JP2007259610A - Synchronous motor driving apparatus - Google Patents

Synchronous motor driving apparatus Download PDF

Info

Publication number
JP2007259610A
JP2007259610A JP2006081906A JP2006081906A JP2007259610A JP 2007259610 A JP2007259610 A JP 2007259610A JP 2006081906 A JP2006081906 A JP 2006081906A JP 2006081906 A JP2006081906 A JP 2006081906A JP 2007259610 A JP2007259610 A JP 2007259610A
Authority
JP
Japan
Prior art keywords
value
phase correction
correction value
command value
current command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081906A
Other languages
Japanese (ja)
Other versions
JP5011771B2 (en
Inventor
Koichiro Nagata
浩一郎 永田
Toshiaki Okuyama
俊昭 奥山
Jiro Nemoto
治郎 根本
Toshio Katayama
敏男 片山
Yoshitoshi Akita
佳稔 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006081906A priority Critical patent/JP5011771B2/en
Priority to CN2007100893567A priority patent/CN101043196B/en
Publication of JP2007259610A publication Critical patent/JP2007259610A/en
Application granted granted Critical
Publication of JP5011771B2 publication Critical patent/JP5011771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synchronous motor driving apparatus capable of smoothly actuating and accelerating a synchronous motor in speed sensorless and position sensorless, and suppressing inversion. <P>SOLUTION: This synchronous motor driving apparatus controls the magnitude of an output voltage, a frequency and a phase, adds a predetermined phase correction value to the phase in activating the synchronous motor, changes the phase correction value one or more times, and corrects the frequency or the phase on the basis of a detection value of an output current. Further, in changing the phase correction value, it is increased, for example, at each angle of not more than 90° so that the phase can be increased in the positive rotation direction of the motor. Further, in initially changing the predetermined phase correction value, a time when the initial phase correction value is set is made to be shorter than a time when the changed phase correction value is set. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、同期電動機の可変速運転を行う電動機駆動装置に係わり、特に速度、位置センサを用いずに同期電動機を起動、加速する電動機駆動装置に関する。   The present invention relates to a motor driving device that performs variable speed operation of a synchronous motor, and more particularly to a motor driving device that starts and accelerates a synchronous motor without using a speed and position sensor.

同期電動機の速度、位置センサレス制御においては、従来から出力電流、もしくは出力電圧に高調波を重畳し、磁束軸(d軸)と磁束軸に垂直な軸(q軸)におけるインダクタンス(Ld、Lq)の差を利用し、速度や磁極位置を検出する方法がある。従来技術として特許文献1の技術を図10に示す。なお、図10においては、同期電動機を永久磁石型同期電動機としたが、界磁装置を伴う、巻き線型同期電動機であっても動作は同じである。速度制御部103では速度指令値ωr*と速度推定部112により演算した速度推定値ωr^を用い、トルク指令値τ*を演算する。トルク指令値τ*は後述の高調波重畳のため、高調波成分を含んでおり、ノッチフィルタ部104を通し、高調波成分を除去する。電流指令演算部105では、トルク指令値τ*に基づいて、トルク電流指令It*、励磁電流指令Im*を演算する。ここで、同期電動機のベクトル制御では、図11のように、d軸、q軸に対する、m軸(トルク電流に垂直な軸)、t軸(トルク電流に平行な軸)の位相差Δφをゼロにするように、制御する必要がある。次に、高調波電流発生部113では、所定の振幅、周波数の電流高調波ΔIm*を発生させる。電流高調波ΔIm*は励磁電流指令Im*に加算し、位相演算部109による位相θと、電流検出器107からの電流検出値を用い、電流制御部106で3相交流電圧指令を出力する。なお、電流制御部106では、t軸電圧指令Vt*、m軸電圧指令Vm*の演算を行い、位相θによる座標変換により3相交流電圧指令を演算する。電力変換器部101では交流電圧指令に基づいて、同期電動機102に電圧を印加する。また電圧検出器108で電圧を検出し、高調波電圧検出部110でm軸と垂直でΔImと同じ周波数の高調波成分Vhを抽出する。そして、高調波成分VhとΔImを用いて速度誤差検出部111で速度誤差Δω^を演算する。従来技術は、電動機の構造または磁束の突極性を利用し、例えば、Lq>Ldという関係にある場合、速度誤差Δω^は(数1)式のような関係になる。ωhは高調波成分の周波数である。 In the speed and position sensorless control of a synchronous motor, the inductance (Ld, Lq) on the magnetic flux axis (d axis) and the axis (q axis) perpendicular to the magnetic flux axis is conventionally superimposed on the output current or output voltage. There is a method of detecting the speed and magnetic pole position using the difference between the two. FIG. 10 shows the technique of Patent Document 1 as a conventional technique. In FIG. 10, the synchronous motor is a permanent magnet type synchronous motor, but the operation is the same even with a wound type synchronous motor with a field device. The speed control unit 103 calculates the torque command value τ * using the speed command value ωr * and the speed estimation value ωr ^ calculated by the speed estimation unit 112. The torque command value τ * includes harmonic components for harmonic superposition described later, and passes through the notch filter unit 104 to remove the harmonic components. The current command calculation unit 105 calculates a torque current command It * and an excitation current command Im * based on the torque command value τ * . Here, in the vector control of the synchronous motor, as shown in FIG. 11, the phase difference Δφ of the m-axis (axis perpendicular to the torque current) and the t-axis (axis parallel to the torque current) is zero with respect to the d-axis and the q-axis. Need to be controlled. Next, the harmonic current generator 113 generates a current harmonic ΔIm * having a predetermined amplitude and frequency. The current harmonic ΔIm * is added to the excitation current command Im * , and the current control unit 106 outputs a three-phase AC voltage command using the phase θ by the phase calculation unit 109 and the current detection value from the current detector 107. The current control unit 106 calculates a t-axis voltage command Vt * and an m-axis voltage command Vm * , and calculates a three-phase AC voltage command by coordinate conversion using the phase θ. The power converter unit 101 applies a voltage to the synchronous motor 102 based on the AC voltage command. The voltage detector 108 detects the voltage, and the harmonic voltage detector 110 extracts the harmonic component Vh perpendicular to the m-axis and having the same frequency as ΔIm. Then, the speed error detector 111 calculates a speed error Δω ^ using the harmonic components Vh and ΔIm. The prior art uses the structure of the motor or the saliency of the magnetic flux. For example, when there is a relationship of Lq> Ld, the speed error Δω ^ has a relationship as shown in (Expression 1). ωh is the frequency of the harmonic component.

Δω^=−(正の定数)・sin(2・Δφ)・ωh・(Lq−Ld) (数1)
(数1)式において、Δφ>0の場合はΔω^<0となり、Δφ<0の場合はΔω^>0となる。速度推定部112では速度誤差Δω^を比例積分回路により速度推定値ωr^として出力する。これにより、m軸がd軸より遅れている場合(Δφ<0)は、速度推定値ωr^を速くし(Δω^>0)、m軸がd軸より進んでいる場合(Δφ>0)は、速度推定値ωr^を遅くする(Δω^<0)ことで、速度推定を行う。なお、図10は電流に高調波を重畳し、電圧を検出しているが、他の方法として、高調波電圧を電圧指令に重畳し、その重畳した電圧と電流検出値を用いても同様の事ができる。
Δω ^ = − (positive constant) · sin (2 · Δφ) · ωh · (Lq−Ld) (Equation 1)
In the equation (1), Δω ^ <0 when Δφ> 0, and Δω ^> 0 when Δφ <0. The speed estimation unit 112 outputs the speed error Δω ^ as a speed estimation value ωr ^ by a proportional integration circuit. Thereby, when the m-axis is delayed from the d-axis (Δφ <0), the speed estimated value ωr ^ is increased (Δω ^> 0), and when the m-axis is advanced from the d-axis (Δφ> 0) Performs the speed estimation by slowing down the speed estimation value ωr ^ (Δω ^ <0). Although FIG. 10 superimposes harmonics on the current and detects the voltage, as another method, the harmonic voltage is superimposed on the voltage command, and the superimposed voltage and the current detection value are used similarly. I can do things.

特許3484058号公報((0011)段落から(0019)段落の記載。)Japanese Patent No. 3484058 (Description of paragraphs (0011) to (0019))

しかし、従来技術においては、高調波重畳のため、トルクリプルが発生し、機械共振などの影響も懸念され、スムーズな起動が難しくなる。また、突極性を利用する場合、例えば、ダンパ巻き線を持つ同期電動機の場合、ダンパ巻き線の影響で突極性が小さくなり従来技術の適用が難しくなる。また電圧検出が必要な場合は、低速時における電圧検出誤差の影響を受けやすくなる。さらに、前記、高調波や電圧検出誤差による制御位相誤差により、電動機が逆転する場合もあり、機械的な制約から逆転できる角度が限られる場合には問題が生じる。さらに、速度制御系や速度推定系の設計には電動機や機械系の定数が必要になり、それらが明確に判っていないものについては適用が難しい。   However, in the prior art, because of harmonic superimposition, torque ripple occurs, and there is a concern about the influence of mechanical resonance and the like, making it difficult to start smoothly. In addition, when using saliency, for example, in the case of a synchronous motor having a damper winding, the saliency becomes small due to the influence of the damper winding, making it difficult to apply the conventional technique. Further, when voltage detection is necessary, it is easily affected by a voltage detection error at a low speed. Furthermore, the motor may reverse due to the control phase error due to the harmonics or voltage detection error, and a problem arises when the angle that can be reversed is limited due to mechanical constraints. Furthermore, the design of the speed control system and speed estimation system requires electric motor and mechanical system constants, and it is difficult to apply to those that are not clearly understood.

本発明の目的は、速度、位置センサレスで同期電動機を起動する際、簡単な構成で、トルクリプルがなくスムーズに起動を行い、且つ、逆転角度を低減した同期電動機駆動装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a synchronous motor drive device that has a simple configuration, smoothly starts without torque ripple, and has a reduced reverse angle when starting a synchronous motor without speed and position sensors.

本発明の同期電動機駆動装置は、出力電圧の大きさ、周波数、位相を制御し、同期電動機を駆動する電動機駆動装置において、起動時には、前記位相に所定の位相補正値を加え、該位相補正値は1回以上変更し、且つ、電流検出値に基づいて前記周波数もしくは位相を補正する。また、前記所定の位相補正値を変更する際は、電動機の正転方向に位相を増やすように、例えば90°以下ずつ増加させる。また、前記所定の位相補正値を最初に変更する際、最初の位相補正値を設定している時間は、変更後の位相補正値を設定している時間よりも短くする。また、電動機のトルク電流指令値は、定格電流値を超えない所定値とし、前記所定の位相補正値を最初に変更する前のトルク電流指令値は、前記位相補正値を最初に変更した後のトルク電流指令値よりも小さくする。また、前記電流検出値に基づく周波数補正値または位相補正値は、電動機の回転速度の振動と同じ周波数で振動する電流検出値に基づいて演算する。   The synchronous motor driving device of the present invention controls the magnitude, frequency, and phase of the output voltage, and drives the synchronous motor. At the time of startup, the synchronous motor driving device adds a predetermined phase correction value to the phase, and the phase correction value Is changed once or more, and the frequency or phase is corrected based on the detected current value. Further, when changing the predetermined phase correction value, it is increased by, for example, 90 ° or less so as to increase the phase in the forward rotation direction of the electric motor. In addition, when the predetermined phase correction value is first changed, the time for setting the first phase correction value is set shorter than the time for setting the phase correction value after the change. The torque current command value of the motor is a predetermined value that does not exceed the rated current value, and the torque current command value before the predetermined phase correction value is first changed is the value after the first change of the phase correction value. Make it smaller than the torque current command value. The frequency correction value or the phase correction value based on the current detection value is calculated based on the current detection value that vibrates at the same frequency as the vibration of the rotation speed of the electric motor.

本発明によれば、同期電動機を速度、位置センサレスで起動、加速する際、簡単な構成で、トルクリプルがなく、且つ、逆転を抑制することが出来る。このため、機械系に負担をかけず、また、電動機や機械定数が不明な場合にも適用することが出来る。   According to the present invention, when starting and accelerating a synchronous motor without speed and position sensors, it is possible to suppress the reverse rotation with a simple configuration and no torque ripple. For this reason, it can be applied to a case where the mechanical system is not burdened and the electric motor and the machine constant are unknown.

以下本発明の詳細を図面を用いながら説明する。   The details of the present invention will be described below with reference to the drawings.

本実施例の誘導電動機駆動装置について図1から図3を用いて、図10の従来技術と異なる部分について説明する。なお、これらは、起動から所定速度に加速するまでの制御方法に関するものである。トルク指令値設定部1では、トルク指令値τ*として、加速トルク+負荷トルク相当として、例えば定格トルクの60%程度を設定する。次に、電流指令演算部105で、トルク電流指令It*=所定値、励磁電流指令Im*=0と設定する。別途界磁装置の界磁電流により磁束が作られるため、一般的にはIm=0に制御する。この時、同期電動機102の電流Id、Iq、磁束Φd、Φq、発生トルクτmはそれぞれ(数2)式から(数6)式に示すようになる。なお、位相差Δφは図11で示したd軸とm軸の位相のずれであり、Md、If、Pはそれぞれd軸相互インダクタンス、界磁電流、電動機の極数である。 With respect to the induction motor driving apparatus of the present embodiment, parts different from the prior art of FIG. 10 will be described using FIGS. 1 to 3. Note that these relate to a control method from startup to acceleration to a predetermined speed. In the torque command value setting unit 1, for example, about 60% of the rated torque is set as the torque command value τ * , corresponding to acceleration torque + load torque. Next, the current command calculation unit 105 sets the torque current command It * = predetermined value and the excitation current command Im * = 0. Since a magnetic flux is separately generated by the field current of the field device, generally, Im = 0 is controlled. At this time, the currents Id and Iq, the magnetic fluxes Φd and Φq, and the generated torque τm of the synchronous motor 102 are as shown in Expressions (2) to (6), respectively. The phase difference Δφ is the phase shift between the d-axis and the m-axis shown in FIG. 11, and Md, If, and P are the d-axis mutual inductance, the field current, and the number of poles of the motor, respectively.

Id=−sin(Δφ)・It* (数2)
Iq=cos(Δφ)・It* (数3)
Φd=Ld・Id+Md・If (数4)
Φq=Lq・Iq (数5)
τm=3・(P/2)・(Φd・Iq−Φq・Id) (数6)
ここで、発生トルクτmと位相差Δφは図2に示すような関係になり、例えば図2に示すように、電動機の起動に必要なトルクを定格トルクの30%とすると、図2のように、起動可能な位相差Δφの範囲と、不可能な範囲があり、さらに起動しても逆転する範囲が存在する。電動機を起動する際は、電動機磁束の初期位置が不明であるため、制御位相をどのように設定するかによって位相差Δφが変わり、前記のどの範囲に入るかは判らない。
Id = −sin (Δφ) · It * (Equation 2)
Iq = cos (Δφ) · It * (Equation 3)
Φd = Ld · Id + Md · If (Equation 4)
Φq = Lq · Iq (Equation 5)
τm = 3 · (P / 2) · (Φd · Iq−Φq · Id) (Equation 6)
Here, the generated torque τm and the phase difference Δφ have a relationship as shown in FIG. 2. For example, as shown in FIG. 2, when the torque required for starting the motor is 30% of the rated torque, as shown in FIG. There are a range of phase difference Δφ that can be activated and an impossible range, and there is a range that is reversed even if activated. When starting the motor, since the initial position of the motor magnetic flux is unknown, the phase difference Δφ varies depending on how the control phase is set, and it is not known which range is included.

そこで、位相補正部2では、位相補正値Δθとして、例えば、位相補正値Δθ=−180°→−90°→0°と変化させる。位相補正値Δθは位相θに加えられ、電流制御部106や座標変換部4での座標変換に用いる。これにより、仮に最初は起動不可能範囲の位相差Δφ=90°±20°、270°±20°に入っていた場合でも、90°位相をずらすことによって、起動可能範囲に入り、電動機の回転子が起動する。なお、位相補正値Δθは正転方向に増やしていくことで、回転子は正方向に回転しやすい。   Therefore, the phase correction unit 2 changes the phase correction value Δθ from, for example, phase correction value Δθ = −180 ° → −90 ° → 0 °. The phase correction value Δθ is added to the phase θ and used for coordinate conversion in the current control unit 106 and the coordinate conversion unit 4. As a result, even if the phase difference Δφ = 90 ° ± 20 °, 270 ° ± 20 ° at the start impossible range is initially entered, the startable range is entered by shifting the phase by 90 °, and the motor rotates. The child starts up. Note that the rotor easily rotates in the forward direction by increasing the phase correction value Δθ in the forward direction.

図3にトルク電流指令It*、速度指令値ωr*、位相補正値Δθの関係を示す。トルク電流指令It*は所定値を与える。なお、図3では最初はゼロから所定値まで上げているが、最初から所定値でも良い。位相補正値Δθは90°ずつ、位置合わせ1、2、3の範囲で増やす。本実施例は2回位相補正値Δθを変更しているが、1回以上であればよく、1回よりも2回以上の方が起動しやすい。速度指令値ωr*は所定値、例えばゼロから増加させる。速度指令値ωr*は最初から増加させても良い。この時、速度指令値ωr*の所定値をゼロとした場合、回転子の磁極位置(d軸)は電流軸(t軸)と平行(位相差Δφ=90°または270°)になるように動き、発生トルクτm=0にしようとする。これにより、d軸は位相差Δφ=270°に向かって回転し、最初はそこを中心に振動する。この時に逆転するケースが生じる。 FIG. 3 shows the relationship between the torque current command It * , the speed command value ωr * , and the phase correction value Δθ. The torque current command It * gives a predetermined value. In FIG. 3, the value is initially increased from zero to a predetermined value, but may be a predetermined value from the beginning. The phase correction value Δθ is increased by 90 ° in the range of alignment 1, 2, and 3. In the present embodiment, the phase correction value Δθ is changed twice. However, it is sufficient that the phase correction value Δθ is once or more. The speed command value ωr * is increased from a predetermined value, for example, zero. The speed command value ωr * may be increased from the beginning. At this time, if the predetermined value of the speed command value ωr * is zero, the magnetic pole position (d-axis) of the rotor is parallel to the current axis (t-axis) (phase difference Δφ = 90 ° or 270 °). It tries to make the generated torque τm = 0. As a result, the d-axis rotates toward the phase difference Δφ = 270 °, and initially oscillates there. At this time, a reverse case occurs.

そこで、周波数補正値演算部3では、電動機の回転速度の振動を電流検出値から検出し、周波数補正値Δωを演算し、出力周波数を補正することで、回転の振動を抑制し、逆転を低減する。周波数補正値演算部3は例えば、比例回路とし、ImFBを入力とする。これは起動時は位相差Δφ=270°により、図11でq軸がm軸と揃っているため、回転子の振動成分の影響を受けてIqが振動した場合、ImFBにその振動成分が強く現れるためである。よってImFBを用いて、周波数を制御し、回転速度の振動を抑制し、逆転を低減する。さらに所定の時間が経ったら、速度指令値ωr*を増加させ、加速する。この際も、位相差Δφの影響により回転速度が振動する場合は、回転速度の振動周波数と同じ振動成分を持つ電流検出値を用い、周波数補正値Δωを演算し、周波数を制御する。この場合、図1のImFBを用いずともItFBを用いてもよく、周波数補正値演算部3は比例または比例積分または不完全微分回路により構成する。これにより、起動時と同様に、加速時も回転速度の振動を抑制することが出来る。また、速度指令値ωr*と周波数補正値Δωの和を位相演算部109で積分することで制御位相である位相θを演算する。これにより速度推定値を用いないため、電圧、電流検出誤差などによる速度推定誤差の影響を受けない。 Therefore, the frequency correction value calculation unit 3 detects the rotation speed vibration of the motor from the current detection value, calculates the frequency correction value Δω, and corrects the output frequency, thereby suppressing the rotation vibration and reducing the reverse rotation. To do. The frequency correction value calculation unit 3 is, for example, a proportional circuit and receives ImFB. Since the q axis is aligned with the m axis in FIG. 11 due to the phase difference Δφ = 270 ° at startup, when Iq vibrates due to the influence of the vibration component of the rotor, the vibration component is strong in ImFB. This is because it appears. Therefore, ImFB is used to control the frequency, suppress the vibration of the rotational speed, and reduce the reverse rotation. Further, when a predetermined time has elapsed, the speed command value ωr * is increased to accelerate. Also in this case, when the rotational speed vibrates due to the influence of the phase difference Δφ, the frequency correction value Δω is calculated using the current detection value having the same vibration component as the vibration frequency of the rotational speed, and the frequency is controlled. In this case, it is possible to use ItFB without using ImFB in FIG. 1, and the frequency correction value calculation unit 3 is configured by a proportional or proportional integration or incomplete differentiation circuit. As a result, the vibration of the rotational speed can be suppressed during acceleration as well as during startup. Further, the phase θ that is the control phase is calculated by integrating the sum of the speed command value ωr * and the frequency correction value Δω by the phase calculation unit 109. As a result, the speed estimation value is not used, so that it is not affected by the speed estimation error due to voltage, current detection error, or the like.

以上のように、本実施例では、速度、位置センサレスでの同期電動機の起動において、起動できる位相を設定し、同時に逆転を低減する。これにより、簡単な設定で、スムーズな起動、加速を行うと共に、機械系にも負担をかけない。   As described above, in this embodiment, when starting the synchronous motor without the speed and position sensor, the phase that can be started is set, and the reverse rotation is simultaneously reduced. As a result, smooth start-up and acceleration can be performed with simple settings, and the mechanical system is not burdened.

本実施例について、実施例1と異なる部分について説明する。本実施例では、位相補正値Δθを90°以下の、例えば90°または45°または30°または10°等ずつ変える。これにより回転がよりスムーズになる。   In the present embodiment, parts different from the first embodiment will be described. In this embodiment, the phase correction value Δθ is changed by 90 ° or less, for example, 90 °, 45 °, 30 °, 10 °, or the like. This makes the rotation more smooth.

本実施例について、図4を用いて、実施例1、実施例2と異なる部分について説明する。図4では、実施例1の図3に対し、位相補正値Δθを最初の設定値にしている時間t1を、それ以降に位相補正値Δθを変更する時間t2−t1、t3−t2よりも短くする。これは図11において、t軸(電流軸)がd軸(磁極軸)と180°ずれた所から始まった場合、起動不可能であり、且つ、t軸電流により減磁するため、位相補正値Δθが変わってt軸(m軸)が動いた時に、減磁により起動できない場合があるためである。なお、t1以内で起動できるものは、位相補正値Δφ=0に近づき、次に位相補正値Δθが90°動いた際も起動可能な範囲にあるため、最初の位相補正値Δθでの減磁を防げばよい。本実施例では最初の位相補正値Δθの設定時間を短くすることで、減磁を抑制し、起動しやすくする。   This embodiment will be described with reference to FIG. 4 for differences from the first and second embodiments. In FIG. 4, the time t1 when the phase correction value Δθ is set to the first set value is shorter than the times t2-t1 and t3-t2 at which the phase correction value Δθ is changed thereafter, as compared to FIG. 3 of the first embodiment. To do. In FIG. 11, when the t-axis (current axis) starts from a position that is shifted 180 ° from the d-axis (magnetic pole axis), the start-up is impossible and the demagnetization is caused by the t-axis current. This is because when Δθ changes and the t-axis (m-axis) moves, it may not be activated due to demagnetization. What can be activated within t1 is within the range that can be activated when the phase correction value Δφ is close to 0 and the phase correction value Δθ moves 90 ° next time, so demagnetization at the first phase correction value Δθ. Can be prevented. In this embodiment, the initial phase correction value Δθ is shortened to suppress demagnetization and facilitate startup.

本実施例について、図5を用いて、実施例1から実施例3と異なる部分について説明する。図5においては、位相補正値Δθを最初に設定している期間(位置合わせ1)でのトルク電流指令It*を、位相補正値Δθを変更した期間(位置合わせ2、位置合わせ3)でのトルク電流指令It*よりも小さくする。例えば位置合わせ1は定格電流の40%、それ以降は60%と、共に過電流とならない程度に設定する。最初のトルク電流指令It*を小さくすることで、実施例3と同様に、最初に減磁をしないようにするためであり、実施例3と同様、起動しやすくする。 This embodiment will be described with reference to FIG. 5 for differences from the first to third embodiments. In FIG. 5, the torque current command It * in the period (positioning 1) where the phase correction value Δθ is initially set is the same as the period (positioning 2, position 3) in which the phase correction value Δθ is changed. It is made smaller than the torque current command It * . For example, the alignment 1 is set to 40% of the rated current and 60% after that, so that both do not become overcurrent. This is to reduce the initial torque current command It * so that demagnetization is not performed first as in the third embodiment, and it is easy to start up as in the third embodiment.

本実施例について、図6を用いて、実施例1から実施例4と異なる部分について説明する。図6においては、位相補正値Δθが変更されるタイミングで、一旦トルク電流指令It*をゼロにし、その後元に戻す。これは位相補正値Δθにより、位相が変わることによる電流の過渡的な増加を抑えることが出来、位相補正値Δθ変更時の過電流を防止する。 This embodiment will be described with reference to FIG. 6 for differences from the first to fourth embodiments. In FIG. 6, at the timing when the phase correction value Δθ is changed, the torque current command It * is once set to zero and then restored. This is because the phase correction value Δθ can suppress a transient increase in current due to a phase change and prevent overcurrent when the phase correction value Δθ is changed.

本実施例について、図7を用いて、実施例1から実施例5と異なる部分について説明する。図7では、図1に対し、周波数補正値演算部3で求めた周波数補正値Δωを積分部5で積分し、位相に直し、位相θを補正する。これは実施例1と等価であり、実施例1と同様の効果を得ることが出来る。   This embodiment will be described with reference to FIG. 7 for differences from the first to fifth embodiments. In FIG. 7, with respect to FIG. 1, the frequency correction value Δω obtained by the frequency correction value calculation unit 3 is integrated by the integration unit 5, corrected to the phase, and the phase θ is corrected. This is equivalent to the first embodiment, and the same effect as the first embodiment can be obtained.

本実施例について、図8を用いて、実施例1から実施例6と異なる部分について説明する。図8では、図1に対し、位相補正値設定部2の代わりに、電流指令切換部11を設ける。電流指令切換部11では、実施例1のように、位相θを初期値から90°増加させたい場合は、例えば、(数7)式、(数8)式のようにトルク電流指令It*、励磁電流指令Im*からIt**、Im**を演算する。 This embodiment will be described with reference to FIG. 8 for differences from the first to sixth embodiments. In FIG. 8, a current command switching unit 11 is provided instead of the phase correction value setting unit 2 with respect to FIG. In the current command switching unit 11, when it is desired to increase the phase θ by 90 ° from the initial value as in the first embodiment, for example, the torque current command It * , It ** and Im ** are calculated from the excitation current command Im * .

It**=sin(90°)・Im*+cos(90°)・It* (数7)
Im**=cos(90°)・Im*−sin(90°)・It* (数8)
励磁電流指令Im*=0の場合は、It**=0、Im**=−It*となる。また、次に、実施例1のように、位相θを初期値から180°増加させたい場合は、電流指令切換部11において、(数7)式、(数8)式の90°を180°としてIt**、Im**を演算すればよい。これによって、位相θを実際に変えることなく、t軸、m軸を所定の角度だけ回転させることと等価となり、実施例1と同様の効果を得ることが出来る。
It ** = sin (90 °) · Im * + cos (90 °) · It * (Expression 7)
Im ** = cos (90 °) · Im * −sin (90 °) · It * (Equation 8)
When the excitation current command Im * = 0, It ** = 0 and Im ** =-It * . Next, when it is desired to increase the phase θ by 180 ° from the initial value as in the first embodiment, in the current command switching unit 11, the 90 ° of the formulas (7) and (8) is set to 180 °. It ** can be calculated as It ** and Im ** . This is equivalent to rotating the t-axis and m-axis by a predetermined angle without actually changing the phase θ, and the same effect as in the first embodiment can be obtained.

本実施例について、図9を用いて、実施例1から実施例7と異なる部分について説明する。図9では、図1に対し、起動可否検出部121を設置し、電流検出値を用いて起動及び加速がうまく行えたかを識別する。例えば、電流検出値が所定の電流以上に流れた場合、起動・加速失敗とみなす。また、図9では省略しているが、本実施例では、電流検出値以外に、電圧検出値もしくは電圧指令値を用いてもよい。起動・加速失敗と検出された場合は、再起動を行うため、速度指令再設定部124で、速度指令値を初期値に戻す。また、位相補正値再設定部122で、位相補正値(値や位相を変更する回数を含む)を起動失敗した場合と異なる値に再設定する。また、電流指令再設定部123において、電流指令値(値や変更する回数を含む)を起動失敗した場合と異なる値に再設定する。値の変更は、位相補正値と電流指令値の少なくとも一つ以上で行えばよい。例えば、位相補正値は前回よりも小さな値にすることで、実施例2同様に、回転がよりスムーズになる。また電流指令値は前回よりも大きくすればよりトルクが大きくなり、起動・加速がしやすい。   This embodiment will be described with reference to FIG. 9 for differences from the first to seventh embodiments. In FIG. 9, an activation availability detection unit 121 is installed with respect to FIG. 1, and it is identified whether activation and acceleration are successfully performed using the current detection value. For example, when the current detection value flows more than a predetermined current, it is regarded as start-up / acceleration failure. Although omitted in FIG. 9, in this embodiment, a voltage detection value or a voltage command value may be used in addition to the current detection value. When the activation / acceleration failure is detected, the speed command resetting unit 124 returns the speed command value to the initial value in order to restart. Further, the phase correction value resetting unit 122 resets the phase correction value (including the number of times of changing the value and the phase) to a value different from that when the activation fails. Further, the current command resetting unit 123 resets the current command value (including the value and the number of times of change) to a value different from that when the activation fails. The value may be changed by at least one of the phase correction value and the current command value. For example, by making the phase correction value smaller than the previous value, the rotation becomes smoother as in the second embodiment. Further, if the current command value is made larger than the previous value, the torque becomes larger and it is easy to start and accelerate.

実施例1の同期電動機駆動装置の構成図である。It is a block diagram of the synchronous motor drive device of Example 1. 実施例1に関わる、位相差Δφと発生トルクの関係を示す図である。It is a figure which shows the relationship between phase difference (DELTA) phi and generated torque regarding Example 1. FIG. 実施例1に関わる、It*、ωr*、Δθの関係を示す図である。It is a figure which shows the relationship of It * , (omega ) r * , (DELTA ) (theta) in connection with Example 1. FIG. 実施例3に関わる、It*、ωr*、Δθの関係を示す図である。It is a figure which shows the relationship of It * , (omega ) r * , (DELTA ) (theta) in connection with Example 3. FIG. 実施例4に関わる、It*、ωr*、Δθの関係を示す図である。It is a figure which shows the relationship of It * , (omega ) r * , (DELTA ) (theta) in connection with Example 4. FIG. 実施例5に関わる、It*、ωr*、Δθの関係を示す図である。It is a figure which shows the relationship of It * , (omega ) r * , (DELTA ) (theta) in connection with Example 5. FIG. 実施例6に関わる、同期電動機駆動装置の構成図である。FIG. 10 is a configuration diagram of a synchronous motor driving device according to a sixth embodiment. 実施例7に関わる、同期電動機駆動装置の構成図である。FIG. 10 is a configuration diagram of a synchronous motor driving device according to a seventh embodiment. 実施例8に関わる、同期電動機駆動装置の構成図である。FIG. 10 is a configuration diagram of a synchronous motor drive device according to an eighth embodiment. 従来技術の誘導電動機駆動装置の構成図である。It is a block diagram of the induction motor drive device of a prior art. 従来技術の基準軸を示す図である。It is a figure which shows the reference axis of a prior art.

符号の説明Explanation of symbols

1…トルク指令値設定部、2…位相補正値設定部、3…周波数補正値演算部、4…座標変換部、5…積分部、11…電流指令切換部、101…電力変換器部、102…同期電動機、103…速度制御部、104…ノッチフィルタ部、105…電流指令演算部、106…電流制御部、107…電流検出器、108…電圧検出器、109…位相演算部、110…高調波電圧検出部、111…速度誤差検出部、112…速度推定部、113…高調波電流発生部、121…起動可否検出部、122…位相補正値再設定部、123…電流指令再設定部、124…速度指令再設定部。
DESCRIPTION OF SYMBOLS 1 ... Torque command value setting part, 2 ... Phase correction value setting part, 3 ... Frequency correction value calculating part, 4 ... Coordinate conversion part, 5 ... Integration part, 11 ... Current command switching part, 101 ... Power converter part, 102 DESCRIPTION OF SYMBOLS ... Synchronous motor, 103 ... Speed control part, 104 ... Notch filter part, 105 ... Current command calculating part, 106 ... Current control part, 107 ... Current detector, 108 ... Voltage detector, 109 ... Phase calculating part, 110 ... Harmonic Wave voltage detector, 111 ... speed error detector, 112 ... speed estimator, 113 ... harmonic current generator, 121 ... activation availability detector, 122 ... phase correction value resetter, 123 ... current command resetter, 124: Speed command resetting unit.

Claims (18)

出力電圧の、大きさと、周波数と、位相とを制御し、同期電動機を駆動する電動機駆動装置において、
前記同期電動機の起動時に、前記位相に所定の位相補正値を加え、
該位相補正値を1回以上変更し、且つ、出力電流の検出値に基づいて前記周波数の補正値を演算し、前記出力電圧の周波数を補正することを特徴とする電動機駆動装置。
In the motor drive device that controls the magnitude, frequency, and phase of the output voltage and drives the synchronous motor,
When starting the synchronous motor, add a predetermined phase correction value to the phase,
An electric motor drive device that changes the phase correction value at least once, calculates the correction value of the frequency based on a detected value of the output current, and corrects the frequency of the output voltage.
請求項1において、
前記同期電動機の起動時に、
速度指令値初期値を所定値とし、該速度指令値を増加させるまでの間に、前記位相の補正と周波数の補正とを行うことを特徴とする電動機駆動装置。
In claim 1,
When starting the synchronous motor,
An electric motor drive device characterized in that an initial value of a speed command value is set to a predetermined value, and the phase and frequency are corrected before the speed command value is increased.
請求項1において、
前記所定の位相補正値を変更する際は、前記同期電動機の正転方向に位相を増やすことを特徴とする電動機駆動装置。
In claim 1,
When changing the predetermined phase correction value, the motor driving device increases the phase in the normal rotation direction of the synchronous motor.
請求項1において、
前記所定の位相補正値を最初に変更する際、最初の位相補正値を設定している時間は、変更後の位相補正値を設定している時間よりも短いことを特徴とする電動機駆動装置。
In claim 1,
When the predetermined phase correction value is changed for the first time, the time for setting the first phase correction value is shorter than the time for setting the phase correction value after change.
請求項1において、
前記同期電動機のトルク電流指令値が、前記同期電動機の定格電流値を超えない所定値とすることを特徴とする電動機駆動装置。
In claim 1,
The motor drive device according to claim 1, wherein a torque current command value of the synchronous motor is a predetermined value that does not exceed a rated current value of the synchronous motor.
請求項5において、
前記所定の位相補正値を最初に変更する前のトルク電流指令値は、前記所定の位相補正値を変更した後のトルク電流指令値よりも小さくすることを特徴とする電動機駆動装置。
In claim 5,
An electric motor drive device characterized in that a torque current command value before the predetermined phase correction value is first changed is smaller than a torque current command value after the predetermined phase correction value is changed.
請求項5において、
前記所定の位相補正値を変更する間は前記トルク電流指令値がゼロとなるように、前記所定の位相補正値を変更する前に、前記トルク電流指令値を所定のレートでゼロにし、前記所定の位相補正値を変更した後に、前記トルク電流指令値を所定のレートで元の値に戻すことを特徴とする電動機駆動装置。
In claim 5,
Before changing the predetermined phase correction value, the torque current command value is set to zero at a predetermined rate so that the torque current command value becomes zero while the predetermined phase correction value is changed. After the phase correction value is changed, the torque current command value is returned to the original value at a predetermined rate.
出力電圧の、大きさと、周波数と、位相とを制御し、同期電動機を駆動する電動機駆動装置において、
前記同期電動機の起動時に、前記位相に所定の位相補正値を加え、
該所定の位相補正値は1回以上変更し、さらに、出力電流の検出値に基づいて演算された位相補正値を前記位相に加えることを特徴とする電動機駆動装置。
In the motor drive device that controls the magnitude, frequency, and phase of the output voltage and drives the synchronous motor,
When starting the synchronous motor, add a predetermined phase correction value to the phase,
The predetermined phase correction value is changed once or more, and a phase correction value calculated based on a detected value of output current is added to the phase.
請求項8において、
前記同期電動機の起動時に、
速度指令値初期値を所定値とし、該速度指令値を増加させるまでの間に、前記位相の補正を行うことを特徴とする電動機駆動装置。
In claim 8,
When starting the synchronous motor,
An electric motor drive device characterized in that the phase correction is performed before the speed command value is set to a predetermined value and the speed command value is increased.
請求項8において、
前記所定の位相補正値を変更する際は、前記同期電動機の正転方向に位相を増やすことを特徴とする電動機駆動装置。
In claim 8,
When changing the predetermined phase correction value, the motor driving device increases the phase in the normal rotation direction of the synchronous motor.
請求項8において、
前記所定の位相補正値を最初に変更する際、最初の位相補正値を設定している時間は、変更後の位相補正値を設定している時間よりも短いことを特徴とする電動機駆動装置。
In claim 8,
When the predetermined phase correction value is changed for the first time, the time for setting the first phase correction value is shorter than the time for setting the phase correction value after change.
請求項8において、
前記同期電動機のトルク電流指令値が、前記同期電動機の定格電流値を超えない所定値とすることを特徴とする電動機駆動装置。
In claim 8,
The motor drive device according to claim 1, wherein a torque current command value of the synchronous motor is a predetermined value that does not exceed a rated current value of the synchronous motor.
請求項12において、
前記所定の位相補正値を最初に変更する前のトルク電流指令値は、前記所定の位相補正値を変更した後のトルク電流指令値よりも小さくすることを特徴とする電動機駆動装置。
In claim 12,
An electric motor drive device characterized in that a torque current command value before the predetermined phase correction value is first changed is smaller than a torque current command value after the predetermined phase correction value is changed.
請求項12において、
前記所定の位相補正値を変更する間は前記トルク電流指令値がゼロとなるように、前記所定の位相補正値を変更する前に、前記トルク電流指令値を所定のレートでゼロにし、前記所定の位相補正値を変更した後に、前記トルク電流指令値を所定のレートで元の値に戻すことを特徴とする電動機駆動装置。
In claim 12,
Before changing the predetermined phase correction value, the torque current command value is set to zero at a predetermined rate so that the torque current command value becomes zero while the predetermined phase correction value is changed. After the phase correction value is changed, the torque current command value is returned to the original value at a predetermined rate.
トルク電流に平行なt軸と、該t軸に垂直なm軸の電流指令値を設定し、出力電圧の、大きさと、周波数と、位相とを制御し、同期電動機を駆動する電動機駆動装置において、
前記同期電動機の起動時に、少なくとも1回以上、前記t軸電流指令値と前記m軸電流指令値の値を変更し、且つ、出力電流の検出値に基づいて前記周波数補正値を演算し、前記周波数を補正することを特徴とする電動機駆動装置。
In a motor drive device that sets a t-axis current command value parallel to a torque current and an m-axis current command value perpendicular to the t-axis, controls the magnitude, frequency, and phase of the output voltage and drives a synchronous motor ,
At the time of starting the synchronous motor, the value of the t-axis current command value and the m-axis current command value is changed at least once or more, and the frequency correction value is calculated based on the detected value of the output current, An electric motor drive device that corrects a frequency.
請求項15において、
前記同期電動機の起動時に、
前記速度指令値初期値を所定値とし、該速度指令値を増加させるまでの間に、前記t軸電流指令値とm軸電流指令値の値の変更と、前記周波数の補正とを行うことを特徴とする電動機駆動装置。
In claim 15,
When starting the synchronous motor,
The initial value of the speed command value is set to a predetermined value, and the t-axis current command value and the m-axis current command value are changed and the frequency is corrected before the speed command value is increased. An electric motor drive device.
トルク電流に平行なt軸と、該t軸に垂直なm軸の電流指令値を設定し、出力電圧の、大きさと、周波数と、位相とを制御し、同期電動機を駆動する電動機駆動装置において、
前記同期電動機の起動時に、少なくとも1回以上、前記t軸電流指令値と前記m軸電流指令値の値を変更し、さらに、出力電流の検出値に基づいて演算された位相補正値を前記位相に加えることを特徴とする、電動機駆動装置。
In a motor drive device that sets a t-axis current command value parallel to a torque current and an m-axis current command value perpendicular to the t-axis, controls the magnitude, frequency, and phase of the output voltage and drives a synchronous motor ,
At the time of starting the synchronous motor, the t-axis current command value and the m-axis current command value are changed at least once or more, and the phase correction value calculated based on the detected output current is set to the phase An electric motor drive device characterized by being added to the motor drive device.
請求項17において、
前記同期電動機の起動時に
速度指令値初期値を所定値とし、該速度指令値を増加させるまでの間に、前記t軸電流指令値とm軸電流指令値の値の変更と、前記電流検出値に基づいて演算された位相補正値を前記位相に加える位相補正を行うことを特徴とする電動機駆動装置。

In claim 17,
When the synchronous motor is started, the speed command value initial value is set to a predetermined value, and the t-axis current command value and the m-axis current command value are changed before the speed command value is increased, and the current detection value An electric motor drive device that performs phase correction that adds a phase correction value calculated based on the above to the phase.

JP2006081906A 2006-03-24 2006-03-24 Synchronous motor drive Active JP5011771B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006081906A JP5011771B2 (en) 2006-03-24 2006-03-24 Synchronous motor drive
CN2007100893567A CN101043196B (en) 2006-03-24 2007-03-23 Synchro motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081906A JP5011771B2 (en) 2006-03-24 2006-03-24 Synchronous motor drive

Publications (2)

Publication Number Publication Date
JP2007259610A true JP2007259610A (en) 2007-10-04
JP5011771B2 JP5011771B2 (en) 2012-08-29

Family

ID=38633258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081906A Active JP5011771B2 (en) 2006-03-24 2006-03-24 Synchronous motor drive

Country Status (2)

Country Link
JP (1) JP5011771B2 (en)
CN (1) CN101043196B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183022A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Magnetic pole position estimation method for synchronous motor
CN102969969A (en) * 2012-12-14 2013-03-13 北京精雕科技有限公司 Automatic phase hunting method used for permanent magnet synchronous servo motor
CN103329426A (en) * 2011-02-02 2013-09-25 罗伯特·博世有限公司 Method, device, and computer program for determining an offset angle in an electric machine
JP2015208187A (en) * 2014-04-23 2015-11-19 株式会社豊田自動織機 Motor drive device and electric compressor
KR20180044362A (en) * 2015-08-31 2018-05-02 캐논 가부시끼가이샤 Driving apparatus, positioning apparatus, lithographic apparatus, and article manufacturing method
JPWO2021059389A1 (en) * 2019-09-25 2021-04-01
CN113541547A (en) * 2021-06-24 2021-10-22 浙江大学 Method for extracting current harmonic characteristic quantity of built-in permanent magnet synchronous motor
EP3913790A1 (en) 2020-05-20 2021-11-24 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus, method and non-transitory memory device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676551B1 (en) * 2009-12-22 2011-04-27 ファナック株式会社 Motor control device having cogging torque correction amount calculation function
JP6036322B2 (en) * 2013-01-18 2016-11-30 株式会社島津製作所 Motor drive device and vacuum pump
CN105471332A (en) * 2015-12-21 2016-04-06 北京合康亿盛变频科技股份有限公司 Master-slave control system of multi-winding synchronous motor
CN105515481A (en) * 2016-01-29 2016-04-20 扬州恒春电子有限公司 CKDY electro-hydraulic execution advanced motor control algorithm
CN107846166B (en) * 2016-09-20 2021-08-06 株式会社安川电机 Method and device for detecting initial magnetic pole position of motor, and power conversion device
JP2018153027A (en) * 2017-03-14 2018-09-27 株式会社東芝 Rotary position estimation device of synchronous motor, air conditioner and washing machine
CN106911279B (en) * 2017-04-25 2019-05-07 广东工业大学 A kind of method of DC brushless motor sensorless start-up
CN110855207B (en) * 2019-10-18 2020-10-27 西北工业大学 Three-stage motor low-speed stage rotor position estimation method based on no-signal injection
CN112234905B (en) * 2020-09-30 2023-10-10 深圳市阿尔法电气技术有限公司 Motor energy saving method and device based on frequency converter and electronic equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327194A (en) * 1996-06-06 1997-12-16 Fujitsu General Ltd Control method for brushless motor
JPH10323098A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Initial excitating method of synchronous motor
JP2000287483A (en) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd Apparatus and method for controlling brushless motor, and self-priming pump
JP2002291282A (en) * 2001-03-26 2002-10-04 Seiko Epson Corp Drive device for sensorless motor
JP2002354872A (en) * 2001-05-18 2002-12-06 Sony Corp Motor drive and motor driving method
JP2004072906A (en) * 2002-08-06 2004-03-04 Toshiba Corp Vector control inverter arrangement
JP2004104978A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Controller for motor
JP2004274841A (en) * 2003-03-06 2004-09-30 Sharp Corp Motor controller, and air conditioner and refrigerator using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484058B2 (en) * 1997-10-17 2004-01-06 東洋電機製造株式会社 Position and speed sensorless controller

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327194A (en) * 1996-06-06 1997-12-16 Fujitsu General Ltd Control method for brushless motor
JPH10323098A (en) * 1997-05-20 1998-12-04 Yaskawa Electric Corp Initial excitating method of synchronous motor
JP2000287483A (en) * 1999-03-31 2000-10-13 Matsushita Electric Ind Co Ltd Apparatus and method for controlling brushless motor, and self-priming pump
JP2002291282A (en) * 2001-03-26 2002-10-04 Seiko Epson Corp Drive device for sensorless motor
JP2002354872A (en) * 2001-05-18 2002-12-06 Sony Corp Motor drive and motor driving method
JP2004072906A (en) * 2002-08-06 2004-03-04 Toshiba Corp Vector control inverter arrangement
JP2004104978A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Controller for motor
JP2004274841A (en) * 2003-03-06 2004-09-30 Sharp Corp Motor controller, and air conditioner and refrigerator using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009183022A (en) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp Magnetic pole position estimation method for synchronous motor
US8593087B2 (en) 2008-01-29 2013-11-26 Mitsubishi Electric Corporation Magnetic pole position estimation method for AC synchronous motor
CN103329426A (en) * 2011-02-02 2013-09-25 罗伯特·博世有限公司 Method, device, and computer program for determining an offset angle in an electric machine
CN102969969A (en) * 2012-12-14 2013-03-13 北京精雕科技有限公司 Automatic phase hunting method used for permanent magnet synchronous servo motor
JP2015208187A (en) * 2014-04-23 2015-11-19 株式会社豊田自動織機 Motor drive device and electric compressor
KR102103248B1 (en) * 2015-08-31 2020-04-22 캐논 가부시끼가이샤 Driving device, positioning device, lithography device, and method for manufacturing articles
KR20180044362A (en) * 2015-08-31 2018-05-02 캐논 가부시끼가이샤 Driving apparatus, positioning apparatus, lithographic apparatus, and article manufacturing method
JPWO2021059389A1 (en) * 2019-09-25 2021-04-01
WO2021059389A1 (en) * 2019-09-25 2021-04-01 三菱電機株式会社 Electric motor control device and electric motor control method
JP7237172B2 (en) 2019-09-25 2023-03-10 三菱電機株式会社 Motor control device and motor control method
EP3913790A1 (en) 2020-05-20 2021-11-24 Kabushiki Kaisha Yaskawa Denki Power conversion apparatus, method and non-transitory memory device
CN113541547A (en) * 2021-06-24 2021-10-22 浙江大学 Method for extracting current harmonic characteristic quantity of built-in permanent magnet synchronous motor
CN113541547B (en) * 2021-06-24 2023-02-24 浙江大学 Method for extracting current harmonic characteristic quantity of built-in permanent magnet synchronous motor

Also Published As

Publication number Publication date
CN101043196B (en) 2012-08-29
CN101043196A (en) 2007-09-26
JP5011771B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5011771B2 (en) Synchronous motor drive
US8159161B2 (en) Motor control device
JP4909797B2 (en) Motor control device
JP4989075B2 (en) Electric motor drive control device and electric motor drive system
WO2011145334A1 (en) Control device without a rotation sensor
JP3168967B2 (en) Electric angle detecting device and method, and motor control device
WO2016121237A1 (en) Inverter control device and motor drive system
JP2013021843A (en) Initial magnetic pole position adjustment device for permanent magnet synchronous motor
JP2010063208A (en) Drive system for synchronous motor, and controller used for this
JP2008220100A (en) Motor controller
JP5003929B2 (en) Electric power steering device
JP2017139945A (en) Controller for rotary electric machine
JP2004072906A (en) Vector control inverter arrangement
WO2018043501A1 (en) Inverter control device and electric motor driving system
JP2011024297A (en) Control unit of permanent magnet synchronous motor
JP2012130100A (en) Motor controller and motor control method
JP5190155B2 (en) AC rotating machine control device and control method
JP2007330074A (en) Motor controller and motor control method
JP5104213B2 (en) Control device for permanent magnet type synchronous motor
JP4168287B2 (en) Brushless DC motor drive device and synchronous operation pull-in method
JP2009165281A (en) Speed-sensorless vector control device
JP2007282319A (en) Synchronous motor control device
JP2007236081A (en) Device for controlling permanent magnet synchronous motor
JP2010163872A (en) Start/stop control device for internal combustion engine and control device for rotary machine
Yang et al. Analysis and compensation of the error in initial rotor position of IPMSM estimated with HF signal injection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5011771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350