JP2007258230A - Semiconductor substrate and semiconductor device - Google Patents

Semiconductor substrate and semiconductor device Download PDF

Info

Publication number
JP2007258230A
JP2007258230A JP2006076987A JP2006076987A JP2007258230A JP 2007258230 A JP2007258230 A JP 2007258230A JP 2006076987 A JP2006076987 A JP 2006076987A JP 2006076987 A JP2006076987 A JP 2006076987A JP 2007258230 A JP2007258230 A JP 2007258230A
Authority
JP
Japan
Prior art keywords
layer
layers
substrate
multilayer film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006076987A
Other languages
Japanese (ja)
Other versions
JP4670055B2 (en
Inventor
Tsuneo Ito
統夫 伊藤
Takashi Egawa
孝志 江川
Hiroyasu Ishikawa
博康 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Nagoya Institute of Technology NUC
Original Assignee
Dowa Holdings Co Ltd
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Nagoya Institute of Technology NUC filed Critical Dowa Holdings Co Ltd
Priority to JP2006076987A priority Critical patent/JP4670055B2/en
Publication of JP2007258230A publication Critical patent/JP2007258230A/en
Application granted granted Critical
Publication of JP4670055B2 publication Critical patent/JP4670055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor substrate free from an increase in man-hours necessary for manufacture and improved in crystallinity of a GaN layer. <P>SOLUTION: A semiconductor device formed on a substrate 1 includes: a first Al<SB>a</SB>Ga<SB>b</SB>In<SB>1-a-b</SB>N<SB>v</SB>(where 0≤a≤1, 0≤b≤1 and 0≤a+b≤1) layer 2, a second Al<SB>c</SB>Ga<SB>d</SB>In<SB>1-c-d</SB>N<SB>w</SB>layer 3 formed on the first layer 2, a multilayered film 4 located on the second layer 3 and consisting of a third Al<SB>e</SB>Ga<SB>f</SB>In<SB>1-e-f</SB>N<SB>x</SB>(where 0≤e≤1, 0≤f≤1 and 0≤e+f≤1) layer and a fourth Al<SB>g</SB>Ga<SB>h</SB>In<SB>1-g-h</SB>N<SB>y</SB>(where 0≤g≤1, 0≤h≤1 and 0≤g+h≤1) layer alternately laminated on the multilayered film 4, and a fifth Al<SB>i</SB>Ga<SB>j</SB>In<SB>1-i-j</SB>N<SB>z</SB>(where 0≤i≤1, 0≤j≤1 and 0≤i+j≤1) layer 5. The number of the laminated third Al<SB>e</SB>Ga<SB>f</SB>In<SB>1-e-f</SB>N<SB>x</SB>layers and fourth Al<SB>g</SB>Ga<SB>h</SB>In<SB>1-g-h</SB>N<SB>y</SB>layers is 160 or less. In the above formulas, v, w, x, y and z are integers. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シリコン基材上にIII族窒化物層を形成した半導体基板及びこれを用いた半導体装置に関する。特に本発明は、Si基材上に成膜したIII族窒化物の結晶性が向上した半導体基板及びこれを用いた半導体装置に関する。   The present invention relates to a semiconductor substrate having a group III nitride layer formed on a silicon substrate and a semiconductor device using the same. In particular, the present invention relates to a semiconductor substrate in which the crystallinity of a group III nitride formed on a Si substrate is improved and a semiconductor device using the same.

III族窒化物系の半導体、例えば窒化ガリウム系の半導体は、バンドギャップがシリコン及びGaAsと比べて広い。このため、III族窒化物層を半導体装置の基板として用いると、優れた特性の半導体装置を形成することができる。   Group III nitride semiconductors, such as gallium nitride semiconductors, have a wider band gap than silicon and GaAs. For this reason, when a group III nitride layer is used as a substrate of a semiconductor device, a semiconductor device having excellent characteristics can be formed.

従来のIII族窒化物基板は、サファイア基材上に、緩衝膜を介してIII族窒化物層を形成した構造を有している。しかし、サファイア基材は絶縁物であるため、電極構造が複雑になる。またサファイア基材は生産性が低く、価格が高く、かつ放熱性がよくない。そこで、生産性が高く、低価格であり、かつ放熱性が良いSi(シリコン)を基材としてIII族窒化物層を形成する技術が望まれている。   A conventional group III nitride substrate has a structure in which a group III nitride layer is formed on a sapphire substrate via a buffer film. However, since the sapphire substrate is an insulator, the electrode structure is complicated. Moreover, the sapphire substrate has low productivity, high price, and poor heat dissipation. Therefore, a technique for forming a group III nitride layer using Si (silicon) as a base material having high productivity, low cost and good heat dissipation is desired.

しかし、Si結晶とIII族窒化物層の間には大きな格子不整合(例えばGaNの場合は約14%)があり、かつ熱膨張率にも差がある。このため、Si基材上に直接良質のIII族窒化物層を形成することは難しい。これを解決する技術の一つとして、Si基材とGaN層の間に、AlN層から始まる複数のAlN/GaNの多層緩衝層を挿入する技術がある。これにより、Si基材に比較的厚いGaN層を形成することができる。しかし本技術によっても、GaN層を必要な厚さにすると、GaN層にクラックが発生してしまう。   However, there is a large lattice mismatch (for example, about 14% in the case of GaN) between the Si crystal and the group III nitride layer, and the coefficient of thermal expansion is also different. For this reason, it is difficult to form a high-quality group III nitride layer directly on the Si substrate. One technique for solving this is a technique in which a plurality of AlN / GaN multilayer buffer layers starting from an AlN layer are inserted between a Si substrate and a GaN layer. Thereby, a relatively thick GaN layer can be formed on the Si substrate. However, even with this technique, if the GaN layer has a required thickness, cracks occur in the GaN layer.

これを解決する技術の一つとして、特許文献1に記載の技術がある。この技術はSi基材上にBP(リン化ボロン)をバッファー層として形成し、その上にAlN/GaNからなる超格子バッファー結晶層を10層形成し、その上にGaN層を形成する技術である。
特開2005−5657号公報
As one of techniques for solving this, there is a technique described in Patent Document 1. In this technology, BP (boron phosphide) is formed as a buffer layer on a Si substrate, 10 superlattice buffer crystal layers made of AlN / GaN are formed thereon, and a GaN layer is formed thereon. is there.
JP 2005-5657 A

しかし特許文献1に記載の技術では、Si基材とBP層の界面に応力が生じ、その結果、GaN基板に反りが生じる。GaN基板に反りが生じるとその応力を緩和するためにGaN層に欠陥が導入され、基板の品質が低下してしまう(例えば特許文献1の第10段落)。これを解決する手法として、特許文献1の第11,12段落には、半導体素子の動作層として必要な部分にのみGaN層を成長させる技術が開示されている。しかしこのような手法をとると工程数が増加する。   However, in the technique described in Patent Document 1, stress is generated at the interface between the Si base and the BP layer, and as a result, the GaN substrate is warped. When the GaN substrate warps, defects are introduced into the GaN layer in order to relieve the stress, and the quality of the substrate deteriorates (for example, the 10th paragraph of Patent Document 1). As a technique for solving this, the 11th and 12th paragraphs of Patent Document 1 disclose a technique for growing a GaN layer only in a portion necessary as an operation layer of a semiconductor element. However, the number of processes increases when such a method is adopted.

本発明は上記のような事情を考慮してなされたものであり、その目的は、製造に必要な工程数を増加させることなく、III族窒化物層の結晶性が向上した半導体基板及びこれを用いた半導体装置を提供することにある。   The present invention has been made in consideration of the above circumstances, and its purpose is to provide a semiconductor substrate having improved group III nitride layer crystallinity without increasing the number of steps required for production, and a semiconductor substrate thereof. It is to provide a semiconductor device used.

本発明者が鋭意検討を重ねた結果、Si基材上に適切なバッファー層を形成し、その上にAleGafIn1-e-f(0≦e≦1、0≦f≦1、かつ0≦e+f≦1)層と、AlgGahIn1-g-h(0≦g≦1、0≦h≦1、かつ0≦g+h≦1)層を、適正な層数ほど交互に積層し、さらにその上に基板として用いるAliGajIn1-i-j(0≦i≦1、0≦j≦1、かつ0≦i+j≦1)層を形成することにより、化合物半導体基板において、製造に必要な工程数を増加させることなく、化合物半導体層の結晶性を向上できることが見出された。 The inventors of the present inventors have intensive studies to form the appropriate buffer layer on a Si substrate, Al e Ga f In 1- ef N x (0 ≦ e ≦ 1,0 ≦ f ≦ 1 thereon, And 0 ≦ e + f ≦ 1) layers and Al g Ga h In 1-gh N y (0 ≦ g ≦ 1, 0 ≦ h ≦ 1 and 0 ≦ g + h ≦ 1) layers alternately in an appropriate number of layers. A compound semiconductor substrate is formed by stacking and further forming an Al i Ga j In 1-ij N z (0 ≦ i ≦ 1, 0 ≦ j ≦ 1, and 0 ≦ i + j ≦ 1) layer thereon as a substrate. Thus, it has been found that the crystallinity of the compound semiconductor layer can be improved without increasing the number of steps required for production.

すなわち本発明に係る半導体基板は、Si基材上に形成された第1のAlaGaIn1-a-b(0≦a≦1、0≦b≦1、かつ0≦a+b≦1)層と、
前記第1のAlaGaIn1-a-b層上に形成された第2のAlcGadIn1-c-d(0≦c≦1、0≦d≦1、かつ0≦c+d≦1)層と、
前記第2のAlcGadIn1-c-d層上に位置し、第3のAleGafIn1-e-f(0≦e≦1、0≦f≦1、かつ0≦e+f≦1)層及び第4のAlgGahIn1-g-h(0≦g≦1、0≦h≦1、かつ0≦g+h≦1)層を交互に積層した多層膜と、
前記多層膜上に形成された第5のAliGajIn1-i-j(0≦i≦1、0≦j≦1、かつ0≦i+j≦1)層と、
を具備し、前記多層膜における前記第3のAleGafIn1-e-f層と前記第4のAlgGahIn1-g-h層の積層数は160層以下であることを特徴とする。ただし、v、w、x、y、zは正数である。
That is, the semiconductor substrate according to the present invention includes a first Al a Ga b In 1-ab N v (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, and 0 ≦ a + b ≦ 1) formed on a Si base. Layers,
Second Al c Ga d In 1-cd N w (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d) formed on the first Al a Ga b In 1-ab Nv layer ≦ 1) layer,
Located on the second Al c Ga d In 1-cd N w layer, the third Al e Ga f In 1-ef N x (0 ≦ e ≦ 1,0 ≦ f ≦ 1, and 0 ≦ e + f ≦ 1) a multilayer film in which layers and fourth Al g Ga h In 1-gh N y (0 ≦ g ≦ 1, 0 ≦ h ≦ 1, and 0 ≦ g + h ≦ 1) layers are alternately stacked;
A fifth Al i Ga j In 1-ij N z (0 ≦ i ≦ 1, 0 ≦ j ≦ 1, and 0 ≦ i + j ≦ 1) layer formed on the multilayer film;
Comprising a, the number of laminations of the third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh N y layer in the multilayer film is less than 160 layers Features. However, v, w, x, y, and z are positive numbers.

前記多層膜が有する前記第3のAleGafIn1-e-f層と前記第4のAlgGahIn1-g-h層の積層数は40層以上、好ましくは60層以上であるのが好ましい。また、本発明において、二結晶X線回折法における前記第5のAliGajIn1-i-j層の(0004)面の回折ピークのロッキングカーブの半値幅を、800arcsec以下にすることができる。 In the said third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh number of stacked N y layer is 40 or more layers multilayer film has preferably 60 or more layers Preferably there is. In the present invention, the half width of the rocking curve of the diffraction peak of the (0004) plane of the fifth Al i Ga j In 1-ij N x layer in the double crystal X-ray diffraction method may be 800 arcsec or less. it can.

本発明に係る半導体装置は、Si基材上に形成された第1のAlaGaIn1-a-b(0≦a≦1、0≦b≦1、かつ0≦a+b≦1)層と、
前記第1のAlaGaIn1-a-b層上に形成された第2のAlcGadIn1-c-d(0≦c≦1、0≦d≦1、かつ0≦c+d≦1)層と、
前記第2のAlcGadIn1-c-d層上に位置し、第3のAleGafIn1-e-f(0≦e≦1、0≦f≦1、かつ0≦e+f≦1)層と、第4のAlgGahIn1-g-h(0≦g≦1、0≦h≦1、かつ0≦g+h≦1)層を交互に積層した多層膜と、
前記多層膜上に形成された第5のAliGajIn1-i-j(0≦i≦1、0≦j≦1、かつ0≦i+j≦1)層と、
前記第5のAliGajIn1-i-j層を用いて形成された半導体素子と、
を具備し、前記多層膜における前記第3のAleGafIn1-e-f層と前記第4のAlgGahIn1-g-h層の積層数の積層数は160層以下であることを特徴とする。
この場合、前記半導体素子の表面のピット密度を1.3×1010cm-2にすることができる。
A semiconductor device according to the present invention includes a first Al a Ga b In 1-ab N v (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, and 0 ≦ a + b ≦ 1) layer formed on a Si substrate. When,
Second Al c Ga d In 1-cd N w (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d) formed on the first Al a Ga b In 1-ab Nv layer ≦ 1) layer,
Located on the second Al c Ga d In 1-cd N w layer, the third Al e Ga f In 1-ef N x (0 ≦ e ≦ 1,0 ≦ f ≦ 1, and 0 ≦ e + f ≦ 1) and the layer, and the multilayer film and the fourth Al g Ga h in 1-gh N y (0 ≦ g ≦ 1,0 ≦ h ≦ 1, and 0 ≦ g + h ≦ 1) layer are alternately stacked,
A fifth Al i Ga j In 1-ij N z (0 ≦ i ≦ 1, 0 ≦ j ≦ 1, and 0 ≦ i + j ≦ 1) layer formed on the multilayer film;
A semiconductor element formed using the fifth Al i Ga j In 1-ij N z layer;
Comprising a number of stacked lamination number of the third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh N y layer in the multilayer film is below 160 layers It is characterized by being.
In this case, the pit density on the surface of the semiconductor element can be 1.3 × 10 10 cm −2 .

本発明によれば、半導体基板及び半導体装置において、製造に必要な工程数を増加させることなく、Si基材上に成膜したIII族窒化物層の結晶性を向上させることができる。   According to the present invention, in the semiconductor substrate and the semiconductor device, the crystallinity of the group III nitride layer formed on the Si base can be improved without increasing the number of steps required for manufacturing.

以下、図1を参照して本発明の実施形態に係る半導体装置について説明する。この半導体装置において、表面が(111)面である第1導電型(例えばn型)のSi基材1にアンドープの第5のAliGajIn1-i-j(0≦i≦1、0≦j≦1、かつ0≦i+j≦1)層5を形成したものが、土台層として使用されている。Si基材1と第5のAliGajIn1-i-j層5の間には、バッファー層としての第1のAlaGaIn1-a-b(0≦a≦1、0≦b≦1、かつ0≦a+b≦1)層2(AlN層であってもよい)、第2のAlcGadIn1-c-d(0≦c≦1、0≦d≦1、かつ0≦c+d≦1)層3、及び、第3のAleGafIn1-e-f(0≦e≦1、0≦f≦1、かつ0≦e+f≦1)層(AlN層であっても良い)と、第4のAlgGahIn1-g-h(0≦g≦1、0≦h≦1、かつ0≦g+h≦1)層(GaN層であっても良い)を交互に積層した多層膜4が、この順に積層されている。なお、v、w、x、y、zは正数である。 A semiconductor device according to an embodiment of the present invention will be described below with reference to FIG. In this semiconductor device, an undoped fifth Al i Ga j In 1-ij N z (0 ≦ i ≦ 1, with a first conductivity type (for example, n-type) Si substrate 1 having a (111) surface on the surface. (0 ≦ j ≦ 1 and 0 ≦ i + j ≦ 1) The layer 5 is used as the base layer. Si substrate 1 and between the fifth Al i Ga j In 1-ij N z layer 5, the first as a buffer layer Al a Ga b In 1-ab N v (0 ≦ a ≦ 1,0 ≦ b ≦ 1 and 0 ≦ a + b ≦ 1) Layer 2 (may be an AlN layer), second Al c Ga d In 1-cd N w (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d ≦ 1) layer 3, and, in the third Al e Ga f in 1-ef N x (0 ≦ e ≦ 1,0 ≦ f ≦ 1, and 0 ≦ e + f ≦ 1) layer (AlN layer And a fourth Al g Ga h In 1 -gh N y (0 ≦ g ≦ 1, 0 ≦ h ≦ 1, and 0 ≦ g + h ≦ 1) layer (may be a GaN layer) Are stacked in this order. Note that v, w, x, y, and z are positive numbers.

第1のAlaGaIn1-a-b層2の厚さは200nm以上、500nm以下であることが好ましい。200nm未満の場合はバッファー層としての機能が不十分であり、また500nm超とした場合、膜にクラックが生じ、上層に成長した膜の結晶性を劣化させてしまう。また、第2のAlcGadIn1-c-d層3の厚さは、クラックを抑制するという観点から、2μm以下とするのが好ましい。また、多層膜4において、第3のAleGafIn1-e-f層及び第4のAlgGahIn1-g-h層それぞれの厚さは、クラックを抑制するという観点から、5〜40nm及び2.5〜20nmとするのが好ましい。また、第3のAleGafIn1-e-f層及び第4のAlgGahIn1-g-h層の積層数が増加すると第5のAliGajIn1-i-j層5の結晶性がよくなるため、積層数の下限値は合計で40層以上、好ましくは合計で60層超とする。一方、第3のAleGafIn1-e-f層及び第4のAlgGahIn1-g-h層の積層数が増加するにつれて多層膜4に生じる応力が増大し、その結果第5のAliGajIn1-i-j層5にクラックが入って結晶性が必要な状態以下になるため、上限を合計で160層とする。 The thickness of the first Al a Ga b In 1-ab Nv layer 2 is preferably 200 nm or more and 500 nm or less. If it is less than 200 nm, the function as a buffer layer is insufficient, and if it exceeds 500 nm, cracks occur in the film and the crystallinity of the film grown on the upper layer is deteriorated. The thickness of the second Al c Ga d In 1 -cd N w layer 3 is preferably 2 μm or less from the viewpoint of suppressing cracks. Further, in the multilayer film 4, the third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh N y layer each having a thickness of, from the viewpoint of suppressing cracks, It is preferable to set it as 5-40 nm and 2.5-20 nm. The third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh when the number of stacked N y layer increases fifth Al i Ga j In 1-ij N z Since the crystallinity of the layer 5 is improved, the lower limit of the number of stacked layers is 40 or more in total, preferably 60 or more in total. Meanwhile, the stress generated in the multilayer film 4 as the number of stacked third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh N y layer increases is increased, as a result Since the fifth Al i Ga j In 1-ij Nz layer 5 cracks and falls below the state where crystallinity is required, the upper limit is 160 layers in total.

バッファー層の構造を上記した構造にすることにより、製造に必要な工程数を増加させることなく、第5のAliGajIn1-i-j層5及びこれより上の層の結晶性を向上させることができる。
また、第5のAliGajIn1-i-j層5及びこれより上の層の結晶性が向上するため、発光素子の基板として用いた場合に、垂直共振器構造などの光反射鏡を有する構造を作製することもできる。
By making the structure of the buffer layer as described above, the crystallinity of the fifth Al i Ga j In 1-ij N z layer 5 and the layers above it can be increased without increasing the number of steps required for manufacturing. Can be improved.
Moreover, since the crystallinity of the fifth Al i Ga j In 1-ij N z layer 5 and the layer above the this is improved, when used as a substrate of a light emitting element, a light reflector, such as a vertical cavity structure It is also possible to produce a structure having

この基板(すなわち第5のAliGajIn1-i-j層5より下の層)を用いて作成した素子について、HEMTを例に説明する。第5のAliGajIn1-i-j層5上にはAlN層6を介して半導体層10が形成されている。半導体層10は、バリア層7(例えばAlGa1−tN(0<t<1)層)、第1導電型(例えばn型)のキャリア供給層8(例えばAlGa1−tN層)、及びキャップ層9(例えばAlGa1−tN層)をこの順に積層した構造を有している。半導体層10は、バンドギャップが第5のAliGajIn1-i-j層5よりも大きくなるように成分が設定されている。このため、半導体層10のキャリア供給層8から供給されたキャリアは、第5のAliGajIn1-i-j層5及びAlN層6の界面に蓄積され、これにより2次元電子ガスが形成され、高い移動度を示すことができる。 An element formed using this substrate (that is, a layer below the fifth Al i Ga j In 1-ij Nz layer 5) will be described by taking HEMT as an example. A semiconductor layer 10 is formed on the fifth Al i Ga j In 1-ij Nz layer 5 via an AlN layer 6. The semiconductor layer 10 includes a barrier layer 7 (for example, Al t Ga 1-t N (0 <t <1) layer), a first conductivity type (for example, n-type) carrier supply layer 8 (for example, Al t Ga 1-t N). Layer), and a cap layer 9 (for example, an Al t Ga 1-t N layer) are stacked in this order. The component of the semiconductor layer 10 is set so that the band gap is larger than that of the fifth Al i Ga j In 1-ij Nz layer 5. For this reason, the carriers supplied from the carrier supply layer 8 of the semiconductor layer 10 are accumulated at the interface between the fifth Al i Ga j In 1-ij N z layer 5 and the AlN layer 6, and thereby two-dimensional electron gas is generated. Formed and can exhibit high mobility.

次に、図1に示した半導体装置の製造方法について説明する。まずトリメチルアルミニウム(TMA)、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)、及びNHを原料ガスとしたMOCVD法により、第1のAlaGaIn1-a-b層2、第2のAlcGadIn1-c-d層3、多層膜4、及び第5のAliGajIn1-i-j層5を形成する。 Next, a method for manufacturing the semiconductor device shown in FIG. 1 will be described. First, the first Al a Ga b In 1-ab N v layer 2, the second Al 2 Ga 2 In 2 -ab N v layer 2 are formed by MOCVD using trimethylaluminum (TMA), trimethylgallium (TMG), trimethylindium (TMI), and NH 3 as source gases. An Al c Ga d In 1 -cd N w layer 3, a multilayer film 4, and a fifth Al i Ga j In 1 -ij N z layer 5 are formed.

Si基材1と多層膜4の間のバッファー層が熱分解しやすい場合、多層膜4の形成工程においてバッファー層が熱分解してSi基材1と反応し、結果として上層の半導体層が多結晶構造になる(例えば特開2000−277441号公報の第6及び7段落参照)。これに対し、本発明では、バッファー層となる第1のAlaGaIn1-a-b層2及び第2のAlcGadIn1-c-d層3の融点が高い。従って、多層膜4及び第5のAliGajIn1-i-j層5の結晶性がよくなる。なお、第1のAlaGaIn1-a-b層2をAlN層とした場合、熱分解抑制効果が更に高くなる。ここで、AlN層の成長温度を1100℃以上にすることが好ましい。このようにすることでAlN層は高融点の半導体層になり、結晶化を施す為の熱処理が不要になり、生産効率が高くなる。 When the buffer layer between the Si base material 1 and the multilayer film 4 is likely to be thermally decomposed, the buffer layer is thermally decomposed and reacts with the Si base material 1 in the formation process of the multilayer film 4, resulting in a large number of upper semiconductor layers. It becomes a crystal structure (see, for example, paragraphs 6 and 7 of JP-A-2000-277441). On the other hand, in the present invention, the melting points of the first Al a Ga b In 1 -ab Nv layer 2 and the second Al c Ga d In 1 -cd N w layer 3 which are buffer layers are high. Therefore, the crystallinity of the multilayer film 4 and the fifth Al i Ga j In 1-ij Nz layer 5 is improved. When the first Al a Ga b In 1 -ab Nv layer 2 is an AlN layer, the effect of suppressing thermal decomposition is further increased. Here, the growth temperature of the AlN layer is preferably set to 1100 ° C. or higher. By doing so, the AlN layer becomes a high melting point semiconductor layer, heat treatment for crystallization is unnecessary, and the production efficiency is increased.

その後、TMA及びNHを原料ガスとしたMOCVD法によりAlN層6を形成し、さらにTMG、TMA、及びNHを原料ガスとしたMOCVD法により半導体層10を形成する。これらの工程は、同一の半導体製造装置内で連続して行うことができる。 Thereafter, the AlN layer 6 is formed by MOCVD using TMA and NH 3 as source gases, and further the semiconductor layer 10 is formed by MOCVD using TMG, TMA, and NH 3 as source gases. These steps can be performed continuously in the same semiconductor manufacturing apparatus.

上記した工程において、Si基材1の温度を900℃以上にするのが好ましい。
なお、Si基材1の温度を900℃以上にしても、上記したようにSi基材1の上には第1のAlaGaIn1-a-b層2及び第2のAlcGadIn1-c-d層3が形成されているため、これらより上に位置する各層とSi基材1が反応することを防止できる。このため、第5のAliGajIn1-i-j層5の結晶性及び平坦性が向上する。
In the above-described steps, it is preferable that the temperature of the Si base material 1 is 900 ° C. or higher.
Even when the temperature of the Si substrate 1 is 900 ° C. or higher, the first Al a Ga b In 1 -ab Nv layer 2 and the second Al c Ga are formed on the Si substrate 1 as described above. Since the d In 1 -cd N w layer 3 is formed, it is possible to prevent the Si base material 1 from reacting with each layer positioned above these layers. For this reason, the crystallinity and flatness of the fifth Al i Ga j In 1-ij N z layer 5 are improved.

上記した方法により、図1に示した構造を有しており、かつ多層膜4の積層数が互いに異なる5つの半導体装置を形成した。各半導体装置において、第1のAlaGaIn1-a-b層2はAlN層であり、その成長温度及び厚さは1000℃及び100nmである。AlcGadIn1-c-d層3は40nmのAl0.26Ga0.74N層であり、多層膜4はGaN(20nm)層とAlN(5nm)層を交互に900℃で積層したものである。多層膜4におけるGaN層とAlN層の積層数は、40層、60層、100層、140層、又は200層である。第5のAliGajIn1-i-j層5はGaN層で1μmであり、AlN層6は1nmである。半導体層10のバリア層7、キャリア供給層8、及びキャップ層9は、それぞれ7nmのAl0.26Ga0.74N層、15nmのn型Al0.26Ga0.74N層、及び3nmのAl0.26Ga0.74N層である。 By the method described above, five semiconductor devices having the structure shown in FIG. 1 and different in the number of stacked multilayer films 4 were formed. In each semiconductor device, the first Al a Ga b In 1 -ab Nv layer 2 is an AlN layer, and its growth temperature and thickness are 1000 ° C. and 100 nm. The Al c Ga d In 1 -cd N w layer 3 is an Al 0.26 Ga 0.74 N layer having a thickness of 40 nm, and the multilayer film 4 is formed by alternately laminating GaN (20 nm) layers and AlN (5 nm) layers at 900 ° C. . The number of stacked GaN layers and AlN layers in the multilayer film 4 is 40 layers, 60 layers, 100 layers, 140 layers, or 200 layers. The fifth Al i Ga j In 1-ij Nz layer 5 is a GaN layer of 1 μm, and the AlN layer 6 is 1 nm. The barrier layer 7, the carrier supply layer 8, and the cap layer 9 of the semiconductor layer 10 are respectively 7 nm Al 0.26 Ga 0.74 N layer, 15 nm n-type Al 0.26 Ga 0.74 N layer, and 3 nm. Al 0.26 Ga 0.74 N layer.

図2の各図は、各試料におけるGaN層5の表面SEM写真である。多層膜4における積層数が140層以下の場合は、GaN層5にクラックが入っていないが、積層数が200層の場合は、GaN層5にクラックが入っていたため、後述する各種特性の測定が不可能だった。また、多層膜4の積層数が60層以上になると、GaN層5のピット数が減少し、平坦性が十分に向上した。このため、多層膜4の積層数は60層以上が好ましいと判断できる。   Each drawing in FIG. 2 is a surface SEM photograph of the GaN layer 5 in each sample. When the number of stacked layers in the multilayer film 4 is 140 or less, the GaN layer 5 is not cracked. However, when the number of stacked layers is 200, the GaN layer 5 was cracked. Was impossible. Further, when the number of laminated multilayer films 4 was 60 or more, the number of pits in the GaN layer 5 was reduced, and the flatness was sufficiently improved. For this reason, it can be judged that the number of laminated multilayer films 4 is preferably 60 or more.

図3は、多層膜4の積層数と基板の反り(基板中心部と縁部の高さの差:μm)の関係を示すグラフである。多層膜4の積層数が増加するにつれて、基板の反りは73μmから148μmへ直線的に増加した。
本図及び図2で説明した結果より、多層膜4における積層数が160層以上になるとGaN層5にクラックが生じて必要な特性を有さなくなると判断できる。
FIG. 3 is a graph showing the relationship between the number of stacked multilayer films 4 and the warpage of the substrate (the difference between the height of the substrate center and the edge: μm). As the number of laminated multilayer films 4 increased, the warpage of the substrate increased linearly from 73 μm to 148 μm.
From the results described with reference to FIGS. 2 and 2, it can be determined that if the number of stacked layers in the multilayer film 4 is 160 or more, the GaN layer 5 is cracked and does not have the necessary characteristics.

図4は、二結晶X線回折法における、GaN層5の(0004)面及び(2024)面それぞれからの回折ピークのロッキングカーブの半値幅と、多層膜4の積層数の関係を示すグラフである。(0004)面及び(2024)面それぞれからの回折ピークの半値幅は、多層膜4の積層数が40層の場合は770arcsec,1589arcsecであるのに対し、積層数が140層の場合は688arcsec,1118arcsecであった。このことから、多層膜4の積層数が増加するにつれて第5のAliGajIn1-i-j層5の結晶性がよくなることが分かった。特に積層数を60層以上にすると、(0004)面及び(2024)面それぞれからの回折ピークの半値幅は715arcsec以下及び1490arcsec以下となり、結晶性を十分高くできることが分かった。 FIG. 4 is a graph showing the relationship between the full width at half maximum of the rocking curve of the diffraction peak from each of the (0004) plane and the (2024) plane of the GaN layer 5 and the number of stacked multilayer films 4 in the double crystal X-ray diffraction method. is there. The half width of the diffraction peak from each of the (0004) plane and the (2024) plane is 770 arcsec and 1589 arcsec when the number of stacked multilayer films 4 is 40 layers, whereas it is 688 arcsec when the number of stacked layers is 140 layers. 1118 arcsec. From this, it was found that the crystallinity of the fifth Al i Ga j In 1-ij Nz layer 5 improved as the number of multilayer films 4 stacked increased. In particular, when the number of stacked layers is 60 or more, the half-value widths of the diffraction peaks from the (0004) plane and the (2024) plane are 715 arcsec or less and 1490 arcsec or less, respectively, and it has been found that the crystallinity can be sufficiently increased.

図5(A)〜(E)それぞれは、多層膜4の積層数が40層、60層、100層、140層、及び200層の場合のGaN層5の表面の原子間力顕微鏡(AFM)写真であり、図6はGaN層5表面のピット密度を多層膜4の積層数別に示す図表である。これらの写真及び図表から、多層膜4の積層数が増えるにつれて第5のAliGajIn1-i-j層5表面のピット密度が1.3×1010(cm-2)、1.1×1010(cm-2)、7.3×10(cm-2)、3.8×10(cm-2)、及び3.1×10(cm-2)と低下していることが分かった。ただし、上記したように積層数が200層の場合はクラックが発生した。 5A to 5E respectively show an atomic force microscope (AFM) on the surface of the GaN layer 5 when the number of stacked multilayer films 4 is 40, 60, 100, 140, and 200. FIG. 6 is a chart showing the pit density on the surface of the GaN layer 5 according to the number of stacked multilayer films 4. From these photographs and diagrams, the pit density on the surface of the fifth Al i Ga j In 1-ij N z layer 5 is 1.3 × 10 10 (cm −2 ) as the number of stacked multilayer films 4 increases. 1 × 10 10 (cm −2 ), 7.3 × 10 9 (cm −2 ), 3.8 × 10 9 (cm −2 ), and 3.1 × 10 9 (cm −2 ) I found out. However, cracks occurred when the number of laminated layers was 200 as described above.

図7は、多層膜4の積層数が40層、100層、及び140層の半導体装置における、2次元電子ガスによるキャリア(電子)の移動度及びキャリア密度の温度依存性を示すグラフである。なお、このキャリアはGaN層5及びAlN層6の界面に蓄積したものである。本グラフにおいて横軸は温度である。また図8は多層膜4の積層数と半導体装置のシート抵抗の関係を示すグラフである。   FIG. 7 is a graph showing the temperature dependence of carrier (electron) mobility and carrier density due to a two-dimensional electron gas in a semiconductor device in which the number of stacked multilayer films 4 is 40 layers, 100 layers, and 140 layers. The carriers are accumulated at the interface between the GaN layer 5 and the AlN layer 6. In this graph, the horizontal axis is temperature. FIG. 8 is a graph showing the relationship between the number of stacked multilayer films 4 and the sheet resistance of the semiconductor device.

キャリア移動度は、多層膜4の積層数が増加するにつれて、いずれの温度においても上昇した。具体的な値を示すと、77K及び室温におけるキャリアの移動度は、多層膜4の積層数が40層の場合は6227cm/Vs、1414cm/Vsであったが、多層膜4の積層数が140層の場合は10958cm/Vs、1524cm/Vsであった。電子の移動度がこのような傾向を示したのは、多層膜4の積層数が増えることで多層膜4より上の各層の結晶性が向上し、結晶欠陥による散乱が減少していることに起因すると考えられる。 The carrier mobility increased at any temperature as the number of stacked multilayer films 4 increased. When showing a specific value, the mobility of carriers in the 77K and room temperature, 6227cm 2 / Vs when the number of laminated multi-layer film 4 is 40 layers, but was 1414cm 2 / Vs, the number of laminated multi-layer film 4 Of 140 layers were 10958 cm 2 / Vs and 1524 cm 2 / Vs. The electron mobility showed this tendency because the crystallinity of each layer above the multilayer film 4 was improved and the scattering due to crystal defects was reduced by increasing the number of multilayer films 4 stacked. It is thought to be caused.

以上の結果より、多層膜4の積層数が40層以上(好ましくは60層以上)160層以下の場合に、第5のAliGajIn1-i-j層5及びその上の各層の結晶性がよくなり、かつ第5のAliGajIn1-i-j層5を用いて形成した半導体装置の特性も向上することが分かった。 From the above results, when the number of stacked multilayer films 4 is 40 layers or more (preferably 60 layers or more) and 160 layers or less, the fifth Al i Ga j In 1-ij N z layer 5 and each layer on the fifth Al i Ga j In 1-ij N z layer 5 It has been found that the crystallinity is improved and the characteristics of the semiconductor device formed using the fifth Al i Ga j In 1-ij Nz layer 5 are also improved.

尚、本発明は上述した実施形態又は実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiments or examples, and various modifications can be made without departing from the spirit of the present invention.

本発明の実施形態に係る半導体装置を示す断面図。Sectional drawing which shows the semiconductor device which concerns on embodiment of this invention. 各図はGaN層5の表面のSEM写真。Each figure is an SEM photograph of the surface of the GaN layer 5. 多層膜4の積層数と基板の反りの関係を示すグラフ。The graph which shows the relationship between the lamination | stacking number of the multilayer film 4, and the curvature of a board | substrate. 二結晶X線回折法における回折ピークのロッキングカーブの半値幅と、多層膜4の積層数の関係を示すグラフ。The graph which shows the relationship between the half value width of the rocking curve of the diffraction peak and the number of lamination | stacking of the multilayer film 4 in a double-crystal X-ray diffraction method. 各図はGaN層5の表面のAFM写真。Each figure is an AFM photograph of the surface of the GaN layer 5. GaN膜表面のピット密度を多層膜4の積層数別に示す図表。The chart which shows the pit density on the surface of a GaN film according to the lamination | stacking number of the multilayer film. おけるキャリア(正孔)の移動度及びキャリア密度の温度依存性を示すグラフ。The graph which shows the temperature dependence of the mobility of a carrier (hole) and carrier density in it.

符号の説明Explanation of symbols

1…Si基材、2…第1のAlaGaIn1-a-b層、3…第2のAlcGadIn1-c-d層、4…多層膜、5…第5のAliGajIn1-i-j層、6…AlN層、7…バリア層、8…キャリア供給層、9…キャップ層、10…半導体層 1 ... Si substrate, 2 ... first Al a Ga b In 1-ab N v layer, 3 ... second Al c Ga d In 1-cd N w layer, 4 ... multilayer film, 5 ... fifth al i Ga j In 1-ij N z layer, 6 ... AlN layer, 7 ... barrier layer, 8 ... carrier supply layer, 9 ... cap layer, 10 ... semiconductor layer

Claims (5)

Si基材上に形成された第1のAlaGaIn1-a-b(0≦a≦1、0≦b≦1、かつ0≦a+b≦1)層と、
前記第1のAlaGaIn1-a-b層上に形成された第2のAlcGadIn1-c-d(0≦c≦1、0≦d≦1、かつ0≦c+d≦1)層と、
前記第2のAlcGadIn1-c-d層上に位置し、第3のAleGafIn1-e-f(0≦e≦1、0≦f≦1、かつ0≦e+f≦1)層及び第4のAlgGahIn1-g-h(0≦g≦1、0≦h≦1、かつ0≦g+h≦1)層を交互に積層した多層膜と、
前記多層膜上に形成された第5のAliGajIn1-i-j(0≦i≦1、0≦j≦1、かつ0≦i+j≦1)層と、
を具備し、前記多層膜における前記第3のAleGafIn1-e-f層と前記第4のAlgGahIn1-g-h層の積層数は160層以下であることを特徴とする半導体基板。
ただし、v、w、x、y、zは正数である。
A first Al a Ga b In 1-ab N v (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, and 0 ≦ a + b ≦ 1) layer formed on a Si substrate;
Second Al c Ga d In 1-cd N w (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d) formed on the first Al a Ga b In 1-ab Nv layer ≦ 1) layer,
Located on the second Al c Ga d In 1-cd N w layer, the third Al e Ga f In 1-ef N x (0 ≦ e ≦ 1,0 ≦ f ≦ 1, and 0 ≦ e + f ≦ 1) a multilayer film in which layers and fourth Al g Ga h In 1-gh N y (0 ≦ g ≦ 1, 0 ≦ h ≦ 1, and 0 ≦ g + h ≦ 1) layers are alternately stacked;
A fifth Al i Ga j In 1-ij N z (0 ≦ i ≦ 1, 0 ≦ j ≦ 1, and 0 ≦ i + j ≦ 1) layer formed on the multilayer film;
Comprising a, the number of laminations of the third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh N y layer in the multilayer film is less than 160 layers A characteristic semiconductor substrate.
However, v, w, x, y, and z are positive numbers.
前記多層膜における前記第3のAleGafIn1-e-f層と、第4のAlgGahIn1-g-h層の積層数は合計で40層以上であることを特徴とする請求項1に記載の半導体基板。 Said third Al e Ga f In 1-ef N x layer in the multilayer film, the number of stacked fourth Al g Ga h In 1-gh N x layer and characterized in that a total of 40 layers or more The semiconductor substrate according to claim 1. 二結晶X線回折法における前記第5のAliGajIn1-i-j層の(0004)面の回折ピークのロッキングカーブの半値幅が、800arcsec以下であることを特徴とする請求項1又は2に記載の半導体基板。 The half width of the rocking curve of the diffraction peak of the (0004) plane of the fifth Al i Ga j In 1-ij N x layer in the double crystal X-ray diffraction method is 800 arcsec or less. Or the semiconductor substrate of 2. Si基材上に形成された第1のAlaGaIn1-a-b(0≦a≦1、0≦b≦1、かつ0≦a+b≦1)層と、
前記第1のAlaGaIn1-a-b層上に形成された第2のAlcGadIn1-c-d(0≦c≦1、0≦d≦1、かつ0≦c+d≦1)層と、
前記第2のAlcGadIn1-c-d層上に位置し、第3のAleGafIn1-e-f(0≦e≦1、0≦f≦1、かつ0≦e+f≦1)層及び第4のAlgGahIn1-g-h(0≦g≦1、0≦h≦1、かつ0≦g+h≦1)層を交互に積層した多層膜と、
前記多層膜上に形成された第5のAliGajIn1-i-j(0≦i≦1、0≦j≦1、かつ0≦i+j≦1)層と、
前記第5のAliGajIn1-i-j層を用いて形成された半導体素子と、
を具備し、前記多層膜における前記第3のAleGafIn1-e-f層と前記第4のAlgGahIn1-g-h層の積層数の積層数は160層以下であることを特徴とする半導体装置。
A first Al a Ga b In 1-ab N v (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, and 0 ≦ a + b ≦ 1) layer formed on a Si substrate;
Second Al c Ga d In 1-cd N w (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, and 0 ≦ c + d) formed on the first Al a Ga b In 1-ab Nv layer ≦ 1) layer,
Located on the second Al c Ga d In 1-cd N w layer, the third Al e Ga f In 1-ef N x (0 ≦ e ≦ 1,0 ≦ f ≦ 1, and 0 ≦ e + f ≦ 1) a multilayer film in which layers and fourth Al g Ga h In 1-gh N y (0 ≦ g ≦ 1, 0 ≦ h ≦ 1, and 0 ≦ g + h ≦ 1) layers are alternately stacked;
A fifth Al i Ga j In 1-ij N z (0 ≦ i ≦ 1, 0 ≦ j ≦ 1, and 0 ≦ i + j ≦ 1) layer formed on the multilayer film;
A semiconductor element formed using the fifth Al i Ga j In 1-ij N z layer;
Comprising a number of stacked lamination number of the third Al e Ga f In 1-ef N x layer and the fourth Al g Ga h In 1-gh N y layer in the multilayer film is below 160 layers There is a semiconductor device.
前記半導体素子の表面のピット密度が1.3×1010cm-2以下であることを特徴とする請求項4に記載の半導体装置。
The semiconductor device according to claim 4, wherein a pit density on the surface of the semiconductor element is 1.3 × 10 10 cm −2 or less.
JP2006076987A 2006-03-20 2006-03-20 Semiconductor substrate and semiconductor device Active JP4670055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076987A JP4670055B2 (en) 2006-03-20 2006-03-20 Semiconductor substrate and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076987A JP4670055B2 (en) 2006-03-20 2006-03-20 Semiconductor substrate and semiconductor device

Publications (2)

Publication Number Publication Date
JP2007258230A true JP2007258230A (en) 2007-10-04
JP4670055B2 JP4670055B2 (en) 2011-04-13

Family

ID=38632197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076987A Active JP4670055B2 (en) 2006-03-20 2006-03-20 Semiconductor substrate and semiconductor device

Country Status (1)

Country Link
JP (1) JP4670055B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158804A (en) * 2007-12-27 2009-07-16 Dowa Electronics Materials Co Ltd Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
JP2011100772A (en) * 2009-11-04 2011-05-19 Dowa Electronics Materials Co Ltd Group iii nitride laminated substrate
JP2011187654A (en) * 2010-03-08 2011-09-22 Toyoda Gosei Co Ltd Hemt composed of group-iii nitride semiconductor, and method of manufacturing the same
WO2011118433A1 (en) * 2010-03-24 2011-09-29 日本碍子株式会社 Epitaxial substrate for semiconductor element and semiconductor element
JP2011243644A (en) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd Group iii nitride semiconductor electronic device, and method of manufacturing group iii nitride semiconductor electronic device
JP2012064977A (en) * 2011-12-15 2012-03-29 Sumitomo Electric Ind Ltd Group iii nitride semiconductor stacked wafer and group iii nitride semiconductor device
US8633514B2 (en) 2009-08-28 2014-01-21 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor wafer and group III nitride semiconductor device
JP2014072431A (en) * 2012-09-28 2014-04-21 Fujitsu Ltd Semiconductor device
US8963164B2 (en) 2010-12-02 2015-02-24 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
US9006865B2 (en) 2010-06-25 2015-04-14 Dowa Electronics Materials Co., Ltd. Epitaxial growth substrate, semiconductor device, and epitaxial growth method
US10475637B2 (en) 2016-07-13 2019-11-12 Globalwafers Co., Ltd. Semiconductor substrate and manufacturing method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243411A (en) * 1988-03-24 1989-09-28 Sharp Corp Compound semiconductor substrate
JPH05110138A (en) * 1991-10-12 1993-04-30 Nichia Chem Ind Ltd Growing method for crystal of gallium nitride compound semiconductor and element thereof
JP2000277441A (en) * 1999-03-26 2000-10-06 Nagoya Kogyo Univ Semiconductor structure, semiconductor element comprising the same and crystal growth method
JP2002170776A (en) * 2000-12-04 2002-06-14 Inst Of Physical & Chemical Res Low-dislocation buffer, its method of manufacture and device provided therewith
JP2002324914A (en) * 2002-02-12 2002-11-08 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting device
JP2003045899A (en) * 2000-12-07 2003-02-14 Ngk Insulators Ltd Semiconductor element
JP2003059948A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Semiconductor device and production method therefor
JP2004048076A (en) * 2003-10-30 2004-02-12 Sanyo Electric Co Ltd Semiconductor element and its manufacturing method
JP2004296717A (en) * 2003-03-26 2004-10-21 Toshimasa Suzuki Laminated body comprising nitride-based semiconductor, and electronic element using the same
JP2004349387A (en) * 2003-05-21 2004-12-09 Sanken Electric Co Ltd Semiconductor substrate and its manufacturing method
JP2005085852A (en) * 2003-09-05 2005-03-31 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2005217049A (en) * 2004-01-28 2005-08-11 Sanken Electric Co Ltd Semiconductor device
JP2005354101A (en) * 2005-08-01 2005-12-22 National Institute Of Advanced Industrial & Technology Heterojunction field effect transistor using nitride semiconductor material
JP2006523033A (en) * 2003-04-10 2006-10-05 ハネウェル・インターナショナル・インコーポレーテッド Method for growing single crystal GaN on silicon

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01243411A (en) * 1988-03-24 1989-09-28 Sharp Corp Compound semiconductor substrate
JPH05110138A (en) * 1991-10-12 1993-04-30 Nichia Chem Ind Ltd Growing method for crystal of gallium nitride compound semiconductor and element thereof
JP2000277441A (en) * 1999-03-26 2000-10-06 Nagoya Kogyo Univ Semiconductor structure, semiconductor element comprising the same and crystal growth method
JP2002170776A (en) * 2000-12-04 2002-06-14 Inst Of Physical & Chemical Res Low-dislocation buffer, its method of manufacture and device provided therewith
JP2003045899A (en) * 2000-12-07 2003-02-14 Ngk Insulators Ltd Semiconductor element
JP2003059948A (en) * 2001-08-20 2003-02-28 Sanken Electric Co Ltd Semiconductor device and production method therefor
JP2002324914A (en) * 2002-02-12 2002-11-08 Nichia Chem Ind Ltd Gallium nitride compound semiconductor light emitting device
JP2004296717A (en) * 2003-03-26 2004-10-21 Toshimasa Suzuki Laminated body comprising nitride-based semiconductor, and electronic element using the same
JP2006523033A (en) * 2003-04-10 2006-10-05 ハネウェル・インターナショナル・インコーポレーテッド Method for growing single crystal GaN on silicon
JP2004349387A (en) * 2003-05-21 2004-12-09 Sanken Electric Co Ltd Semiconductor substrate and its manufacturing method
JP2005085852A (en) * 2003-09-05 2005-03-31 Furukawa Electric Co Ltd:The Semiconductor electronic device
JP2004048076A (en) * 2003-10-30 2004-02-12 Sanyo Electric Co Ltd Semiconductor element and its manufacturing method
JP2005217049A (en) * 2004-01-28 2005-08-11 Sanken Electric Co Ltd Semiconductor device
JP2005354101A (en) * 2005-08-01 2005-12-22 National Institute Of Advanced Industrial & Technology Heterojunction field effect transistor using nitride semiconductor material

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592742B2 (en) * 2007-12-27 2010-12-08 Dowaエレクトロニクス株式会社 Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
JP2009158804A (en) * 2007-12-27 2009-07-16 Dowa Electronics Materials Co Ltd Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
US8344356B2 (en) 2007-12-27 2013-01-01 Dowa Electronics Materials Co., Ltd. Semiconductor material, method of making the same, and semiconductor device
US8633514B2 (en) 2009-08-28 2014-01-21 Sumitomo Electric Industries, Ltd. Group III nitride semiconductor wafer and group III nitride semiconductor device
JP2011100772A (en) * 2009-11-04 2011-05-19 Dowa Electronics Materials Co Ltd Group iii nitride laminated substrate
JP2011187654A (en) * 2010-03-08 2011-09-22 Toyoda Gosei Co Ltd Hemt composed of group-iii nitride semiconductor, and method of manufacturing the same
WO2011118433A1 (en) * 2010-03-24 2011-09-29 日本碍子株式会社 Epitaxial substrate for semiconductor element and semiconductor element
US8853735B2 (en) 2010-03-24 2014-10-07 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor device and semiconductor device
JP2011243644A (en) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd Group iii nitride semiconductor electronic device, and method of manufacturing group iii nitride semiconductor electronic device
US9006865B2 (en) 2010-06-25 2015-04-14 Dowa Electronics Materials Co., Ltd. Epitaxial growth substrate, semiconductor device, and epitaxial growth method
US8963164B2 (en) 2010-12-02 2015-02-24 Fujitsu Limited Compound semiconductor device and method of manufacturing the same
JP2012064977A (en) * 2011-12-15 2012-03-29 Sumitomo Electric Ind Ltd Group iii nitride semiconductor stacked wafer and group iii nitride semiconductor device
JP2014072431A (en) * 2012-09-28 2014-04-21 Fujitsu Ltd Semiconductor device
US10475637B2 (en) 2016-07-13 2019-11-12 Globalwafers Co., Ltd. Semiconductor substrate and manufacturing method thereof

Also Published As

Publication number Publication date
JP4670055B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP4670055B2 (en) Semiconductor substrate and semiconductor device
JP4592742B2 (en) Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
JP4597259B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same
JP2011119715A (en) Epitaxially laminated iii-nitride substrate
JP2006347863A (en) Manufacturing method of group 3-5 nitride semiconductor laminated substrate, and group 3-5 nitride semiconductor independence substrate, and semiconductor element
JP2006128626A (en) Nitride semiconductor device and its manufacturing method
JP2007067077A (en) Nitride semiconductor device and method of manufacturing same
JP2008034834A (en) Growing method of nitride single crystal on silicon substrate, nitride-semiconductor light-emitting element using the same and manufacturing method of the same
JP5192785B2 (en) Manufacturing method of nitride semiconductor device
CN102610719A (en) Metamorphic substrate system, method of manufacture of same, and iii-nitrides semiconductor device
JP6876337B2 (en) Nitride semiconductor substrate and its manufacturing method and semiconductor device
JP2010232322A (en) Compound semiconductor substrate
JP6242941B2 (en) Group III nitride semiconductor and method of manufacturing the same
JP2011187654A (en) Hemt composed of group-iii nitride semiconductor, and method of manufacturing the same
JP2010056555A (en) Semiconductor structure and method for manufacturing the same
JP2012079952A (en) Gallium nitride-based compound semiconductor substrate and method of manufacturing the same
JP2007317752A (en) Template substrate
JP6226627B2 (en) Group III nitride semiconductor epitaxial substrate and manufacturing method thereof
JP2009239038A (en) Semiconductor element and method of manufacturing the same
JP5123414B2 (en) Semiconductor light emitting device, nitride semiconductor wafer, and method of manufacturing nitride semiconductor layer
JP2012174705A (en) Epitaxial wafer for nitride semiconductor device and manufacturing method of the same
JP7205474B2 (en) Template substrate, electronic device, light-emitting device, template substrate manufacturing method, and electronic device manufacturing method
JP4794799B2 (en) Epitaxial substrate and semiconductor multilayer structure
JP2016082200A (en) Crystal laminate structure and manufacturing method thereof, and semiconductor device
JP2014039034A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090713

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100521

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Ref document number: 4670055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250