JP2007258233A - Semiconductor device, manufacturing method thereof, and circuit board - Google Patents

Semiconductor device, manufacturing method thereof, and circuit board Download PDF

Info

Publication number
JP2007258233A
JP2007258233A JP2006077124A JP2006077124A JP2007258233A JP 2007258233 A JP2007258233 A JP 2007258233A JP 2006077124 A JP2006077124 A JP 2006077124A JP 2006077124 A JP2006077124 A JP 2006077124A JP 2007258233 A JP2007258233 A JP 2007258233A
Authority
JP
Japan
Prior art keywords
hole
semiconductor substrate
depth
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006077124A
Other languages
Japanese (ja)
Inventor
Toshiro Mihashi
敏郎 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2006077124A priority Critical patent/JP2007258233A/en
Publication of JP2007258233A publication Critical patent/JP2007258233A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10329Gallium arsenide [GaAs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a semiconductor device which uses laser work in a forming process of a through-electrode. <P>SOLUTION: An oxide film 11 is formed on a main face 101 of a semiconductor substrate 10. The oxide film 11 is removed by a laser beam, and holes 20 are formed on the main face of the semiconductor substrate 10. The holes 20 are worked with prescribed thickness. The rear face of the semiconductor substrate 10 is polished and the through-electrode is formed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製造方法、特にレーザ光により形成された貫通孔を含む半導体装置の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including a through hole formed by laser light.

従来、レーザ光により形成された貫通孔を含む半導体装置の製造方法として、次のようなものがある。第1に、シリコン基板のパターン形成面にレーザ光を照射して貫通孔を形成することにより、パターン形成面の熱損傷を防止する(例えば、特許文献1参照)。
第2に、半導体基板上の樹脂膜にレーザ光を照射しその樹脂膜のパターン形成を行う。そして、樹脂膜をドライエッチングにより加工しその樹脂膜に開口を形成する。このため、リソグラフィ工程でパターン形成を行う場合に比べて、パターン形成が簡素化する(例えば、特許文献2参照)。
特開2003−124154号公報(段落0005参照) 特開2005−156999号公報(段落0014~0025参照)
Conventionally, as a method for manufacturing a semiconductor device including a through-hole formed by a laser beam, there is the following method. First, the pattern formation surface of the silicon substrate is irradiated with laser light to form a through hole, thereby preventing thermal damage to the pattern formation surface (see, for example, Patent Document 1).
Second, the resin film on the semiconductor substrate is irradiated with laser light to form a pattern on the resin film. Then, the resin film is processed by dry etching to form an opening in the resin film. For this reason, compared with the case where pattern formation is performed in a lithography process, pattern formation is simplified (for example, refer patent document 2).
JP2003-124154A (see paragraph 0005) JP 2005-156999 A (see paragraphs 0014-0025)

しかしながら、上述の2つの方法では、レーザ加工をパターン形成の過程で用いるものの、貫通電極を形成する過程ではレーザ加工が用いられていなかった。そのため、貫通電極の形成過程でレーザ加工を活用することが望まれていた。   However, in the above-described two methods, although laser processing is used in the process of pattern formation, laser processing is not used in the process of forming the through electrode. Therefore, it has been desired to utilize laser processing in the formation process of the through electrode.

この発明の半導体装置の製造方法は、前述の課題を解決するために、半導体基板の第1面上に、第1絶縁膜を形成するステップと、第1絶縁膜をレーザ光により除去し、半導体基板の第1面に孔部を形成するステップとを含む。さらに、孔部をエッチングにより所定の深さまで加工するステップと、第1面とは異なる半導体基板の第2面を研磨し、孔部内に、第1面および第2面の間を貫通する貫通電極を形成するステップとを含む。
この発明の半導体装置の製造方法は、レーザ加工およびエッチング加工により、所定の深さの孔部を半導体基板の第1面に形成する。そして、半導体基板の第2面を研磨して孔部を貫通させ、その孔部内に貫通電極を形成する。
In order to solve the above-described problems, a method of manufacturing a semiconductor device according to the present invention includes a step of forming a first insulating film on a first surface of a semiconductor substrate, and removing the first insulating film with a laser beam. Forming a hole in the first surface of the substrate. Furthermore, the step of processing the hole to a predetermined depth by etching, the second surface of the semiconductor substrate different from the first surface is polished, and the through electrode that penetrates between the first surface and the second surface in the hole Forming a step.
In the semiconductor device manufacturing method of the present invention, a hole having a predetermined depth is formed on the first surface of the semiconductor substrate by laser processing and etching processing. Then, the second surface of the semiconductor substrate is polished to penetrate the hole, and a through electrode is formed in the hole.

この発明によれば、半導体基板の第1面に形成した孔部をレーザ光およびエッチングにより加工した後、半導体基板の第2面を研磨して貫通電極を形成するため、貫通電極の形成過程でレーザ加工を活用する半導体装置の製造方法が得られる。   According to this invention, the hole formed in the first surface of the semiconductor substrate is processed by laser light and etching, and then the second surface of the semiconductor substrate is polished to form the through electrode. A semiconductor device manufacturing method utilizing laser processing can be obtained.

(実施の形態1)
本発明の実施の形態1を図1Aないし図2に基づいて説明する。
図1Aないし図1Fは、本発明の実施の形態1における半導体装置の製造工程を示す図である。図1Aないし図1Fには、半導体チップが組み込まれた半導体基板10を含む半導体装置の一部の断面が示されている。半導体基板として、例えば、厚さが350μm程度のシリコン基板を用いる。なお、半導体基板10には、トランジスタやメモリなどの回路を含む集積回路が半導体チップに形成されているものとする。
まず、半導体基板10上に酸化膜(第1絶縁膜)11を形成する(図1A)。酸化膜11は、例えばSiOとし、CVD(Chemical Vapor Deposition)法により形成する。酸化膜11は、例えば2μm程度の厚さを有する。なお、酸化膜11は、例えばSiNであってもよい。
(Embodiment 1)
Embodiment 1 of the present invention will be described with reference to FIGS. 1A to 2.
1A to 1F are views showing manufacturing steps of the semiconductor device according to the first embodiment of the present invention. 1A to 1F show a cross section of a part of a semiconductor device including a semiconductor substrate 10 in which a semiconductor chip is incorporated. For example, a silicon substrate having a thickness of about 350 μm is used as the semiconductor substrate. Note that an integrated circuit including a circuit such as a transistor or a memory is formed on a semiconductor chip on the semiconductor substrate 10.
First, an oxide film (first insulating film) 11 is formed on the semiconductor substrate 10 (FIG. 1A). The oxide film 11 is made of, for example, SiO 2 and is formed by a CVD (Chemical Vapor Deposition) method. The oxide film 11 has a thickness of about 2 μm, for example. The oxide film 11 may be SiN, for example.

続いて、半導体基板10上の酸化膜11をレーザ光100により除去し、半導体基板10の主面(第1面)101に孔部20を形成する(図1B)。主面101は、集積回路が形成された面を指す。レーザは、例えば、炭酸ガスレーザ、YAGレーザ、エキシマレーザなどを用いる。
具体的には、レーザ光100を酸化膜11の一面に向けて照射した場合、その照射された酸化膜11がレーザ光100のエネルギーによって飛散し、孔部20が形成される。そして、レーザ光100をさらに酸化膜11の一面に照射し続けると、孔部20の深さが次第に深くなる。他方、飛散した酸化膜11は、孔部20の開口周辺に付着して堆積し、堆積物(レーザドロース)21を形成する。
Subsequently, the oxide film 11 on the semiconductor substrate 10 is removed by the laser beam 100, and a hole 20 is formed in the main surface (first surface) 101 of the semiconductor substrate 10 (FIG. 1B). The main surface 101 indicates a surface on which an integrated circuit is formed. As the laser, for example, a carbon dioxide laser, a YAG laser, an excimer laser, or the like is used.
Specifically, when the laser beam 100 is irradiated toward one surface of the oxide film 11, the irradiated oxide film 11 is scattered by the energy of the laser beam 100, and the hole 20 is formed. When the laser beam 100 is further irradiated onto one surface of the oxide film 11, the depth of the hole 20 gradually increases. On the other hand, the scattered oxide film 11 adheres to and deposits around the opening of the hole 20 to form a deposit (laser drose) 21.

このようにして形成された孔部20の開口は、例えば円形であり、その直径は4μm程度でかつ深さは2μm程度とする。孔部20の深さは、後述のエッチングにより孔部20を所定の深さまで深堀エッチングするので、酸化膜11を除去する程度の深さとすることが好ましい。
なお、孔部20の開口の形状、開口の直径および深さは、後述する貫通電極の形状に応じ変更してもよい。
図1Bでは、パッシベーション膜が記載されていないが、パッシベーション膜が酸化膜11上に形成されている場合、レーザ光100をパッシベーション膜の一面に向けて照射し、そのパッシベーション膜および酸化膜11を除去して、孔部20を形成する。パッシベーション膜は、例えば、SiO、SiN、ポリイミド樹脂などの材料で形成される。
The opening of the hole 20 formed in this way is, for example, circular, and has a diameter of about 4 μm and a depth of about 2 μm. The depth of the hole 20 is preferably deep enough to remove the oxide film 11 because the hole 20 is deep-etched to a predetermined depth by etching described later.
In addition, you may change the shape of the opening of the hole part 20, the diameter of an opening, and the depth according to the shape of the penetration electrode mentioned later.
In FIG. 1B, the passivation film is not described, but when the passivation film is formed on the oxide film 11, the laser beam 100 is irradiated toward one surface of the passivation film to remove the passivation film and the oxide film 11. Thus, the hole 20 is formed. The passivation film is formed of a material such as SiO 2 , SiN, or polyimide resin.

次に、図1Bの孔部20をエッチングにより所定の深さt1まで加工する(図1C)。この深さは、後述する図1Eの工程で半導体基板10が裏面研磨される際に、孔部20が貫通することを考慮して設定される。
具体的には、図1Cの酸化膜11をマスクとして、孔部20をドライエッチングすることにより、半導体基板10を深堀エッチングし、深孔部22を形成する。ドライエッチングに用いられるエッチングガスとしては、例えば六フッ化硫黄(SF6)を用いる。
深孔部22は、例えば円柱形状であり、その深さt1が60μmで、直径が4μm程度とする。つまり、上述した所定の深さt1は、半導体基板10の主面101から、60μmになる。なお、深さt1は、孔部20(深孔部22)が、半導体基板の裏面102から露出するのであれば、60μm以上となるように設定してもよい。このようにしても、後述する貫通電極を形成することができるからである。
Next, the hole 20 in FIG. 1B is processed to a predetermined depth t1 by etching (FIG. 1C). This depth is set in consideration of penetration of the hole 20 when the semiconductor substrate 10 is polished on the back surface in the step of FIG. 1E described later.
Specifically, by using the oxide film 11 of FIG. 1C as a mask, the hole 20 is dry-etched to deep-etch the semiconductor substrate 10 to form the deep hole 22. As an etching gas used for dry etching, for example, sulfur hexafluoride (SF6) is used.
The deep hole portion 22 has, for example, a cylindrical shape, and has a depth t1 of 60 μm and a diameter of about 4 μm. That is, the predetermined depth t <b> 1 described above is 60 μm from the main surface 101 of the semiconductor substrate 10. The depth t1 may be set to be 60 μm or more if the hole 20 (deep hole 22) is exposed from the back surface 102 of the semiconductor substrate. This is because a through electrode described later can be formed even in this way.

このようにして孔部20がドライエッチングされると、孔部20直下にある半導体基板10の主面101から、シリコン(Si)部分をエッチングする。このとき、孔部20直下では、孔部20の開口が外側に広がるようにシリコン(Si)部分がエッチングされ、サイドエッチ部23が形成される。このため、サイドエッチ部23の直径(開口の最も大きい部分)は、孔部20の開口の直径(4μm程度)よりも大きくなる。
他方、上述したドライエッチングにより、堆積物21(図1B参照)が除去されるという効果を得る。堆積物21は、後工程において、半導体基板10から剥離し異物となるので、上記ドライエッチングにより堆積物21が除去でき、有益である。
なお、実施の形態1では、エッチングは、ドライエッチングの場合で説明したが、水酸化カリウム(KOH)水溶液などのエッチング溶液を用いたウェットエッチングを適用してもよい。
When the hole 20 is dry-etched in this way, a silicon (Si) portion is etched from the main surface 101 of the semiconductor substrate 10 immediately below the hole 20. At this time, the silicon (Si) portion is etched immediately below the hole 20 so that the opening of the hole 20 spreads outward, so that the side etch portion 23 is formed. For this reason, the diameter of the side-etched portion 23 (the portion with the largest opening) is larger than the diameter of the opening of the hole portion 20 (about 4 μm).
On the other hand, the deposit 21 (see FIG. 1B) is removed by the dry etching described above. Since the deposit 21 is peeled off from the semiconductor substrate 10 and becomes a foreign substance in a subsequent process, the deposit 21 can be removed by the dry etching, which is beneficial.
Note that although etching is described in Embodiment 1 in the case of dry etching, wet etching using an etching solution such as a potassium hydroxide (KOH) aqueous solution may be applied.

次に、深孔部22(図1C参照)内に、銅(Cu)などの導電材を充填し、導電部30を形成する(図1D)。導電部30は、銅などの金属メッキで形成されている。導電材として、アルミニウム、金、銀または白金を適用し、導電部30は、それらの導電材からなる金属メッキで形成してもよい。本実施の形態では、導電部30は、銅メッキにより形成されているものとする。   Next, the deep hole portion 22 (see FIG. 1C) is filled with a conductive material such as copper (Cu) to form the conductive portion 30 (FIG. 1D). The conductive portion 30 is formed by metal plating such as copper. Aluminum, gold, silver or platinum may be used as the conductive material, and the conductive portion 30 may be formed by metal plating made of those conductive materials. In the present embodiment, the conductive portion 30 is formed by copper plating.

次に、半導体基板10の裏面(第2面)102を研磨し、導電部30を半導体基板10の両面(主面101および裏面102を意味。以下同じ)で貫通させる(図1E)。具体的には、半導体基板10の裏面の研磨は、導電部30の深さが、半導体基板10の主面101から、60μmになるように行う。すなわち、孔部20(図1B参照)の深さt2が、半導体基板10の主面101から、50μmになるようにする。
なお、ここでの研磨は、研削を含む意味である。研削には、所定の粒度の砥石を使用したり、研磨には研磨布やスラリーなどを使用したりしてもよい。
このようにすることにより、孔部20(図1B参照)内に形成された導電部30が、半導体基板10の両面を貫通する貫通電極として形成されることとなる。
Next, the back surface (second surface) 102 of the semiconductor substrate 10 is polished, and the conductive portion 30 is passed through both surfaces of the semiconductor substrate 10 (the main surface 101 and the back surface 102; the same applies hereinafter) (FIG. 1E). Specifically, the back surface of the semiconductor substrate 10 is polished so that the depth of the conductive portion 30 is 60 μm from the main surface 101 of the semiconductor substrate 10. That is, the depth t2 of the hole 20 (see FIG. 1B) is set to 50 μm from the main surface 101 of the semiconductor substrate 10.
Here, the term “polishing” includes grinding. For grinding, a grindstone having a predetermined particle size may be used, or for polishing, a polishing cloth or slurry may be used.
By doing in this way, the electroconductive part 30 formed in the hole part 20 (refer FIG. 1B) will be formed as a penetration electrode which penetrates both surfaces of the semiconductor substrate 10. FIG.

次に、貫通電極30の2つの露出面(半導体基板10の両面側)にバンプ31をそれぞれ形成する(図1F)。バンプ31は、円筒形状で、金などの金属で形成されているものとするが、これに限られない。例えば、バンプ31は凸状であってもよい。なお、バンプ31を形成する前には、不図示のパッドと集積回路との間の再配線が行われる。
このようにしてバンプ31を形成することにより、貫通電極30と半導体基板31が導通することとなる。なお、図1Fにおいて、バンプ31の直径と貫通電極30の直径とは、導通性能などの点から、ほぼ同一にしておくことが好ましい。
Next, bumps 31 are respectively formed on the two exposed surfaces of the through electrode 30 (both sides of the semiconductor substrate 10) (FIG. 1F). The bump 31 has a cylindrical shape and is formed of a metal such as gold, but is not limited thereto. For example, the bump 31 may be convex. Note that before the bumps 31 are formed, rewiring between pads (not shown) and the integrated circuit is performed.
By forming the bumps 31 in this way, the through electrodes 30 and the semiconductor substrate 31 become conductive. In FIG. 1F, it is preferable that the diameter of the bump 31 and the diameter of the through electrode 30 are substantially the same from the viewpoint of conduction performance.

以上のように、実施の形態1における半導体装置は、半導体基板10の主面101に孔部20を形成した後、エッチングにより孔部20を所定の深さまで加工する。そして、半導体基板10の裏面102を研磨し、孔部20内に、貫通電極30を形成する。このため、レーザ加工を貫通電極の形成過程(図1Aないし図1F参照)で活用することが可能となる。よって、リソグラフィ技術を用いずに、貫通電極30を形成することが可能となり、リソグラフィ技術を用いる場合に比べて、半導体装置の工程を削減することが可能となる。また、レーザ加工を活用することにより、半導体装置の製造コストを軽減することが可能となる。   As described above, in the semiconductor device according to the first embodiment, after forming the hole 20 in the main surface 101 of the semiconductor substrate 10, the hole 20 is processed to a predetermined depth by etching. Then, the back surface 102 of the semiconductor substrate 10 is polished, and the through electrode 30 is formed in the hole 20. For this reason, it becomes possible to utilize laser processing in the formation process of a penetration electrode (refer to Drawing 1A thru / or Drawing 1F). Therefore, the through electrode 30 can be formed without using the lithography technique, and the number of steps of the semiconductor device can be reduced as compared with the case of using the lithography technique. Further, by utilizing laser processing, the manufacturing cost of the semiconductor device can be reduced.

次に、上述した図1Aから図1Fに示した製造工程により得られた複数の半導体基板10に組み込まれた半導体チップを積層した半導体装置について説明する。
図2は、複数の半導体チップを積層した半導体装置の一部の構成例を示した図である。
図2に示した半導体装置は、個片化した2つの半導体チップ10(半導体基板の一部)を含み、これらの半導体チップ10が対向して配置されている。そして、最下層に位置する半導体チップ10(図2中の下位に位置するもの)は、その上部に形成されたバンプ31を介して、最下層の上位に位置する半導体チップ10(図2中の上位に位置するもの)と係合している。これにより、2つの半導体チップ10の導通経路が確保される。このようにすることにより、複数の半導体チップ10を積層した半導体装置を得ることも可能となる。
Next, a semiconductor device in which semiconductor chips incorporated in a plurality of semiconductor substrates 10 obtained by the manufacturing steps shown in FIGS. 1A to 1F described above are stacked will be described.
FIG. 2 is a diagram illustrating a configuration example of a part of a semiconductor device in which a plurality of semiconductor chips are stacked.
The semiconductor device shown in FIG. 2 includes two separated semiconductor chips 10 (a part of a semiconductor substrate), and these semiconductor chips 10 are arranged to face each other. Then, the semiconductor chip 10 located in the lowermost layer (the one located in the lower part in FIG. 2) is connected to the semiconductor chip 10 located in the uppermost part in the lowermost layer via bumps 31 formed in the upper part (in FIG. 2). Engaging with the upper one). Thereby, the conduction | electrical_connection path | route of the two semiconductor chips 10 is ensured. By doing so, it is also possible to obtain a semiconductor device in which a plurality of semiconductor chips 10 are stacked.

さらに、最上位に位置する半導体チップ10には、その下部にバンプ31が形成され、そのバンプ31が、接続パット41に接続されている。接続パッド41は、回路基板40に設けられている。回路基板40は、例えば、ガラスエポキシ基板などの有機系基板を用いる。回路基板40には、所定の回路が形成されている。例えば、回路基板40は、マザーボードなどである。これにより、複数の半導体チップ10を実装した回路基板40を得ることが可能となる。
なお、図2では、2つの半導体チップ10の一部が記載されているが、3つ以上の半導体チップ10を積層するようにしてもよい。また、回路基板40は、1つの半導体チップ10を実装していてもよい。
Further, a bump 31 is formed in the lower part of the semiconductor chip 10 located at the uppermost position, and the bump 31 is connected to the connection pad 41. The connection pad 41 is provided on the circuit board 40. As the circuit board 40, for example, an organic substrate such as a glass epoxy substrate is used. A predetermined circuit is formed on the circuit board 40. For example, the circuit board 40 is a motherboard or the like. Thereby, it is possible to obtain the circuit board 40 on which the plurality of semiconductor chips 10 are mounted.
In FIG. 2, a part of the two semiconductor chips 10 is illustrated, but three or more semiconductor chips 10 may be stacked. The circuit board 40 may be mounted with one semiconductor chip 10.

(実施の形態2)
本発明の実施の形態2を図3Aないし図3Fに基づいて説明する。なお、実施の形態1と同一の部分は、実施の形態1と同一の符号(用語を含む)を付して、適宜、重複説明を省略する。
図3Aないし図3Fは、本発明の実施の形態2における半導体装置の製造工程を示す図である。図3Aないし図3Fにも、半導体基板10を含む半導体装置の一部の断面が示されている。ここでは、図1Aおよび図1Bに示した製造工程を経て、半導体基板10の主面101に孔部20(図1B参照)が形成されているものとして、以下、説明する。
図3Aでは、孔部20(図1B参照)がエッチングにより第1の深さt3になるまで加工する。この深さt3は、上述した図1Cの工程でドライエッチングされる際に、サイドエッジ部23(図1C参照)の深さよりも深くなるように設定される。
具体的には、図3Aでは、図3Cの酸化膜11をマスクとして、孔部20(図1B参照)をドライエッチングすることにより、半導体基板10を深堀エッチングし、深孔部22A(深さt3の孔部20)を形成する。
深孔部22Aは、例えば円柱形状であり、その深さt3が20μmで、直径が4μm程度とする。これにより、孔部20(図1B参照)の深さt1は、半導体基板10の主面101から、20μmになる。なお、孔部20の深さt3は、20μm以上としてもよい。
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIGS. 3A to 3F. Note that the same parts as those in the first embodiment are denoted by the same reference numerals (including terms) as those in the first embodiment, and redundant description is appropriately omitted.
3A to 3F are views showing a manufacturing process of the semiconductor device according to the second embodiment of the present invention. 3A to 3F also show a cross section of a part of the semiconductor device including the semiconductor substrate 10. Here, the following description will be made on the assumption that the hole 20 (see FIG. 1B) is formed in the main surface 101 of the semiconductor substrate 10 through the manufacturing steps shown in FIGS. 1A and 1B.
In FIG. 3A, the hole 20 (see FIG. 1B) is processed by etching until the first depth t3 is reached. The depth t3 is set to be deeper than the depth of the side edge portion 23 (see FIG. 1C) when dry etching is performed in the above-described step of FIG. 1C.
Specifically, in FIG. 3A, by using the oxide film 11 of FIG. 3C as a mask, the hole 20 (see FIG. 1B) is dry-etched to deep-etch the semiconductor substrate 10 to obtain a deep hole 22A (depth t3). Hole 20).
The deep hole portion 22A has, for example, a cylindrical shape, and has a depth t3 of 20 μm and a diameter of about 4 μm. As a result, the depth t1 of the hole 20 (see FIG. 1B) is 20 μm from the main surface 101 of the semiconductor substrate 10. In addition, the depth t3 of the hole 20 may be 20 μm or more.

次に、半導体基板10の主面101、絶縁膜11および深孔部22Aのすべての表面を酸化膜(第2絶縁膜)12で覆う(図3B)。酸化膜12は、例えばSiOとし、CVD法により形成する。酸化膜12は、例えば2μm程度の厚さを有する。なお、酸化膜12は、例えばSiNであってもよい。 Next, all surfaces of the main surface 101, the insulating film 11, and the deep hole portion 22A of the semiconductor substrate 10 are covered with an oxide film (second insulating film) 12 (FIG. 3B). The oxide film 12 is made of, for example, SiO 2 and is formed by a CVD method. The oxide film 12 has a thickness of about 2 μm, for example. The oxide film 12 may be SiN, for example.

次に、深孔部22Aの内壁面221に酸化膜12を形成する(図3C)。具体的には、ドライエッチングにより、酸化膜12を全面エッチバックする。これにより、酸化膜12が深孔部22Aの内壁面221以外の表面に覆われていた酸化膜12が取り除かれ、内壁面221にのみ酸化膜12が形成される。
なお、図3Bにおいて、不図示のパッシベーション膜が酸化膜11上に形成されている場合、酸化膜12は、パッシベーション膜上に形成されることになるが、この場合も、上述した全面エッチバックにより、深孔部22Aの内壁面221にのみ酸化膜12が形成される。
Next, the oxide film 12 is formed on the inner wall surface 221 of the deep hole portion 22A (FIG. 3C). Specifically, the entire oxide film 12 is etched back by dry etching. Thereby, the oxide film 12 covered with the surface other than the inner wall surface 221 of the deep hole portion 22A is removed, and the oxide film 12 is formed only on the inner wall surface 221.
In FIG. 3B, when a passivation film (not shown) is formed on the oxide film 11, the oxide film 12 is formed on the passivation film. The oxide film 12 is formed only on the inner wall surface 221 of the deep hole portion 22A.

次に、酸化膜12を内壁面221に形成した深孔部22Aをエッチングし、深孔部22Aを深さt4(第2の深さ)まで加工する(図3D)。
具体的には、図3Dでは、図3Cの酸化膜11をマスクとして、深孔部22Aをドライエッチングすることにより、半導体基板10を深堀エッチングし、深さt4の深孔部22Aを形成する。
このドライエッチングの際、内壁面221には、酸化膜12が形成されているので、この酸化膜12が、内壁面221の保護膜の機能を果たし、内壁面221のシリコン(Si)部分のエッチングを阻止する。したがって、深孔部22Aは、図1Cに示した深孔部22の場合と異なり、サイドエッチ部23(図1C参照)を形成しない。
図3Dに示した深孔部22Aは、例えば円柱形状となる。そして、深孔部22Aは、深さt4が60μmで、直径が4μm程度とする。なお、深さt4は、孔部20(深孔部22A)が、半導体基板の裏面102から露出するのであれば、半導体基板10の主面101から、60μm以上となるように設定してもよい。
なお、図3Dにおいて、上述したドライエッチングにより、堆積物21(図1B参照)が除去される点は、図1Cに示した実施の形態1の場合と同様である。
Next, the deep hole portion 22A in which the oxide film 12 is formed on the inner wall surface 221 is etched to process the deep hole portion 22A to a depth t4 (second depth) (FIG. 3D).
Specifically, in FIG. 3D, the deep hole portion 22A is dry-etched using the oxide film 11 of FIG. 3C as a mask to deep-etch the semiconductor substrate 10 to form a deep hole portion 22A having a depth t4.
At the time of this dry etching, the oxide film 12 is formed on the inner wall surface 221, so this oxide film 12 functions as a protective film for the inner wall surface 221 and etches the silicon (Si) portion of the inner wall surface 221. To prevent. Accordingly, the deep hole portion 22A does not form the side etch portion 23 (see FIG. 1C), unlike the case of the deep hole portion 22 shown in FIG. 1C.
The deep hole portion 22A illustrated in FIG. 3D has, for example, a cylindrical shape. The deep hole portion 22A has a depth t4 of 60 μm and a diameter of about 4 μm. The depth t4 may be set to be 60 μm or more from the main surface 101 of the semiconductor substrate 10 as long as the hole 20 (deep hole 22A) is exposed from the back surface 102 of the semiconductor substrate. .
In FIG. 3D, the point that the deposit 21 (see FIG. 1B) is removed by the dry etching described above is the same as in the case of the first embodiment shown in FIG. 1C.

次に、深孔部22A(図1D参照)内に、銅(Cu)などの導電材を充填し、導電部30Aを形成する(図3E)。導電部30Aは、銅などの金属メッキで形成されている。導電材としては、アルミニウム、金、銀または白金を適用し、導電部30Aは、それらの導電材からなる金属メッキで形成してもよい。本実施の形態では、導電部30Aは、銅メッキにより形成されているものとする。   Next, the deep hole portion 22A (see FIG. 1D) is filled with a conductive material such as copper (Cu) to form the conductive portion 30A (FIG. 3E). The conductive portion 30A is formed by metal plating such as copper. As the conductive material, aluminum, gold, silver, or platinum may be applied, and the conductive portion 30A may be formed by metal plating made of those conductive materials. In the present embodiment, it is assumed that conductive portion 30A is formed by copper plating.

次に、半導体基板10の裏面102を研磨し、導電部30Aを半導体基板10の両面で貫通させる(図3E)。具体的には、半導体基板10の裏面102の研磨は、導電部30Aの深さが、半導体基板10の主面101から、50μmになるように行う。すなわち、孔部20(図1B参照)の深さt5が、半導体基板10の主面101から、50μmになるようにする。
このようにして、半導体基板10の両面を貫通する貫通電極30Aが、図1Eに示した実施の形態1の場合と同様に、形成される。このとき形成された貫通電極30Aも、深孔部22Aと同様、サイドエッチ部23(図1C参照)を有しない形状となる。
Next, the back surface 102 of the semiconductor substrate 10 is polished, and the conductive portion 30A is penetrated on both surfaces of the semiconductor substrate 10 (FIG. 3E). Specifically, the back surface 102 of the semiconductor substrate 10 is polished so that the depth of the conductive portion 30 </ b> A is 50 μm from the main surface 101 of the semiconductor substrate 10. That is, the depth t5 of the hole 20 (see FIG. 1B) is set to 50 μm from the main surface 101 of the semiconductor substrate 10.
In this manner, the through electrode 30A penetrating both surfaces of the semiconductor substrate 10 is formed in the same manner as in the first embodiment shown in FIG. 1E. Similarly to the deep hole portion 22A, the through electrode 30A formed at this time also has a shape that does not have the side etch portion 23 (see FIG. 1C).

次に、貫通電極30Aの2つの露出面(半導体基板10の両面側)にバンプ31をそれぞれ形成する(図3F)。
なお、その後、図3Aないし図3Fに示した製造工程により得られた複数の半導体基板10に組み込まれた半導体チップを図2に示したように積層してもよい。
Next, bumps 31 are respectively formed on the two exposed surfaces (both sides of the semiconductor substrate 10) of the through electrode 30A (FIG. 3F).
Thereafter, the semiconductor chips incorporated in the plurality of semiconductor substrates 10 obtained by the manufacturing steps shown in FIGS. 3A to 3F may be stacked as shown in FIG.

以上のように、実施の形態2における半導体装置は、実施の形態1における半導体装置と比較すると、サイドエッチ部23(図1C参照)を有しない形状の貫通電極を有する。これにより、実施の形態2における半導体装置は、例えばリフロー時において、サイドエッチの影響を受けた貫通電極の形状に起因するボイドの発生量を抑止することが可能となる。   As described above, the semiconductor device in the second embodiment has a through electrode having a shape that does not have the side-etched portion 23 (see FIG. 1C) as compared with the semiconductor device in the first embodiment. Thereby, the semiconductor device according to the second embodiment can suppress the amount of voids generated due to the shape of the through electrode affected by the side etch, for example, during reflow.

なお、本発明は、上記実施の形態に限られるものではなく、種々の変形が可能である。例えば、半導体基板は、ガリウム砒素(GaAs)やInPなどの半導体基板を用いてもよい。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, a semiconductor substrate such as gallium arsenide (GaAs) or InP may be used as the semiconductor substrate.

本発明の実施の形態1を示す半導体装置の製造工程の一部を示す図。FIG. 5 is a diagram showing a part of the manufacturing process of the semiconductor device showing the first embodiment of the present invention; 本発明の実施の形態1を示す半導体装置の製造工程の一部を示す図。FIG. 5 is a diagram showing a part of the manufacturing process of the semiconductor device showing the first embodiment of the present invention; 本発明の実施の形態1を示す半導体装置の製造工程の一部を示す図。FIG. 5 is a diagram showing a part of the manufacturing process of the semiconductor device showing the first embodiment of the present invention; 本発明の実施の形態1を示す半導体装置の製造工程の一部を示す図。FIG. 5 is a diagram showing a part of the manufacturing process of the semiconductor device showing the first embodiment of the present invention; 本発明の実施の形態1を示す半導体装置の製造工程の一部を示す図。FIG. 5 is a diagram showing a part of the manufacturing process of the semiconductor device showing the first embodiment of the present invention; 本発明の実施の形態1を示す半導体装置の製造工程の一部を示す図。FIG. 5 is a diagram showing a part of the manufacturing process of the semiconductor device showing the first embodiment of the present invention; 半導体基板を積層した半導体装置の構成図。1 is a configuration diagram of a semiconductor device in which semiconductor substrates are stacked. 本発明の実施の形態2を示す半導体装置の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the semiconductor device which shows Embodiment 2 of this invention. 本発明の実施の形態2を示す半導体装置の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the semiconductor device which shows Embodiment 2 of this invention. 本発明の実施の形態2を示す半導体装置の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the semiconductor device which shows Embodiment 2 of this invention. 本発明の実施の形態2を示す半導体装置の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the semiconductor device which shows Embodiment 2 of this invention. 本発明の実施の形態2を示す半導体装置の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the semiconductor device which shows Embodiment 2 of this invention. 本発明の実施の形態2を示す半導体装置の製造工程の一部を示す図。The figure which shows a part of manufacturing process of the semiconductor device which shows Embodiment 2 of this invention.

符号の説明Explanation of symbols

10 半導体基板(半導体チップ)
11、12 酸化膜
20 孔部
30 導電部(貫通電極)
31 マスク
10 Semiconductor substrate (semiconductor chip)
11, 12 Oxide film 20 Hole 30 Conductive part (through electrode)
31 mask

Claims (10)

半導体基板の第1面上に、第1絶縁膜を形成するステップと、
前記第1絶縁膜をレーザ光により除去し、前記半導体基板の第1面に孔部を形成するステップと、
前記孔部をエッチングにより所定の深さまで加工するステップと、
前記第1面とは異なる前記半導体基板の第2面を研磨し、前記加工した孔部内に、前記第1面および前記第2面の間を貫通する貫通電極を形成するステップと、を含む、
半導体装置の製造方法。
Forming a first insulating film on the first surface of the semiconductor substrate;
Removing the first insulating film with a laser beam and forming a hole in the first surface of the semiconductor substrate;
Processing the hole to a predetermined depth by etching;
Polishing a second surface of the semiconductor substrate different from the first surface, and forming a through electrode penetrating between the first surface and the second surface in the processed hole.
A method for manufacturing a semiconductor device.
前記加工するステップは、
前記孔部を前記エッチングにより第1の深さまで加工するステップと、
前記第1の深さまで加工した前記孔部の内壁面に第2絶縁膜を形成するステップと、
前記第2絶縁膜を形成した前記孔部を前記エッチングにより、前記第1の深さよりも深い第2の深さまで加工するステップと、を含む、
請求項1に記載の半導体装置の製造方法。
The processing step includes
Processing the hole to a first depth by the etching;
Forming a second insulating film on the inner wall surface of the hole processed to the first depth;
Processing the hole in which the second insulating film is formed to the second depth deeper than the first depth by the etching.
A method for manufacturing a semiconductor device according to claim 1.
前記貫通電極を形成するステップは、前記第2面を研磨する前に、前記加工した孔部内に、前記貫通電極を形成する導電材を充填するステップ、を含む、
請求項1または請求項2に記載の半導体装置の製造方法。
The step of forming the through electrode includes a step of filling a conductive material for forming the through electrode into the processed hole before polishing the second surface.
A method for manufacturing a semiconductor device according to claim 1.
前記第1の深さまで加工した前記孔部は、前記内壁面を含む表面を有し、
前記第2絶縁膜を形成するステップは、
前記孔部の前記表面を前記第2絶縁膜で覆うステップと、
前記内壁部以外の前記表面に覆った前記第2絶縁膜を取り除くステップと、を含む、
請求項2に記載の半導体装置の製造方法。
The hole processed to the first depth has a surface including the inner wall surface;
Forming the second insulating film comprises:
Covering the surface of the hole with the second insulating film;
Removing the second insulating film covering the surface other than the inner wall portion,
A method for manufacturing a semiconductor device according to claim 2.
前記貫通電極を形成するステップでは、前記孔部が、少なくとも、前記半導体基板の前記第2面を貫通するまで当該第2面を研磨する、
請求項1または請求項2に記載の半導体装置の製造方法。
In the step of forming the through electrode, the second surface is polished until the hole penetrates at least the second surface of the semiconductor substrate.
A method for manufacturing a semiconductor device according to claim 1.
前記孔部を所定の深さまで加工するステップでは、前記孔部の深さが、前記半導体基板の前記第1面から60μm以上になるように加工し、
前記貫通電極を形成するステップでは、前記孔部の深さが、前記半導体基板の第1面から50μmになるように前記半導体基板の第2面を研磨する、
請求項1に記載の半導体装置の製造方法。
In the step of processing the hole to a predetermined depth, the hole is processed so that the depth of the hole is 60 μm or more from the first surface of the semiconductor substrate,
In the step of forming the through electrode, the second surface of the semiconductor substrate is polished so that the depth of the hole is 50 μm from the first surface of the semiconductor substrate.
A method for manufacturing a semiconductor device according to claim 1.
前記孔部を前記第1の深さまで加工するステップでは、前記孔部の深さが、前記半導体基板の第1面から20μmになるように加工し、
前記第2の深さまで加工するステップでは、前記孔部の深さが、前記半導体基板の第1面から60μm以上になるように加工し、
前記貫通電極を形成するステップでは、前記孔部の深さが、前記半導体基板の第1面から50μmになるように前記半導体基板の前記第2面を研磨する、
請求項2に記載の半導体装置の製造方法。
In the step of processing the hole to the first depth, the depth of the hole is processed to be 20 μm from the first surface of the semiconductor substrate,
In the step of processing to the second depth, processing is performed so that the depth of the hole is 60 μm or more from the first surface of the semiconductor substrate,
In the step of forming the through electrode, the second surface of the semiconductor substrate is polished so that the hole has a depth of 50 μm from the first surface of the semiconductor substrate.
A method for manufacturing a semiconductor device according to claim 2.
前記半導体基板を、前記貫通電極を備えた複数の半導体チップに個片化するステップと、
前記複数の半導体チップを積層するステップと、をさらに含む、
請求項1ないし請求項7のいずれか1項に記載の半導体装置の製造方法。
Dividing the semiconductor substrate into a plurality of semiconductor chips provided with the through electrodes;
Laminating the plurality of semiconductor chips, and
The method for manufacturing a semiconductor device according to claim 1.
請求項1ないし請求項8のいずれか1項に記載の半導体装置の製造方法により製造された半導体装置。   A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 1. 請求項9に記載の半導体装置を含む回路基板。   A circuit board comprising the semiconductor device according to claim 9.
JP2006077124A 2006-03-20 2006-03-20 Semiconductor device, manufacturing method thereof, and circuit board Pending JP2007258233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077124A JP2007258233A (en) 2006-03-20 2006-03-20 Semiconductor device, manufacturing method thereof, and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077124A JP2007258233A (en) 2006-03-20 2006-03-20 Semiconductor device, manufacturing method thereof, and circuit board

Publications (1)

Publication Number Publication Date
JP2007258233A true JP2007258233A (en) 2007-10-04

Family

ID=38632200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077124A Pending JP2007258233A (en) 2006-03-20 2006-03-20 Semiconductor device, manufacturing method thereof, and circuit board

Country Status (1)

Country Link
JP (1) JP2007258233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182734A (en) * 2009-02-03 2010-08-19 Seiko Epson Corp Semiconductor device, method of manufacturing the same, and electronic equipment
JP2014236131A (en) * 2013-06-03 2014-12-15 富士通株式会社 Semiconductor device and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190360A (en) * 1987-02-03 1988-08-05 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JP2004335526A (en) * 2003-04-30 2004-11-25 Elpida Memory Inc Method of manufacturing semiconductor device
JP2005072489A (en) * 2003-08-27 2005-03-17 Sharp Corp Semiconductor-device and manufacturing method thereof
JP2005327813A (en) * 2004-05-12 2005-11-24 Seiko Epson Corp Semiconductor device and its manufacturing method, electro-optical device and its manufacturing method and electronic apparatus
JP2006013454A (en) * 2004-05-25 2006-01-12 Canon Inc Through-hole forming method, semiconductor device, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190360A (en) * 1987-02-03 1988-08-05 Oki Electric Ind Co Ltd Manufacture of semiconductor element
JP2004335526A (en) * 2003-04-30 2004-11-25 Elpida Memory Inc Method of manufacturing semiconductor device
JP2005072489A (en) * 2003-08-27 2005-03-17 Sharp Corp Semiconductor-device and manufacturing method thereof
JP2005327813A (en) * 2004-05-12 2005-11-24 Seiko Epson Corp Semiconductor device and its manufacturing method, electro-optical device and its manufacturing method and electronic apparatus
JP2006013454A (en) * 2004-05-25 2006-01-12 Canon Inc Through-hole forming method, semiconductor device, and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010182734A (en) * 2009-02-03 2010-08-19 Seiko Epson Corp Semiconductor device, method of manufacturing the same, and electronic equipment
JP2014236131A (en) * 2013-06-03 2014-12-15 富士通株式会社 Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100741864B1 (en) Method for manufacturing semiconductor device
US7795140B2 (en) Method of manufacturing substrate
JP5532394B2 (en) Semiconductor device, circuit board, and electronic equipment
JP4773307B2 (en) Manufacturing method of semiconductor device
TW200305229A (en) Manufacturing method of semiconductor device
JP2015119170A (en) Manufacturing method of semiconductor chip, semiconductor chip and semiconductor device
JP2006269860A (en) Through-conductor and its manufacturing method
WO2023197665A1 (en) Wafer cutting method
JP2007005401A (en) Semiconductor device and its manufacturing method
JP4768491B2 (en) Manufacturing method of semiconductor device
JP2011086850A (en) Semiconductor device, method of manufacturing the same, circuit board, and electronic apparatus
US9130056B1 (en) Bi-layer wafer-level underfill mask for wafer dicing and approaches for performing wafer dicing
US9105710B2 (en) Wafer dicing method for improving die packaging quality
JP4803964B2 (en) Electrode structure
JP2007258233A (en) Semiconductor device, manufacturing method thereof, and circuit board
CN114226984B (en) Wafer cutting method
JP2005093954A (en) Substrate having through electrode, its manufacturing method, and electronic device
KR20190001919A (en) Semiconductor package and method for manufacturing the semiconductor package
CN111435650B (en) Semiconductor structure and forming method thereof
JP2006173179A (en) Manufacturing method of semiconductor device
JP5967131B2 (en) Manufacturing method of semiconductor device
JP2006120759A (en) Method for manufacturing wiring board and for semiconductor device
JP6062254B2 (en) Wafer processing method
US11404318B2 (en) Methods of forming through-silicon vias in substrates for advanced packaging
US20230087838A1 (en) Protective coating on an edge of a glass core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101