JP2007258548A - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP2007258548A
JP2007258548A JP2006082843A JP2006082843A JP2007258548A JP 2007258548 A JP2007258548 A JP 2007258548A JP 2006082843 A JP2006082843 A JP 2006082843A JP 2006082843 A JP2006082843 A JP 2006082843A JP 2007258548 A JP2007258548 A JP 2007258548A
Authority
JP
Japan
Prior art keywords
heat
component
cooled
shape memory
cooling target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082843A
Other languages
Japanese (ja)
Other versions
JP4710683B2 (en
Inventor
Tomohiko Sakamaki
知彦 坂巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006082843A priority Critical patent/JP4710683B2/en
Publication of JP2007258548A publication Critical patent/JP2007258548A/en
Application granted granted Critical
Publication of JP4710683B2 publication Critical patent/JP4710683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the pressure force of a thermal conductive member from working on a component to be cooled as much as possible. <P>SOLUTION: A thermal conductive leaf spring 9 made of a leaf spring normally allows the thermal conductive sheet 12 of a heat receiving piece 9c to be separated from a CPU 7 as the component to be cooled with the use of its own snapping force. When the temperature of the CPU 7 becomes the one which requires cooling, a shape-memory leaf spring 10 generates the snapping force for deformation into the stored shape. Then, the heat receiving piece 9c of the thermal conductive leaf spring 9 is pushed up so as to pressurize the thermal conductive sheet 12 against the CPU 7. Consequently, the heat of the CPU 7 is transmitted to a lower case 3 via the thermal conductive sheet 12 and the thermal conductive leaf spring 9. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品や電気部品の熱を熱伝導部材に伝えて電子部品や電気部品を冷却する構成の放熱装置に関する。   The present invention relates to a heat dissipation device configured to transmit heat of an electronic component or an electrical component to a heat conducting member to cool the electronic component or the electrical component.

近年、電子機器にあっては、データ容量が飛躍的に増大し、使用される半導体装置も小形高性能化されてきている。このため、半導体装置の単位面積あたりの発熱量は増加する傾向にあり、その冷却のための装置が種々考えられてきている。
半導体装置の冷却装置として、半導体装置の熱を熱伝導部材に伝えて外部に放出する構成のものがある。例えば、特許文献1に記載された冷却装置はノート型パソコンのものであるが、CPUの熱を、熱伝導部材によりキーボードや筺体に伝えてキーボードや筺体から外部へ放熱したり、CPUと冷却ファンとを並べて配置し、両者を熱伝導部材で結合してその熱伝導部材を冷却ファンの送風で冷却したりする構成を採用している。
In recent years, in electronic devices, the data capacity has increased dramatically, and the semiconductor devices used have become smaller and more sophisticated. For this reason, the amount of heat generated per unit area of the semiconductor device tends to increase, and various devices for cooling the semiconductor device have been considered.
As a cooling device for a semiconductor device, there is a configuration in which heat of the semiconductor device is transmitted to a heat conducting member and released to the outside. For example, the cooling device described in Patent Document 1 is of a notebook personal computer, but the heat of the CPU is transmitted to the keyboard and the case by a heat conducting member to radiate the heat from the keyboard and the case, or the CPU and the cooling fan. Are arranged side by side, combined with a heat conducting member, and the heat conducting member is cooled by blowing air from a cooling fan.

また、半導体装置を収容した筺体に風を通すことによって半導体装置を冷却するようにしたものもある。例えば、特許文献2には、電子機器の筺体に通風孔を形成し、この通風孔の開閉板を形状記憶ばね(この形状記憶ばねは、電子機器に通風が必要となる外気温になったとき、記憶した形状に変形する。)によって開放させるように構成している。
特開2000−105635号公報 実開平7−36483号公報
In addition, there is a type in which the semiconductor device is cooled by passing air through a housing containing the semiconductor device. For example, Patent Document 2 discloses that a vent hole is formed in a housing of an electronic device, and an opening / closing plate of the vent hole is formed as a shape memory spring (when the shape memory spring has an outside temperature that requires ventilation in the electronic device. , Deformed to a memorized shape).
JP 2000-105635 A Japanese Utility Model Publication No. 7-36483

半導体装置には、表面実装型のものがある。例えば、BGA(Ball Grid Array)パッケージタイプの半導体装置では、底面に多数の半田ボール(接続端子)を格子状に設け、この半田ボールをプリント配線基板上の配線パターンに直接接続するようにしている。このBGAパッケージタイプの半導体装置において、その冷却方法として上記の熱伝導方式を採用した場合、その半導体装置の表面には、熱伝導部材が押し当てられるようになる。このため、半田ボールには、熱伝導部材の押圧力が常時作用する状態となる。   Some semiconductor devices are of surface mount type. For example, in a BGA (Ball Grid Array) package type semiconductor device, a large number of solder balls (connection terminals) are provided in a lattice shape on the bottom surface, and the solder balls are directly connected to a wiring pattern on a printed wiring board. . In the BGA package type semiconductor device, when the above-described heat conduction method is adopted as the cooling method, the heat conduction member is pressed against the surface of the semiconductor device. For this reason, the pressing force of the heat conducting member always acts on the solder ball.

ところで、BGAパッケージの半田ボールによる接続は、外部応力や繰り返し応力に弱いことが知られている。このため、冷却装置の熱伝導部材の押圧力が常時作用するような環境下でBGAパッケージタイプの半導体装置を使用すると、半田ボールにクラックが発生したり、クリープ破壊が生じたりし易くなる。特に、車両に搭載する電子機器の場合には、車両の走行に伴う振動や、炎天下に放置された車両が次にはエアコンによって冷やされるなどして生ずる熱応力などが半田ボール部分に作用するため、より一層半田ボールの耐久性を低くする。   By the way, it is known that the connection by the solder ball of the BGA package is weak against external stress and repeated stress. For this reason, if a BGA package type semiconductor device is used in an environment in which the pressing force of the heat conducting member of the cooling device is constantly acting, cracks are likely to occur in the solder balls or creep failure is likely to occur. In particular, in the case of an electronic device mounted on a vehicle, vibrations caused by traveling of the vehicle, thermal stress generated by the vehicle left under the sun being cooled by an air conditioner, etc., act on the solder ball portion. Further reducing the durability of the solder balls.

熱伝導部材を半導体装置に押圧する手段としては、ねじによる締め付けが一般的であるが、熱伝導部材の押圧による半田ボールの損傷を極力防止するために、ばねの弾発力によって熱伝導部材を半導体装置に押圧する方法が考えられる。このばねによる押圧は、振動時に半導体装置に作用する応力を緩和する効果はあるが、半導体装置が押圧力を常時受けることに変わりないので、有効な解決策とは言い難い。   As a means for pressing the heat conducting member against the semiconductor device, tightening with a screw is generally used, but in order to prevent damage to the solder ball due to pressing of the heat conducting member as much as possible, the heat conducting member is made by the elastic force of the spring. A method of pressing the semiconductor device is conceivable. Although the pressing by the spring has an effect of relieving the stress acting on the semiconductor device during vibration, it is not an effective solution since the semiconductor device always receives a pressing force.

本発明は上記の事情に鑑みてなされたもので、その目的は、冷却対象部品に熱伝導部材を接触させる方式の放熱装置において、冷却対象部品が熱伝導部材から押圧力を極力受けないようにすることができる放熱装置を提供するところにある。   The present invention has been made in view of the above circumstances, and an object thereof is to prevent the cooling target component from receiving the pressing force from the heat conductive member as much as possible in the heat dissipation device in which the heat conductive member is brought into contact with the cooling target component. It is in the place of providing the thermal radiation apparatus which can do.

請求項1の発明では、形状記憶ばね手段が所定温度になると記憶した形状に変形し、これにより熱伝導部材が冷却対象部品に接離する。具体的には、請求項2の発明のように、形状記憶ばね手段が所定温度以上になると記憶した形状へと変形することにより弾発力を生じ、それまで冷却対象部品から離れていた熱伝導部材を冷却対象部品に接触させる。請求項3の発明では、形状記憶ばね手段が所定温度以下になると記憶した形状へと変形することにより弾発力を生じ、それまで付勢手段の付勢力によって冷却対象部品に押圧されていた熱伝導部材を冷却対象部品から離す。   According to the first aspect of the present invention, when the shape memory spring means reaches a predetermined temperature, the shape memory spring means is deformed into the memorized shape. Specifically, as in the second aspect of the invention, when the shape memory spring means reaches a predetermined temperature or more, the shape memory spring means is deformed into a memorized shape, thereby generating an elastic force, which has been separated from the component to be cooled until then. The member is brought into contact with the part to be cooled. In the invention of claim 3, when the shape memory spring means becomes a predetermined temperature or less, the shape memory spring means is deformed into a memorized shape to generate an elastic force, and the heat that has been pressed against the component to be cooled by the urging force of the urging means until then. Separate the conductive member from the part to be cooled.

このように、冷却対象部品の温度が冷却を必要としない状態のときには、熱伝導部材は冷却対象部品から離れている。そして、冷却を必要とする温度になると、熱伝導部材が冷却対象部品に押圧され、これにより冷却対象部品の熱が熱伝導部材に伝えられ、その結果、冷却対象部品が冷却される。従って、熱伝導部材を冷却対象部品に押圧する時期が冷却必要時に限られるようになるので、冷却対象部品が熱伝導部材から押圧力を極力受けないようにすることができる。   Thus, when the temperature of the component to be cooled does not require cooling, the heat conducting member is separated from the component to be cooled. When the temperature that requires cooling is reached, the heat conduction member is pressed against the component to be cooled, whereby the heat of the component to be cooled is transmitted to the heat conduction member, and as a result, the component to be cooled is cooled. Therefore, the time when the heat conducting member is pressed against the component to be cooled is limited to the time when cooling is required, so that the component to be cooled can be prevented from receiving the pressing force from the heat conducting member as much as possible.

請求項4および5の発明は、熱伝導部材をばね材で形成する構成としたものである。これによれば、熱伝導部材は、自身の弾発力で冷却対象部品から離れ、或いは冷却対象部品に接するので、付勢手段を別に設ける必要がない。   The inventions of claims 4 and 5 are configured such that the heat conducting member is formed of a spring material. According to this, since the heat conducting member is separated from the component to be cooled by its own elasticity or is in contact with the component to be cooled, it is not necessary to separately provide a biasing means.

請求項6の発明は、冷却対象部品をBGAパッケージタイプの半導体装置などの表面実装型の半導体装置としたもので、本発明の適用により半導体ボールなどの接続端子の耐久性を向上できる。   In the invention of claim 6, the component to be cooled is a surface-mount type semiconductor device such as a BGA package type semiconductor device. By applying the present invention, the durability of connection terminals such as semiconductor balls can be improved.

以下、本発明の一実施形態を、車両に搭載されるナビゲーション装置に適用して図1ないし図5を参照しながら説明する。図3には、ナビゲーション装置の制御装置(電子機器)1を収納するケース2が示されている。このケース2は、下ケース3と上ケース4とから構成されている。これら両ケース3,4は、金属製、例えばアルミダイキャスト製で、下ケース3内の四隅には、図4および図5に示すように、当該四隅を内側に凹ませることによって受け部3aが形成され、上ケース4内の四隅には、図4にも示すように当該四隅に柱状をなす押え部4aが形成されている。そして、受け部3aと押え部4aとをねじ5によって締め付けることにより、上下の両ケース3,4が結合されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5 as applied to a navigation apparatus mounted on a vehicle. FIG. 3 shows a case 2 that houses a control device (electronic device) 1 of the navigation device. The case 2 is composed of a lower case 3 and an upper case 4. Both the cases 3 and 4 are made of metal, for example, aluminum die-cast, and at the four corners in the lower case 3, as shown in FIGS. 4 and 5, the receiving portions 3 a are formed by recessing the four corners inward. As shown in FIG. 4, presser portions 4 a having columnar shapes are formed at the four corners of the upper case 4. Then, the upper and lower cases 3, 4 are joined by tightening the receiving portion 3 a and the presser portion 4 a with the screw 5.

ケース2内には、プリント配線基板6が配設されている。このプリント配線基板6は、両ケース3,4を結合する際に、四隅部を受け部3aと押え部4aとの間に挟み付けることによって固定されている。プリント配線基板6には、前記制御装置1を構成する各種の電子部品および電気部品が搭載されている。図には、それらの電子部品および電気部品のうち、例えばCPU7が示されている。このCPU7は、ICチップをBGAタイプのパッケージにより包んでなるもので、その底面には接続端子としての多数の半田ボール7aが格子状に設けられている。このCPU7は、表面実装型の半導体装置であってプリント配線基板6の配線パターン(図示せず)に半田ボール7aを直接接続している。   A printed wiring board 6 is disposed in the case 2. The printed wiring board 6 is fixed by sandwiching the four corners between the receiving part 3a and the pressing part 4a when the cases 3 and 4 are coupled. On the printed circuit board 6, various electronic components and electrical components constituting the control device 1 are mounted. In the figure, among these electronic components and electrical components, for example, the CPU 7 is shown. The CPU 7 is formed by wrapping an IC chip in a BGA type package, and a large number of solder balls 7a as connection terminals are provided in a lattice shape on the bottom surface. This CPU 7 is a surface-mount type semiconductor device, and solder balls 7 a are directly connected to a wiring pattern (not shown) of the printed wiring board 6.

このCPU7は、冷却対象部品に相等するもので、ケース2内には、このCPU7からの熱を放熱部としての下ケース3に伝達して当該下ケース3から外部に放熱するための放熱装置8が設けられている。図1は、この放熱装置8の詳細を示すもので、この図1において、下ケース3内の底部には、熱伝導部材としての熱伝導板ばね9と形状記憶ばね手段としての形状記憶板ばね10とが、上下の位置関係をもってねじ11により固定されている。熱伝導板ばね9は、形状記憶板ばね10に対し、バイアスばねとして機能する。   The CPU 7 is equivalent to a component to be cooled, and in the case 2, a heat radiating device 8 for transferring heat from the CPU 7 to the lower case 3 as a heat radiating portion and radiating heat from the lower case 3 to the outside. Is provided. FIG. 1 shows details of the heat radiating device 8. In FIG. 1, a heat conductive leaf spring 9 as a heat conducting member and a shape memory leaf spring as a shape memory spring means are provided at the bottom of the lower case 3. 10 is fixed by a screw 11 with a vertical positional relationship. The heat conductive leaf spring 9 functions as a bias spring with respect to the shape memory leaf spring 10.

熱伝導板ばね9は、ねじ11によって下ケース3に固定された固定部9a、この固定部9aからCPU7側へ延びる立上り部9b、この立上り部9bの先端からCPU7の表面に対向するように延長された受熱片部9cを有している。そのうち、受熱片部9cには、熱伝導シート12が貼り付けられている。熱伝導板ばね9は、熱伝導性およびばね性の双方に優れた材料、例えばリン青銅などのばね材により形成され、受熱片部9cひいては熱伝導シート12をCPU7の表面から離す方向の弾発力を有している。   The heat conduction leaf spring 9 is fixed so as to face the surface of the CPU 7 from the fixing portion 9a fixed to the lower case 3 by screws 11, a rising portion 9b extending from the fixing portion 9a toward the CPU 7, and the tip of the rising portion 9b. The heat receiving piece portion 9c is provided. Among them, the heat conductive sheet 12 is affixed to the heat receiving piece 9c. The heat conductive leaf spring 9 is formed of a material excellent in both heat conductivity and spring property, for example, a spring material such as phosphor bronze, and the heat receiving piece portion 9c and the heat conduction sheet 12 are separated in a direction away from the surface of the CPU 7. Have power.

一方、形状記憶板ばね10は、ねじ11によって下ケース3に固定された固定部10a、この固定部10aから熱伝導板ばね9に接するように延びる押圧部10bを有している。この形状記憶板ばね10は、形状記憶合金や形状記憶プラスチックなどの形状記憶材料により形成されており、所定温度になると、記憶した形状に変形しようとして弾性力を生じる。この形状記憶板ばね10の記憶した形状は、所定温度を超えた温度になっても維持される。なお、形状記憶板ばね10の記憶形状は、図1に二点鎖線で示す形状で、プリント配線基板6がなければ、押圧部10bの立上り角度を大きくして先端部分がCPU7を通過するようになる。   On the other hand, the shape memory leaf spring 10 has a fixing portion 10 a fixed to the lower case 3 by a screw 11 and a pressing portion 10 b extending from the fixing portion 10 a so as to contact the heat conducting leaf spring 9. The shape memory leaf spring 10 is formed of a shape memory material such as a shape memory alloy or a shape memory plastic, and when it reaches a predetermined temperature, it generates an elastic force in an attempt to be deformed into a memorized shape. The memorized shape of the shape memory leaf spring 10 is maintained even when the temperature exceeds a predetermined temperature. Note that the memory shape of the shape memory leaf spring 10 is the shape indicated by the two-dot chain line in FIG. 1. If the printed wiring board 6 is not provided, the rising angle of the pressing portion 10 b is increased so that the tip portion passes through the CPU 7. Become.

形状記憶板ばね10は、所定温度未満のとき、弾性力を失って僅かな外力で容易に塑性変形するようになっている。従って、雰囲気温度が低く、形状記憶板ばね10が所定温度未満にあるときには、熱伝導板ばね9は、自身の弾発力により、図1に示すように形状記憶板ばね10を塑性変形させ、受熱片部9c(熱伝導シート12)をCPU7から離した状態となる。   The shape memory leaf spring 10 loses its elastic force when it is below a predetermined temperature, and is easily plastically deformed with a slight external force. Therefore, when the ambient temperature is low and the shape memory leaf spring 10 is below the predetermined temperature, the heat conducting leaf spring 9 plastically deforms the shape memory leaf spring 10 as shown in FIG. The heat receiving piece 9c (heat conducting sheet 12) is in a state separated from the CPU 7.

上記構成において、カーナビゲーション装置が起動されていないなどの理由で、ケース2内の温度が低いときには、熱伝導板ばね9は、形状記憶板ばね10を塑性変形させて受熱片部9cの熱伝導シート12をCPU7から離した状態にある。カーナビゲーション装置が起動されると、プリント配線基板6に搭載されたCPU7、その他の電子部品や電気部品から発せられる熱によってケース2内の温度が次第に上昇してくる。   In the above configuration, when the temperature in the case 2 is low, for example, because the car navigation device is not activated, the heat conducting leaf spring 9 plastically deforms the shape memory leaf spring 10 to conduct the heat conduction of the heat receiving piece 9c. The sheet 12 is separated from the CPU 7. When the car navigation device is activated, the temperature in the case 2 gradually increases due to heat generated from the CPU 7 mounted on the printed wiring board 6 and other electronic components and electrical components.

ケース2内の温度が上昇し、これに伴って形状記憶板ばね10の雰囲気温度がCPU7の冷却を必要とする温度以上になると、形状記憶板ばね10の温度も所定温度以上に上昇するようになる。すると、形状記憶板ばね10が、記憶した形状に変形しようとして弾発力を生じ、押圧部10bによって熱伝導板ばね9を押すようになる。そして、形状記憶板ばね10は、熱伝導板ばね9をその弾発力に抗して弾性変形させて図2に示すように受熱片部9cの熱伝導シート12をCPU7の表面に押し付ける。
熱伝導シート12がCPU7に押圧されると、CPU7の熱が熱伝導シート12から熱伝導板ばね9の受熱片部9cに伝えられ、更に、受熱片部9cから立上り部9b、固定部9aを順に経て放熱部としての下ケース3へと伝えられる。そして、下ケース3に伝えられた熱は、最終的にこの下ケース3から大気中へ放出される。
When the temperature in the case 2 rises, and the ambient temperature of the shape memory leaf spring 10 becomes higher than the temperature that requires cooling of the CPU 7 with this, the temperature of the shape memory leaf spring 10 also rises above the predetermined temperature. Become. Then, the shape memory leaf spring 10 generates an elastic force so as to be deformed into the memorized shape, and pushes the heat conduction leaf spring 9 by the pressing portion 10b. Then, the shape memory leaf spring 10 elastically deforms the heat conduction leaf spring 9 against its elastic force and presses the heat conduction sheet 12 of the heat receiving piece 9c against the surface of the CPU 7 as shown in FIG.
When the heat conductive sheet 12 is pressed by the CPU 7, the heat of the CPU 7 is transmitted from the heat conductive sheet 12 to the heat receiving piece portion 9c of the heat conductive leaf spring 9, and further, the rising portion 9b and the fixing portion 9a are transferred from the heat receiving piece portion 9c. In order, it is transmitted to the lower case 3 as a heat radiating part. The heat transferred to the lower case 3 is finally released from the lower case 3 into the atmosphere.

カーナビゲーション装置の運転が終了するなどして、雰囲気温度が低下することによって形状記憶板ばね10が所定温度未満になると、形状記憶板ばね10は、弾発力を失う。すると、熱伝導板ばね9が自身の復元弾発力で、形状記憶板ばね10を塑性変形させながら元の状態に復して熱伝導シート12をCPU7から離す。   If the shape memory leaf spring 10 falls below a predetermined temperature due to the atmospheric temperature being lowered, for example, when the operation of the car navigation device is terminated, the shape memory leaf spring 10 loses its elasticity. Then, the heat conduction leaf spring 9 returns to its original state while plastically deforming the shape memory leaf spring 10 by its own restoring elastic force, and releases the heat conduction sheet 12 from the CPU 7.

このように本実施形態によれば、CPU7を冷却する必要があるときに限って熱伝導板ばね9の受熱片部9cがCPU7に押圧され、CPU7を冷却する必要のないときには、熱伝導板ばね9は、CPU7から離れる。このため、熱伝導板ばね9は、CPU7の冷却を必要とするとき以外は、CPU7に対して押圧力を及ぼさないので、CPU7が熱伝導板ばね9から押圧力を受け且つ車両の走行に伴って振動も受けるという機会の発生を極力少なくすることができ、半田ボール7aの耐久性を向上させることができる。   Thus, according to the present embodiment, the heat receiving plate portion 9c of the heat conducting plate spring 9 is pressed by the CPU 7 only when the CPU 7 needs to be cooled, and when the CPU 7 does not need to be cooled, the heat conducting plate spring is used. 9 leaves the CPU 7. For this reason, the heat conducting leaf spring 9 does not exert a pressing force on the CPU 7 except when the CPU 7 needs to be cooled, so that the CPU 7 receives the pushing force from the heat conducting leaf spring 9 and accompanies the traveling of the vehicle. Thus, the occurrence of the opportunity of receiving vibrations can be minimized, and the durability of the solder balls 7a can be improved.

図6および図7は本発明の他の実施形態を示すもので、以下、この図6および図7に図1ないし図5と同一部分に同一符号を付して詳細な説明を省略し、異なる部分のみを説明する。
この実施形態が上述の一実施形態と異なるところは、形状記憶板ばね10に代えて形状記憶コイルばね13としたものである。形状記憶コイルばね13は、下ケース3の内底面に固定されたホルダー14の保持孔15内に挿入され、熱伝導板ばね9の受熱片部9cの下に位置するように保持されている。
6 and 7 show another embodiment of the present invention. Hereinafter, the same parts as those in FIGS. 1 to 5 are denoted by the same reference numerals in FIG. 6 and FIG. Only the part will be described.
This embodiment differs from the above-described embodiment in that a shape memory coil spring 13 is used instead of the shape memory leaf spring 10. The shape memory coil spring 13 is inserted into the holding hole 15 of the holder 14 fixed to the inner bottom surface of the lower case 3, and is held so as to be positioned under the heat receiving piece portion 9 c of the heat conducting plate spring 9.

この形状記憶コイルばね13は、所定温度未満では、弾力性を失い、熱伝導板ばね9の復元弾発力によって押し縮められた状態にある。この状態では、熱伝導板ばね9は、図6に二点鎖線で示すように受熱片部9c(熱伝導シート12)をCPU7から離反させている。そして、CPU7を冷却すべき所定温度以上になると、形状記憶コイルばね13は、記憶した形状となるように弾発力を生じて熱伝導板ばね9の受熱片部9cを押し上げる。これにより、図6に実線で示すように熱伝導板ばね9の受熱片部9cの熱伝導シート12がCPU7に押圧され、CPU7の熱を熱伝導板ばね9を介して下ケース3に伝える。   The shape memory coil spring 13 loses elasticity at a temperature lower than a predetermined temperature, and is in a state of being compressed by the restoring elastic force of the heat conductive leaf spring 9. In this state, the heat conductive leaf spring 9 separates the heat receiving piece 9c (heat conductive sheet 12) from the CPU 7 as shown by a two-dot chain line in FIG. And if it becomes more than the predetermined temperature which should cool CPU7, the shape memory coil spring 13 will produce a resilient force so that it may become the memorize | stored shape, and will push up the heat receiving piece part 9c of the heat conductive leaf | plate spring 9. FIG. Thereby, as shown by a solid line in FIG. 6, the heat conductive sheet 12 of the heat receiving piece portion 9 c of the heat conductive plate spring 9 is pressed by the CPU 7, and the heat of the CPU 7 is transmitted to the lower case 3 via the heat conductive plate spring 9.

なお、本発明は上記し且つ図面に示す実施例に限定されるものではなく、以下のような拡張或いは変更が可能である。
形状記憶ばね手段は雰囲気によって熱せられる構成に限られず、形状記憶ばね手段を冷却対象部品に接触させて冷却対象部品により直接的に熱せられるようにしても良い。
形状記憶ばね手段としては、所定温度を越えると弾性力を失うものであっても良い。この場合には、熱伝導板ばね9は、自身の弾発力で受熱片部9cをCPU7に接する方向に付勢するように形成し、形状記憶ばね手段を、熱伝導板ばね9の受熱片部9cと下ケース3の底部との間に掛けられた例えばコイルばねとして構成する。そして、コイルばねからなる形状記憶ばね手段は、所定温度以下になると弾発力を生じて熱伝導板ばね9の受熱片部9cをCPU7から離すように付勢する構成とする。
The present invention is not limited to the embodiments described above and shown in the drawings, and can be expanded or changed as follows.
The shape memory spring means is not limited to the configuration heated by the atmosphere, and the shape memory spring means may be directly heated by the cooling target component by bringing the shape memory spring means into contact with the cooling target component.
The shape memory spring means may lose its elastic force when a predetermined temperature is exceeded. In this case, the heat conducting leaf spring 9 is formed so as to urge the heat receiving piece portion 9c in a direction in contact with the CPU 7 by its own elastic force, and the shape memory spring means is used as the heat receiving piece of the heat conducting leaf spring 9. For example, it is configured as a coil spring hung between the portion 9 c and the bottom of the lower case 3. And the shape memory spring means which consists of a coil spring is set as the structure which produces the elastic force when it becomes below predetermined temperature, and urges | biases the heat receiving piece part 9c of the heat conductive leaf | plate spring 9 away from CPU7.

冷却対象部品は、ケース内に収納されたものに限られず、大気に晒された電子部品或いは電子部品であっても良い。この場合には、例えばアルミ製のヒートシンクを接触させることによって冷却対象部品を冷却する構成とし、冷却対象部品が冷却を必要とする所定温度になったら、形状記憶ばね手段が弾発力を生じてヒートシンクを冷却対象部品に接触させたり、冷却対象部品から離したりするように構成する。
熱伝導部材をばね性のない材料から構成しても良い。この場合には、バイアス用の付勢手段は、別体のばねから構成する。
冷却対象部品としては、必ずしも面実装型の電子部品に限られない。
冷却対象部品としては、CPU7に限られず、他の電子部品であっても良い。また、冷却対象部品としては、電子部品に限られず、コンデンサ、トランスなどの電気部品であっても良い
The parts to be cooled are not limited to those housed in the case, but may be electronic parts or electronic parts exposed to the atmosphere. In this case, for example, the cooling target component is cooled by contacting an aluminum heat sink, and when the cooling target component reaches a predetermined temperature that requires cooling, the shape memory spring means generates elasticity. The heat sink is configured to be in contact with the part to be cooled or separated from the part to be cooled.
The heat conducting member may be made of a material having no spring property. In this case, the biasing means is constituted by a separate spring.
The component to be cooled is not necessarily limited to the surface mount type electronic component.
The component to be cooled is not limited to the CPU 7 and may be another electronic component. Moreover, the parts to be cooled are not limited to electronic parts, and may be electrical parts such as capacitors and transformers.

本発明の一実施形態を示すもので、熱伝導板ばねの熱伝導シートを冷却対象部品から離した状態で示す断面図Sectional drawing which shows one Embodiment of this invention and shows the state which separated the heat conductive sheet of the heat conductive leaf | plate spring from the components to be cooled. 熱伝導板ばねの熱伝導シートを冷却対象部品に接触させた状態で示す断面図Sectional view showing the heat conductive sheet of the heat conductive leaf spring in contact with the component to be cooled 冷却対象部品を収納したケースの断面図Sectional view of the case containing the parts to be cooled ケースの内部を示す破断斜視図Broken perspective view showing the inside of the case 分解斜視図Exploded perspective view 本発明の他の実施形態を示す要部の断面図Sectional drawing of the principal part which shows other embodiment of this invention. 要部の斜視図Perspective view of main parts

符号の説明Explanation of symbols

図中、2はケース、6はプリント配線基板、7はCPU(冷却対象部品)、7aは半田ボール(接続端子)、8は放熱装置、9は熱伝導板ばね(熱伝導部材)、10は形状記憶板ばね(形状記憶ばね手段)、12は熱伝導シート、13は形状記憶コイルばね(形状記憶ばね手段)、14はホルダーである。   In the figure, 2 is a case, 6 is a printed circuit board, 7 is a CPU (component to be cooled), 7a is a solder ball (connection terminal), 8 is a heat dissipation device, 9 is a heat conductive leaf spring (heat conductive member), 10 is A shape memory leaf spring (shape memory spring means), 12 is a heat conductive sheet, 13 is a shape memory coil spring (shape memory spring means), and 14 is a holder.

Claims (6)

電子部品または電気部品からなる冷却対象部品に熱伝導部材を接触させることにより、前記冷却対象部品の熱を前記熱伝導部材に伝えるように構成した放熱装置において、
前記熱伝導部材に対し、当該熱伝導部材が前記冷却対象部品に接する方向および前記冷却対象部品から離れる方向のうち、一方の方向への付勢力を常時及ぼす付勢手段および所定温度になったときに記憶した形状に変形して他方の方向への付勢力を及ぼす形状記憶材料からなる形状記憶ばね手段を備え、
前記形状記憶ばね手段が記憶した形状に変形することにより、前記熱伝導部材が前記冷却対象部品に対して接離することを特徴とする放熱装置。
In a heat dissipation device configured to transmit heat of the cooling target component to the heat conductive member by bringing the heat conductive member into contact with the cooling target component consisting of an electronic component or an electrical component,
A biasing means that constantly exerts a biasing force in one direction out of a direction in which the heat conduction member is in contact with the component to be cooled and a direction in which the heat conduction member is separated from the component to be cooled, and when a predetermined temperature is reached. A shape memory spring means made of a shape memory material that deforms into the shape memorized and exerts a biasing force in the other direction,
The heat radiating device according to claim 1, wherein the heat conducting member is brought into contact with or separated from the object to be cooled by being deformed into a shape memorized by the shape memory spring means.
電子部品または電気部品からなる冷却対象部品に熱伝導部材を接触させることにより、前記冷却対象部品の熱を前記熱伝導部材に伝えるように構成した放熱装置において、
前記熱伝導部材を前記冷却対象部品から離す方向に付勢する付勢手段と、
前記冷却対象部品に接して、または前記冷却対象部品の近傍に位置して設けられ、所定温度以上になると、記憶した形状へと変形することにより弾発力を生じて前記付勢手段の付勢力に抗して前記熱伝導部材を前記冷却対象部品に接触させる形状記憶材料からなる形状記憶ばね手段と
を具備してなる放熱装置。
In a heat dissipation device configured to transmit heat of the cooling target component to the heat conductive member by bringing the heat conductive member into contact with the cooling target component consisting of an electronic component or an electrical component,
An urging means for urging the heat conducting member in a direction away from the component to be cooled;
The urging force of the urging means is provided in contact with the cooling target component or in the vicinity of the cooling target component. And a shape memory spring means made of a shape memory material for bringing the heat conducting member into contact with the part to be cooled against the heat radiation device.
電子部品または電気部品からなる冷却対象部品に熱伝導部材を接触させることにより、前記冷却対象部品の熱を前記熱伝導部材に伝えるように構成した放熱装置において、
前記熱伝導部材を前記冷却対象部品に接触させる方向に付勢する付勢手段と、
前記冷却対象部品に接して、または前記冷却対象部品の近傍に設けられ、所定温度以下になると、記憶した形状へと変形することにより弾発力を生じて前記付勢手段の付勢力に抗して前記熱伝導部材を前記冷却対象部品から離す形状記憶材料からなる形状記憶ばね手段と
を具備してなる放熱装置。
In a heat dissipation device configured to transmit heat of the cooling target component to the heat conductive member by bringing the heat conductive member into contact with the cooling target component consisting of an electronic component or an electrical component,
An urging means for urging the heat conducting member in a direction to contact the component to be cooled;
Provided in contact with the cooling target component or in the vicinity of the cooling target component and when the temperature falls below a predetermined temperature, it is deformed into a memorized shape to generate a resilient force against the biasing force of the biasing means. And a shape memory spring means made of a shape memory material for separating the heat conducting member from the component to be cooled.
前記熱伝導部材は、ばね材からなり、前記付勢手段と兼用されて前記形状記憶ばね手段が前記所定温度未満のとき、自身の弾発力により前記冷却対象部品から離れる方向に変位することを特徴とする請求項2記載の放熱装置。   The heat conducting member is made of a spring material, and is also used as the urging means, and when the shape memory spring means is below the predetermined temperature, it is displaced in a direction away from the cooling target component by its own elastic force. The heat dissipating device according to claim 2. 前記熱伝導部材は、ばね材からなり、前記付勢手段と兼用されて前記形状記憶ばね手段が前記所定温度を越えたとき、自身の弾発力により前記冷却対象部品に接する方向に変位することを特徴とする請求項3記載の放熱装置。   The heat conducting member is made of a spring material, and is also used as the urging means, and when the shape memory spring means exceeds the predetermined temperature, it is displaced in a direction in contact with the component to be cooled by its own elastic force. The heat dissipating device according to claim 3. 前記冷却対象部品は、プリント配線基板に接続するための接続端子を、底面に多数配置した表面実装型の半導体装置であることを特徴とする請求項1ないし5のいずれかに記載の放熱装置。   6. The heat dissipation device according to claim 1, wherein the component to be cooled is a surface-mount type semiconductor device in which a large number of connection terminals for connecting to a printed wiring board are arranged on the bottom surface.
JP2006082843A 2006-03-24 2006-03-24 Heat dissipation device Expired - Fee Related JP4710683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082843A JP4710683B2 (en) 2006-03-24 2006-03-24 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082843A JP4710683B2 (en) 2006-03-24 2006-03-24 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2007258548A true JP2007258548A (en) 2007-10-04
JP4710683B2 JP4710683B2 (en) 2011-06-29

Family

ID=38632470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082843A Expired - Fee Related JP4710683B2 (en) 2006-03-24 2006-03-24 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP4710683B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021568A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Heat radiating device
WO2011030600A1 (en) * 2009-09-09 2011-03-17 シャープ株式会社 Lighting device, display device, and television receiver
US8416573B2 (en) 2010-08-10 2013-04-09 Empire Technology Development Llc. Fluid cooling
KR101349013B1 (en) * 2012-04-23 2014-01-10 현대자동차주식회사 Housing for electric and electronic components using shape memory material
DE102019213784A1 (en) * 2019-09-11 2021-03-11 Robert Bosch Gmbh Fluid pump and fluid supply system
JP7506337B2 (en) 2022-02-04 2024-06-26 富士通クライアントコンピューティング株式会社 Computer system and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239998A (en) * 1988-03-22 1989-09-25 Fujitsu Ltd Heat-radiating structure of plug-in unit
JPH0582688A (en) * 1991-09-20 1993-04-02 Hitachi Ltd Semiconductor integrated circuit device
JPH0983184A (en) * 1995-09-14 1997-03-28 Toko Inc Heat dissipating structure for composite electronic component

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01239998A (en) * 1988-03-22 1989-09-25 Fujitsu Ltd Heat-radiating structure of plug-in unit
JPH0582688A (en) * 1991-09-20 1993-04-02 Hitachi Ltd Semiconductor integrated circuit device
JPH0983184A (en) * 1995-09-14 1997-03-28 Toko Inc Heat dissipating structure for composite electronic component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021568A (en) * 2009-07-17 2011-02-03 Toyota Motor Corp Heat radiating device
WO2011030600A1 (en) * 2009-09-09 2011-03-17 シャープ株式会社 Lighting device, display device, and television receiver
US8416573B2 (en) 2010-08-10 2013-04-09 Empire Technology Development Llc. Fluid cooling
CN103141166A (en) * 2010-08-10 2013-06-05 英派尔科技开发有限公司 Improved fluid cooling
CN103141166B (en) * 2010-08-10 2015-06-03 英派尔科技开发有限公司 Improved fluid cooling
KR101349013B1 (en) * 2012-04-23 2014-01-10 현대자동차주식회사 Housing for electric and electronic components using shape memory material
US9603288B2 (en) 2012-04-23 2017-03-21 Hyundai Motor Company Electronic/electrical component housing with strips of metal plate and shape memory material forming a heat transfer path
US10375858B2 (en) 2012-04-23 2019-08-06 Hyundai Motor Company Electronic/electrical component housing with strips of metal plate and shape memory material forming a heat transfer path
DE102019213784A1 (en) * 2019-09-11 2021-03-11 Robert Bosch Gmbh Fluid pump and fluid supply system
JP7506337B2 (en) 2022-02-04 2024-06-26 富士通クライアントコンピューティング株式会社 Computer system and method for manufacturing the same

Also Published As

Publication number Publication date
JP4710683B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
TW486796B (en) Circuit module and electronic machine installed with the circuit module
JP5391776B2 (en) heatsink
JP4799296B2 (en) Electronics
US20060180926A1 (en) Heat spreader clamping mechanism for semiconductor modules
JP4710683B2 (en) Heat dissipation device
EP1508916A1 (en) Apparatus for cooling semiconductor devices attached to a printed circuit board
US8238102B2 (en) Heat dissipation apparatus for electronic device
US20070146990A1 (en) Heat dissipating assembly
US7468890B2 (en) Graphics card heat-dissipating device
JP2008072062A (en) Mounting structure and electronic device equipped with the same
US7304854B2 (en) Heat dissipating device for electronic component
JP2009212390A (en) Attachment structure of heating element mounted component
US20070133177A1 (en) Flexing chip heatsink
JP2008198864A (en) Electronic equipment and semiconductor package
JP2002280499A (en) Cooling module
JPH0680911B2 (en) Heat dissipation structure of printed wiring board with electronic components
JP2003318337A (en) Electronic instrument
JPH0982859A (en) Heat sink assembled body
JP2019075538A (en) Semiconductor thermal-conductive heat sink structure
JP2007115965A (en) Electronic apparatus
JP2005057070A (en) Heat radiating structure of electronic equipment
JPH0722594U (en) Module heat dissipation structure
KR20080004734A (en) Radiating structure in exothermic element
CN217306113U (en) Storage device with active heat dissipation function
CN220023172U (en) Circuit board with heat radiation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees