JP2007258132A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2007258132A
JP2007258132A JP2006084585A JP2006084585A JP2007258132A JP 2007258132 A JP2007258132 A JP 2007258132A JP 2006084585 A JP2006084585 A JP 2006084585A JP 2006084585 A JP2006084585 A JP 2006084585A JP 2007258132 A JP2007258132 A JP 2007258132A
Authority
JP
Japan
Prior art keywords
current collector
electrode plate
lower current
slits
welding point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006084585A
Other languages
Japanese (ja)
Other versions
JP5145643B2 (en
Inventor
Shinya Geshi
真也 下司
Masahiko Kato
正彦 加藤
Shuji Sugimoto
修二 杉本
Fuminori Ozaki
文則 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006084585A priority Critical patent/JP5145643B2/en
Publication of JP2007258132A publication Critical patent/JP2007258132A/en
Application granted granted Critical
Publication of JP5145643B2 publication Critical patent/JP5145643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery made to have enough tracking ability to a lower current collector connected through a welding point to a metal case with a bottom, and having excellent a large-current discharge property hardly deteriorating a connection state in an operating environment such as an electric tool or an electric vehicle, in which excessive vibrations or shocks are added. <P>SOLUTION: The secondary battery is provided with slits 34 extended in a plurality of radiation directions and coupled with a lower part current collector 31 at a center part, and a welding point 32 with a metal case with a bottom 27 is provided at a tongue piece 35 with rich flexibility surrounded by slits 34. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、二次電池に関し、特にその集電構造に関するものである。   The present invention relates to a secondary battery, and more particularly to a current collecting structure thereof.

二次電池には種々あるが、ニッケル水素蓄電池やリチウムイオン二次電池などが代表的である。これらの二次電池は、信頼性が高く、メンテナンスも容易であることから、携帯電話やノートパソコン用の電源などの各種用途に幅広く使用されている。また、近年では、電動工具、電動アシスト自転車、電動バイク、さらに電気自動車などの電源として、耐振動性に優れ、大電流放電に適した二次電池の開発が要望されている。   There are various types of secondary batteries, but nickel-metal hydride storage batteries and lithium ion secondary batteries are typical. Since these secondary batteries are highly reliable and easy to maintain, they are widely used in various applications such as power supplies for mobile phones and notebook computers. In recent years, there has been a demand for the development of a secondary battery having excellent vibration resistance and suitable for large current discharge as a power source for electric tools, electric assist bicycles, electric motorcycles, and electric vehicles.

このような大電流放電に適した二次電池は、帯状の正極芯材と正極活物質からなる正極板と、負極芯材と負極活物質からなる負極板とを隔離用のセパレータを介在させて重ね合わせ、全体を渦巻き状に巻回して極板群を構成し、この極板群を電解液とともに金属製有底ケースに収納して構成されている。   A secondary battery suitable for such a large current discharge has a positive electrode plate made of a strip-like positive electrode core material and a positive electrode active material, and a negative electrode plate made of a negative electrode core material and a negative electrode active material with a separator for separation interposed therebetween. The electrode plate group is formed by overlapping and winding the whole in a spiral shape, and this electrode plate group is housed in a metal bottomed case together with the electrolytic solution.

また、大電流放電に適した集電構造として、極板群の上端面から突出している正極芯材の露出部分に上部集電体が複数個所で溶接され、極板群の下端面から突出している負極芯材の露出部分に下部集電体が複数個所で溶接されている。   In addition, as a current collecting structure suitable for large current discharge, the upper current collector is welded to the exposed portion of the positive electrode core material protruding from the upper end surface of the electrode plate group at a plurality of locations, and protrudes from the lower end surface of the electrode plate group. The lower current collector is welded at a plurality of locations to the exposed portion of the negative electrode core member.

図5は従来の円筒型二次電池の構成例を示した一部切り欠き斜視図、図6は従来の下部集電体の平面図である。   FIG. 5 is a partially cutaway perspective view showing a configuration example of a conventional cylindrical secondary battery, and FIG. 6 is a plan view of a conventional lower current collector.

図に示したように、帯状の正極板1と負極板2はセパレータ6を介して渦巻状に巻回して極板群5が構成されている。極板群5の下端面から突出している負極芯材4の露出部分と下部集電体11の上方に折り曲げたバーリング部13とが複数箇所で溶接され、下部集電体11は極板群5とともに金属製有底ケース7に収納されている。   As shown in the figure, the strip-shaped positive electrode plate 1 and the negative electrode plate 2 are spirally wound via a separator 6 to constitute an electrode plate group 5. An exposed portion of the negative electrode core member 4 protruding from the lower end surface of the electrode plate group 5 and a burring portion 13 bent above the lower current collector 11 are welded at a plurality of locations. The lower current collector 11 is connected to the electrode plate group 5. In addition, it is housed in a metal bottomed case 7.

極板群5の上端面から突出している正極芯材3の露出部と複数箇所で溶接された上部集電体10は接続リード8を中継して封口体9に電気的に接続され、下部集電体11と金属製有底ケース7とは、上部集電体10の中央部に形成された孔部10a及び極板群5の巻き始め側の中空部5aに溶接電極棒を挿入し、下部集電体11のプロジェクション(溶接点12)を介して金属製有底ケース7の底面と抵抗溶接されている。この抵抗溶接は溶接電極棒と金属製有底ケース7の底面に配置した溶接電極との間で下部集電体11と金属製有底ケース7の底面とを挟圧した状態で溶接される。   The exposed portion of the positive electrode core member 3 protruding from the upper end surface of the electrode plate group 5 and the upper current collector 10 welded at a plurality of locations are electrically connected to the sealing member 9 via the connection leads 8, and the lower current collector 10. The electric body 11 and the metal bottomed case 7 are formed by inserting a welding electrode rod into the hole 10a formed in the central portion of the upper current collector 10 and the hollow portion 5a on the winding start side of the electrode plate group 5, It is resistance welded to the bottom surface of the bottomed case 7 made of metal through a projection (welding point 12) of the current collector 11. This resistance welding is performed with the lower current collector 11 and the bottom surface of the metal bottomed case 7 sandwiched between the welding electrode rod and the welding electrode disposed on the bottom surface of the metal bottomed case 7.

しかしながらこのような下部集電体11と金属製有底ケース7の接続状態では、特に耐振動性と大電流放電特性が要求される電動工具、電動アシスト自転車、電動バイク、電気自動車などの電源として用いられた場合、その過度な振動により下部集電体11と金属製有底ケース7との溶接点12が剥離し集電性が低下する懸念があった。   However, in such a connected state of the lower current collector 11 and the metal bottomed case 7, the power source for electric tools, electric assist bicycles, electric motorcycles, electric vehicles and the like that are particularly required to have vibration resistance and large current discharge characteristics. When used, there is a concern that the welding point 12 between the lower current collector 11 and the metal bottomed case 7 is peeled off due to the excessive vibration and the current collecting property is lowered.

このような課題を解決する手段として、下部集電体11の中央部の剛性を他の部分よりも低くして弾性を付与し、この弾性変形によって溶接点12に付加される振動を緩衝し、溶接点12の剥離を防止する方法が提案されている。   As a means for solving such a problem, the rigidity of the central portion of the lower current collector 11 is made lower than that of other portions to give elasticity, and the vibration applied to the welding point 12 by this elastic deformation is buffered. A method for preventing the welding point 12 from peeling is proposed.

図7にこのような従来の他の下部集電体の平面図を示した。金属性有底ケース7の底面の膨れに追従する機能として、下部集電体11にスリット14を放射状に複数個形成し、剛性を他の部分よりも低くして弾性を付与した部分15を設け、中央部が溶接点12を介
して金属製有底ケース7と溶接されている(例えば、特許文献1参照)。
特開2001−256954号公報
FIG. 7 shows a plan view of another conventional lower current collector. As a function of following the swelling of the bottom surface of the metallic bottomed case 7, a plurality of slits 14 are formed radially in the lower current collector 11, and a portion 15 is provided with elasticity by making the rigidity lower than other portions. The central portion is welded to the metal bottomed case 7 via the welding point 12 (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2001-256594

しかしながら、このような下部集電体11にスリット14を放射状に複数個形成し、このスリット14近傍の剛性を他の部分よりも低くする方法では、過度な振動や衝撃が連続して加わる使用環境においては、この剛性を低くした部分の追従性が不十分で、溶接点12を介して接続された下部集電体11と金属製有底ケース7との接続部が剥離されたりして接続状態が不安定となり、集電性が低下して二次電池の大電流放電特性が低下する可能性があった。   However, in such a method in which a plurality of slits 14 are radially formed in the lower current collector 11 and the rigidity in the vicinity of the slits 14 is made lower than that in other portions, an environment in which excessive vibration and impact are continuously applied. In this case, the followability of the portion where the rigidity is lowered is insufficient, and the connection portion between the lower current collector 11 and the metal bottomed case 7 connected via the welding point 12 is peeled off and connected. May become unstable, resulting in a decrease in current collecting performance and a decrease in the large current discharge characteristics of the secondary battery.

本発明は上記従来の課題を解決するものであり、過度な振動や衝撃が連続して加わる使用環境においても、金属製有底ケースに溶接点を介して接続した下部集電体に十分な追従性を持たせ、接続状態が低下しない大電流放電特性に優れた二次電池を提供することを目的とする。   The present invention solves the above-described conventional problems, and sufficiently follows a lower current collector connected to a metal bottomed case through a welding point even in an environment where excessive vibration and impact are continuously applied. It is an object of the present invention to provide a secondary battery excellent in high-current discharge characteristics that has a high conductivity and does not deteriorate the connection state.

上記の課題を解決するために本発明は、帯状の芯材の幅方向の一端面を残して活物質層を設けた正極板と負極板を芯材の突出側が相対向する方向となるようにセパレータを介して巻回した極板群と、この極板群の一方と接続された平板からなる下部集電体と、電解液とを内部に収納した金属製有底ケースと、この金属製有底ケースの上部を密閉する封口体とを備えた二次電池であって、前記下部集電体は、複数個放射方向に伸び中心部で連結されたスリットを設け、この各スリット間に囲まれた柔軟性に富んだ舌片に前記金属製有底ケースとの溶接点を設けたことを特徴としている。   In order to solve the above-described problems, the present invention provides a positive electrode plate and a negative electrode plate which are provided with an active material layer while leaving one end face in the width direction of the belt-like core material so that the protruding sides of the core material face each other. An electrode plate group wound through a separator, a lower current collector made of a flat plate connected to one of the electrode plate groups, a metal bottom case housing an electrolyte, and the metal A secondary battery comprising a sealing body that seals an upper portion of a bottom case, wherein the lower current collector is provided with a plurality of slits extending in a radial direction and connected at a central portion, and is surrounded by the slits. Further, the present invention is characterized in that a welding point with the metal bottomed case is provided on a highly flexible tongue piece.

この構成により、下部集電体に十分な追従性を持たせることができるため、連続する過度な振動や衝撃に対しても、下部集電体と金属製有底ケースの底部との溶接点が剥離する等の接続状態の低下を抑制できるという作用が達成できる。   With this configuration, the lower current collector can have sufficient followability, so that the welding point between the lower current collector and the bottom of the metal bottomed case is not affected by continuous excessive vibration or shock. An effect of suppressing a decrease in connection state such as peeling can be achieved.

本発明によれば、帯状の芯材の幅方向の一端面を残して活物質層を設けた正極板と負極板を芯材の突出側が相対向する方向となるようにセパレータを介して巻回した極板群と、この極板群の一方と接続された平板からなる下部集電体と、同じく極板群の他方と接続された平板からなる上部集電体と、電解液を内部に収納した金属製有底ケースと、この金属製有底ケースの上部を密閉する封口体とを備えた二次電池であって、前記下部集電体は、複数個放射方向に伸び中心部で連結されたスリットを設け、この各スリット間に囲まれた柔軟性に富んだ舌片に前記金属製有底ケースとの溶接点を設けた構成とすることにより、電気自動車の電源用途など連続する過度な振動や衝撃に対しても下部集電体と金属製有底ケースの底部との接続状態の低下を抑制し、集電性が低下しない大電流放電特性に優れた二次電池が得られる。   According to the present invention, the positive electrode plate and the negative electrode plate, which are provided with the active material layer while leaving one end face in the width direction of the belt-like core material, are wound via the separator so that the protruding sides of the core material face each other. An electrode plate group, a lower current collector made of a flat plate connected to one of the electrode plate groups, an upper current collector made of a flat plate connected to the other electrode plate group, and an electrolyte A secondary battery comprising a metal bottomed case and a sealing body that seals an upper portion of the metal bottomed case, wherein a plurality of the lower current collectors extend in a radial direction and are connected at a central portion. By providing a structure having a welded point with the metal bottomed case on a flexible tongue piece surrounded by each slit, continuous excessive use such as a power source for an electric vehicle is provided. Low connection between the lower current collector and the bottom of the metal bottom case against vibration and shock Suppressed, the secondary battery current collecting property and excellent large current discharge characteristic does not decrease is obtained.

本発明においては、帯状の芯材の幅方向の一端面を残して活物質層を設けた正極板と負極板を芯材の突出側が相対向する方向となるようにセパレータを介して巻回した極板群と、この極板群の一方と接続された平板からなる下部集電体と、同じく極板群の他方と接続された平板からなる上部集電体と、電解液を内部に収納した金属製有底ケースと、この金属製有底ケースの上部を密閉する封口体とを備えた二次電池であって、前記下部集電体は、複数個放射方向に伸び中心部で連結されたスリットを設け、この各スリット間に囲まれた柔軟性に富んだ舌片に前記金属製有底ケースとの溶接点を設けた構成とするものである
In the present invention, the positive electrode plate and the negative electrode plate provided with the active material layer while leaving one end face in the width direction of the belt-like core material are wound through the separator so that the protruding side of the core material faces each other. An electrode plate group, a lower current collector made of a flat plate connected to one of the electrode plate groups, an upper current collector made of a flat plate connected to the other electrode plate group, and an electrolyte A secondary battery comprising a metal bottomed case and a sealing body that seals an upper portion of the metal bottomed case, wherein a plurality of the lower current collectors extend in the radial direction and are connected at the center. A slit is provided, and a flexible tongue piece surrounded by the slits is provided with a welding point with the metal bottomed case.

この構成によれば、連続する過度な振動や衝撃に対しても、各スリット間に囲まれた柔軟性に富んだ舌片が振動や衝撃を吸収し、下部集電体と金属製有底ケースの底部との溶接点が剥離することなく、集電性の低下しない大電流放電特性に優れた二次電池が得られる。
また、電池過充電状態など電池内圧が上昇して金属製有底ケースの底面が膨れるような状態においても、下部集電体は溶接点を介して金属製有底ケースと接続した状態で柔軟性に富んだ舌片が金属製有底ケースの底面の変形に追従できるため、溶接点に加わる応力を緩和し、この溶接点が剥がれ接触抵抗値が上昇するという問題点を改善する効果が得られる。
According to this configuration, the flexible tongue surrounded by the slits absorbs vibration and shock against continuous excessive vibration and shock, and the lower current collector and the metal bottom case As a result, the secondary battery excellent in the high-current discharge characteristics in which the current collecting property does not deteriorate can be obtained without the weld point with the bottom of the metal layer being peeled off.
In addition, even when the internal pressure of the battery rises, such as when the battery is overcharged, and the bottom surface of the metal bottomed case swells, the lower current collector is flexible when connected to the metal bottomed case via a welding point. Since the rich tongue piece can follow the deformation of the bottom surface of the metal bottomed case, the stress applied to the welding point is relaxed, and the effect of improving the problem that the welding point peels off and the contact resistance value increases can be obtained. .

また、溶接点は下部集電体のスリットの連結された部分の近くに設けることが好ましい。   Moreover, it is preferable to provide a welding point near the part where the slits of the lower current collector are connected.

このように、下部集電体のスリットの連結された部分の近くに溶接点を設ければ、柔軟性に富んだ舌片が振動や衝撃をさらに吸収する効果が得られ、また、金属製有底ケースの底面が膨れるような状態においても、溶接点の許容応力をさらに高める効果が得られる。また、溶接点を下部集電体の中心部に近付けることにより、上部集電体の中央部に形成した孔部及び極板群の巻き始め側の中空部の空間を小さくすることができ、金属製有底ケース内により多くの活物質を収納することができるため電池容量の増加に繋がる。   Thus, if a welding point is provided near the portion where the slits of the lower current collector are connected, the flexible tongue can further absorb vibrations and shocks, and the presence of metal Even in a state where the bottom surface of the bottom case swells, the effect of further increasing the allowable stress at the welding point can be obtained. In addition, by bringing the welding point closer to the center of the lower current collector, the space of the hole formed in the central portion of the upper current collector and the hollow portion on the winding start side of the electrode plate group can be reduced. Since more active material can be stored in the bottomed case, the battery capacity is increased.

また、スリットを3個以上設けることが好ましい。   Moreover, it is preferable to provide three or more slits.

このように、スリットを3個以上設けることにより、振動や衝撃に対してスリットの歪みや捩れが容易になるため、舌片の柔軟性を格段に高める効果が得られる。スリットの数を増すほど、このスリットの間隔が小さくなるため各スリット間に囲まれた舌片の柔軟性を高める効果が得られる。   As described above, by providing three or more slits, the distortion and twist of the slit with respect to vibration and impact are facilitated, so that the effect of greatly improving the flexibility of the tongue piece can be obtained. As the number of slits is increased, the interval between the slits is reduced, so that an effect of increasing the flexibility of the tongue piece surrounded by the slits can be obtained.

また、溶接点となる位置にプロジェクションを設けることが好ましい。   Moreover, it is preferable to provide a projection at a position to be a welding point.

このように、プロジェクションを介して下部集電体と金属製有底ケースの底面とを溶接すれば溶接強度をさらに高める効果が得られる。   Thus, the effect of further increasing the welding strength can be obtained by welding the lower current collector and the bottom surface of the metal bottomed case through the projection.

図1は本発明の円筒型二次電池の構成例を示した一部切り欠き斜視図、図2は本発明の一実施例を示した下部集電体の斜視図、図3はその平面図、図4は本発明の他の実施例を示した平面図である。   FIG. 1 is a partially cutaway perspective view showing a configuration example of a cylindrical secondary battery of the present invention, FIG. 2 is a perspective view of a lower current collector showing an embodiment of the present invention, and FIG. 3 is a plan view thereof. FIG. 4 is a plan view showing another embodiment of the present invention.

帯状の正極芯材23は幅方向の一端面を残して正極活物質層を設けた正極板21を形成し、同様に帯状の負極芯材24は幅方向の一端面を残して負極活物質層を設けた負極板22を形成する。これら正極板21と負極板22は、正極芯材23と負極芯材24が相対向する方向となるようにセパレータ26を介して渦巻状に巻回して極板群25を構成する。   The strip-shaped positive electrode core material 23 forms the positive electrode plate 21 provided with the positive electrode active material layer while leaving one end face in the width direction. Similarly, the strip-shaped negative electrode core material 24 leaves the one end face in the width direction. The negative electrode plate 22 provided with is formed. The positive electrode plate 21 and the negative electrode plate 22 are wound in a spiral shape via a separator 26 so that the positive electrode core material 23 and the negative electrode core material 24 are opposed to each other, thereby forming an electrode plate group 25.

この極板群25の下端面から突出する負極芯材24の露出部分と下部集電体31の上方に折り曲げたバーリング部33とを複数箇所で溶接し、下部集電体31は極板群25とともに金属製有底ケース27に収納する。   The exposed portion of the negative electrode core member 24 protruding from the lower end surface of the electrode plate group 25 and the burring portion 33 bent above the lower current collector 31 are welded at a plurality of locations. In addition, it is housed in a metal bottomed case 27.

下部集電体31は図2,図3または図4に示したように、放射方向に伸び中心部で連結した複数個のスリット34を形成し、下部集電体31の中心部に柔軟性に富んだ舌片35を3個または4個設けたことを特徴としている。図2,図3に示した下部集電体31は、
放射方向に伸び中心部で連結した3個のスリット34の各角度が約120°となるように形成し、この各スリット34間に囲まれた柔軟性に富んだ舌片35を3個設けている。図4に示した下部集電体31は、放射方向に伸び中心部で連結した4個のスリット34の各角度が約90°となるように形成し、この各スリット34間に囲まれた柔軟性に富んだ舌片35を4個設けている。
As shown in FIG. 2, FIG. 3 or FIG. 4, the lower current collector 31 is formed with a plurality of slits 34 extending in the radial direction and connected at the central portion, so that the lower current collector 31 is flexible at the central portion. It is characterized in that three or four rich tongue pieces 35 are provided. The lower current collector 31 shown in FIGS.
Each of the three slits 34 extending in the radial direction and connected at the center is formed so that each angle is about 120 °, and three flexible tongue pieces 35 surrounded by the slits 34 are provided. Yes. The lower current collector 31 shown in FIG. 4 is formed such that each angle of the four slits 34 extending in the radial direction and connected at the center is about 90 °, and is surrounded by the slits 34. Four tongue pieces 35 rich in nature are provided.

下部集電体31には所定幅の切り欠き部33aを複数個放射状に設け、この切り欠き部33aの両側の縁部には上方に突出させたバーリング部33を設けている。このバーリング部33を極板群25の下方に突出する負極板22の負極芯材24に喰い込ませた状態で溶接することで、負極板22と下部集電体31を低い抵抗値で接続することができる。   The lower current collector 31 is provided with a plurality of notch portions 33a having a predetermined width in a radial manner, and burring portions 33 that protrude upward are provided at both side edges of the notch portion 33a. The burring portion 33 is welded in a state where the burring portion 33 is bitten into the negative electrode core member 24 of the negative electrode plate 22 protruding below the electrode plate group 25, thereby connecting the negative electrode plate 22 and the lower current collector 31 with a low resistance value. be able to.

一方、極板群25の上端面から突出する正極芯材23の露出部分と複数箇所で溶接した上部集電体30は、接続リード28を中継して封口体29と電気的に接続する。   On the other hand, the exposed portion of the positive electrode core member 23 protruding from the upper end surface of the electrode plate group 25 and the upper current collector 30 welded at a plurality of locations are connected to the sealing member 29 via the connection lead 28.

下部集電体31と金属製有底ケース27は、上部集電体30の中央部に形成した孔部30a及び極板群25の巻き始め側の中空部25aに溶接電極棒を挿入し、金属製有底ケース27の底面を受けるように配置した溶接電極との間で下部集電体31と金属製有底ケース27の底面とを挟圧した状態で、溶接点32を介して抵抗溶接する。   The lower current collector 31 and the metal bottomed case 27 are formed by inserting a welding electrode rod into the hole 30a formed in the central portion of the upper current collector 30 and the hollow portion 25a on the winding start side of the electrode plate group 25. Resistance welding is performed via a welding point 32 in a state where the lower current collector 31 and the bottom surface of the metal bottomed case 27 are clamped between welding electrodes arranged to receive the bottom surface of the bottomed case 27 made of metal. .

上部集電体30の上面の周縁部には金属製有底ケース27との内部ショートを防止するためリング状の絶縁板36を載置し、金属製有底ケース27の上部側面に溝部を形成して、極板群25を金属製有底ケース27内に保持する。   A ring-shaped insulating plate 36 is placed on the periphery of the upper surface of the upper current collector 30 to prevent an internal short circuit with the metal bottomed case 27, and a groove is formed on the upper side surface of the metal bottomed case 27. Then, the electrode plate group 25 is held in the metal bottomed case 27.

次いで、所定量のアルカリ電解液を上部集電体30の孔部30aを利用して金属製有底ケース27内に注入し、接続リード28を折り曲げて前記の溝部上に封口体29を載置し、金属製有底ケース27の上端の開口部を内方にかしめ封口して円筒型アルカリ蓄電池を作製する。   Next, a predetermined amount of alkaline electrolyte is injected into the metal bottomed case 27 using the holes 30a of the upper current collector 30, the connection leads 28 are bent, and the sealing body 29 is placed on the groove. And the opening part of the upper end of the metal bottomed case 27 is crimped inward, and a cylindrical alkaline storage battery is produced.

また、このように構成した二次電池は、これらを複数個収納した電池パックとして用いることにも適している。   Further, the secondary battery configured in this manner is also suitable for use as a battery pack containing a plurality of these.

電池パック内では複数個の二次電池が直列または並列に接続され、電動工具、電動アシスト自転車、電動バイク、電気自動車などの電源として用いられる。この場合、特に直列に接続された二次電池同士は上下方向の振動に対して、より強い振動や衝撃が伝わる。このような条件下においても下部集電体31のスリット34によって形成された柔軟性に富んだ舌片35が振動や衝撃を吸収し、下部集電体31と金属製有底ケース27の底部との溶接点32が剥離することなく、集電性の低下しない大電流放電特性に優れた電池パックを提供できる効果が得られる。   In the battery pack, a plurality of secondary batteries are connected in series or in parallel and used as a power source for electric tools, electric assist bicycles, electric motorcycles, electric vehicles and the like. In this case, particularly, the secondary batteries connected in series transmit stronger vibrations and impacts to the vertical vibrations. Even under such conditions, the flexible tongue piece 35 formed by the slit 34 of the lower current collector 31 absorbs vibration and shock, and the bottom of the lower current collector 31 and the metal bottomed case 27 Thus, an effect of providing a battery pack excellent in the large current discharge characteristics in which the current collecting property does not deteriorate can be obtained.

以下、図面を参照して本発明の好ましい実施の形態について説明する。尚、ここで示す図は一例であって、本発明の請求項に表す構成を有していれば、同様の効果を得ることができる。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the figure shown here is an example, Comprising: If it has the structure represented to the claim of this invention, the same effect can be acquired.

(実施例1)
厚さ1.0mmの焼結式ニッケルからなる正極板21の正極芯材23を上方へ1.5mm突出し、厚さ0.70mmのペースト式カドミウムからなる負極板22の負極芯材24を下方へ1.5mm突出してセパレータ26を介して、渦巻状に巻回した高さ寸法50.8mmの極板群25を構成した。
Example 1
The positive electrode core material 23 of the positive electrode plate 21 made of sintered nickel having a thickness of 1.0 mm protrudes upward 1.5 mm, and the negative electrode core material 24 of the negative electrode plate 22 made of paste type cadmium having a thickness of 0.70 mm downward. An electrode plate group 25 having a height of 50.8 mm was formed by projecting 1.5 mm and spirally wound through a separator 26.

板厚0.30mm,外径30.0mmの低炭素鋼からなる上部集電体30の上面には、幅寸法13.0mm,板厚0.4mmの低炭素鋼からなる接続リード28を溶接した。   A connection lead 28 made of low carbon steel having a width of 13.0 mm and a plate thickness of 0.4 mm was welded to the upper surface of the upper current collector 30 made of low carbon steel having a plate thickness of 0.30 mm and an outer diameter of 30.0 mm. .

この上部集電体30の下面には下方に突出するバーリング部(図示せず)が形成されており、このバーリング部と極板群25の上方へ突出した正極芯材23の先端部分を溶接した。同様に極板群25の下方へ突出した負極芯材24の先端部分に板厚0.30mm,外径30.0mmの下部集電体31のバーリング部33を溶接した。   A burring portion (not shown) projecting downward is formed on the lower surface of the upper current collector 30, and the burring portion and the tip of the positive electrode core member 23 projecting upward from the electrode plate group 25 are welded. . Similarly, the burring portion 33 of the lower current collector 31 having a plate thickness of 0.30 mm and an outer diameter of 30.0 mm was welded to the tip portion of the negative electrode core member 24 protruding downward from the electrode plate group 25.

上部集電体30と下部集電体31を溶接した極板群25を外径32.5mm,板厚0.48mmの金属製有底ケース27に挿入し、金属製有底ケース27の内底面に下部集電体31を抵抗溶接した。上部集電体30に溶接した接続リード28の一方には、外径31.0mm,板厚0.50mmの封口体29を抵抗溶接した。   The electrode plate group 25 in which the upper current collector 30 and the lower current collector 31 are welded is inserted into a metal bottomed case 27 having an outer diameter of 32.5 mm and a plate thickness of 0.48 mm. The lower current collector 31 was resistance welded. A sealing body 29 having an outer diameter of 31.0 mm and a plate thickness of 0.50 mm was resistance-welded to one of the connection leads 28 welded to the upper current collector 30.

上部集電体30の上面の周縁部には金属製有底ケース27との内部ショートを防止するため樹脂製で外径30.8mmのリング状の絶縁板36を載置し、金属製有底ケース27の上部側面に溝部を形成して、極板群25を金属製有底ケース27内に保持した。   A ring-shaped insulating plate 36 made of resin and having an outer diameter of 30.8 mm is placed on the periphery of the upper surface of the upper current collector 30 to prevent an internal short circuit with the metal bottomed case 27, and the metal bottomed Grooves were formed on the upper side surface of the case 27 to hold the electrode plate group 25 in the metal bottomed case 27.

次いで、所定量のアルカリ電解液を上部集電体30の孔部30aを利用して金属製有底ケース27内に注入し、接続リード28を折り曲げて前記の溝部上に封口体29を載置し、金属製有底ケース27の上端の開口部を内方にかしめ封口して円筒型アルカリ蓄電池を作製した。この円筒型アルカリ蓄電池は、直径32.5mm、高さ60.3mm、公称容量5000mAhである。   Next, a predetermined amount of alkaline electrolyte is injected into the metal bottomed case 27 using the holes 30a of the upper current collector 30, the connection leads 28 are bent, and the sealing body 29 is placed on the groove. And the opening part of the upper end of the metal bottomed case 27 was crimped inward, and the cylindrical alkaline storage battery was produced. This cylindrical alkaline storage battery has a diameter of 32.5 mm, a height of 60.3 mm, and a nominal capacity of 5000 mAh.

下部集電体31は、図2及び図3に示したように、3個の放射方向に伸びたスリット34が中心部で連結したものを用いた。スリット34はこの連結した中心部からの長さが4.0mm,幅寸法0.4mmとし、ほぼ等間隔で放射状に配置して柔軟性に富んだ舌片35を3箇所に設けた。この舌片35に溶接点32を下部集電体31の中心部から約1mmの位置に設けた。   As shown in FIGS. 2 and 3, the lower current collector 31 was formed by connecting three slits 34 extending in the radial direction at the center. The slit 34 has a length from the connected central part of 4.0 mm and a width dimension of 0.4 mm, and is provided with three flexible tongue pieces 35 arranged radially at substantially equal intervals. A welding point 32 was provided on the tongue 35 at a position about 1 mm from the center of the lower current collector 31.

(実施例2)
下部集電体31にプロジェクションを設け、このプロジェクションを介して溶接点32を設けた以外は実施例1と同じように作製した円筒型アルカリ蓄電池を実施例2とした。プロジェクションの直径は0.6mmとした。
(Example 2)
A cylindrical alkaline storage battery produced in the same manner as in Example 1 except that a projection was provided on the lower current collector 31 and a welding point 32 was provided via this projection was designated as Example 2. The diameter of the projection was 0.6 mm.

(実施例3)
図4に示したように、4個の放射方向に伸びたスリット34を設け、柔軟性に富んだ舌片35を4箇所に設けた以外は実施例1と同じように作製した円筒型アルカリ蓄電池を実施例3とした。
(Example 3)
As shown in FIG. 4, a cylindrical alkaline storage battery produced in the same manner as in Example 1 except that four slits 34 extending in the radial direction were provided and a flexible tongue 35 was provided at four locations. Was taken as Example 3.

(実施例4)
下部集電体31にプロジェクションを設け、このプロジェクションを介して溶接点32を設けた以外は実施例3と同じように作製した円筒型アルカリ蓄電池を実施例4とした。プロジェクションの直径は0.6mmとした。
Example 4
A cylindrical alkaline storage battery produced in the same manner as in Example 3 except that a projection was provided on the lower current collector 31 and a welding point 32 was provided via this projection was designated as Example 4. The diameter of the projection was 0.6 mm.

(比較例1)
図6に示したように、スリットを設けず、その中心部に直径1.2mmのプロジェクションを1点設け、このプロジェクションを介して溶接点12を設けた以外は実施例1と同じように作製した円筒型アルカリ素蓄電池を比較例1とした。
(Comparative Example 1)
As shown in FIG. 6, it was produced in the same manner as in Example 1 except that a slit was not provided, a projection having a diameter of 1.2 mm was provided at the center, and a welding point 12 was provided via this projection. A cylindrical alkaline storage battery was used as Comparative Example 1.

(比較例2)
図7に示したように、下部集電体11の中心部から約2.0mmの位置より長さが3.0mm,幅寸法0.4mmのスリット14をほぼ等間隔で放射状に6本配置した以外は比較例1と同じように作製した円筒型アルカリ蓄電池を比較例2とした。
(Comparative Example 2)
As shown in FIG. 7, six slits 14 having a length of 3.0 mm and a width dimension of 0.4 mm from the central portion of the lower current collector 11 are arranged radially at substantially equal intervals. A cylindrical alkaline storage battery produced in the same manner as in Comparative Example 1 was used as Comparative Example 2 except for the above.

以上のように作製した円筒型アルカリ蓄電池について、下部集電体の弾性試験および振動・落下衝撃試験を行った。   The cylindrical alkaline storage battery produced as described above was subjected to an elastic test and a vibration / drop impact test of the lower current collector.

<下部集電体の弾性試験>
金属製有底ケースの内底面に抵抗溶接した下部集電体の追従性を確認するため、実施例1〜4及び比較例1,2において、アルカリ電解液を注入しないで封口体で密閉したダミー電池を各30個作製した。
<Elasticity test of lower current collector>
In order to confirm the followability of the lower current collector resistance-welded to the inner bottom surface of the metal bottomed case, in Examples 1 to 4 and Comparative Examples 1 and 2, a dummy sealed with a sealing body without injecting an alkaline electrolyte 30 batteries were produced.

(1)溶接点の破断確認
ダミー電池の封口体の中央付近に直径約3mmの穴を開け、この穴に気圧を送入するための金属パイプを接続した。金属パイプの接続は気圧が漏れないよう接続部周縁をハンダ付けして気密性を確保した。この金属パイプを通じて金属製有底ケース内に3MPaの内圧をかけて金属製有底ケースの底面を強制的に変形させ、金属製有底ケースの底面と下部集電体の溶接点を目視観察し溶接点の破断(外れ)の有無を評価した。
(1) Confirmation of fracture of welding point A hole having a diameter of about 3 mm was formed near the center of the sealing body of the dummy battery, and a metal pipe for sending atmospheric pressure was connected to this hole. The connection of the metal pipe was secured by soldering the periphery of the connection part so that the atmospheric pressure did not leak. Through this metal pipe, an internal pressure of 3 MPa is applied to the metal bottomed case to forcibly deform the bottom surface of the metal bottomed case, and the bottom surface of the metal bottomed case and the welding point of the lower current collector are visually observed. The presence or absence of fracture (disconnection) of the weld point was evaluated.

(2)接触抵抗の変動測定
前記のダミー電池の弾性試験前と弾性試験後の接触抵抗の変動を測定した。弾性試験前の接触抵抗は封口体で密閉する前に金属製有底ケースに下部集電体を抵抗溶接後、極板群の中空部に抵抗測定器の測定端子を挿入して下部集電体の上面に押し当て、もう一方の測定端子を金属製有底ケースの底面から挟むように押し当てて溶接点の接触抵抗を測定した。弾性試験後の接触抵抗の測定は、封口体を取り外してから同様の方法で行ったが、弾性試験により溶接点が破断したため抵抗値が測定できないものはデータから省いた。この接触抵抗の測定には微小抵抗測定器(ミリオームメータ,ヒューレットパッカード社製)を用い、弾性試験前後の各20個の平均値を算出し、その変動率を比較評価した。
(2) Contact resistance variation measurement The contact resistance variation before and after the elastic test of the dummy battery was measured. The contact resistance before the elastic test was measured by welding the lower current collector to the metal bottomed case before sealing with the sealing body, and then inserting the measuring terminal of the resistance measuring instrument into the hollow part of the electrode plate group. The contact resistance of the welding point was measured by pressing against the upper surface of the metal plate and pressing the other measurement terminal so as to be sandwiched from the bottom surface of the metal bottomed case. The contact resistance after the elasticity test was measured in the same manner after the sealing body was removed, but those whose resistance could not be measured because the weld point was broken by the elasticity test were omitted from the data. For the measurement of the contact resistance, a micro-resistance meter (milliohm meter, manufactured by Hewlett Packard) was used to calculate an average value of 20 pieces before and after the elastic test, and comparatively evaluated the variation rate.

<振動・落下衝撃試験>
過度な振動や衝撃が連続して加わる使用環境を想定したときの大電流放電特性を確認するため、実施例1〜4及び比較例1,2の円筒型アルカリ蓄電池を各400個作製し、開路電圧の変動測定用と大電流放電容量の変動測定用に各200個用いた。
<Vibration / drop impact test>
In order to confirm the large current discharge characteristics when assuming a use environment in which excessive vibration and impact are continuously applied, 400 cylindrical alkaline storage batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were produced, and the circuit was opened. 200 pieces each were used for voltage fluctuation measurement and for large current discharge capacity fluctuation measurement.

振動・落下衝撃試験の条件は、各円筒型アルカリ蓄電池を満充電後、周波数10〜110Hz,全振幅3.2mmの振動試験を電池の上下方向について計96時間連続して行い、続けてこれら電池を1.0mの高さから円筒型アルカリ蓄電池の上下方向に各30回、硬いコンクリートの表面に自然落下させるものとした。   The conditions of the vibration / drop impact test are as follows. After each cylindrical alkaline storage battery is fully charged, a vibration test with a frequency of 10 to 110 Hz and a total amplitude of 3.2 mm is continuously performed in the vertical direction of the battery for a total of 96 hours. Was dropped from the height of 1.0 m onto the surface of the hard concrete 30 times in the vertical direction of the cylindrical alkaline storage battery.

(3)開路電圧の変動測定
振動・落下衝撃試験前後の各円筒型アルカリ蓄電池の開路電圧を各200個測定し、振動・落下衝撃試験後の開路電圧の低下が25mV以上の電池を電圧低下品として判定した。
(3) Fluctuation measurement of open circuit voltage 200 open circuit voltages of each cylindrical alkaline storage battery before and after the vibration / drop impact test were measured, and a battery whose drop in open circuit voltage after the vibration / drop impact test was 25 mV or more was reduced in voltage. Judged as.

(4)大電流放電容量の変動測定
振動・落下衝撃試験前後の各円筒型アルカリ蓄電池の放電容量を各200個測定し、振動・落下衝撃試験前と試験後の放電容量の平均値の変動を比較評価した。
(4) Fluctuation measurement of large current discharge capacity Measure the discharge capacity of each cylindrical alkaline storage battery before and after the vibration / drop impact test 200 times and measure the change in the average discharge capacity before and after the vibration / drop impact test. Comparative evaluation was made.

この放電容量の変動は、振動・落下衝撃試験前の電池を満充電し、放電電流100Aの定電流で放電終止電圧0.3Vまで連続放電したときの放電容量と、次いで同じように満充電した電池を振動・落下衝撃試験後に同じ条件で放電終止電圧まで連続放電したときの
放電容量との変動を測定した。これらの充放電は常温雰囲気下(23±2℃)で行った。
This variation in the discharge capacity is the same as the discharge capacity when the battery before the vibration / drop impact test is fully charged and continuously discharged to a discharge end voltage of 0.3 V at a constant current of 100 A, and then fully charged in the same manner. After the vibration / drop impact test, the battery was measured for fluctuations with the discharge capacity when continuously discharged to the final discharge voltage under the same conditions. These charging / discharging was performed in a normal temperature atmosphere (23 ± 2 ° C.).

以上の下部集電体の弾性試験、および振動・落下衝撃試験の結果を(表1)に示す。   The results of the elasticity test of the lower current collector and the vibration / drop impact test are shown in Table 1.

この(表1)に示すように、下部集電体31に複数個放射方向に伸び中心部で連結されたスリット34を設け、この各スリット34間に囲まれた柔軟性に富んだ舌片35に金属製有底ケース27との溶接点12を設けた実施例1〜4は、このような舌片を設けなかった比較例1,2と比較して明らかに下部集電体の弾性試験結果および振動・落下衝撃試験結果が良好であることが確認できた。 As shown in (Table 1), a plurality of slits 34 extending in the radial direction and connected at the central portion are provided in the lower current collector 31, and a flexible tongue piece 35 surrounded by the slits 34. The first to fourth examples in which the welding point 12 with the metal bottomed case 27 is provided on the bottom are clearly compared with the comparative examples 1 and 2 in which such tongue pieces are not provided. It was also confirmed that the vibration / drop impact test results were good.

弾性試験後の溶接点の破断は、実施例1〜4が皆無であったのに対し、比較例1は30個中8個の破断が有り、比較例2は30個中4個の破断が有った。   There were no breaks in the weld points after the elastic test in Examples 1 to 4, whereas Comparative Example 1 had 8 breaks in 30 and Comparative Example 2 had 4 breaks in 30. There was.

これは比較例1の下部集電体11は金属製有底ケース7の底部の変形に追従できないため溶接点12が容易に破断したと考えられる。また、比較例2の下部集電体11はスリット14を放射状に有しているため、このスリット14が金属製有底ケース7の底部の変形に追従し、その結果、溶接点12の破断は少なくなったと考えられる。しかしながら、4個の破断が有ったことから金属製有底ケース7の底部の変形に対しての追従性は不十分であることがわかった。一方、実施例1〜4は各スリット34が下部集電体31のほぼ中心部で連結しているため、金属製有底ケース27の底部の変形に対しての追従性に優れていると考えられる。   It is considered that this is because the lower current collector 11 of Comparative Example 1 cannot follow the deformation of the bottom of the metal bottomed case 7 and the welding point 12 was easily broken. Further, since the lower current collector 11 of the comparative example 2 has the slits 14 radially, the slits 14 follow the deformation of the bottom of the metal bottomed case 7, and as a result, the welding point 12 is not broken. It seems that it has decreased. However, since there were four breaks, it was found that the followability to the deformation of the bottom portion of the metal bottomed case 7 was insufficient. On the other hand, in each of Examples 1 to 4, since each slit 34 is connected at the substantially central portion of the lower current collector 31, it is considered that the followability to the deformation of the bottom portion of the metal bottomed case 27 is excellent. It is done.

弾性試験前と弾性試験後の接触抵抗の変動率は、実施例1〜4の接触抵抗の上昇率が1〜4%であったのに対し、比較例1は26%上昇し、比較例2は11%上昇した。   The variation rate of the contact resistance before and after the elasticity test was 1% to 4% in the increase rate of the contact resistance in Examples 1 to 4, whereas that in Comparative Example 1 was increased by 26%. Rose 11%.

このように比較例1,比較例2の接触抵抗の上昇率が大きい理由は前記の溶接破断と同様と考えられる。完全に破断していない場合であっても電気的な接続状態が低下したと考えられる。   Thus, it is thought that the reason why the increase rate of the contact resistance in Comparative Examples 1 and 2 is large is the same as that in the above-described weld fracture. Even if it is not completely broken, it is considered that the electrical connection state has decreased.

また、実施例1〜4によればプロジェクションを設けた実施例2,実施例4の接触抵抗の上昇率がプロジェクションを設けなかった実施例1,実施例3と比べて小さい傾向があることがわかった。これはプロジェクションを介して抵抗溶接した方が無効な電流の分流が抑制されて溶接強度が安定したためと考えられる。   Moreover, according to Examples 1-4, it turns out that the increase rate of the contact resistance of Example 2 and Example 4 which provided the projection tends to be small compared with Example 1 and Example 3 which did not provide the projection. It was. This is presumably because resistance welding through the projection suppresses the invalid current shunting and stabilizes the welding strength.

振動・落下衝撃試験前後の開路電圧変動は、実施例1〜4は25mV以上の電圧変動が皆無であったのに対し、比較例1は200個中12個、比較例2は200個中3個の電圧変動が確認できた。この電圧低下品を分解したところ、下部集電体11と金属製有底ケース7との溶接点12が僅かに破断しており、明らかに接続が不安定な状態であることが確認
できた。したがって、下部集電体11と金属製有底ケース7との接触抵抗が不安定となり大きな電圧変動が生じたと考えられる。
As for open circuit voltage fluctuation before and after the vibration / drop impact test, Examples 1 to 4 had no voltage fluctuation of 25 mV or more, whereas Comparative Example 1 was 12 out of 200, and Comparative Example 2 was 3 out of 200. Individual voltage fluctuations were confirmed. When this voltage drop product was disassembled, the welding point 12 between the lower current collector 11 and the metal bottomed case 7 was slightly broken, and it was confirmed that the connection was clearly unstable. Therefore, it is considered that the contact resistance between the lower current collector 11 and the metal bottomed case 7 became unstable and a large voltage fluctuation occurred.

振動・落下衝撃試験前後の大電流放電容量の変動は、実施例1〜4が13〜30mAhの低下であったのに対し、比較例1は247mAhの低下、比較例2は331mAhと大きく低下した。実施例1〜4によれば、接触抵抗の変動が小さいため大電流放電容量の変動が小さくなったと考えられる。特に実施例2および実施例4は下部集電体31にプロジェクションを設けているため、より大電流放電容量の変動が小さくなったと考えられる。   The fluctuation of the large current discharge capacity before and after the vibration / drop impact test was 13 to 30 mAh in Examples 1 to 4, whereas that in Comparative Example 1 was 247 mAh, and that in Comparative Example 2 was 331 mAh. . According to Examples 1 to 4, it is considered that the fluctuation of the large current discharge capacity is small because the fluctuation of the contact resistance is small. In particular, in Example 2 and Example 4, since the lower current collector 31 is provided with a projection, it is considered that the fluctuation of the large current discharge capacity is further reduced.

一方、比較例1の大電流放電容量が低下した理由は、振動・落下衝撃試験による溶接部12の接触抵抗の変動が考えられる。   On the other hand, the reason why the large current discharge capacity of Comparative Example 1 is reduced may be the fluctuation of the contact resistance of the welded part 12 due to the vibration / drop impact test.

比較例2の大電流放電容量が大きく低下した理由は、接触抵抗の変動による影響に加え、下部集電体11の溶接点12周辺に形成された放射状のスリット14が下部集電体11の集電面積および集電経路を減少させたためと考えられる。極板群5と金属製ケース7とは下部集電体11を中継して電気的に接続されているため、このように下部集電体11の集電面積や集電経路が減少すれば通電効率が低下し、特に大電流放電においては放電容量の低下が大きくなると考えられる。   The reason why the large current discharge capacity of Comparative Example 2 is greatly reduced is that the radial slits 14 formed around the welding point 12 of the lower current collector 11 are gathered by the lower current collector 11 in addition to the influence due to the fluctuation of the contact resistance. This is thought to be due to a reduction in the current area and current collection path. Since the electrode plate group 5 and the metal case 7 are electrically connected via the lower current collector 11, the current collection area and the current collection path of the lower current collector 11 are reduced in this way. It is considered that the efficiency is lowered, and the reduction of the discharge capacity is increased particularly in the case of large current discharge.

また、比較例2の大電流放電容量の低下が大きかった電池を分解したところ、下部集電体11の溶接点12近傍が一部溶断していたことがわかった。これは大電流放電時に下部集電体11の部品抵抗値が部分的に集中して増加し、この抵抗増大部分で過度な発熱が発生したため溶断したと考えられる。   Moreover, when the battery with a large decrease in the large current discharge capacity of Comparative Example 2 was disassembled, it was found that the vicinity of the welding point 12 of the lower current collector 11 was partially melted. It is considered that this is because the part resistance value of the lower current collector 11 is partially concentrated and increased during a large current discharge, and excessive heat generation is generated in this resistance increasing portion, so that it is blown out.

実施例1〜4によれば、下部集電体31に複数個放射方向に伸び中心部で連結したスリット34を設け、この各スリット34間に囲まれた柔軟性に富んだ舌片35に金属製有底ケース27との溶接点32を設けたため、過度な振動・落下試験後の大電流放電試験においても下部集電体31と金属製有底ケース27との通電経路が分散し、下部集電体31の部品抵抗値が部分的に集中して増加することはないと考えられる。   According to the first to fourth embodiments, the lower current collector 31 is provided with a plurality of slits 34 extending in the radial direction and connected at the center, and the flexible tongue piece 35 surrounded by the slits 34 is made of metal. Since the welding point 32 with the bottomed case 27 is provided, the energization path between the lower current collector 31 and the metal bottomed case 27 is dispersed even in a large current discharge test after an excessive vibration / drop test, and the lower current collection is performed. It is considered that the component resistance value of the electric body 31 does not increase due to partial concentration.

なお、柔軟性に富んだ舌片35は5〜8箇所設けても同等以上の効果が得られた。しかしながら、下部集電体31に多数のスリット34を設けることが困難であったこと、及び多数のスリット34を設ければ各スリット34間のスペースが小さくなるため溶接が困難となり溶接工程の効率が低下したことから、舌片35は8箇所程度までが現在実用化されている電池サイズにおいて適当と考えられる。   In addition, even if the tongue piece 35 rich in flexibility was provided at 5 to 8 places, the same or better effect was obtained. However, it is difficult to provide a large number of slits 34 in the lower current collector 31, and if a large number of slits 34 are provided, the space between the slits 34 becomes small, so that welding becomes difficult and the efficiency of the welding process is improved. Because of the reduction, up to about eight tongue pieces 35 are considered appropriate for battery sizes currently in practical use.

本発明の二次電池は、優れた耐振動性と大電流放電特性が要求される電動工具をはじめ、電動アシスト自転車、電動バイクや電気自動車などの電源として有用である。   The secondary battery of the present invention is useful as a power source for electric tools, electric assisted bicycles, electric motorcycles, electric vehicles, and the like that require excellent vibration resistance and large current discharge characteristics.

本発明の円筒型二次電池の構成例を示した一部切り欠き斜視図Partially cutaway perspective view showing a configuration example of a cylindrical secondary battery of the present invention 本発明の一実施例を示した下部集電体の斜視図The perspective view of the lower collector which showed one example of the present invention 本発明の一実施例を示した下部集電体の平面図The top view of the lower collector which showed one example of the present invention 本発明の他の実施例を示した下部集電体の平面図The top view of the lower electrical power collector which showed other examples of the present invention 従来の円筒型二次電池の構成例を示した一部切り欠き斜視図Partially cutaway perspective view showing a configuration example of a conventional cylindrical secondary battery 従来の下部集電体の平面図Plan view of conventional lower current collector 従来の他の下部集電体の平面図Plan view of another conventional lower current collector

符号の説明Explanation of symbols

21 正極板
22 負極板
23 正極芯材
24 負極芯材
25 極板群
25a 中空部
26 セパレータ
27 金属製有底ケース
28 接続リード
29 封口体
30 上部集電体
30a 孔部
31 下部集電体
32 溶接点
33 バーリング部
33a 切り欠き部
34 スリット
35 舌片
36 絶縁板



















DESCRIPTION OF SYMBOLS 21 Positive electrode plate 22 Negative electrode plate 23 Positive electrode core material 24 Negative electrode core material 25 Electrode plate group 25a Hollow part 26 Separator 27 Metal bottomed case 28 Connection lead 29 Sealing body 30 Upper collector 30a Hole 31 Lower collector 32 Welding Point 33 Burling part 33a Notch part 34 Slit 35 Tongue piece 36 Insulating plate



















Claims (4)

帯状の芯材の幅方向の一端面を残して活物質層を設けた正極板と負極板を芯材の突出側が相対向する方向となるようにセパレータを介して巻回した極板群と、この極板群の一方と接続された平板からなる下部集電体と、同じく極板群の他方と接続された平板からなる上部集電体と、電解液を内部に収納した金属製有底ケースと、この金属製有底ケースの上部を密閉する封口体とを備えた二次電池であって、
前記下部集電体は、複数個放射方向に伸び中心部で連結されたスリットを設け、この各スリット間に囲まれた柔軟性に富んだ舌片に前記金属製有底ケースとの溶接点を設けた二次電池。
An electrode plate group in which a positive electrode plate provided with an active material layer leaving one end face in the width direction of the belt-shaped core material and a negative electrode plate are wound through a separator so that the protruding sides of the core material face each other; A bottomed current collector made of a flat plate connected to one of the electrode plate group, an upper current collector made of a flat plate connected to the other of the electrode plate group, and a metal bottomed case containing an electrolyte therein And a sealing battery that seals the upper part of the metal bottomed case,
The lower current collector is provided with a plurality of slits extending in the radial direction and connected at the center, and a flexible tongue piece surrounded by the slits is provided with a welding point with the metal bottomed case. Secondary battery provided.
前記下部集電体のスリットの連結された部分の近くに溶接点を設けた請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein a welding point is provided near a portion where the slit of the lower current collector is connected. 前記スリットを3個以上とした請求項1に記載の二次電池。   The secondary battery according to claim 1, wherein the number of slits is three or more. 前記溶接点となる位置にプロジェクションを設けた請求項1に記載の二次電池。


The secondary battery of Claim 1 which provided the projection in the position used as the said welding point.


JP2006084585A 2006-03-27 2006-03-27 Secondary battery Active JP5145643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006084585A JP5145643B2 (en) 2006-03-27 2006-03-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006084585A JP5145643B2 (en) 2006-03-27 2006-03-27 Secondary battery

Publications (2)

Publication Number Publication Date
JP2007258132A true JP2007258132A (en) 2007-10-04
JP5145643B2 JP5145643B2 (en) 2013-02-20

Family

ID=38632133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006084585A Active JP5145643B2 (en) 2006-03-27 2006-03-27 Secondary battery

Country Status (1)

Country Link
JP (1) JP5145643B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584814A (en) * 2020-04-07 2020-08-25 天津空间电源科技有限公司 Battery eccentric welding current collection mechanism and battery adopting same
WO2024019130A1 (en) * 2022-07-22 2024-01-25 パナソニックIpマネジメント株式会社 Energy storage device and state detection method for energy storage device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113261A (en) * 1979-02-22 1980-09-01 Yuasa Battery Co Ltd Enclosed type alkali cell
JPS6443549U (en) * 1987-09-10 1989-03-15
JP2001256954A (en) * 2000-03-10 2001-09-21 Sony Corp Electricity storage device
JP2004063231A (en) * 2002-07-29 2004-02-26 Yuasa Corp Alkaline storage battery
JP2004139777A (en) * 2002-10-16 2004-05-13 Matsushita Electric Ind Co Ltd Cylindrical secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113261A (en) * 1979-02-22 1980-09-01 Yuasa Battery Co Ltd Enclosed type alkali cell
JPS6443549U (en) * 1987-09-10 1989-03-15
JP2001256954A (en) * 2000-03-10 2001-09-21 Sony Corp Electricity storage device
JP2004063231A (en) * 2002-07-29 2004-02-26 Yuasa Corp Alkaline storage battery
JP2004139777A (en) * 2002-10-16 2004-05-13 Matsushita Electric Ind Co Ltd Cylindrical secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584814A (en) * 2020-04-07 2020-08-25 天津空间电源科技有限公司 Battery eccentric welding current collection mechanism and battery adopting same
CN111584814B (en) * 2020-04-07 2022-10-04 天津空间电源科技有限公司 Battery eccentric welding current collection mechanism and battery adopting same
WO2024019130A1 (en) * 2022-07-22 2024-01-25 パナソニックIpマネジメント株式会社 Energy storage device and state detection method for energy storage device

Also Published As

Publication number Publication date
JP5145643B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4619221B2 (en) Can-type secondary battery
US8906545B2 (en) Prismatic secondary battery
JP5149924B2 (en) Cylindrical secondary battery and manufacturing method thereof
JP4933411B2 (en) Secondary battery
EP1968135A1 (en) Core member for a cylindrical lithium secondary battery
JP2003317805A (en) Cylindrical lithium ion secondary cell, and manufacturing method of the same
JP2011077039A (en) Battery and battery module
JP4654575B2 (en) Cylindrical battery and inter-battery connection structure using the same
JP2004171980A (en) Alkaline battery and its manufacturing method
JP2005100949A (en) Cylindrical battery and its manufacturing method
JP2009252350A (en) Cylindrical battery, and method for manufacturing the same
KR101038115B1 (en) The cylindrical storage battery
WO2009133652A1 (en) Cylindrical battery and manufacturing method thereof
JP5055809B2 (en) Cylindrical storage battery
JP5145643B2 (en) Secondary battery
JP2008159357A (en) Cylindrical secondary battery
JP6623074B2 (en) Bobbin-type lithium primary battery
JP2008243811A (en) Battery
JPH11329398A (en) Wound-electrode battery
JP4610282B2 (en) Battery manufacturing method
JP4836428B2 (en) Storage battery
KR101906923B1 (en) Battery Module and Laser welding method for Battery Module
KR101329876B1 (en) Rechargeable battery comprising electrode tab with elasticity
JP2007066599A (en) Storage battery and battery pack
KR20070096651A (en) Electrode assembly for cylinderical lithium rechargeable battery and cylinderical lithium rechargeable battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5145643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3