JP2007257848A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2007257848A
JP2007257848A JP2006076671A JP2006076671A JP2007257848A JP 2007257848 A JP2007257848 A JP 2007257848A JP 2006076671 A JP2006076671 A JP 2006076671A JP 2006076671 A JP2006076671 A JP 2006076671A JP 2007257848 A JP2007257848 A JP 2007257848A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
negative electrode
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006076671A
Other languages
Japanese (ja)
Other versions
JP5005935B2 (en
Inventor
Hiroshi Fukunaga
浩 福永
Hirokazu Yoshikawa
博和 吉川
Toshihiro Abe
敏浩 阿部
Isato Higuchi
勇人 樋口
Hideaki Katayama
秀昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2006076671A priority Critical patent/JP5005935B2/en
Publication of JP2007257848A publication Critical patent/JP2007257848A/en
Application granted granted Critical
Publication of JP5005935B2 publication Critical patent/JP5005935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of preventing a short circuit occurring at the end face of the peripheral part of an active material layer and improving safety, in the nonaqueous electrolyte battery having a positive electrode sheet in which a positive electrode active material containing layer is formed on a current collector, a negative electrode sheet in which a negative electrode active material containing layer is formed on the current collector, and a separator interposed between the positive electrode sheet and the negative electrode sheet. <P>SOLUTION: The end face of at least one of the peripheral part of the positive electrode active material containing layer 4 and the negative electrode active material containing layer 7 is covered by an insulating resin film 10 which is a resin film having a thermal resistant resin with thermal resistant temperature of 150°C or more as a base body and contains a thermoplastic resin inside. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、非水電解質二次電池に関し、さらに詳しくは、携帯用電子機器、電気自動車、電動アシスト自転車、電動バイク、ロードレベリングなどの電源として使用するのに適した非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery suitable for use as a power source for portable electronic devices, electric vehicles, electric assist bicycles, electric motorcycles, road leveling and the like. Is.

非水電解質電池の一種であるリチウムイオン二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。また、環境問題への配慮から繰り返し充電できる二次電池の重要性が増大しており、携帯機器以外にも、自動車、電気椅子や家庭用、業務用の電力貯蔵システムへの適用が検討されている。   A lithium ion secondary battery, which is a type of nonaqueous electrolyte battery, is widely used as a power source for portable devices such as mobile phones and notebook personal computers because of its high energy density. In addition, the importance of secondary batteries that can be repeatedly charged is increasing due to considerations for environmental issues. In addition to portable devices, application to automobiles, electric chairs, household and commercial power storage systems is being considered. Yes.

近年、環境問題等により電池とガソリンを併用したハイブリッド自動車(HEV)、動力を電池で補助したアシスト自転車、全ての動力を電池で賄う電気自動車や電気バイクが普及している。携帯電話などの小型携帯機器の電源に比べ、これら中型、大型の電源には、容量が大きい高出力二次電池が必要とされている。   2. Description of the Related Art In recent years, hybrid vehicles (HEV) using batteries and gasoline in combination, assist bicycles that support power with batteries, electric vehicles and motorcycles that use batteries for all power have become widespread due to environmental problems. Compared to the power sources of small portable devices such as mobile phones, these medium and large power sources require high-power secondary batteries with a large capacity.

リチウムイオン電池の形状には、筒型電池とラミネート型電池がある。筒型電池より重量当りのエネルギー密度が高いラミネート型電池は、一対の絶縁樹脂フィルムに金属シートを積層して一体化したラミネートシートが外装ケースとして用いられている。この電池はサイズ、厚みに自由度が大きく、従来から様々な形状が作られている。通常、正極シートおよび負極シートには、正極リード端子および負極リード端子が溶接され、セパレータを介して前記正極シートおよび負極シートが積層されて電極の積層体とされ、前記積層体は、正極リード端子および負極リード端子がラミネートシートのシール部位を通して外部に引き出された状態で、ラミネートシート外装体の内部に封入されてラミネート型電池が構成されている。ラミネートシートは、金属シート(例えば、アルミニウム)の一方面側に熱融着性樹脂層(例えば、ポリエチレン)、他方面側に機械的強度に優れた樹脂層(例えば、ポリエチレンテレフタレート)を積層して形成されたもので、ラミネートシート間のシールは、その周囲において前記熱融着性樹脂層側で互いに密着させた状態で加圧/加熱することにより、熱融着性樹脂同士を熱融着させてなされる。   Lithium ion batteries include cylindrical batteries and laminated batteries. A laminated battery having an energy density per weight higher than that of a cylindrical battery uses a laminated sheet obtained by laminating and integrating a metal sheet on a pair of insulating resin films as an outer case. This battery has a large degree of freedom in size and thickness, and various shapes have been conventionally made. Usually, a positive electrode lead terminal and a negative electrode lead terminal are welded to the positive electrode sheet and the negative electrode sheet, and the positive electrode sheet and the negative electrode sheet are laminated through a separator to form a laminated body of electrodes. The laminate type battery is configured by being enclosed in the laminate sheet exterior body in a state where the negative electrode lead terminal and the negative electrode lead terminal are drawn out through the seal portion of the laminate sheet. A laminate sheet is formed by laminating a heat-fusible resin layer (for example, polyethylene) on one side of a metal sheet (for example, aluminum) and a resin layer (for example, polyethylene terephthalate) having excellent mechanical strength on the other side. The seal between the laminate sheets is formed, and the heat-fusible resin is heat-fused by pressurizing / heating in the state of being in close contact with each other on the heat-fusible resin layer side in the periphery. It is done.

正極シートおよび負極シートにおいては、充電時に正極から負極に移動するリチウムが、金属状態で析出しないように、正極シートに対向する負極シートの長さおよび幅を正極シートに比べて大きくとり、さらに絶縁のためセパレータの幅を負極シートより大きくするのが一般的である。しかし、正極シートの端面がセパレータを突き破って負極シートに接触すると短絡となり、充電時に異常昇温や発火などに至る恐れがある。中型、大型電池では、正極、負極の積層枚数を増やすことにより電池容量を増加させるため、携帯機器などに用いられる小型電池に比べ、短絡などの不良の発生率も増加する。   In the positive electrode sheet and the negative electrode sheet, the length and width of the negative electrode sheet facing the positive electrode sheet are made larger than that of the positive electrode sheet so that lithium moving from the positive electrode to the negative electrode during charging does not precipitate in a metallic state, and further insulated. Therefore, the width of the separator is generally larger than that of the negative electrode sheet. However, when the end face of the positive electrode sheet breaks through the separator and comes into contact with the negative electrode sheet, a short circuit occurs, which may lead to abnormal temperature rise or ignition during charging. In medium-sized and large-sized batteries, the battery capacity is increased by increasing the number of stacked positive and negative electrodes. Therefore, the incidence of defects such as short circuits also increases compared to small batteries used in portable devices and the like.

上記短絡の防止のため、正極の集電体の露出部に、塗工乾燥などの方法によりポリフッ化ビニリデンなどの絶縁層を形成する方法(特許文献1)や、アルミナなどの耐熱性を有する粉体をバインダーで結着して絶縁性被膜を形成する方法(特許文献2)が提案されている。
特開2004−259625号公報 特開2004−63343号公報
In order to prevent the short circuit, a method of forming an insulating layer such as polyvinylidene fluoride on the exposed portion of the current collector of the positive electrode by a method such as coating drying (Patent Document 1) or a heat-resistant powder such as alumina There has been proposed a method (Patent Document 2) in which a body is bound with a binder to form an insulating film.
JP 2004-259625 A JP 2004-63343 A

しかし、ポリフッ化ビニリデンなどの結晶性の高い樹脂のみで絶縁層を形成する場合、塗液を乾燥する際に樹脂分子が収縮して塗膜自体が収縮し、集電体や活物質層との接着性が低下してしまう。このため、絶縁層が集電体より剥離しやすくなる。   However, when an insulating layer is formed only with a highly crystalline resin such as polyvinylidene fluoride, the resin molecules shrink and the coating film itself shrinks when the coating liquid is dried. Adhesiveness will decrease. For this reason, an insulating layer becomes easy to peel from a collector.

また、アルミナのように硬い粒子により絶縁性被膜を形成した場合、被膜の収縮を抑えるのに効果は認められるものの、膜がもろくなるため、やはり絶縁性被膜が剥離する問題は残存する。この現象は、活物質層のエッジ部に特に顕著に見られる。   In addition, when an insulating coating is formed of hard particles such as alumina, although an effect of suppressing the shrinkage of the coating is recognized, the film becomes brittle, so that the problem of peeling off the insulating coating still remains. This phenomenon is particularly noticeable at the edge of the active material layer.

本発明は、上記事情に鑑みてなされたものであって、正極シートおよび負極シートの活物質含有層の少なくとも一方の周端部の端面を、安定性の高い絶縁性樹脂膜で被覆することにより、非水電解質二次電池の短絡を防止し、歩留まりの向上、安全性の向上を図るものである。   This invention is made | formed in view of the said situation, Comprising: By covering the end surface of the at least one peripheral edge part of the active material content layer of a positive electrode sheet and a negative electrode sheet with a highly stable insulating resin film, This prevents a short circuit of the non-aqueous electrolyte secondary battery, and improves yield and safety.

本発明は、正極集電体および前記正極集電体上に形成された正極活物質含有層を含む正極シートと、負極集電体および前記負極集電体上に形成された負極活物質含有層を含む負極シートと、前記正極シートと前記負極シートとの間に配置されたセパレータとを備えた非水電解質二次電池において、前記正極活物質含有層および前記負極活物質含有層の少なくとも一方の周端部の端面を、150℃以上の耐熱温度を有する耐熱性樹脂を基体とする樹脂膜であって、その内部に熱可塑性樹脂を含む絶縁性樹脂膜により被覆することことにより前記課題を解決しようとするものである。   The present invention relates to a positive electrode sheet including a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector, and a negative electrode current collector and a negative electrode active material-containing layer formed on the negative electrode current collector. In a non-aqueous electrolyte secondary battery comprising a negative electrode sheet comprising: a separator disposed between the positive electrode sheet and the negative electrode sheet, at least one of the positive electrode active material-containing layer and the negative electrode active material-containing layer The end face of the peripheral end portion is a resin film having a heat resistant resin having a heat resistant temperature of 150 ° C. or higher as a base, and the above problem is solved by covering the inside with an insulating resin film containing a thermoplastic resin. It is something to try.

正極シートまたは負極シートの活物質層の周端部端面で生じる短絡を防ぎ、安全性の高い非水電解質二次電池を得ることができる。特に、ラミネートシートよりなる外装ケースに収容された非水電解質二次電池において、より顕著な効果が発揮される。   A short circuit occurring at the end surface of the peripheral edge of the active material layer of the positive electrode sheet or the negative electrode sheet can be prevented, and a highly safe nonaqueous electrolyte secondary battery can be obtained. In particular, a more remarkable effect is exhibited in a nonaqueous electrolyte secondary battery housed in an outer case made of a laminate sheet.

本発明において、正極、負極、それぞれの活物質含有層端面のいずれかに配置される絶縁性樹脂膜は、150℃以上の耐熱温度を有する耐熱性樹脂を基体とし、その内部に熱可塑性樹脂を含む形態を有するものである。   In the present invention, the insulating resin film disposed on either the positive electrode, the negative electrode, or the end face of each active material-containing layer has a heat-resistant resin having a heat-resistant temperature of 150 ° C. or higher as a base, and a thermoplastic resin in the inside. It has a form to include.

基体となる樹脂の耐熱温度を150℃以上としたのは、高温でも絶縁膜としての機能を安定に維持させるためであり、少なくとも、セパレータがシャットダウンを生じる温度(およそ100〜140℃)よりも高温まで安定性を確保するためである。このような樹脂としては、150℃以上の融点を有するものを用いることができる。   The reason why the heat resistance temperature of the resin serving as the base is set to 150 ° C. or higher is to stably maintain the function as an insulating film even at high temperatures, and at least higher than the temperature at which the separator is shut down (approximately 100 to 140 ° C.). This is to ensure stability. As such a resin, a resin having a melting point of 150 ° C. or higher can be used.

また、絶縁性に優れ、電極のスタック時に受ける押し付け、こすれなどに対する強度、電池の落下時に受ける衝撃に対する強度に優れるものが望ましく、非水電解質に対する安定性にも優れたものが望ましい。   Further, it is desirable to have excellent insulation properties, excellent strength against pressing and rubbing received when the electrodes are stacked, excellent strength against impact received when the battery is dropped, and excellent stability against nonaqueous electrolytes.

上記耐熱性樹脂としては、分子量が大きく結晶性の高いものが望ましく、ポリフッ化ビニリデンおよびそのカルボン酸変性体あるいはマレイン酸変性体などの誘導体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、エポキシ系樹脂、ポリアミド系樹脂などが好適に使用される。   The heat-resistant resin preferably has a large molecular weight and high crystallinity, such as polyvinylidene fluoride and derivatives thereof such as carboxylic acid modified products and maleic acid modified products, vinylidene fluoride-hexafluoropropylene copolymers, and epoxy resins. Polyamide resins and the like are preferably used.

なお、上記耐熱性樹脂として利用できるのは、上記高融点の樹脂に限定されるわけではなく、融点が明確に規定されない樹脂であっても、150℃以上の温度まで安定に存在できるものであれば使用することができる。例えば、ポリフェニルスルホンおよびポリエーテルスルホンなどのポリスルホン系樹脂、ポリイミド系樹脂など、軟化点が150℃以上の樹脂などを用いることも可能である。   The heat-resistant resin that can be used is not limited to the high-melting point resin, and even a resin whose melting point is not clearly defined can be stably present up to a temperature of 150 ° C. or higher. Can be used. For example, it is also possible to use a resin having a softening point of 150 ° C. or higher, such as a polysulfone resin such as polyphenylsulfone and polyethersulfone, or a polyimide resin.

ここで、上記耐熱性樹脂から絶縁性樹脂膜を形成する場合、上記樹脂を可溶性溶媒に溶解し、電極シートの活物質含有層の周端部に塗布・乾燥させる工程を経るのが一般的であるが、上述したような結晶性の高い樹脂では、溶媒乾燥時の収縮が大きく、また柔軟性に乏しいため、塗布対象物から剥離するという問題を生じやすい。そのため、本発明においては、耐熱性樹脂を基体とする絶縁性樹脂膜の内部に熱可塑性樹脂を含有させ、前記溶媒乾燥時の収縮を緩和するとともに、膜に柔軟性を付与し、絶縁性樹脂膜の耐久性を向上させる。   Here, when an insulating resin film is formed from the heat-resistant resin, the resin is generally dissolved in a soluble solvent and subjected to a process of applying and drying the peripheral edge of the active material-containing layer of the electrode sheet. However, a resin having high crystallinity as described above has a large shrinkage at the time of solvent drying and is not flexible enough to easily cause a problem of peeling from an application target. Therefore, in the present invention, an insulating resin film containing a heat-resistant resin as a base contains a thermoplastic resin to relieve shrinkage during the drying of the solvent, and to impart flexibility to the film. Improve membrane durability.

上記熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリオレフィン樹脂、エチレン−酢酸ビニル共重合体、ポリメチルメタクリレート、エチレン−メチルメタクリレート共重合体およびその誘導体か好適に用いられ、耐溶剤性を向上させる目的で、上記樹脂の一部を架橋したものを用いることもできる。   As the thermoplastic resin, polyolefin resin such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polymethyl methacrylate, ethylene-methyl methacrylate copolymer and derivatives thereof are preferably used. For the purpose of improving the solvent resistance, it is possible to use one obtained by crosslinking a part of the resin.

上記熱可塑性樹脂は、絶縁性樹脂膜中でできるだけ均一に分散した状態をとることが望ましく、例えば、個々の熱可塑性樹脂粒子の周囲が耐熱性樹脂で覆われた海島状の構造をとることが望ましい。これにより、耐熱性樹脂の持つ成膜性、強度を維持したまま、熱可塑性樹脂による収縮抑制効果や柔軟性付与効果が得られやすくなるからである。   The thermoplastic resin is desirably dispersed as uniformly as possible in the insulating resin film. For example, each thermoplastic resin particle may have a sea-island structure in which the periphery of each thermoplastic resin particle is covered with a heat-resistant resin. desirable. This is because it becomes easy to obtain the shrinkage-suppressing effect and the flexibility-imparting effect of the thermoplastic resin while maintaining the film formability and strength of the heat-resistant resin.

上記熱可塑性樹脂としては、その粒径が絶縁性樹脂膜の厚みよりも小さいものを用いるのがよく、具体的には、数平均粒子径で0.1〜50μmであることが好ましく、30μm以下のものがより好適に用いられる。また、その形状は限定されるものではなく、種々の形状のものが使用可能であるが、均一分散の点からは略球状の粒子が好ましく用いられる。   As the thermoplastic resin, one having a particle size smaller than the thickness of the insulating resin film is preferably used. Specifically, the number average particle size is preferably 0.1 to 50 μm, preferably 30 μm or less. Are more preferably used. Moreover, the shape is not limited, and various shapes can be used. From the viewpoint of uniform dispersion, substantially spherical particles are preferably used.

上記絶縁性樹脂膜中に含有させる熱可塑性樹脂の割合は、上記収縮抑制効果や柔軟性付与効果が得られやすくなることから1wt%以上とすることが好ましく、5wt%以上であればより一層柔軟性が得られるので好ましく、一方、絶縁性樹脂膜の強度を向上させるために80wt%以下とすることが好ましく、50wt%以下であればより好適である。   The ratio of the thermoplastic resin contained in the insulating resin film is preferably 1 wt% or more because the shrinkage-suppressing effect and the flexibility-imparting effect are easily obtained, and more preferably 5 wt% or more. On the other hand, in order to improve the strength of the insulating resin film, it is preferably 80 wt% or less, and more preferably 50 wt% or less.

上記絶縁性樹脂膜が、電極の活物質含有層の周端部端面に形成されたときに必要とされる、外装体内容積の増加分を考慮すれば、上記絶縁性樹脂膜の厚みは薄いほうが望ましいが、あまり薄くなると強度が不足して絶縁層としての機能が損なわれるため、5μm以上とするのがよく、10μm以上であればより好適であり、一方、30μm以下とするのがよく、20μm以下であればより好適である。   Considering the increase in the volume in the exterior body required when the insulating resin film is formed on the end surface of the peripheral end portion of the active material-containing layer of the electrode, the thinner the insulating resin film is, Although it is desirable, if it becomes too thin, the strength becomes insufficient and the function as an insulating layer is impaired. Therefore, it is preferably 5 μm or more, more preferably 10 μm or more, and on the other hand, it is preferably 30 μm or less, and 20 μm. The following is more preferable.

本発明において、上記絶縁性樹脂膜は、例えば以下の方法により形成することができる。耐熱性樹脂を溶解しかつ熱可塑性樹脂を溶解しない溶媒に、耐熱性樹脂を溶解し、さらに、熱可塑性樹脂を分散させてスラリーを作製する。このスラリーを正極活物質含有層および負極活物質含有層の少なくとも一方の周端部の端面に付着させ、さらに乾燥させることにより、絶縁性樹脂膜を形成することができる。   In the present invention, the insulating resin film can be formed, for example, by the following method. The heat resistant resin is dissolved in a solvent that dissolves the heat resistant resin and does not dissolve the thermoplastic resin, and the thermoplastic resin is further dispersed to prepare a slurry. An insulating resin film can be formed by adhering this slurry to the end face of at least one peripheral end of the positive electrode active material-containing layer and the negative electrode active material-containing layer and further drying the slurry.

本発明では、絶縁性樹脂膜が正極シートおよび負極シートの少なくとも一方の活物質含有層の端面を被覆していればよいが、活物質含有層の上面あるいは集電体の一部を含んで被覆するように絶縁性樹脂膜を形成することにより、絶縁性樹脂膜の接着性が向上して耐久性が高まるので好適である。   In the present invention, the insulating resin film only needs to cover the end surface of at least one of the active material-containing layer of the positive electrode sheet and the negative electrode sheet, but covers the upper surface of the active material-containing layer or a part of the current collector. By forming the insulating resin film as described above, the adhesiveness of the insulating resin film is improved and the durability is increased, which is preferable.

なお、負極活物質含有層の端面を被覆する場合は、正極活物質含有層と対向する位置にかからないように絶縁性樹脂膜を形成すればよい。また、正極活物質含有層の端面を被覆する場合、活物質含有層の上面にも絶縁性樹脂膜を形成すると、負極活物質含有層と対向することになり、その部分が充放電に利用されず放電容量の減少につながるおそれがあるため、活物質含有層の上面での被覆幅は狭い方が望ましく、例えば、2mm以下とすることが望ましい。   In addition, what is necessary is just to form an insulating resin film so that it may not cover the position facing a positive electrode active material content layer, when covering the end surface of a negative electrode active material content layer. In addition, when covering the end face of the positive electrode active material-containing layer, if an insulating resin film is formed also on the upper surface of the active material-containing layer, it will face the negative electrode active material-containing layer, and that portion will be used for charging and discharging. Therefore, it is desirable that the coating width on the upper surface of the active material-containing layer is narrow, for example, 2 mm or less.

上記スラリーの形成に用いる溶媒は、特に限定されるものではなく、一例を示せば、耐熱性樹脂としてポリフッ化ビニリデンを用い、熱可塑性樹脂としてポリエチレンなどを用いる場合には、N−メチルピロリドンなどの汎用性の高い溶媒を好適に用いることができる。上記スラリーを電極の活物質含有層の端部に塗布するか、上記スラリーに、電極の活物質含有層の周縁部を数秒間浸漬してスラリーを付着させ、乾燥させることにより、絶縁性樹脂膜を形成することができる。   The solvent used for forming the slurry is not particularly limited. For example, when polyvinylidene fluoride is used as the heat-resistant resin and polyethylene is used as the thermoplastic resin, N-methylpyrrolidone or the like is used. A highly versatile solvent can be suitably used. An insulating resin film is formed by applying the slurry to the end of the active material-containing layer of the electrode, or by immersing the peripheral portion of the active material-containing layer of the electrode in the slurry for several seconds to allow the slurry to adhere and drying. Can be formed.

また、絶縁性樹脂膜と活物質含有層との接着性を向上させるために、熱可塑性樹脂が加熱変形もしくは融解する温度まで絶縁性樹脂膜を加熱してもよい。なお、上記加熱を行う場合、より低温で接着性向上効果を得るために、絶縁性樹脂膜に用いる熱可塑性樹脂は、基体となる耐熱性樹脂よりも低融点の樹脂とすることが望ましい。   In order to improve the adhesion between the insulating resin film and the active material-containing layer, the insulating resin film may be heated to a temperature at which the thermoplastic resin is deformed or melted by heating. Note that when the above heating is performed, in order to obtain an effect of improving adhesiveness at a lower temperature, it is desirable that the thermoplastic resin used for the insulating resin film is a resin having a lower melting point than the heat-resistant resin serving as the base.

なお、本発明においては、耐熱性樹脂あるいは熱可塑性樹脂の融点としては、JIS K−7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を用いることができる。   In the present invention, as the melting point of the heat-resistant resin or thermoplastic resin, a melting temperature measured using a differential scanning calorimeter (DSC) can be used in accordance with the provisions of JIS K-7121.

次に、本発明の非水電解質二次電池を構成する他の要素について説明する。正極活物質としては、例えば、Li1+xMO(−0.1≦x≦0.1であり、MはCo、Ni、Mn、Zr、Tiなどの遷移金属元素やAlなど)で表されるリチウム含有遷移金属酸化物、LiMnなどのおよびそのLiあるいはMnの一部を他元素(Mg、Ni、Co、Alなど)で置換したリチウムマンガン酸化物、オリビン型LiMPO(M:Co、Ni、Mn、Feなど)などを適用することができる。上記リチウム含有遷移金属酸化物としては、Li(1+a)Ni(1−x−y)MnCo (−0.1≦a≦0.1、0≦x≦0.5、0≦y≦0.5)、LiMn1/3Ni1/3Co1/3、LiNi0.77Co0.2Al0.03などの層状酸化物を具体的に例示することができる。 Next, other elements constituting the nonaqueous electrolyte secondary battery of the present invention will be described. As the positive electrode active material, for example, Li 1 + x MO 2 (−0.1 ≦ x ≦ 0.1, where M is a transition metal element such as Co, Ni, Mn, Zr, Ti, Al, or the like) is used. Lithium manganese oxide, olivine-type LiMPO 4 (M: Co), such as lithium-containing transition metal oxide, LiMn 2 O 4 , and a part of Li or Mn substituted with other elements (Mg, Ni, Co, Al, etc.) Ni, Mn, Fe, etc.) can be applied. Examples of the lithium-containing transition metal oxide include Li (1 + a) Ni (1-xy) Mn x Co y O 2 (−0.1 ≦ a ≦ 0.1, 0 ≦ x ≦ 0.5, 0 ≦ y ≦ 0.5), layered oxides such as LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiNi 0.77 Co 0.2 Al 0.03 O 2 can be specifically exemplified. .

上記正極活物質は、必要に応じて適宜添加される公知の導電助剤(カーボンブラック、黒鉛などの炭素材料など)やポリフッ化ビニリデン(PVDF)などの結着剤とともに正極活物質含有層を構成し、アルミニウム箔などの集電体上に配置されて正極が形成される。   The positive electrode active material constitutes a positive electrode active material-containing layer together with a known conductive additive (carbon material such as carbon black and graphite) and a binder such as polyvinylidene fluoride (PVDF) which are appropriately added as necessary. And it arrange | positions on electrical power collectors, such as aluminum foil, and a positive electrode is formed.

正極の集電体としては、アルミニウムなどの金属箔以外にも、パンチングメタルなど板状のものを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a plate-like material such as punching metal can be used in addition to a metal foil such as aluminum, but usually an aluminum foil having a thickness of 10 to 30 μm is preferably used.

また、負極活物質として、例えば、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などのリチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,Sn、Ge,Bi,Sb、Inなどの元素またはその合金またはその酸化物、リチウム含有窒化物、もしくはリチウム金属やリチウム−アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどの結着剤などを適宜添加した負極活物質含有層を、集電体上に形成したものが用いられる他、上記の各種材料の薄膜を集電体上にメッキなどにより形成したものを用いてもよい。   Moreover, as negative electrode active materials, for example, lithium such as graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, mesocarbon microbeads (MCMB), carbon fibers can be occluded and released. One kind or a mixture of two or more kinds of carbon-based materials is used. Further, an element such as Si, Sn, Ge, Bi, Sb, In or an alloy thereof or an oxide thereof, a lithium-containing nitride, or a lithium metal or a lithium-aluminum alloy can also be used as the negative electrode active material. In addition to using a negative electrode active material-containing layer formed by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials, You may use what formed the thin film of said various materials on the electrical power collector by plating.

負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが5〜30μmの銅箔が好適に用いられる。   As the current collector for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but usually a copper foil having a thickness of 5 to 30 μm is preferably used.

非水系電解質は、例えば、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチル、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、エチレングリコールサルファイト、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどより選ばれる少なくとも1種の有機溶媒に、例えば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここで、Rfはフルオロアルキル基〕などのリチウム塩から選ばれる少なくとも1種を溶解させることによって調製した電解液や、それをゲル化剤によりゲル化した電解質が好ましく用いられる。このリチウム塩の電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。 Nonaqueous electrolytes include, for example, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, methyl propionate, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, ethylene glycol sulfite, 1,2-dimethoxyethane, 1,3- dioxolane, tetrahydrofuran, 2-methyl - tetrahydrofuran, at least one organic solvent selected from diethyl ether, for example, LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiCF 3 CO 2 , Li 2 C 2 F 4 ( SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOS 2) 2 [where, Rf is a fluoroalkyl group] electrolyte solution and which is prepared by dissolving at least one selected from lithium salts such as, gelled electrolyte is preferably used by which the gelling agent. The concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention and can be appropriately changed without departing from the gist of the present invention.

(実施例1)
<正極の作製>
正極活物質であるLiCoO:80質量部と、導電助剤であるアセチレンブラック:10質量部と、バインダーであるPVDF:5質量部を、N−メチル−2−ピロリドン(NMP)を溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、正極集電体となる厚さ15μmのアルミニウム箔の両面に、塗布し、100℃乾燥した後、カレンダー処理を行うことにより、幅が60mmで全厚が120μmの正極シートを形成した。なお、正極活物質含有層は、幅60mm、長さ115mmで形成し、正極集電体の長手方向の端部には、ペーストが塗布されていない正極集電部を設けた。
Example 1
<Preparation of positive electrode>
LiCoO 2 as a positive electrode active material: 80 parts by mass, acetylene black as a conductive additive: 10 parts by mass, PVDF as a binder: 5 parts by mass, N-methyl-2-pyrrolidone (NMP) as a solvent Was mixed to prepare a positive electrode mixture-containing paste. This paste was applied to both surfaces of a 15 μm-thick aluminum foil serving as a positive electrode current collector, dried at 100 ° C., and then subjected to calendering to form a positive electrode sheet having a width of 60 mm and a total thickness of 120 μm. . Note that the positive electrode active material-containing layer was formed with a width of 60 mm and a length of 115 mm, and a positive electrode current collector portion to which no paste was applied was provided at an end portion in the longitudinal direction of the positive electrode current collector.

<絶縁性樹脂膜の形成>
耐熱性樹脂であるポリフッ化ビニリデン(PVDF)のN−メチルピロリドン(NMP)溶液(固形分濃度:12wt%):100gと、熱可塑性樹脂であるポリエチレン(PE)粉末(平均粒径:6μm):1.3gとを容器に入れ、ディスパーで2800rpmの条件で1時間攪拌して液状組成物を得た。この溶液を太さ0.5mmのチューブを通してポンプにより、シリンジから0.1cm/秒の吐出速度で、正極シートの活物質含有層の端面に塗布し、乾燥することにより絶縁性樹脂膜を形成させた。このとき、絶縁性樹脂膜は、正極活物質含有層の端面と上面に形成され、前記端面での膜の厚みは約10μmであり、前記上面での被覆幅は約0.5mmであった。なお、上記組成の絶縁性樹脂膜の電子顕微鏡写真(SEM像)を図1に示すが、耐熱性樹脂1を基体とし、その耐熱性樹脂1に表面を覆われるようにして熱可塑性樹脂2が絶縁性樹脂膜の内部に分散した構造となっていることが認められる。
<Formation of insulating resin film>
N-methylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF), which is a heat-resistant resin (solid content concentration: 12 wt%): 100 g, and polyethylene (PE) powder, which is a thermoplastic resin (average particle diameter: 6 μm): 1.3 g was placed in a container and stirred with a disper at 2800 rpm for 1 hour to obtain a liquid composition. The solution pumped through the tube of thickness 0.5mm and at a discharge rate of 0.1 cm 3 / sec from the syringe, formation of the insulating resin film by coating the end face of the active material-containing layer of the positive electrode sheet and dried I let you. At this time, the insulating resin film was formed on the end face and the top face of the positive electrode active material-containing layer, the thickness of the film on the end face was about 10 μm, and the coating width on the top face was about 0.5 mm. An electron micrograph (SEM image) of the insulating resin film having the above composition is shown in FIG. 1, and the thermoplastic resin 2 is formed so that the heat-resistant resin 1 is a base and the surface is covered with the heat-resistant resin 1. It is recognized that the structure is dispersed inside the insulating resin film.

<負極の作製>
負極活物質であるメソカーボンマイクロビーズ:90質量部と、バインダーであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの負極集電体の両面に塗布し、乾燥した後、カレンダー処理を行うことにより、幅が64mmで全厚が115μmの負極シートを形成した。なお、負極活物質含有層は、幅64mm、長さ118mmで形成し、負極集電体の長手方向の端部には、ペーストが塗布されていない負極集電部を設けた。
<Production of negative electrode>
A negative electrode mixture-containing paste was prepared by mixing 90 parts by mass of mesocarbon microbeads as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent. This negative electrode mixture-containing paste is applied to both sides of a 10 μm-thick negative electrode current collector made of copper foil, dried, and then calendered to form a negative electrode sheet having a width of 64 mm and a total thickness of 115 μm. did. The negative electrode active material-containing layer was formed to have a width of 64 mm and a length of 118 mm, and a negative electrode current collector portion to which no paste was applied was provided at the end in the longitudinal direction of the negative electrode current collector.

厚み30μmのポリエチエン製微多孔膜よりなるセパレータを2枚重ね、その1辺を熱溶着して袋状とした。作製した上記正極シートをこの袋状のセパレータ内部に収納し、両側に負極シートが位置するように、負極シート15枚と前記袋状セパレータに収納した正極シート14枚を交互に積層して電極の積層体とした。このときの、積層体の幅方向断面の要部拡大図を図2に示した。すなわち、図2は、正極集電体3とその上に形成された正極活物質含有層4とからなる正極シート5と、負極集電体6とその上に形成された負極活物質含有層7とからなる負極シート8とセパレータ11との積層の様子、および絶縁性樹脂膜10が正極活物質含有層4の周端部4aの端面4cおよび上面4dを被覆した様子を概念的に表したものであり、正極活物質含有層4の上面4dでの絶縁性樹脂膜10の被覆幅は4bで表される。   Two separators made of a polyethylene microporous film having a thickness of 30 μm were stacked, and one side thereof was thermally welded to form a bag. The prepared positive electrode sheet is accommodated inside the bag-shaped separator, and 15 negative electrode sheets and 14 positive electrode sheets accommodated in the bag-shaped separator are alternately laminated so that the negative electrode sheets are located on both sides. A laminated body was obtained. The principal part enlarged view of the cross section of the width direction of a laminated body at this time was shown in FIG. That is, FIG. 2 shows a positive electrode sheet 5 comprising a positive electrode current collector 3 and a positive electrode active material-containing layer 4 formed thereon, a negative electrode current collector 6 and a negative electrode active material-containing layer 7 formed thereon. The negative electrode sheet 8 and the separator 11 composed of the above and the insulating resin film 10 conceptually represent the state in which the end surface 4c and the upper surface 4d of the peripheral end portion 4a of the positive electrode active material-containing layer 4 are covered. The coating width of the insulating resin film 10 on the upper surface 4d of the positive electrode active material-containing layer 4 is represented by 4b.

次に、上記正極シートおよび負極シートの集電部に、変性ポリエチレンフィルムで被覆された厚みが0.2mmで大きさが15mm×30mmのアルミニウムの正極リード端子と、厚みが0.2mmで大きさが15mm×30mmのニッケルの負極リード端子を、それぞれ超音波溶接により接合し、溶接部分をポリイミドテープで保護した。さらに、リード端子の付いた電極の積層体を、厚みが60μmで大きさが80mm×290mm(ただし、長手方向の中心から片側には、大きさが70mm×106mmで深さ4.5mmの、電極の積層体を収納するための堀を有する)のラミネートシートの上記堀の中に収納し、中心でシートを半分に折り返して重ねあわせ、電極のリード端子が突出する1辺と上記折り返されている1辺とを除く2辺を、1kgf/cmの力で加圧しながら、150℃で10秒間熱溶着させて接合した。 Next, the positive electrode sheet and the negative electrode sheet are coated with a modified polyethylene film on the current collector, and the positive electrode lead terminal is made of aluminum having a thickness of 0.2 mm and a size of 15 mm × 30 mm, and a thickness of 0.2 mm. Were bonded to each other by ultrasonic welding, and the welded portions were protected with polyimide tape. Furthermore, a laminated body of electrodes with lead terminals has a thickness of 60 μm and a size of 80 mm × 290 mm (however, from the center in the longitudinal direction, the electrode has a size of 70 mm × 106 mm and a depth of 4.5 mm. The laminate sheet is housed in the above-mentioned trench, and the sheet is folded in half at the center and overlapped, and one side from which the lead terminal of the electrode protrudes is folded back. Two sides excluding the one side were thermally welded at 150 ° C. for 10 seconds while being pressed with a force of 1 kgf / cm 2 and joined.

上記ラミネートシートの外装体内部に電解液を注液する前に、正極および負極リード端子間に印加電圧200Vをかけて短絡試験を実施した後、外装体の開口部から、下記組成の電解液を注液し、550Torrの減圧下で開口部を熱溶着して接合し、厚さ5mmの非水電解質二次電池を作製した。このとき用いた電解液は、エチレンカーボネートとジエチルカーボネートが体積比1:2で混合された溶媒に、LiPFを1mol/lの濃度で溶解させ、さらにシクロへキシルベンゼンを混合溶媒に対して2wt%添加することにより調製した。 Before injecting the electrolyte into the exterior of the laminate sheet, a short circuit test was performed by applying an applied voltage of 200 V between the positive electrode and the negative electrode lead terminal, and then an electrolyte having the following composition was applied from the opening of the exterior body. The solution was injected, and the opening was thermally welded and bonded under a reduced pressure of 550 Torr to produce a non-aqueous electrolyte secondary battery having a thickness of 5 mm. The electrolytic solution used at this time was obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 2, and 2 wt% of cyclohexylbenzene with respect to the mixed solvent. It was prepared by adding%.

上記電池を室温で24時間放置後、200mAの定電流で4.2Vまで充電し、さらに4.2Vの定電圧を印加する定電流定電圧充電を合計7時間行い、続いて200mAの定電流で3.0Vまで放電した(標準充放電)。この標準充放電を3サイクル行ったが、電池の3サイクル目の放電容量(標準容量)は4Ahであった。次に、上記条件で電池を4.2Vまで充電した後、60℃で30日間保存した。保存後、電池を室温で6時間放置し、標準充放電を2サイクル行って2サイクル目の放電容量(保存後容量)を測定した。上記標準容量および保存後容量から、次式により高温貯蔵での容量回復率を算出した。
容量回復率(%)=(保存後容量)÷(標準容量)×100
The battery is allowed to stand at room temperature for 24 hours, charged to 4.2 V at a constant current of 200 mA, and further subjected to constant current and constant voltage charging for applying a constant voltage of 4.2 V for a total of 7 hours, followed by a constant current of 200 mA. Discharge to 3.0 V (standard charge / discharge). This standard charge / discharge was performed for 3 cycles. The discharge capacity (standard capacity) of the battery at the third cycle was 4 Ah. Next, the battery was charged to 4.2 V under the above conditions, and then stored at 60 ° C. for 30 days. After storage, the battery was allowed to stand at room temperature for 6 hours, standard charge / discharge was performed for 2 cycles, and the discharge capacity (capacity after storage) at the second cycle was measured. From the standard capacity and the capacity after storage, the capacity recovery rate at high temperature storage was calculated by the following formula.
Capacity recovery rate (%) = (Capacity after storage) / (Standard capacity) x 100

(実施例2)
絶縁性樹脂膜の形成において、ポリエチレン粉末の量を3gとした以外は実施例1と同様にして正極シートを作製し、非水電解質二次電池を組み立てた。
(Example 2)
In the formation of the insulating resin film, a positive electrode sheet was prepared in the same manner as in Example 1 except that the amount of polyethylene powder was changed to 3 g, and a nonaqueous electrolyte secondary battery was assembled.

(実施例3)
絶縁性樹脂膜の形成において、ポリエチレン粉末の量を5.14gとした以外は実施例1と同様にして正極シートを作製し、非水電解質二次電池を組み立てた。
(Example 3)
A positive electrode sheet was prepared in the same manner as in Example 1 except that the amount of polyethylene powder was changed to 5.14 g in forming the insulating resin film, and a nonaqueous electrolyte secondary battery was assembled.

(実施例4)
絶縁性樹脂膜の形成において、ポリフッ化ビニリデンのNMP溶液に代えて、ポリフェニルスルホン樹脂(PPS)のNMP溶液(固形分濃度:12wt%)を用いた以外は実施例1と同様にして正極シートを作製し、非水電解質二次電池を組み立てた。
Example 4
In the formation of the insulating resin film, a positive electrode sheet was obtained in the same manner as in Example 1, except that an NMP solution of polyphenylsulfone resin (PPS) (solid content concentration: 12 wt%) was used instead of the NMP solution of polyvinylidene fluoride. And a non-aqueous electrolyte secondary battery was assembled.

(実施例5)
絶縁性樹脂膜の形成において、ポリエチレン粉末に代えて、ポリプロピレン(PP)粉末(平均粒径:6μm):1.3gを使用した以外は実施例1と同様にして正極シートを作製し、非水電解質二次電池を組み立てた。
(Example 5)
In the formation of the insulating resin film, a positive electrode sheet was prepared in the same manner as in Example 1 except that polypropylene (PP) powder (average particle size: 6 μm): 1.3 g was used instead of polyethylene powder. An electrolyte secondary battery was assembled.

(実施例6)
絶縁性樹脂膜の形成において、ポリエチレン粉末に代えて、架橋ポリメチルメタクリレート樹脂(PMMA)粉末:1.3gを使用した以外は実施例1と同様にして正極シートを作製し、非水電解質二次電池を組み立てた。
(Example 6)
In forming the insulating resin film, a positive electrode sheet was prepared in the same manner as in Example 1 except that 1.3 g of a crosslinked polymethyl methacrylate resin (PMMA) powder was used instead of polyethylene powder, and a non-aqueous electrolyte secondary was prepared. I assembled the battery.

(実施例7)
絶縁性樹脂膜の形成を正極側ではなく負極側に行った以外は、実施例1と同様にして非水電解質二次電池を組み立てた。なお、絶縁性樹脂膜は、負極活物質含有層の端面と上面に形成され、前記端面での膜の厚みは約10μmであり、前記上面での被覆幅は約0.5mmであって、負極活物質含有層の上面に形成された絶縁性樹脂膜は、正極活物質含有層と対向しない位置に配置されるよう積層体を形成した。
(Example 7)
A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that the insulating resin film was formed on the negative electrode side instead of the positive electrode side. The insulating resin film is formed on the end face and the top face of the negative electrode active material-containing layer, the thickness of the film on the end face is about 10 μm, the covering width on the top face is about 0.5 mm, The insulating resin film formed on the upper surface of the active material-containing layer formed a laminate so as to be disposed at a position not facing the positive electrode active material-containing layer.

このときの、積層体の幅方向断面の要部拡大図を図3に示した。すなわち、図3は、正極集電体3とその上に形成された正極活物質含有層4とからなる正極シート5と、負極集電体6とその上に形成された負極活物質含有層7とからなる負極シート8とセパレータ11との積層の様子、および絶縁性樹脂膜10が負極活物質含有層7の周端部7aの端面7cおよび上面7dを被覆した様子を概念的に表したものである。また、負極活物質含有層7の上面7dでの絶縁性樹脂膜10の被覆幅は7bで表される。   The principal part enlarged view of the cross section of the width direction of a laminated body at this time was shown in FIG. That is, FIG. 3 shows a positive electrode sheet 5 comprising a positive electrode current collector 3 and a positive electrode active material-containing layer 4 formed thereon, a negative electrode current collector 6 and a negative electrode active material-containing layer 7 formed thereon. The negative electrode sheet 8 and the separator 11 composed of the above and the insulating resin film 10 conceptually represent the state in which the end surface 7c and the upper surface 7d of the peripheral end portion 7a of the negative electrode active material-containing layer 7 are covered. It is. The covering width of the insulating resin film 10 on the upper surface 7d of the negative electrode active material-containing layer 7 is represented by 7b.

(比較例1)
絶縁性樹脂膜を形成しなかった以外は、実施例1と同様にして非水電解質二次電池を組み立てた。
(Comparative Example 1)
A nonaqueous electrolyte secondary battery was assembled in the same manner as in Example 1 except that the insulating resin film was not formed.

上記実施例1〜7および比較例1の非水電解質二次電池各50個について、注液前の短絡試験で短絡が確認された電池の個数と、高温貯蔵での容量回復率(平均)の結果を表1に示す。   About 50 each of the nonaqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Example 1, the number of batteries whose short circuit was confirmed in the short circuit test before injection and the capacity recovery rate (average) in high temperature storage The results are shown in Table 1.

Figure 2007257848
Figure 2007257848

表1の結果からわかるように、本発明の実施例1〜7の非水電解質二次電池では、正極活物質含有層および負極活物質含有層の少なくとも一方の周端部の端面を、150℃以上の耐熱温度を有する耐熱性樹脂を基体とする樹脂膜であって、その内部に熱可塑性樹脂を含む絶縁性樹脂膜により被覆したことにより、短絡発生がなく、貯蔵試験後の回復率も約90%と、被覆処理を行わない比較例1の電池に比べて優れた貯蔵特性を示した。このように、本発明により、歩留まりがよく貯蔵性に優れた電池を構成することができる。   As can be seen from the results in Table 1, in the nonaqueous electrolyte secondary batteries of Examples 1 to 7 of the present invention, the end surface of at least one of the peripheral end portions of the positive electrode active material-containing layer and the negative electrode active material-containing layer was 150 ° C. A resin film based on a heat-resistant resin having a heat-resistant temperature as described above, which is covered with an insulating resin film containing a thermoplastic resin therein, so that no short circuit occurs and the recovery rate after a storage test is about As a result, the storage characteristics were excellent as compared with the battery of Comparative Example 1 in which the coating treatment was not performed. As described above, according to the present invention, a battery having a high yield and excellent storability can be formed.

本発明は、非水電解質二次電池において幅広く利用可能である。   The present invention can be widely used in nonaqueous electrolyte secondary batteries.

本発明で用いられる絶縁性樹脂膜の一例について、その表面の電子顕微鏡写真を示すものである。The example of the insulating resin film used by this invention shows the electron micrograph of the surface. 本発明の実施例1における電極積層体の要部断面図である。It is principal part sectional drawing of the electrode laminated body in Example 1 of this invention. 本発明の実施例7における電極積層体の要部断面図である。It is principal part sectional drawing of the electrode laminated body in Example 7 of this invention.

符号の説明Explanation of symbols

1 耐熱性樹脂
2 熱可塑性樹脂
3 正極集電体
4 正極活物質含有層
4a 周端部
4b 絶縁性樹脂膜の被覆幅
4c 端面
4d 上面
5 正極シート
6 負極集電体
7 負極活物質含有層
7a 周端部
7b 絶縁性樹脂膜の被覆幅
7c 端面
7d 上面
8 負極シート
10 絶縁性樹脂膜
11 セパレータ
DESCRIPTION OF SYMBOLS 1 Heat resistant resin 2 Thermoplastic resin 3 Positive electrode collector 4 Positive electrode active material containing layer 4a Circumferential edge part 4b Covering width of insulating resin film 4c End surface 4d Upper surface 5 Positive electrode sheet 6 Negative electrode current collector 7 Negative electrode active material containing layer 7a Peripheral end 7b Covering width of insulating resin film 7c End surface 7d Upper surface 8 Negative electrode sheet 10 Insulating resin film 11 Separator

Claims (11)

正極集電体および前記正極集電体上に形成された正極活物質含有層を含む正極シートと、負極集電体および前記負極集電体上に形成された負極活物質含有層を含む負極シートと、前記正極シートと前記負極シートとの間に配置されたセパレータとを備えた非水電解質二次電池であって、
前記正極活物質含有層および前記負極活物質含有層の少なくとも一方の周端部の端面が、150℃以上の耐熱温度を有する耐熱性樹脂を基体とする樹脂膜であって、その内部に熱可塑性樹脂を含む絶縁性樹脂膜により被覆されていることを特徴とする非水電解質二次電池。
A positive electrode sheet including a positive electrode current collector and a positive electrode active material-containing layer formed on the positive electrode current collector, and a negative electrode sheet including a negative electrode current collector and a negative electrode active material-containing layer formed on the negative electrode current collector And a non-aqueous electrolyte secondary battery comprising a separator disposed between the positive electrode sheet and the negative electrode sheet,
An end face of at least one peripheral end of the positive electrode active material-containing layer and the negative electrode active material-containing layer is a resin film based on a heat-resistant resin having a heat-resistant temperature of 150 ° C. or higher, and has a thermoplastic film inside A non-aqueous electrolyte secondary battery, which is covered with an insulating resin film containing a resin.
前記正極シート、負極シートおよびセパレータが、ラミネートシートよりなる外装ケースに収容され、密閉されてなる請求項1に記載の非水電解質二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode sheet, the negative electrode sheet and the separator are accommodated in an outer case made of a laminate sheet and sealed. 前記耐熱性樹脂は、融点が150℃以上の樹脂である請求項1または2に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the heat resistant resin is a resin having a melting point of 150 ° C. or higher. 前記耐熱性樹脂が、ポリフッ化ビニリデンおよびその誘導体より選ばれる少なくとも1種である請求項3に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 3, wherein the heat resistant resin is at least one selected from polyvinylidene fluoride and derivatives thereof. 前記熱可塑性樹脂の融点が、前記耐熱性樹脂の融点よりも低いことを特徴とする請求項3または4に記載の非水電解質二次電池。 5. The nonaqueous electrolyte secondary battery according to claim 3, wherein a melting point of the thermoplastic resin is lower than a melting point of the heat resistant resin. 前記熱可塑性樹脂が、ポリオレフィン、エチレン−酢酸ビニル共重合体、ポリメチルメタクリレート、エチレン−メチルメタクリレート共重合体およびその誘導体より選ばれる少なくとも1種である請求項1〜5のいずれかに記載の非水電解質二次電池。 The said thermoplastic resin is at least 1 sort (s) chosen from polyolefin, ethylene-vinyl acetate copolymer, polymethylmethacrylate, ethylene-methylmethacrylate copolymer, and its derivative (s), The non in any one of Claims 1-5 Water electrolyte secondary battery. 前記熱可塑性樹脂は、略球状の粒子からなる請求項1〜6のいずれかに記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the thermoplastic resin is made of substantially spherical particles. 前記絶縁性樹脂膜に含まれる熱可塑性樹脂の割合が、1〜80wt%の範囲にある請求項1〜7のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein a ratio of the thermoplastic resin contained in the insulating resin film is in a range of 1 to 80 wt%. 前記絶縁性樹脂膜の厚みが5〜30μmである請求項1〜8のいずれかに記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the insulating resin film has a thickness of 5 to 30 μm. 前記絶縁性樹脂膜が、正極活物質含有層の周端部の端面と共にさらに上面も被覆しており、その上面での被覆幅が2mm以下である請求項1〜9のいずれかに記載の非水電解質二次電池。 The non-conductive film according to any one of claims 1 to 9, wherein the insulating resin film further covers an upper surface together with an end surface of the peripheral end portion of the positive electrode active material-containing layer, and a covering width on the upper surface is 2 mm or less. Water electrolyte secondary battery. 前記絶縁性樹脂膜が、負極活物質含有層の周端部の端面と共にさらに上面も被覆しており、前記負極活物質含有層の上面に形成された絶縁性樹脂膜が、正極活物質含有層と対向しないことを特徴とする請求項1〜9のいずれかに記載の非水電解質二次電池。
The insulating resin film further covers the upper surface as well as the end surface of the peripheral end of the negative electrode active material-containing layer, and the insulating resin film formed on the upper surface of the negative electrode active material-containing layer is a positive electrode active material-containing layer The nonaqueous electrolyte secondary battery according to claim 1, wherein the nonaqueous electrolyte secondary battery is not opposed to the nonaqueous electrolyte secondary battery.
JP2006076671A 2006-03-20 2006-03-20 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5005935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006076671A JP5005935B2 (en) 2006-03-20 2006-03-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006076671A JP5005935B2 (en) 2006-03-20 2006-03-20 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007257848A true JP2007257848A (en) 2007-10-04
JP5005935B2 JP5005935B2 (en) 2012-08-22

Family

ID=38631887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006076671A Expired - Fee Related JP5005935B2 (en) 2006-03-20 2006-03-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5005935B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245683A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Secondary battery
JP2011052049A (en) * 2009-08-31 2011-03-17 Henkel Japan Ltd Hot melt adhesive for electric power equipment
JP2012014886A (en) * 2010-06-30 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
US8247100B2 (en) 2008-03-26 2012-08-21 Tdk Corporation Electrochemical device
JP2013069517A (en) * 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd Negative electrode paste, negative electrode and method for manufacturing the same, and nonaqueous electrolyte secondary battery
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
CN110635106A (en) * 2019-10-23 2019-12-31 珠海格力电器股份有限公司 Pole piece, lithium ion battery and manufacturing method of pole piece

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102509769B1 (en) 2017-03-06 2023-03-14 가부시키가이샤 리코 Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus
JP7279298B2 (en) 2017-03-06 2023-05-23 株式会社リコー electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130394A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH10241740A (en) * 1997-02-27 1998-09-11 Asahi Chem Ind Co Ltd Nonaqueous system battery
JP2004055537A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2004063343A (en) * 2002-07-30 2004-02-26 Toshiba Corp Lithium ion secondary battery
JP2004164867A (en) * 2002-11-08 2004-06-10 Sony Corp Nonaqueous electrolyte battery
JP2004214042A (en) * 2003-01-06 2004-07-29 Mitsubishi Electric Corp Adhesive for lithium secondary battery, its manufacturing method, and battery using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130394A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH10241740A (en) * 1997-02-27 1998-09-11 Asahi Chem Ind Co Ltd Nonaqueous system battery
JP2004055537A (en) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd Lithium ion secondary battery
JP2004063343A (en) * 2002-07-30 2004-02-26 Toshiba Corp Lithium ion secondary battery
JP2004164867A (en) * 2002-11-08 2004-06-10 Sony Corp Nonaqueous electrolyte battery
JP2004214042A (en) * 2003-01-06 2004-07-29 Mitsubishi Electric Corp Adhesive for lithium secondary battery, its manufacturing method, and battery using it

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8247100B2 (en) 2008-03-26 2012-08-21 Tdk Corporation Electrochemical device
JP2009245683A (en) * 2008-03-31 2009-10-22 Sanyo Electric Co Ltd Secondary battery
JP2011052049A (en) * 2009-08-31 2011-03-17 Henkel Japan Ltd Hot melt adhesive for electric power equipment
JP2012014886A (en) * 2010-06-30 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013069517A (en) * 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd Negative electrode paste, negative electrode and method for manufacturing the same, and nonaqueous electrolyte secondary battery
US10511063B2 (en) 2016-01-19 2019-12-17 Gs Yuasa International Ltd. Negative electrode plate, energy storage device, method for manufacturing negative electrode plate, and method for manufacturing energy storage device
CN110635106A (en) * 2019-10-23 2019-12-31 珠海格力电器股份有限公司 Pole piece, lithium ion battery and manufacturing method of pole piece

Also Published As

Publication number Publication date
JP5005935B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5328034B2 (en) Electrochemical element separator, electrochemical element and method for producing the same
CN103222098B (en) Electrode for secondary battery assembly and the lithium secondary battery comprising described electrode assemblie
KR100695968B1 (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP4183715B2 (en) Non-aqueous battery
JP5005935B2 (en) Nonaqueous electrolyte secondary battery
JP4549992B2 (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP5427046B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP2007027100A (en) Nonaqueous electrolyte secondary battery
JP5100082B2 (en) Flat battery
JP2010118175A (en) Secondary battery
JP3831939B2 (en) battery
CN110071260B (en) Nonaqueous electrolyte secondary battery
JP2015125948A (en) Lithium ion secondary battery
JP6974930B2 (en) Non-aqueous electrolyte secondary battery
JP4438137B2 (en) Battery manufacturing method
CN107026281B (en) Lithium ion secondary battery
JP4551539B2 (en) Nonaqueous electrolyte secondary battery
JP2006260990A (en) Stacked battery
JP4142921B2 (en) Lithium ion secondary battery
JP4802217B2 (en) Nonaqueous electrolyte secondary battery
JPH10112323A (en) Battery
JP2010040227A (en) Lithium-ion secondary battery
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
JP2005135634A (en) Nonaqueous electrolyte secondary battery
JP5148142B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees