ペロブスカイト構造の化合物では、例え、BiFeOを添加しても本発明のように共振周波数の温度変化率、反共振周波数の温度変化率または圧電g33定数のうち少なくとも一方について、−40〜+150℃の温度範囲において第二次相転移といわれる不連続部を有しない圧電磁器は形成できない。違いは明確ではないが、(KNaLi1−x−y)NbOにCaTiOとBiFeOとを複合的に固溶させたものは、強誘電体と常誘電体の相転移温度が約−173℃であり、通常使用される−40℃〜+150℃において構造相転移が存在しないことに起因していると推定している。 In the present invention, it is important to add CaTiO 3 that is an ABO 3 type perovskite structure compound to potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 . For example, in the case of other ABO 3 type perovskite structure compounds such as BaTiO 3 , even if BiFeO 3 is added, the temperature change rate of the resonance frequency, the temperature change rate of the antiresonance frequency, or the piezoelectric g 33 constant as in the present invention. For at least one of them, a piezoelectric ceramic that does not have a discontinuous portion called a second-order phase transition in a temperature range of −40 to + 150 ° C. cannot be formed. The difference is not clear, but (K x Na y Li 1-xy ) NbO 3 in which CaTiO 3 and BiFeO 3 are combined in solid solution is the phase transition temperature between the ferroelectric and the paraelectric Is approximately −173 ° C., which is presumed to be due to the absence of structural phase transition at −40 ° C. to + 150 ° C., which is normally used.

また、(KNaLi1−x−y)NbOにCaTiOとBiFeOとを複合的に固溶させたものは、磁器の緻密化を図ることができるという利点があり、総じて温度安定性に優れた、実使用が可能なものとなる。 Further, a composite solution of CaTiO 3 and BiFeO 3 in (K x Na y Li 1-xy ) NbO 3 has the advantage that the porcelain can be densified, and the temperature is generally increased. It is excellent in stability and can be used in practice.

一方、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOにCaTiOを単独で導入した場合においては、200℃以上の高いキュリー温度は有しながら、圧電g33定数を大きくする効果があるものの、緻密な焼結体を得ることが難しく、ホットプレス等の装置を用いた焼結体の作製工程となるため、安価に生産されている従来から使用されている例えばPZT系圧電センサ等の部品への置き換えには対応できないという問題がある。 On the other hand, when CaTiO 3 is introduced alone into potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 , the piezoelectric g 33 has a high Curie temperature of 200 ° C. or higher. Although it has the effect of increasing the constant, it is difficult to obtain a dense sintered body, and since it is a process for producing a sintered body using an apparatus such as a hot press, it has been used at low cost. For example, there is a problem that it cannot be replaced with a component such as a PZT piezoelectric sensor.

さらには、ニオブ酸カリウム・ナトリウム・リチウム(K NaLi1−x−y)NbOにBiFeOを単独で導入した場合は、微少量の導入で圧電g33定数を大きくする効果があるものの、−40〜+150℃の範囲において、第二次相転移といわれる不連続部が存在するために使用温度に制限が与えられるという問題がある。 Furthermore, when BiFeO 3 is introduced alone into potassium niobate / sodium / lithium (K x Na y Li 1-xy ) NbO 3 , there is an effect of increasing the piezoelectric g 33 constant by introducing a small amount. However, in the range of −40 to + 150 ° C., there is a problem that the use temperature is limited because there is a discontinuous portion called second order phase transition.

このようにCaTiOおよびBiFeOを1−a−b(KNaLi1−x−y)NbO+a(Bi0.5Na0.5)TiO+bBiFeO、0<a≦0.15、0<b≦0.10、0≦x≦0.18、0.8<y<1の関係になるように組成を調整することにより、特に本発明では広い温度範囲で使用できる圧電特性に優れた圧電磁器を得ることができ、こうして本発明の圧電磁器のキュリー温度をリフローが可能な温度である280℃よりも高く、また電気機械結合係数k33を30%以上、かつ圧電g33定数を20×10−3V/N以上にして、かつ、第二次相転移を無くすという点で、特に、(1−a−b)(K NaLi1−x−y)NbO+aCaTiO+bBiFeO、0.01<a≦0.12、0.01<b≦0.09、0<x≦0.18、0.8<y<0.98で表される範囲の組成物を主成分とすることが望ましい。 Thus, CaTiO 3 and BiFeO 3 are converted into 1-ab (K x Na y Li 1-xy ) NbO 3 + a (Bi 0.5 Na 0.5 ) TiO 3 + bBiFeO 3 , 0 <a ≦ 0. 15 and 0 <b ≦ 0.10, 0 ≦ x ≦ 0.18, and 0.8 <y <1 so that the piezoelectric characteristics can be used in a wide temperature range by adjusting the composition. In this way, the Curie temperature of the piezoelectric ceramic of the present invention is higher than 280 ° C. which is a reflowable temperature, the electromechanical coupling coefficient k 33 is 30% or more, and the piezoelectric g 33 In particular, (1-ab) (K x Na y Li 1-xy ) NbO 3 in terms of making the constant 20 × 10 −3 V / N or more and eliminating the second-order phase transition. + aCaTiO 3 + bBiFeO 3, 0 . The main component is a composition in a range represented by 1 <a ≦ 0.12, 0.01 <b ≦ 0.09, 0 <x ≦ 0.18, 0.8 <y <0.98. desirable.

そして、上記した圧電磁器組成物を焼成して得られる本発明の圧電磁器は、電気機械結合係数k33が30%以上で、さらには圧電g33定数が20×10−3V/N以上で、また、−40〜+150℃の範囲に第二次相転移を含まず良好な特性を示す。このような圧電磁器組成物を用いて、リフロー対応可能でかつ圧電特性に優れた圧電セラミックフィルタ、圧電セラミック発振子などの圧電セラミック素子を作製することができる。 The piezoelectric ceramic of the present invention obtained by firing the piezoelectric ceramic composition described above, in the electromechanical coupling coefficient k 33 of 30% or more, still more piezoelectric g 33 constant is 20 × 10 -3 V / N or more In addition, the secondary phase transition is not included in the range of −40 to + 150 ° C. and good characteristics are exhibited. By using such a piezoelectric ceramic composition, a piezoelectric ceramic element such as a piezoelectric ceramic filter or a piezoelectric ceramic oscillator that can cope with reflow and has excellent piezoelectric characteristics can be produced.

出発原料として、KCO、NaCO、LiCO、CaCO、Nb、TiO、Fe、粉末を用いて、圧電磁器の組成式が(1−a−b)(KNaLi1−x−y)NbO+aCaTiO+bBiFeO、0<a≦0.16、0<b≦0.1、0≦x≦0.19、0.79<y<1において、表1に示すような組成となるように秤量した。 As a starting material, K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , CaCO 3 , Nb 2 O 5 , TiO 2 , Fe 2 O 3 , and powder are used, and the composition formula of the piezoelectric ceramic is (1-a -b) (K x Na y Li 1-x-y) NbO 3 + aCaTiO 3 + bBiFeO 3, 0 <a ≦ 0.16,0 <b ≦ 0.1,0 ≦ x ≦ 0.19,0.79 < Weighed so that the composition shown in Table 1 was obtained when y <1.

次に、この混合物をIPA(イソプロピルアルコール)とZrOボールとを用いて、ボールミルで20時間湿式混合した。次いで、この混合物を乾燥した後、大気中で900〜1100℃で3時間仮焼し、該仮焼物を再び上記ボールミルで細かく粉砕した。その後、この粉砕物にポリビニルアルコール(PVA)等のバインダーを混合して造粒した。 Next, this mixture was wet mixed in a ball mill for 20 hours using IPA (isopropyl alcohol) and ZrO 2 balls. Next, after drying this mixture, it was calcined at 900 to 1100 ° C. for 3 hours in the air, and the calcined product was again finely pulverized by the ball mill. Thereafter, the pulverized material was mixed with a binder such as polyvinyl alcohol (PVA) and granulated.

得られた粉末を200MPaの圧力で、φ3×厚さ12mmの円柱状に成形した。この成形体を大気中において1000〜1250℃で2時間焼成した。得られた圧電磁器のXRDパターンを測定し同定した結果、いずれもペロブスカイト型結晶を主体としていることがわかった。つまり、本発明の圧電磁器は、3成分系から構成される複合ペロブスカイト型結晶構造を有するが、例えば試料1のX線回折図より、単一のペロブスカイト結晶構造を呈している事が確認された。   The obtained powder was molded into a cylindrical shape of φ3 × thickness 12 mm at a pressure of 200 MPa. The molded body was fired at 1000 to 1250 ° C. for 2 hours in the air. As a result of measuring and identifying the XRD pattern of the obtained piezoelectric ceramic, it was found that all were composed mainly of perovskite crystals. That is, the piezoelectric ceramic of the present invention has a composite perovskite crystal structure composed of a three-component system. For example, from the X-ray diffraction diagram of Sample 1, it was confirmed that the piezoelectric ceramic had a single perovskite crystal structure. .

さらに、この磁器のφ3mmの両面に銀電極を形成した後、80℃のシリコンオイル中で4〜7kV/mmの直流電界を10〜30分間印加して分極処理を行った。そして、日本電子材料工業会が定めるEMASに準じて、これらの圧電素子の静電容量、共振・反共振周波数及び共振抵抗について、インピーダンスアナライザを用いて測定した。測定値より、縦振動モードの比誘電率、電気機械結合係数K33、圧電g33定数を求めた。さらに、共振周波数の温度依存性と圧電g33定数の温度依存性を調査し第二次相転移について調査した。共振周波数及び圧電g33定数の温度変化率は、25℃の値を基準に−40℃から+150℃までの各温度での変化を変化率として表した。 Further, after forming silver electrodes on both sides of φ3 mm of this porcelain, a polarization treatment was performed by applying a DC electric field of 4 to 7 kV / mm for 10 to 30 minutes in silicon oil at 80 ° C. Then, according to EMAS established by the Japan Electronic Materials Industry Association, the capacitance, resonance / antiresonance frequency and resonance resistance of these piezoelectric elements were measured using an impedance analyzer. From the measured values, the relative dielectric constant of the longitudinal vibration mode, the electromechanical coupling coefficient K 33 , and the piezoelectric g 33 constant were obtained. Furthermore, the temperature dependence of the resonance frequency and the temperature dependence of the piezoelectric g 33 constant were investigated to investigate the second-order phase transition. The temperature change rate of the resonance frequency and the piezoelectric g 33 constant was expressed as a change rate at each temperature from −40 ° C. to + 150 ° C. based on the value of 25 ° C.

次いで、各試料について、比誘電率ε33 /ε、電気機械結合係数K33 、圧電g33定数及び圧電g33定数の温度変化、および共振周波数及び反共振周波数の変化を測定して、前記特性の不連続部を測定して第二次相転移の有無について調査した。作製した磁器の組成は得られた圧電磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、各元素を1000ppm含む標準溶液を希釈したものを標準試料としてICP発光分光分析にかけて定量化した。その結果を表1、2に示した。

Figure 2007261863
Next, for each sample, the relative permittivity ε 33 T / ε 0 , the electromechanical coupling coefficient K 33 , the temperature change of the piezoelectric g 33 constant and the piezoelectric g 33 constant, and the change of the resonance frequency and the anti-resonance frequency are measured, The discontinuities of the above characteristics were measured to investigate the presence or absence of secondary phase transition. The composition of the produced porcelain was subjected to ICP emission spectroscopic analysis using a solution obtained by mixing and melting the obtained piezoelectric ceramic with boric acid and sodium carbonate in hydrochloric acid and diluting a standard solution containing 1000 ppm of each element as a standard sample. Quantified. The results are shown in Tables 1 and 2.
Figure 2007261863

Figure 2007261863
Figure 2007261863

表1、2において、試料番号に*を付したものは、この発明の範囲外のものである。表1において、0<a≦0.15、0<b≦0.1、0<x≦0.18、0.8<y<1の各条件をすべて満たす試料、すなわち試料番号に*が付されていないこの発明の実施例にかかる試料については、すべて、電気機械結合係数K33が30%以上であり、圧電g33定数が20×10−3V/N以上になり、さらには、−40〜+150℃の温度範囲で第二次相転移に相当する不連続部が抑制された状態となり(図1、試料No.3)、このように良好な特性を示している。 In Tables 1 and 2, the sample numbers marked with * are outside the scope of the present invention. In Table 1, a sample satisfying all the conditions of 0 <a ≦ 0.15, 0 <b ≦ 0.1, 0 <x ≦ 0.18, 0.8 <y <1, that is, the sample number is marked with *. For all the samples according to the embodiments of the present invention that were not performed, the electromechanical coupling coefficient K 33 was 30% or more, the piezoelectric g 33 constant was 20 × 10 −3 V / N or more, and − In a temperature range of 40 to + 150 ° C., a discontinuous portion corresponding to the second-order phase transition is suppressed (FIG. 1, sample No. 3), thus exhibiting good characteristics.

これに対して、図2の試料No.19に示すように、0<b≦0.1、0<x≦0.18、0.8<y<1の条件は満足するものの、a=0と0<a≦0.1の条件を満足しない試料では、電気機械結合係数K33が30%以上であり、圧電g33定数が20×10−3V/N以上になるものの、−40〜+150℃の温度範囲で大きな第二次相転移に相当する不連続部を含むことがわかる。 On the other hand, sample no. 19, the conditions of 0 <b ≦ 0.1, 0 <x ≦ 0.18, and 0.8 <y <1 are satisfied, but the conditions of a = 0 and 0 <a ≦ 0.1 are satisfied. In the unsatisfactory sample, the electromechanical coupling coefficient K 33 is 30% or more and the piezoelectric g 33 constant is 20 × 10 −3 V / N or more, but a large secondary phase in the temperature range of −40 to + 150 ° C. It can be seen that a discontinuity corresponding to the transition is included.

しかしながら、試料19をベースとして、a=0.1と各条件を全て満足する、例えば試料1、試料2においては、電気機械結合係数K33が30%以上であり、圧電g33定数が20×10−3V/N以上であり、−40〜+150℃の温度範囲で第二次相転移に相当する不連続部を含まないものである。 However, the sample 19 as a base, satisfying all the conditions as a = 0.1, for example the sample 1, the sample 2, the electromechanical coupling coefficient K 33 is 30% or more, the piezoelectric g 33 constant is 20 × It is 10 −3 V / N or more and does not include a discontinuous portion corresponding to the second-order phase transition in the temperature range of −40 to + 150 ° C.

また、例えば試料1において、−40〜+150℃の温度範囲において第二次相転移に相当する不連続部が確認されないことが確認されたが、それ以上のキュリー温度までの挙動において、比誘電率の温度依存性を調査した結果、第二次相転移に伴う比誘電率の不連続な挙動は確認されなかった。よって、例えば試料1の場合、−40からキュリー温度(300℃)までの範囲において第二次相転移を含まないことが確認された。例えば試料1は、高いキュリー温度を有しておりSMD(表面実装型タイプの電子部品)のリフローでの実装が可能であり、鉛を含有しない圧電素子として、従来の鉛を含有した圧電素子に置き換わることが可能にすることができる。   Further, for example, in Sample 1, it was confirmed that a discontinuous portion corresponding to the second-order phase transition was not confirmed in the temperature range of −40 to + 150 ° C., but in the behavior up to the Curie temperature higher than that, the relative permittivity As a result of investigating the temperature dependence, no discontinuous behavior of relative permittivity associated with the second-order phase transition was confirmed. Therefore, for example, in the case of sample 1, it was confirmed that the secondary phase transition was not included in the range from −40 to the Curie temperature (300 ° C.). For example, sample 1 has a high Curie temperature and can be mounted by reflow of an SMD (surface mount type electronic component). It can be possible to replace.

試料3の圧電g33定数の温度変化率を表したグラフである。6 is a graph showing a temperature change rate of a piezoelectric g 33 constant of sample 3. 試料19の圧電g33定数の温度変化率を表したグラフである。4 is a graph showing a temperature change rate of a piezoelectric g 33 constant of a sample 19.

Claims (3)

ニオブ酸カリウム・ナトリウム・リチウムと、チタン酸カルシウムと、鉄酸ビスマスとを含むことを特徴とする圧電磁器組成物。 A piezoelectric ceramic composition comprising potassium niobate / sodium / lithium, calcium titanate, and bismuth ferrate. 前記ニオブ酸カリウム・ナトリウム・リチウムを(KNaLi1−x−y)NbO、前記チタン酸カルシウムをCaTiO、鉄酸ビスマスをBiFeOとしたときに、(1−a−b)(KNaLi1−x−y)NbO+aCaTiO+bBiFeO
0<a≦0.15
0<b≦0.1
0<x≦0.18
0.8<y<1
で表される請求項1記載の圧電磁器組成物。
When (K x Na y Li 1-xy ) NbO 3 is used as the potassium niobate / sodium / lithium, CaTiO 3 is used as the calcium titanate, and BiFeO 3 is used as the bismuth ferrate (1-ab). (K x Na y Li 1- x-y) NbO 3 + aCaTiO 3 + bBiFeO 3
0 <a ≦ 0.15
0 <b ≦ 0.1
0 <x ≦ 0.18
0.8 <y <1
The piezoelectric ceramic composition according to claim 1 represented by:
請求項1または2に記載の圧電磁器組成物を焼成して得られ、電気機械結合係数k33が30%以上であり、かつ圧電g33定数が20×10−3V/N以上であるとともに、−40〜+150℃の温度範囲において共振周波数の温度変化率、反共振周波数の温度変化率および前記圧電g33定数の温度変化率のうち少なくとも1つの変化が2%/℃以下で変化することを特徴とする圧電磁器。 It is obtained by firing the piezoelectric ceramic composition according to claim 1, and has an electromechanical coupling coefficient k 33 of 30% or more and a piezoelectric g 33 constant of 20 × 10 −3 V / N or more. In the temperature range of −40 to + 150 ° C., at least one change among the temperature change rate of the resonance frequency, the temperature change rate of the anti-resonance frequency, and the temperature change rate of the piezoelectric g 33 constant changes at 2% / ° C. or less. A piezoelectric ceramic.
JP2006088043A 2006-03-28 2006-03-28 Piezoelectric ceramic Active JP4726672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088043A JP4726672B2 (en) 2006-03-28 2006-03-28 Piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088043A JP4726672B2 (en) 2006-03-28 2006-03-28 Piezoelectric ceramic

Publications (3)

Publication Number Publication Date
JP2007261863A true JP2007261863A (en) 2007-10-11
JP2007261863A5 JP2007261863A5 (en) 2008-09-04
JP4726672B2 JP4726672B2 (en) 2011-07-20

Family

ID=38635223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088043A Active JP4726672B2 (en) 2006-03-28 2006-03-28 Piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JP4726672B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153777A (en) * 2008-11-28 2010-07-08 East Japan Railway Co Power generation member and power generation device using the same, and power generation system
JP2020522878A (en) * 2017-05-12 2020-07-30 ザール テクノロジー リミテッドXaar Technology Limited ceramic
CN113582682A (en) * 2021-08-30 2021-11-02 北京工业大学 Lead-free piezoelectric ceramic material with high transduction coefficient and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725358C1 (en) * 2019-09-09 2020-07-02 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Method of producing ceramic materials based on complex oxides of abo3

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369175A (en) * 1989-08-08 1991-03-25 Murata Mfg Co Ltd Piezoelectric ceramic composition
JPH11228225A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2005281013A (en) * 2004-03-26 2005-10-13 Tdk Corp Piezoelectric composition and method for producing the same
WO2006027892A1 (en) * 2004-09-09 2006-03-16 Murata Manufacturing Co., Ltd. Piezoelectric porcelain and piezoelectric ceramic element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369175A (en) * 1989-08-08 1991-03-25 Murata Mfg Co Ltd Piezoelectric ceramic composition
JPH11228225A (en) * 1998-02-18 1999-08-24 Murata Mfg Co Ltd Piezoelectric ceramic composition
JP2005281013A (en) * 2004-03-26 2005-10-13 Tdk Corp Piezoelectric composition and method for producing the same
WO2006027892A1 (en) * 2004-09-09 2006-03-16 Murata Manufacturing Co., Ltd. Piezoelectric porcelain and piezoelectric ceramic element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153777A (en) * 2008-11-28 2010-07-08 East Japan Railway Co Power generation member and power generation device using the same, and power generation system
JP2020522878A (en) * 2017-05-12 2020-07-30 ザール テクノロジー リミテッドXaar Technology Limited ceramic
JP7297680B2 (en) 2017-05-12 2023-06-26 ザール テクノロジー リミテッド ceramic
CN113582682A (en) * 2021-08-30 2021-11-02 北京工业大学 Lead-free piezoelectric ceramic material with high transduction coefficient and preparation method thereof

Also Published As

Publication number Publication date
JP4726672B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4881315B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP4684089B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic
Guo et al. (Na0. 5K0. 5) NbO3–LiTaO3 lead-free piezoelectric ceramics
JP4510966B2 (en) Piezoelectric ceramics
Hiruma et al. Piezoelectric properties of BaTiO3–(Bi1/2K1/2) TiO3 ferroelectric ceramics
JP2009227535A (en) Piezoelectric ceramic composition
JP2001240471A (en) Piezoelectric ceramic composition and piezoelectric resonator
Chang et al. The effects of sintering temperature on the properties of (Na0. 5K0. 5) NbO3–CaTiO3 based lead-free ceramics
JP2008156172A (en) Lead-free piezoelectric porcelain composition
JP2001316182A (en) Piezoelectric ceramic and piezoelectric resonator
JP2007261864A (en) Piezoelectric ceramic composition and piezoelectric ceramic
JP4726672B2 (en) Piezoelectric ceramic
KR101310450B1 (en) Lead-free piezoelectric ceramic composition with high mechanical quality
JP4493226B2 (en) Piezoelectric ceramic and piezoelectric element
JP2007261863A5 (en)
JP4044951B2 (en) Piezoelectric ceramic materials
JP2009012997A (en) Unleaded piezoelectric porcelain composition
JP2004002051A (en) Piezoelectric ceramic composition, piezoelectric ceramic element, and method of producing the piezoelectric ceramic composition
JP2008056549A (en) Unleaded piezoelectric porcelain composition
Hiruma et al. Dielectric, ferroelectric and piezoelectric properties of barium titanate and bismuth potassium titanate solid-solution ceramics
KR20110068365A (en) Lead-free piezoelectric ceramic composition
JP4355115B2 (en) Piezoelectric ceramic and piezoelectric element
JP2009242188A (en) Piezoelectric ceramic composition, piezoelectric element and resonator
JP2006062955A (en) Piezoelectric ceramic
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Ref document number: 4726672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3