JP2014236131A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2014236131A
JP2014236131A JP2013117307A JP2013117307A JP2014236131A JP 2014236131 A JP2014236131 A JP 2014236131A JP 2013117307 A JP2013117307 A JP 2013117307A JP 2013117307 A JP2013117307 A JP 2013117307A JP 2014236131 A JP2014236131 A JP 2014236131A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor substrate
insulating film
insulator
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013117307A
Other languages
Japanese (ja)
Other versions
JP6146144B2 (en
Inventor
赤松 俊也
Toshiya Akamatsu
俊也 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013117307A priority Critical patent/JP6146144B2/en
Publication of JP2014236131A publication Critical patent/JP2014236131A/en
Application granted granted Critical
Publication of JP6146144B2 publication Critical patent/JP6146144B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15173Fan-out arrangement of the internal vias in a single layer of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent warpage of a semiconductor device.SOLUTION: A method of manufacturing a semiconductor device comprises the steps of: forming a through electrode 12 in a hole that is formed toward a second surface from a first surface 72 of a semiconductor substrate 10 and not reaching the second surface 70; forming an insulating film 20 having an opening 22 on the second surface of the semiconductor substrate; forming a recess 24 surrounding the through electrode so as to expose an upper surface of the through electrode by removing the semiconductor substrate using the insulating film as a mask; and forming an insulator 26 embedded in the recess so as to expose the upper surface of the through electrode.

Description

本発明は、半導体装置およびその製造方法に関し、例えば半導体基板を貫通する貫通電極を有する半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, for example, a semiconductor device having a through electrode penetrating a semiconductor substrate and a manufacturing method thereof.

半導体チップを積層実装するため、半導体基板を貫通する貫通電極(例えばTSV:Through Silicon Via)を形成することが知られている。貫通電極と貫通孔の間に絶縁膜を形成することが知られている(例えば特許文献1)。   In order to stack and mount semiconductor chips, it is known to form through electrodes (for example, TSV: Through Silicon Via) penetrating a semiconductor substrate. It is known to form an insulating film between a through electrode and a through hole (for example, Patent Document 1).

特開2011−82291号公報JP 2011-82291 A

しかしながら、貫通電極を形成した半導体基板の上面に形成された絶縁膜により、半導体基板が反ってしまうことがある。本半導体装置およびその製造方法は、半導体基板の反りを抑制することを特徴とする。   However, the semiconductor substrate may be warped by the insulating film formed on the upper surface of the semiconductor substrate on which the through electrode is formed. The semiconductor device and the manufacturing method thereof are characterized by suppressing warpage of the semiconductor substrate.

半導体基板の第1面から第2面に向けて形成され、前記第1面まで達していない穴内に貫通電極を形成する工程と、前記半導体基板の前記第2面上に開口を有する絶縁膜を形成する工程と、前記絶縁膜をマスクに前記半導体基板を除去することにより、前記貫通電極の上面が露出するように前記貫通電極を囲む凹部を形成する工程と、前記凹部内に前記貫通電極の上面が露出するように埋め込まれた絶縁体を形成する工程と、を含むことを特徴とする半導体装置の製造方法を用いる。   Forming a through electrode in a hole formed from the first surface of the semiconductor substrate toward the second surface and not reaching the first surface; and an insulating film having an opening on the second surface of the semiconductor substrate. Forming a recess surrounding the through electrode so that an upper surface of the through electrode is exposed by removing the semiconductor substrate using the insulating film as a mask, and forming the through electrode in the recess. Forming a buried insulator so that the upper surface is exposed. A method for manufacturing a semiconductor device is used.

半導体基板と、半導体基板を貫通する貫通電極と、前記半導体基板の表面上に形成された絶縁膜と、前記半導体基板の前記表面に前記貫通電極を囲むように形成された凹部内に前記貫通電極が露出するように埋め込まれた前記絶縁膜とは異なる絶縁体と、を具備することを特徴とする半導体装置を用いる。   A semiconductor substrate; a through electrode penetrating the semiconductor substrate; an insulating film formed on the surface of the semiconductor substrate; and the through electrode in a recess formed on the surface of the semiconductor substrate so as to surround the through electrode. A semiconductor device comprising: an insulator different from the insulating film embedded so as to be exposed.

本半導体装置およびその製造方法によれば、半導体基板の反りを抑制することができる。   According to the present semiconductor device and the manufacturing method thereof, warping of the semiconductor substrate can be suppressed.

図1(a)から図1(e)は、比較例1に係る半導体装置の製造方法を示す断面図であるFIG. 1A to FIG. 1E are cross-sectional views illustrating a method for manufacturing a semiconductor device according to Comparative Example 1. 図2は、比較例1における課題を説明する図である。FIG. 2 is a diagram illustrating a problem in the first comparative example. 図3(a)から図3(d)は、比較例2に係る半導体装置の製造方法を示す断面図である。FIG. 3A to FIG. 3D are cross-sectional views illustrating a method for manufacturing a semiconductor device according to Comparative Example 2. 図4(a)および図4(b)は、比較例2における課題を説明する図である。FIG. 4A and FIG. 4B are diagrams for explaining the problem in the second comparative example. 図5(a)から図5(e)は、実施例1に係る半導体装置の製造方法を示す断面図である。FIG. 5A to FIG. 5E are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the first embodiment. 図6は、実施例1に係る半導体装置の製造方法を示す平面図である。FIG. 6 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment. 図7(a)および図7(b)は、半導体基板のエッチングを示す断面図である。FIGS. 7A and 7B are cross-sectional views showing the etching of the semiconductor substrate. 図8(a)から図8(e)は、実施例2に係る半導体装置の製造方法を示す断面図(その1)である。8A to 8E are cross-sectional views (part 1) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図9(a)から図9(d)は、実施例2に係る半導体装置の製造方法を示す断面図(その2)である。FIG. 9A to FIG. 9D are cross-sectional views (part 2) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図10(a)から図10(d)は、実施例2に係る半導体装置の製造方法を示す断面図(その3)である。FIG. 10A to FIG. 10D are cross-sectional views (part 3) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図11(a)および図11(b)は、実施例2に係る半導体装置の製造方法を示す断面図(その4)である。FIG. 11A and FIG. 11B are cross-sectional views (part 4) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図12(a)および図12(b)は、実施例2に係る半導体装置の製造方法を示す断面図(その5)である。12A and 12B are cross-sectional views (part 5) illustrating the method for manufacturing the semiconductor device according to the second embodiment. 図13(a)および図13(b)は、実施例2に係る半導体装置の製造方法を示す断面図(その6)である。FIG. 13A and FIG. 13B are cross-sectional views (part 6) illustrating the method for manufacturing the semiconductor device according to the second embodiment.

図1(a)から図1(e)は、比較例1に係る半導体装置の製造方法を示す断面図である。図1(a)を参照し、半導体基板10の第1面72上に電極14、金属端子16および半田18が形成されている。第1面72から第2面70にかけて貫通電極12が形成されている。貫通電極12は、半導体基板10を貫通していない。   FIG. 1A to FIG. 1E are cross-sectional views illustrating a method for manufacturing a semiconductor device according to Comparative Example 1. With reference to FIG. 1A, the electrode 14, the metal terminal 16, and the solder 18 are formed on the first surface 72 of the semiconductor substrate 10. The through electrode 12 is formed from the first surface 72 to the second surface 70. The through electrode 12 does not penetrate the semiconductor substrate 10.

図1(b)を参照し、半導体基板10の第2面70を研削または研磨し、貫通電極12を露出させる。図1(c)を参照し、半導体基板10の第2面70上に貫通電極12を覆うように絶縁体50を形成する。図1(d)を参照し、絶縁体50に開口52を形成する。開口52を介し貫通電極12が露出する。図1(e)を参照し、絶縁体50上に開口52を介し貫通電極12に接続する端子54を形成する。   Referring to FIG. 1B, the second surface 70 of the semiconductor substrate 10 is ground or polished to expose the through electrode 12. With reference to FIG. 1C, an insulator 50 is formed on the second surface 70 of the semiconductor substrate 10 so as to cover the through electrode 12. With reference to FIG. 1D, an opening 52 is formed in the insulator 50. The through electrode 12 is exposed through the opening 52. Referring to FIG. 1 (e), a terminal 54 connected to the through electrode 12 through the opening 52 is formed on the insulator 50.

図2は、比較例1における課題を説明する図である。図2を参照し、絶縁体50の内部応力が大きい場合、半導体基板10が薄くなると、矢印56のように半導体基板10の反りが大きくなる。絶縁体50が樹脂の場合、内部応力が大きく半導体基板10が反り易い。   FIG. 2 is a diagram illustrating a problem in the first comparative example. Referring to FIG. 2, when the internal stress of the insulator 50 is large, when the semiconductor substrate 10 becomes thin, the warp of the semiconductor substrate 10 increases as indicated by an arrow 56. When the insulator 50 is resin, the internal stress is large and the semiconductor substrate 10 is likely to warp.

図3(a)から図3(d)は、比較例2に係る半導体装置の製造方法を示す断面図である。図3(a)を参照し、図1(a)と同様に、半導体基板10に貫通電極12を形成する。図3(b)を参照し、半導体基板10の第2面70を比較例1の図1(b)より多く研削または研磨する。図3(c)を参照し、半導体基板10の第2面70上に貫通電極12を覆うように絶縁体50を形成する。図3(d)を参照し、絶縁体50をエッチングすることにより、貫通電極12を露出させる。   FIG. 3A to FIG. 3D are cross-sectional views illustrating a method for manufacturing a semiconductor device according to Comparative Example 2. Referring to FIG. 3A, the through electrode 12 is formed in the semiconductor substrate 10 as in FIG. Referring to FIG. 3B, the second surface 70 of the semiconductor substrate 10 is ground or polished more than in FIG. With reference to FIG. 3C, the insulator 50 is formed on the second surface 70 of the semiconductor substrate 10 so as to cover the through electrode 12. With reference to FIG. 3D, the through electrode 12 is exposed by etching the insulator 50.

図4(a)および図4(b)は、比較例2における課題を説明する図である。図4(a)を参照し、図3(d)において、絶縁体50の表面全体を矢印62のようにドライエッチングする。図4(b)を参照し、エッチング量が大きすぎると、領域64のように、絶縁体50の膜厚が薄くなる、または、半導体基板10が露出してしまう。これにより、絶縁体50が半導体基板10の保護膜として機能しなくなってしまう。   FIG. 4A and FIG. 4B are diagrams for explaining the problem in the second comparative example. Referring to FIG. 4A, in FIG. 3D, the entire surface of the insulator 50 is dry-etched as indicated by an arrow 62. Referring to FIG. 4B, if the etching amount is too large, the insulator 50 becomes thin like the region 64 or the semiconductor substrate 10 is exposed. As a result, the insulator 50 does not function as a protective film for the semiconductor substrate 10.

図5(a)から図5(e)は、実施例1に係る半導体装置の製造方法を示す断面図である。図6は、実施例1に係る半導体装置の製造方法を示す平面図である。図5(a)を参照し、図1(a)と同じように、例えばシリコン基板等の半導体基板10の第1面72上に電極14、金属端子16および半田18を形成する。電極14は、Al(アルミニウム)またはCu(銅)等の金属を主に含む。金属端子16は、Cu等の金属を主に含む。半田は、Sn−Ag、Sn−Bi、Sn−Ag−Cu等を主に含む。貫通電極12が第1面72から第2面70に向けて形成されている。貫通電極12は半導体基板10を貫通していない。貫通電極12は、Cu等の金属を主に含む。第2面70上に絶縁膜20を形成する。絶縁膜20は、酸化シリコンまたは窒化シリコン等の無機絶縁体を主に含む。   FIG. 5A to FIG. 5E are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the first embodiment. FIG. 6 is a plan view illustrating the method for manufacturing the semiconductor device according to the first embodiment. Referring to FIG. 5A, as in FIG. 1A, the electrode 14, the metal terminal 16, and the solder 18 are formed on the first surface 72 of the semiconductor substrate 10 such as a silicon substrate. The electrode 14 mainly contains a metal such as Al (aluminum) or Cu (copper). The metal terminal 16 mainly contains a metal such as Cu. The solder mainly contains Sn—Ag, Sn—Bi, Sn—Ag—Cu, and the like. The through electrode 12 is formed from the first surface 72 toward the second surface 70. The through electrode 12 does not penetrate the semiconductor substrate 10. The through electrode 12 mainly contains a metal such as Cu. The insulating film 20 is formed on the second surface 70. The insulating film 20 mainly contains an inorganic insulator such as silicon oxide or silicon nitride.

図5(b)を参照し、フォトリソグラフィ法およびエッチング法を用い絶縁膜20に開口22を形成する。開口22は、上から視て貫通電極12より大きく、貫通電極12を含むように形成する。絶縁膜20が酸化シリコンを主に含む場合、絶縁膜20のエッチングには、例えばフッ酸系のウェットエッチングを用いる。絶縁膜20が窒化シリコンを主に含む場合、絶縁膜20のエッチングには、例えばドライエッチングを用いる。図5(c)を参照し、絶縁膜20をマスクに、半導体基板10をエッチングし、凹部24を形成する。凹部24は開口22により画定されている。半導体基板10のエッチングは、例えば異方性エッチングを用いる。凹部24により、貫通電極12の先端が露出する。   Referring to FIG. 5B, an opening 22 is formed in the insulating film 20 using a photolithography method and an etching method. The opening 22 is larger than the through electrode 12 when viewed from above, and is formed so as to include the through electrode 12. When the insulating film 20 mainly contains silicon oxide, for example, hydrofluoric acid-based wet etching is used for etching the insulating film 20. When the insulating film 20 mainly contains silicon nitride, for example, dry etching is used for etching the insulating film 20. With reference to FIG. 5C, the semiconductor substrate 10 is etched using the insulating film 20 as a mask to form the recess 24. The recess 24 is defined by the opening 22. For example, anisotropic etching is used for etching the semiconductor substrate 10. The tip of the through electrode 12 is exposed by the recess 24.

図5(d)を参照し、凹部24に充填されるように、半導体基板10の第2面70上に絶縁体層25を形成する。絶縁体層25は、例えばエポキシ樹脂またはポリイミド樹脂等の樹脂を主に含む。貫通電極12の先端は絶縁体層25により覆われる。   With reference to FIG. 5D, the insulator layer 25 is formed on the second surface 70 of the semiconductor substrate 10 so as to fill the recess 24. The insulator layer 25 mainly includes a resin such as an epoxy resin or a polyimide resin. The tip of the through electrode 12 is covered with an insulator layer 25.

図5(e)および図6を参照し、図5(e)は図6のA−A断面を示す。絶縁体層25を全面エッチングする。絶縁体層25が絶縁膜20に対し選択的にエッチングされるように、エッチャントおよび条件を選択する。例えばAr(アルゴン)またはArとOの混合ガスを用いたドライエッチングを用いる。これにより、半導体基板10の第2面70上の絶縁膜20はほとんどエッチングされず、絶縁体層25がエッチングされる。絶縁体層25から絶縁体26が形成される。よって、半導体基板10の第2面70が絶縁膜20に覆われた状態で貫通電極12の先端が絶縁体26から露出する。貫通電極12の先端が絶縁膜20より低く、絶縁膜20および絶縁体26から形成される窪みの底に貫通電極12が露出する。このように、半導体基板10は第1面72に露出しない。 5 (e) and 6 are referred to, and FIG. 5 (e) shows an AA cross section of FIG. The entire surface of the insulator layer 25 is etched. Etchant and conditions are selected so that the insulator layer 25 is selectively etched with respect to the insulating film 20. For example, dry etching using Ar (argon) or a mixed gas of Ar and O 2 is used. Thereby, the insulating film 20 on the second surface 70 of the semiconductor substrate 10 is hardly etched, and the insulator layer 25 is etched. An insulator 26 is formed from the insulator layer 25. Therefore, the tip of the through electrode 12 is exposed from the insulator 26 in a state where the second surface 70 of the semiconductor substrate 10 is covered with the insulating film 20. The tip of the through electrode 12 is lower than the insulating film 20, and the through electrode 12 is exposed at the bottom of the recess formed from the insulating film 20 and the insulator 26. As described above, the semiconductor substrate 10 is not exposed to the first surface 72.

図7(a)および図7(b)は、半導体基板のエッチングを示す断面図である。図7(a)を参照し、図5(c)のエッチングの例について説明する。単結晶シリコンには、腐食作用が結晶方向に沿って進む性質がある。このため、エッチング液の選択により、異方性エッチングを行なうことができる。これにより凹部24を形成できる。また、シリコン基板には(100)または(110)基板があり、基板の方位およびエッチング液を選択することで凹部24の形状等を制御できる。   FIGS. 7A and 7B are cross-sectional views showing the etching of the semiconductor substrate. With reference to FIG. 7A, an example of etching in FIG. 5C will be described. Single crystal silicon has the property that the corrosive action proceeds along the crystal direction. For this reason, anisotropic etching can be performed by selecting an etching solution. Thereby, the recessed part 24 can be formed. Further, the silicon substrate includes a (100) or (110) substrate, and the shape and the like of the recess 24 can be controlled by selecting the orientation of the substrate and the etching solution.

図7(a)において、半導体基板10として、(100)面が主面の単結晶シリコン基板を用いる。エッチング液としてKOH等のアルカリ系エッチング液を用いる。上方向が<100>方向であり、奥行き方向が<110>方向である。(100)面からエッチングすると、(111)面がエッチングされにくくなる。このため(111)面によりエッチングが停止する。(111)面と(100)面とのなす角度θは、54.7°である。   In FIG. 7A, a single crystal silicon substrate having a (100) plane as a main surface is used as the semiconductor substrate 10. An alkaline etching solution such as KOH is used as the etching solution. The upward direction is the <100> direction, and the depth direction is the <110> direction. Etching from the (100) plane makes it difficult to etch the (111) plane. For this reason, the etching is stopped by the (111) plane. The angle θ formed by the (111) plane and the (100) plane is 54.7 °.

図7(b)を参照し、実施例1における寸法の例を説明する。上図は、凹部24の上面図、下図は断面図である。貫通電極12の直径L1が10μm、貫通電極12のピッチL2が50μmである。貫通電極12の側面の半導体基板10の第2面70から深さD1までが凹部24に露出する場合、貫通電極12と凹部24の間隔L4は、3.5μm程度あれば、十分である。このため、凹部24の幅L3は、17μmとなる。このように、異方性エッチングにより、凹部24を形成することにより、凹部24を精度よく形成することができる。   With reference to FIG.7 (b), the example of the dimension in Example 1 is demonstrated. The upper view is a top view of the recess 24, and the lower view is a cross-sectional view. The diameter L1 of the through electrode 12 is 10 μm, and the pitch L2 of the through electrode 12 is 50 μm. When the side surface of the through electrode 12 from the second surface 70 of the semiconductor substrate 10 to the depth D1 is exposed in the recess 24, it is sufficient that the distance L4 between the through electrode 12 and the recess 24 is about 3.5 μm. For this reason, the width L3 of the recess 24 is 17 μm. As described above, by forming the recess 24 by anisotropic etching, the recess 24 can be formed with high accuracy.

実施例1によれば、図5(a)のように、半導体基板10の第1面72から第2面70に向けて形成され、第2面70まで達していない穴内に貫通電極を形成する。図5(b)のように、半導体基板10の第2面70上に開口22を有する絶縁膜20を形成する。図5(c)のように、絶縁膜20をマスクに半導体基板10を除去することにより、貫通電極12の上面が露出するように貫通電極12を囲む凹部24を形成する。図5(d)および図5(e)のように、凹部24内に貫通電極12の上面が露出するように埋め込まれた絶縁体26を形成する。以上により、図5(e)および図6のように、半導体基板10の第2面70上に絶縁膜20が形成される。また、半導体基板10の第2面70に貫通電極12を囲むように形成された凹部24内に貫通電極12が露出するように埋め込まれた絶縁体26が形成される。   According to the first embodiment, as shown in FIG. 5A, the through electrode is formed in the hole formed from the first surface 72 of the semiconductor substrate 10 toward the second surface 70 and not reaching the second surface 70. . As shown in FIG. 5B, the insulating film 20 having the opening 22 is formed on the second surface 70 of the semiconductor substrate 10. As shown in FIG. 5C, by removing the semiconductor substrate 10 using the insulating film 20 as a mask, a recess 24 surrounding the through electrode 12 is formed so that the upper surface of the through electrode 12 is exposed. As shown in FIGS. 5D and 5E, the insulator 26 embedded in the recess 24 so as to expose the upper surface of the through electrode 12 is formed. Thus, the insulating film 20 is formed on the second surface 70 of the semiconductor substrate 10 as shown in FIGS. In addition, an insulator 26 embedded in the second surface 70 of the semiconductor substrate 10 so as to expose the through electrode 12 is formed in a recess 24 formed so as to surround the through electrode 12.

エッチング選択性を得るために、絶縁膜20と絶縁体26とは異なる材料である。例えば、絶縁膜20の内部応力を絶縁体26の内部応力より小さくする。これにより、図2のような半導体基板10の反りを抑制できる。例えば、絶縁膜20を無機絶縁膜とし、絶縁体26を樹脂絶縁体とすることにより、絶縁膜20の内部応力を絶縁体26より小さくできる。また、絶縁膜20および絶縁体26が半導体基板10の第2面70を覆っているため、図4(b)のような、第2面70における半導体基板10の露出を抑制できる。   In order to obtain etching selectivity, the insulating film 20 and the insulator 26 are different materials. For example, the internal stress of the insulating film 20 is made smaller than the internal stress of the insulator 26. Thereby, the curvature of the semiconductor substrate 10 as shown in FIG. 2 can be suppressed. For example, when the insulating film 20 is an inorganic insulating film and the insulator 26 is a resin insulator, the internal stress of the insulating film 20 can be made smaller than that of the insulator 26. Moreover, since the insulating film 20 and the insulator 26 cover the second surface 70 of the semiconductor substrate 10, the exposure of the semiconductor substrate 10 on the second surface 70 as shown in FIG. 4B can be suppressed.

絶縁体26を形成する際には、図5(d)のように、凹部24内、絶縁膜20上および貫通電極12上に絶縁体層25を形成する。図5(e)のように、絶縁体層25を絶縁膜20および貫通電極12に対し選択的にエッチングする。これにより、絶縁体26を形成することができる。   When forming the insulator 26, as shown in FIG. 5D, the insulator layer 25 is formed in the recess 24, on the insulating film 20 and on the through electrode 12. As shown in FIG. 5E, the insulator layer 25 is selectively etched with respect to the insulating film 20 and the through electrode 12. Thereby, the insulator 26 can be formed.

図8(a)から図13(b)は、実施例2に係る半導体装置の製造方法を示す断面図である。図8(a)を参照し、半導体基板10の第1面72に電子回路32を形成する。半導体基板10上に絶縁膜30を形成する。電子回路32は、半導体基板10に形成されたトランジスタおよび絶縁膜30内に形成された配線を含む。絶縁膜30は例えば酸化シリコン膜であり、多層配線の層間絶縁膜を含む。   8A to 13B are cross-sectional views illustrating a method for manufacturing a semiconductor device according to the second embodiment. With reference to FIG. 8A, the electronic circuit 32 is formed on the first surface 72 of the semiconductor substrate 10. An insulating film 30 is formed on the semiconductor substrate 10. The electronic circuit 32 includes a transistor formed in the semiconductor substrate 10 and a wiring formed in the insulating film 30. The insulating film 30 is a silicon oxide film, for example, and includes an interlayer insulating film of multilayer wiring.

図8(b)を参照し、第1面72から絶縁膜30および半導体基板10に穴48を形成する。穴48の深さは、例えば50μmよりやや浅い。図8(c)を参照し、穴48内に貫通電極12を形成する。貫通電極12は、例えばCuを主に含み、めっき法を用い形成する。図8(d)を参照し、絶縁膜30および貫通電極12上に絶縁膜36を形成する。絶縁膜36および30内に配線34を形成する。絶縁膜36は、例えば酸化シリコン膜または樹脂膜であり、電子回路32の保護膜である。配線34は、例えばAlまたはCuを主に含む金属である。図8(e)を参照し、絶縁膜36上に、電極14、金属端子16および半田18を形成する。   With reference to FIG. 8B, holes 48 are formed in the insulating film 30 and the semiconductor substrate 10 from the first surface 72. The depth of the hole 48 is slightly shallower than 50 μm, for example. With reference to FIG. 8C, the through electrode 12 is formed in the hole 48. The through electrode 12 mainly contains Cu, for example, and is formed using a plating method. With reference to FIG. 8D, an insulating film 36 is formed on the insulating film 30 and the through electrode 12. A wiring 34 is formed in the insulating films 36 and 30. The insulating film 36 is, for example, a silicon oxide film or a resin film, and is a protective film for the electronic circuit 32. The wiring 34 is a metal mainly containing, for example, Al or Cu. With reference to FIG. 8E, the electrode 14, the metal terminal 16, and the solder 18 are formed on the insulating film 36.

図9(a)を参照し、半導体基板10の第1面72側を接着剤37を介し支持基板38に貼り付ける。支持基板38は例えばシリコン基板である。図9(b)を参照し、半導体基板10の第2面70を研磨または研削する。半導体基板10の膜厚を例えば50μmとする。貫通電極12は、半導体基板10を貫通していない。図9(c)を参照し、半導体基板10の第2面70上に絶縁膜20を形成する。図9(d)を参照し、絶縁膜20に開口22を形成する。   With reference to FIG. 9A, the first surface 72 side of the semiconductor substrate 10 is attached to the support substrate 38 via the adhesive 37. The support substrate 38 is a silicon substrate, for example. Referring to FIG. 9B, the second surface 70 of the semiconductor substrate 10 is polished or ground. The film thickness of the semiconductor substrate 10 is 50 μm, for example. The through electrode 12 does not penetrate the semiconductor substrate 10. With reference to FIG. 9C, the insulating film 20 is formed on the second surface 70 of the semiconductor substrate 10. With reference to FIG. 9D, an opening 22 is formed in the insulating film 20.

図10(a)を参照し、絶縁膜20をマスクに半導体基板10に凹部24を形成する。図10(b)を参照し、絶縁膜20上に絶縁体層25を形成する。図10(c)を参照し、絶縁体層25を選択的にエッチングし、貫通電極12の先端を露出させる。図10(d)を参照し、接着剤37を溶解させ、支持基板38を半導体基板10から剥離する。以上により半導体チップ80が完成する。   Referring to FIG. 10A, a recess 24 is formed in the semiconductor substrate 10 using the insulating film 20 as a mask. With reference to FIG. 10B, an insulating layer 25 is formed on the insulating film 20. Referring to FIG. 10C, the insulator layer 25 is selectively etched to expose the tip of the through electrode 12. Referring to FIG. 10 (d), the adhesive 37 is dissolved, and the support substrate 38 is peeled from the semiconductor substrate 10. Thus, the semiconductor chip 80 is completed.

図11(a)を参照し、配線基板82を準備する。配線基板82は、絶縁基板84の下面に電極86が形成され、上面に電極92が形成されている。絶縁基板84内には配線90が形成され、電極86と92とが配線90により電気的に接続されている。電極92上には半田94が形成されている。絶縁基板84は例えば樹脂基板である。配線90、電極86および92は、例えばCu等の金属を含む。半導体チップ80はボンダヘッド40により支持されている。半導体チップ80aの第1面72が絶縁基板84の上面に配置される。半導体チップ80aは図10(d)の半導体チップ80と同じであり説明を省略する。図11(b)を参照し、位置合わせをし、半導体チップ80と配線基板82を接触させる。半田18と半田94とが接触する。加熱することにより、半田18と94とが接合する。   Referring to FIG. 11A, a wiring board 82 is prepared. The wiring substrate 82 has an electrode 86 formed on the lower surface of the insulating substrate 84 and an electrode 92 formed on the upper surface. A wiring 90 is formed in the insulating substrate 84, and the electrodes 86 and 92 are electrically connected by the wiring 90. Solder 94 is formed on the electrode 92. The insulating substrate 84 is, for example, a resin substrate. The wiring 90 and the electrodes 86 and 92 include a metal such as Cu, for example. The semiconductor chip 80 is supported by the bonder head 40. The first surface 72 of the semiconductor chip 80 a is disposed on the upper surface of the insulating substrate 84. The semiconductor chip 80a is the same as the semiconductor chip 80 in FIG. Referring to FIG. 11B, alignment is performed, and the semiconductor chip 80 and the wiring board 82 are brought into contact with each other. The solder 18 and the solder 94 come into contact with each other. By heating, the solders 18 and 94 are joined.

図12(a)を参照し、ボンダヘッド40を用い、半導体チップ80bを半導体チップ80a上に接触させる。半導体チップ80bの半田18が半導体チップ80aの貫通電極12上に接触する。半導体チップ80aの第2面70(上面)には、窪みが形成され、窪みの底に貫通電極12の先端が露出する。このため、半導体チップ80bの半田18は、半導体チップ80aの貫通電極12の先端に案内され半導体チップ80aと80bとの位置合わせが容易となる。半田18を加熱することにより、半田18と貫通電極12とが接合する。図12(b)を参照し、ボンダヘッド40を用い、半導体チップ80cを半導体チップ80b上に接触させる。半導体チップ80cは、貫通電極12が形成されていない以外は半導体チップ80と同じである。半導体チップ80cの半田18が半導体チップ80bの貫通電極12上に接触する。半田18を加熱することにより、半田18と貫通電極12とが接合する。半田18の加熱は、半導体チップ18aから18cを積層した後、一度に行なってもよい。   Referring to FIG. 12A, using the bonder head 40, the semiconductor chip 80b is brought into contact with the semiconductor chip 80a. The solder 18 of the semiconductor chip 80b comes into contact with the through electrode 12 of the semiconductor chip 80a. A recess is formed in the second surface 70 (upper surface) of the semiconductor chip 80a, and the tip of the through electrode 12 is exposed at the bottom of the recess. For this reason, the solder 18 of the semiconductor chip 80b is guided to the tip of the through electrode 12 of the semiconductor chip 80a, and the alignment between the semiconductor chips 80a and 80b becomes easy. By heating the solder 18, the solder 18 and the through electrode 12 are joined. Referring to FIG. 12B, using the bonder head 40, the semiconductor chip 80c is brought into contact with the semiconductor chip 80b. The semiconductor chip 80c is the same as the semiconductor chip 80 except that the through electrode 12 is not formed. The solder 18 of the semiconductor chip 80c comes into contact with the through electrode 12 of the semiconductor chip 80b. By heating the solder 18, the solder 18 and the through electrode 12 are joined. The solder 18 may be heated at once after the semiconductor chips 18a to 18c are stacked.

図13(a)を参照し、半田ボール98を形成する。半田ボール98は、例えばSn−Agを主に含む。図13(b)を参照し、電極86に半田ボール98を設ける。実施例2においては、3つの半導体チップを積層する例を説明したが、2層または4層以上積層してもよい。半導体チップ80aから80c間および半導体チップ80aと配線基板82との間にアンダーフィルを形成する工程を省略しているが、半導体チップ80aから80c間および半導体チップ80aと配線基板82との間にアンダーフィルを形成してもよい。   Referring to FIG. 13A, solder balls 98 are formed. The solder ball 98 mainly contains, for example, Sn-Ag. With reference to FIG. 13B, solder balls 98 are provided on the electrodes 86. In the second embodiment, an example in which three semiconductor chips are stacked has been described. However, two or more layers may be stacked. Although the step of forming an underfill between the semiconductor chips 80a and 80c and between the semiconductor chip 80a and the wiring substrate 82 is omitted, the underfill is omitted between the semiconductor chips 80a and 80c and between the semiconductor chip 80a and the wiring substrate 82. A fill may be formed.

実施例2のように、半導体チップ80を配線基板82上に実装することができる。また、半導体チップ80を、積層することもできる。半導体チップ80を積層し、貫通電極12を用い半導体チップ間を電気的に接続することにより、チップ間接続距離を短くすることができ、処理速度を向上できる。また、高密度実装が可能となる。さらに、低消費電力が可能となる。   As in the second embodiment, the semiconductor chip 80 can be mounted on the wiring board 82. In addition, the semiconductor chips 80 can be stacked. By stacking the semiconductor chips 80 and electrically connecting the semiconductor chips using the through electrodes 12, the inter-chip connection distance can be shortened and the processing speed can be improved. In addition, high-density mounting is possible. Furthermore, low power consumption is possible.

以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

なお、以上の説明に関して更に以下の付記を開示する。
(付記1)半導体基板の第1面から第2面に向けて形成され、前記第1面まで達していない穴内に貫通電極を形成する工程と、前記半導体基板の前記第2面上に開口を有する絶縁膜を形成する工程と、前記絶縁膜をマスクに前記半導体基板を除去することにより、前記貫通電極の上面が露出するように前記貫通電極を囲む凹部を形成する工程と、前記凹部内に前記貫通電極の上面が露出するように埋め込まれた絶縁体を形成する工程と、を含むことを特徴とする半導体装置の製造方法。
(付記2)前記絶縁体を形成する工程は、前記凹部内、前記絶縁膜上および前記貫通電極上に絶縁体層を形成する工程と、前記絶縁体層を前記絶縁膜および前記貫通電極に対し選択的にエッチングする工程を含むことを特徴とする付記1記載の半導体装置の製造方法。
(付記3)前記凹部を形成する工程は、前記半導体基板を異方性エッチングすることにより前記凹部を形成する工程を含むことを特徴とする付記1または2記載の半導体装置の製造方法。
(付記4)前記絶縁膜の内部応力は前記絶縁体の内部応力より小さいことを特徴とする付記1から3のいずれか一項記載の半導体装置の製造方法。
(付記5)前記絶縁膜は無機絶縁膜であり、前記絶縁体は樹脂絶縁体であることを特徴とする付記1から3のいずれか一項記載の半導体装置の製造方法。
(付記6)前記無機絶縁膜は酸化シリコン膜または窒化シリコン膜であることを特徴とする付記5記載の半導体装置の製造方法。
(付記7)半導体基板と、半導体基板を貫通する貫通電極と、前記半導体基板の表面上に形成された絶縁膜と、前記半導体基板の前記表面に前記貫通電極を囲むように形成された凹部内に前記貫通電極が露出するように埋め込まれた前記絶縁膜とは異なる絶縁体と、を具備することを特徴とする半導体装置。
(付記8)前記凹部は前記絶縁膜に形成された開口により画定されていることを特徴とする付記7記載の半導体装置。
In addition, the following additional notes are disclosed regarding the above description.
(Appendix 1) A step of forming a through electrode in a hole formed from the first surface of the semiconductor substrate toward the second surface and not reaching the first surface; and an opening on the second surface of the semiconductor substrate A step of forming an insulating film, a step of forming a recess surrounding the through electrode so that an upper surface of the through electrode is exposed by removing the semiconductor substrate using the insulating film as a mask; And a step of forming an insulator embedded so that the upper surface of the through electrode is exposed.
(Supplementary Note 2) The step of forming the insulator includes a step of forming an insulator layer in the recess, on the insulating film and on the through electrode, and the insulator layer on the insulating film and the through electrode. The method for manufacturing a semiconductor device according to appendix 1, wherein a step of selectively etching is included.
(Additional remark 3) The process of forming the said recessed part includes the process of forming the said recessed part by anisotropically etching the said semiconductor substrate, The manufacturing method of the semiconductor device of Additional remark 1 or 2 characterized by the above-mentioned.
(Additional remark 4) The internal stress of the said insulating film is smaller than the internal stress of the said insulator, The manufacturing method of the semiconductor device as described in any one of Additional remark 1 to 3 characterized by the above-mentioned.
(Additional remark 5) The said insulating film is an inorganic insulating film, The said insulator is a resin insulator, The manufacturing method of the semiconductor device as described in any one of additional marks 1 to 3 characterized by the above-mentioned.
(Additional remark 6) The said inorganic insulating film is a silicon oxide film or a silicon nitride film, The manufacturing method of the semiconductor device of Additional remark 5 characterized by the above-mentioned.
(Supplementary note 7) Semiconductor substrate, through electrode penetrating the semiconductor substrate, insulating film formed on the surface of the semiconductor substrate, and in a recess formed on the surface of the semiconductor substrate so as to surround the through electrode And an insulator different from the insulating film embedded so as to expose the through electrode.
(Additional remark 8) The said recessed part is demarcated by the opening formed in the said insulating film, The semiconductor device of Additional remark 7 characterized by the above-mentioned.

10 半導体基板
12 貫通電極
14 電極
16 金属端子
18 半田
20 絶縁膜
22 開口
24 凹部
25 絶縁体層
26 絶縁体
30、36 絶縁膜
32 電子回路
34 配線
70 第2面
72 第1面
DESCRIPTION OF SYMBOLS 10 Semiconductor substrate 12 Through-electrode 14 Electrode 16 Metal terminal 18 Solder 20 Insulating film 22 Opening 24 Recessed part 25 Insulator layer 26 Insulator 30, 36 Insulating film 32 Electronic circuit 34 Wiring 70 2nd surface 72 1st surface

Claims (5)

半導体基板の第1面から第2面に向けて形成され、前記第2面まで達していない穴内に貫通電極を形成する工程と、
前記半導体基板の前記第2面上に開口を有する絶縁膜を形成する工程と、
前記絶縁膜をマスクに前記半導体基板を除去することにより、前記貫通電極の上面が露出するように前記貫通電極を囲む凹部を形成する工程と、
前記凹部内に前記貫通電極の上面が露出するように埋め込まれた絶縁体を形成する工程と、
を含むことを特徴とする半導体装置の製造方法。
Forming a through electrode in a hole formed from the first surface to the second surface of the semiconductor substrate and not reaching the second surface;
Forming an insulating film having an opening on the second surface of the semiconductor substrate;
Removing the semiconductor substrate using the insulating film as a mask to form a recess surrounding the through electrode so that an upper surface of the through electrode is exposed;
Forming an insulator embedded in the recess so that an upper surface of the through electrode is exposed;
A method for manufacturing a semiconductor device, comprising:
前記絶縁体を形成する工程は、前記凹部内、前記絶縁膜上および前記貫通電極上に絶縁体層を形成する工程と、
前記絶縁体層を前記絶縁膜および前記貫通電極に対し選択的にエッチングする工程を含むことを特徴とする請求項1記載の半導体装置の製造方法。
Forming the insulator includes forming an insulator layer in the recess, on the insulating film and on the through electrode;
2. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of selectively etching the insulator layer with respect to the insulating film and the through electrode.
前記凹部を形成する工程は、前記半導体基板を異方性エッチングすることにより前記凹部を形成する工程を含むことを特徴とする請求項1または2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the recess includes a step of forming the recess by anisotropically etching the semiconductor substrate. 半導体基板と、半導体基板を貫通する貫通電極と、前記半導体基板の表面上に形成された絶縁膜と、前記半導体基板の前記表面に前記貫通電極を囲むように形成された凹部内に前記貫通電極が露出するように埋め込まれた前記絶縁膜とは異なる絶縁体と、を具備することを特徴とする半導体装置。   A semiconductor substrate; a through electrode penetrating the semiconductor substrate; an insulating film formed on the surface of the semiconductor substrate; and the through electrode in a recess formed on the surface of the semiconductor substrate so as to surround the through electrode. A semiconductor device comprising: an insulator different from the insulating film embedded so as to be exposed. 前記凹部は前記絶縁膜に形成された開口により画定されていることを特徴とする請求項4記載の半導体装置。   The semiconductor device according to claim 4, wherein the recess is defined by an opening formed in the insulating film.
JP2013117307A 2013-06-03 2013-06-03 Semiconductor device and manufacturing method thereof. Expired - Fee Related JP6146144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013117307A JP6146144B2 (en) 2013-06-03 2013-06-03 Semiconductor device and manufacturing method thereof.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117307A JP6146144B2 (en) 2013-06-03 2013-06-03 Semiconductor device and manufacturing method thereof.

Publications (2)

Publication Number Publication Date
JP2014236131A true JP2014236131A (en) 2014-12-15
JP6146144B2 JP6146144B2 (en) 2017-06-14

Family

ID=52138608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117307A Expired - Fee Related JP6146144B2 (en) 2013-06-03 2013-06-03 Semiconductor device and manufacturing method thereof.

Country Status (1)

Country Link
JP (1) JP6146144B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039223A1 (en) * 2014-09-09 2016-03-17 大日本印刷株式会社 Structural body and method for manufacturing same
JP2016127293A (en) * 2014-12-29 2016-07-11 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Etchant solutions and method of use thereof
CN108242438A (en) * 2016-12-27 2018-07-03 恩智浦美国有限公司 With the semiconductor device for stretching out conductive through hole and the method for manufacture such device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258233A (en) * 2006-03-20 2007-10-04 Oki Electric Ind Co Ltd Semiconductor device, manufacturing method thereof, and circuit board
US20120018893A1 (en) * 2010-07-23 2012-01-26 Tessera Research Llc Methods of forming semiconductor elements using micro-abrasive particle stream
JP2013080971A (en) * 2006-05-30 2013-05-02 Internatl Business Mach Corp <Ibm> Method of forming semiconductor devices having wafer back-side capacitors
JP2014049500A (en) * 2012-08-29 2014-03-17 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258233A (en) * 2006-03-20 2007-10-04 Oki Electric Ind Co Ltd Semiconductor device, manufacturing method thereof, and circuit board
JP2013080971A (en) * 2006-05-30 2013-05-02 Internatl Business Mach Corp <Ibm> Method of forming semiconductor devices having wafer back-side capacitors
US20120018893A1 (en) * 2010-07-23 2012-01-26 Tessera Research Llc Methods of forming semiconductor elements using micro-abrasive particle stream
JP2014049500A (en) * 2012-08-29 2014-03-17 Renesas Electronics Corp Semiconductor device and manufacturing method of the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039223A1 (en) * 2014-09-09 2016-03-17 大日本印刷株式会社 Structural body and method for manufacturing same
US9769927B2 (en) 2014-09-09 2017-09-19 Dai Nippon Printing Co., Ltd. Structural body and method for manufacturing same
US9924596B2 (en) 2014-09-09 2018-03-20 Dai Nippon Printing Co., Ltd. Structural body and method for manufacturing same
JP2016127293A (en) * 2014-12-29 2016-07-11 エア プロダクツ アンド ケミカルズ インコーポレイテッドAir Products And Chemicals Incorporated Etchant solutions and method of use thereof
US9873833B2 (en) 2014-12-29 2018-01-23 Versum Materials Us, Llc Etchant solutions and method of use thereof
CN108242438A (en) * 2016-12-27 2018-07-03 恩智浦美国有限公司 With the semiconductor device for stretching out conductive through hole and the method for manufacture such device
EP3349241A1 (en) * 2016-12-27 2018-07-18 NXP USA, Inc. Semiconductor devices with protruding conductive vias and methods of making such devices

Also Published As

Publication number Publication date
JP6146144B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5644242B2 (en) Through electrode substrate and manufacturing method thereof
US20200258826A1 (en) Semiconductor package and semiconductor manufacturing process
JP5532394B2 (en) Semiconductor device, circuit board, and electronic equipment
JP4716819B2 (en) Manufacturing method of interposer
US8411459B2 (en) Interposer-on-glass package structures
TWI555154B (en) Semiconductor apparatus having protrusion bump pads and method for forming the same
US11018120B2 (en) Semiconductor device package with stress buffering layer and method for manufacturing the same
US9196506B2 (en) Method for manufacturing interposer
JP6816964B2 (en) Manufacturing method of wiring board, semiconductor device and wiring board
JP2005327984A (en) Electronic component and method of manufacturing electronic-component mounting structure
TWI525769B (en) Package substrate and manufacturing method thereof
KR101708535B1 (en) Integrated circuit apparatus and method for manufacturing the same
JP6146144B2 (en) Semiconductor device and manufacturing method thereof.
TWI807259B (en) Through electrode substrate and mounting substrate
US20110248408A1 (en) Package substrate and fabricating method thereof
US9659881B2 (en) Semiconductor structure including a substrate and a semiconductor chip with matching coefficients of thermal expansion
US10211119B2 (en) Electronic component built-in substrate and electronic device
US10020284B2 (en) Functional spacer for SIP and methods for forming the same
US20190139907A1 (en) Package structure and manufacturing method thereof
JP2008135553A (en) Substrate laminating method and semiconductor device in which substrates are laminated
JP2012248754A (en) Method of manufacturing semiconductor device and semiconductor device
JP2005123325A (en) Semiconductor device, circuit board, and electronic apparatus
JP2004343088A (en) Semiconductor device and its manufacturing method
TW201640976A (en) Stacked electronic device and method for fabricating the same
US10993332B2 (en) Circuit substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6146144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees