JPH10241740A - Nonaqueous system battery - Google Patents

Nonaqueous system battery

Info

Publication number
JPH10241740A
JPH10241740A JP9043477A JP4347797A JPH10241740A JP H10241740 A JPH10241740 A JP H10241740A JP 9043477 A JP9043477 A JP 9043477A JP 4347797 A JP4347797 A JP 4347797A JP H10241740 A JPH10241740 A JP H10241740A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
negative electrode
battery
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9043477A
Other languages
Japanese (ja)
Inventor
Yuko Ogawa
祐子 小川
Shunsuke Oki
俊介 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9043477A priority Critical patent/JPH10241740A/en
Publication of JPH10241740A publication Critical patent/JPH10241740A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To make extremely thin an insulated coat for improving battery capacity, and reduce the deterioration of battery performance under high temperature by fixing the insulated coat, composed of an aggregate of insulating material particles, to a surface on a side wherein the active material of the current collecting foil of positive and negative electrodes is not formed covered. SOLUTION: A positive electrode active material dispersion is applied to one side surface of a current-collecting body foil 4a of a positive electrode plate 4 to be dried, and is formed covered of a positive electrode active material layer 4b. Negative electrode active material slurry is applied to one side surface of a current-collecting body layer 5a of a negative electrode plate 5 to be dried, and is formed covered of a negative electrode active material layer 5b. Then, an α-Al2 O3 fine powder and polyvinylidene fluoride powder are mixed, and N-methyl pyrrolidone is added to form dispersion by further mixing thereto. The dispersion is applied uniformly to the surface of the current collecting body foil 4a and 4b on a side (where the active materials of the positive and negative electrodes 4 and 5 are not formed covered), and is dried, and an insulated coat 7, composed of an insulation material particle aggregate, is fixed thereto. Separators 6 are nippedly wound on the positive and negative electrodes 4 and 5, thereto the insulated coat 7 is fixed, to obtain an electrode laminating layer body 1 composed of a unit battery layer 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、集電体箔に正極活
物質が被着された正極板と、集電体箔に負極活物質が被
着された負極板との間にセパレーターを配置し、これを
積層して電池缶に収納される捲回型または積層型の電池
であって、電解質の溶媒が非水系である非水系電池に関
する。特に本発明は集電体箔の片面にのみ活物質が被着
されている正極および負極を用いたものの改良に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to a separator provided between a positive electrode plate having a current collector foil coated with a positive electrode active material and a negative electrode plate having a current collector foil coated with a negative electrode active material. Further, the present invention relates to a wound or stacked battery which is stacked and stored in a battery can, wherein the electrolyte solvent is a non-aqueous battery. In particular, the present invention relates to an improvement in a collector foil using a positive electrode and a negative electrode in which an active material is adhered to only one surface.

【0002】[0002]

【従来の技術】非水系の電解液を用いるリチウムイオン
二次電池は、高電圧、高容量、高出力でありながら重量
が軽いため、携帯型電子機器の電源として採用されつつ
ある。このようなリチウムイオン二次電池では、一般
に、正極の集電体としてアルミニウム箔を用い、これに
正極活物質であるリチウム複合酸化物を塗布して正極板
を成形するとともに、負極の集電体として銅箔を用い、
これに負極活物質である炭素を含む材料などを塗布して
負極板を形成している。該正極板と該負極板の間にセパ
レーターとしてポリオレフィン(ポリエチレン、ポリプ
ロピレン等)製の微多孔膜を介在させて単位電池層を形
成し、該単位電池層を渦巻き状に捲回した電極板積層体
を、円筒型の金属缶に収納している。
2. Description of the Related Art A lithium ion secondary battery using a non-aqueous electrolytic solution is being used as a power source for portable electronic devices because of its high voltage, high capacity, high output, and light weight. In such a lithium ion secondary battery, generally, an aluminum foil is used as a current collector of a positive electrode, and a lithium composite oxide as a positive electrode active material is applied thereto to form a positive electrode plate, and a current collector of a negative electrode is formed. Using copper foil as
A negative electrode plate is formed by applying a material containing carbon, which is a negative electrode active material, to this. An electrode plate laminate in which a unit battery layer is formed by interposing a microporous film made of polyolefin (polyethylene, polypropylene, etc.) as a separator between the positive electrode plate and the negative electrode plate, and the unit battery layer is spirally wound, Housed in a cylindrical metal can.

【0003】現在流通しているリチウムイオン二次電池
には、集電体箔の両面に活物質を塗布した正極板および
負極板と、二枚のセパレーターとをセパレーター、負
極、セパレーター、正極の順に重ねた単位電池層を、渦
巻き状に巻いたものや、集電体箔の片面に活物質を塗布
した正極板と負極板と、二枚のセパレーターをセパレー
ター、負極、セパレーター、正極の順に、正極活物質と
負極活物質が対向するように重ねた単位電池層を、捲回
したものなどがある。
[0003] Currently available lithium ion secondary batteries include a positive electrode plate and a negative electrode plate each having an active material coated on both surfaces of a current collector foil, and two separators in the order of a separator, a negative electrode, a separator, and a positive electrode. The stacked unit battery layers are wound in a spiral shape, or a positive electrode plate and a negative electrode plate with an active material applied to one side of a current collector foil, and two separators, a separator, a negative electrode, a separator, and a positive electrode in the order of positive electrode. A unit battery layer in which an active material and a negative electrode active material are stacked so as to face each other may be wound.

【0004】[0004]

【発明が解決しようとする課題】非水系電池では非水電
解液のイオン伝導性が低いので、十分な入出力特性を得
るために水系の電池よりも極端に電極の面積を大きくし
ている。そのため、セパレーターの面積も必然的に大き
くなり、電池製造コストを引き上げる要因となってい
る。
In a non-aqueous battery, the ionic conductivity of a non-aqueous electrolyte is low, so that the area of the electrode is extremely larger than that of a water-based battery in order to obtain sufficient input / output characteristics. For this reason, the area of the separator is inevitably increased, which is a factor that increases the battery manufacturing cost.

【0005】さらに集電体箔の片面にのみ活物質を塗布
した正極板および負極板をそれぞれ一枚ずつ用いて単位
電池層を形成した電池においては、活物質を集電体箔の
片面にしか活物質を被着していないため、各単位電池層
の間では活物質を被着していない正極集電体箔面と負極
集電体箔面とが向き合うように配置されることとなる
が、現状ではこの両者間の絶縁にもポリオレフィン製微
多孔膜を用いているため、余分のコストがかかってい
る。また、ポリオレフィン製微多孔膜は独立膜であり、
捲回に耐えるだけの機械的強度が必要となるため、一定
以上に薄くすることは不可能である。コストダウンと電
池容量の向上のために、金属箔間の絶縁にはポリオレフ
ィン製微多孔膜以外の、安価で薄い絶縁膜が求められて
いる。
Further, in a battery in which a unit battery layer is formed using one positive electrode plate and one negative electrode plate each having an active material applied to only one surface of the current collector foil, the active material is applied only to one surface of the current collector foil. Since the active material is not applied, the positive electrode current collector foil surface and the negative electrode current collector foil surface where the active material is not applied between the unit battery layers are arranged so as to face each other. However, at present, an extra cost is required because a polyolefin microporous membrane is also used for insulation between the two. Also, the polyolefin microporous membrane is an independent membrane,
Since it is necessary to have enough mechanical strength to withstand winding, it is impossible to reduce the thickness beyond a certain level. In order to reduce costs and improve battery capacity, an inexpensive and thin insulating film other than a polyolefin microporous film is required for insulation between metal foils.

【0006】また、非水系電池は携帯電話など移動体通
信装置の電源に用いられているが、夏期に直射日光の当
たる車中などに放置された場合等を考慮すると、高温下
でも電池性能が大きく低下しないことが必要である。し
かし、現在流通しているフッ化水素酸(以下、HFとい
う)を含む電解質を用いた非水電池では、高温下では電
解液が電池缶内の残留水分などと反応、分解して、HF
等を発生するため電池性能の大きな低下を免れ得なかっ
た。この劣化を防止する方法として、HF等を吸着する
粒子を活物質層内に混在させる方法、電解液に分散する
方法などが提案されている。しかし、前者では活物質層
内の電子伝導性が低下し電池の入出力特性が悪化する、
後者では電池缶内への注液が難しい等の難点があるため
に、電池缶内に持ち込むことの出来る量が少なくなり、
効果が小さかった。
[0006] Non-aqueous batteries are used as power sources for mobile communication devices such as mobile phones. However, if they are left in a car exposed to direct sunlight in the summer, battery performance can be improved even at high temperatures. It is necessary that it does not significantly decrease. However, in a nonaqueous battery using an electrolyte containing hydrofluoric acid (hereinafter referred to as HF) which is currently in circulation, at high temperatures, the electrolyte solution reacts with water remaining in the battery can and decomposes to form HF.
However, a large decrease in battery performance could not be avoided. As a method of preventing this deterioration, a method of mixing particles that adsorb HF or the like in the active material layer, a method of dispersing the particles in an electrolytic solution, and the like have been proposed. However, in the former, the electron conductivity in the active material layer is reduced, and the input / output characteristics of the battery are deteriorated.
In the latter case, it is difficult to inject liquid into the battery can, so the amount that can be brought into the battery can decreases,
The effect was small.

【0007】本発明は、集電体箔間の絶縁膜として絶縁
性物質粒子集合体を用いることで、該絶縁膜を安価で極
めて薄くすることを可能とし、電池容量を向上させた上
に、更に電池性能を低下させることなく高温下での性能
劣化が小さい電池を提供することを目的とする。
The present invention uses an aggregate of insulating material particles as an insulating film between current collector foils, thereby making it possible to make the insulating film inexpensive and extremely thin, to improve battery capacity, It is still another object of the present invention to provide a battery which has a small performance degradation at a high temperature without lowering the battery performance.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは絶縁膜を集電体箔上に固定し一体化す
ることにより、絶縁膜を薄く、安価に製造できることを
見いだし、本発明をなすに至った。すなわち、本発明
は、集電体箔の片面にのみ正極活物質が被着された正極
板と、集電体箔の片面にのみ負極活物質が被着された負
極板とが、両活物質層同士が向き合うように配置されて
おり、その間に介在するセパレーターを備えた非水系電
池において、正極板および負極板の少なくとも一方の集
電体箔の、活物質層が被着されていない側の表面に、絶
縁性物質粒子集合体からなる絶縁膜が固定されているこ
とを特徴とする非水系電池に関する。本発明により、正
極集電体箔と負極集電体箔との間の絶縁膜が、集電体箔
と一体化されるため、該絶縁膜を薄くすることが可能と
なったうえに、捲回時の部材数が正極、負極、セパレー
ター二枚(活物質層間に一枚、集電体箔間に一枚)の計
四枚から、正極、負極、セパレーター一枚(活物質層
間)の計三枚に減り、生産性も向上する。
Means for Solving the Problems In order to achieve the above object, the present inventors have found that an insulating film can be manufactured thin and inexpensively by fixing and integrating the insulating film on a current collector foil. The present invention has been accomplished. That is, the present invention provides a positive electrode plate in which the positive electrode active material is applied only to one surface of the current collector foil, and a negative electrode plate in which the negative electrode active material is applied only to one surface of the current collector foil. The layers are arranged so as to face each other, and in a nonaqueous battery including a separator interposed therebetween, at least one of the collector foils of the positive electrode plate and the negative electrode plate, on the side on which the active material layer is not adhered. The present invention relates to a non-aqueous battery in which an insulating film made of an aggregate of insulating material particles is fixed on a surface. According to the present invention, the insulating film between the positive electrode current collector foil and the negative electrode current collector foil is integrated with the current collector foil, so that the insulating film can be thinned, and The number of components at the time is from a total of four from the positive electrode, the negative electrode, and two separators (one between the active material layers and one between the current collector foils) to the total number of the positive electrode, the negative electrode, and one separator (the active material layer) It is reduced to three sheets and productivity is improved.

【0009】前記集電体箔としては、アルミニウム、
銅、チタン、ニッケル等の金属箔、エキスパンドメタ
ル、発泡メタル、カーボンクロス、カーボンペーパー等
が用いられる。前記正極活物質としては、Li、Na、
Ca等のアルカリ金属またはアルカリ土類金属と、C
o、Ni、Mn、Feなどの遷移金属との複合酸化物、
もしくは、前記アルカリ金属またはアルカリ土類金属と
遷移金属と非遷移金属との複合酸化物を用いることがで
きる。例えば、層状構造を有し電気化学的にリチウムを
イオン状態で吸蔵・放出し得るLixCoO2(0<x≦
1.1)、LixNiO2(0<x≦1.1)、Lix
yCo(1-y)2(0<x≦1.1、0<y<1)、及
びLixMnyO4(0<x≦1.5、1.66<y≦
2)等のリチウム複合酸化物等が挙げられる。
As the current collector foil, aluminum,
Metal foil such as copper, titanium, nickel, etc., expanded metal, foamed metal, carbon cloth, carbon paper and the like are used. As the positive electrode active material, Li, Na,
An alkali metal or alkaline earth metal such as Ca;
a composite oxide with a transition metal such as o, Ni, Mn, Fe,
Alternatively, a composite oxide of the alkali metal or alkaline earth metal, transition metal, and non-transition metal can be used. For example, Li x CoO 2 having a layered structure and capable of electrochemically storing and releasing lithium in an ion state (0 <x ≦
1.1), Li x NiO 2 (0 <x ≦ 1.1), Li x N
i y Co (1-y) O 2 (0 <x ≦ 1.1, 0 <y <1) and Li x MnyO 4 (0 <x ≦ 1.5, 1.66 <y ≦
2) and the like.

【0010】前記負極活物質としては、コークス、グラ
ファイト、非晶質カーボンなどの炭素質材料(形状は、
破砕状、鱗片状、球状、繊維状などいずれであってもよ
い)や非晶質の無機物材料(SnO・SiO2)等の電
気的にリチウムをイオンの状態で吸蔵・放出する物質を
用いることができる。前記正極板は、集電体箔の一方の
面の全体に活物質が被着されているものだけでなく、部
分的に被着されているものも含まれるが、もう一方の面
には全く活物質が被着されておらず、絶縁性物質粒子集
合体が固定されている。負極板についても同様である。
負極板と正極板では、捲回時のずれや負極端部でのリチ
ウムイオンのドープ量飽和による短絡を防ぐために、負
極板の幅を正極板の幅よりも大きくしている。そのため
前記絶縁膜は、正極板と負極板の両者に被着しても、一
方に被着しても良いが、少なくとも負極板には被着する
ことが好ましい。正極板と負極板の両方に絶縁膜を被着
した場合には、絶縁膜にピンホール等の欠陥があった場
合にも、両極が短絡しないようにすることができる。
As the negative electrode active material, carbonaceous materials such as coke, graphite, and amorphous carbon (having a shape of
Use a substance that can occlude and release lithium electrically in the form of ions, such as crushed, scale-like, spherical, or fibrous shapes) or an amorphous inorganic material (SnO.SiO 2 ). Can be. The positive electrode plate includes not only one in which the active material is applied to the entirety of one surface of the current collector foil, but also one in which the active material is partially applied, but the other surface has no active material. The active material is not adhered, and the insulating material particle aggregate is fixed. The same applies to the negative electrode plate.
In the negative electrode plate and the positive electrode plate, the width of the negative electrode plate is made larger than the width of the positive electrode plate in order to prevent a displacement at the time of winding and a short circuit due to saturation of the doping amount of lithium ions at the end of the negative electrode. Therefore, the insulating film may be attached to both the positive electrode plate and the negative electrode plate or to one of them. However, it is preferable that the insulating film is attached to at least the negative electrode plate. When an insulating film is applied to both the positive electrode plate and the negative electrode plate, even if the insulating film has a defect such as a pinhole, it is possible to prevent a short circuit between the two electrodes.

【0011】前記セパレーターとしては、電子伝導性が
なくイオン伝導性があり、有機溶媒の耐性が高い、孔径
の微細な多孔質膜が用いられ、例えばポリオレフィン系
(ポリエチレン、ポリプロピレン等)の樹脂からなる微
多孔膜、またはポリオレフィン系の多孔質繊維を織った
もの、またはその不織布、絶縁性物質粒子の集合体等が
挙げられる。特に絶縁性物質粒子の集合体をセパレータ
ーとして用いた場合には、セパレーターが電極上に固定
されるため、捲回時の取り扱い部材数は前述の独立膜の
セパレーターを用いた場合の正極、負極、セパレーター
の三枚から、更に正極、負極の二枚に減らすことが出来
る。また、微多孔膜などの独立膜では製造上必須であっ
た幅方向の電極からのはみ出しが必要なくなるため、そ
の分電極の幅を大きくして、電池缶内に持ち込める電極
活物質を増やすことが出来、電池容量を上げることが出
来る。
As the separator, there is used a porous membrane having no electron conductivity, ion conductivity, high resistance to an organic solvent, and a fine pore diameter, for example, a polyolefin resin (polyethylene, polypropylene, etc.). Examples thereof include a microporous membrane, a woven porous fiber of polyolefin, a nonwoven fabric thereof, and an aggregate of insulating substance particles. In particular, when an aggregate of insulating material particles is used as a separator, the separator is fixed on the electrode, so the number of handling members during winding is a positive electrode, a negative electrode, and a negative electrode when the above-described independent membrane separator is used. The number of separators can be reduced from three to two for a positive electrode and a negative electrode. In addition, in the case of an independent membrane such as a microporous membrane, since it is not necessary to protrude from the electrode in the width direction, which is indispensable in manufacturing, it is necessary to increase the width of the electrode accordingly and increase the electrode active material that can be brought into the battery can. Battery capacity can be increased.

【0012】前記電極板積層体は、負極板、セパレータ
ー、および正極板を前述のように重ね合わせた単位電池
層を、捲回機により渦巻き状に捲く方法(捲回型)、単
位電池層を絶縁膜を介して平行に重ね合わせる方法(単
純積層型)、単位電池層と絶縁膜とを重ね合わせたもの
を所定幅で折り返しながら平行に配置する方法(九十九
折り型)等により作製される。
The electrode plate laminate is formed by spirally winding a unit battery layer obtained by laminating a negative electrode plate, a separator, and a positive electrode plate as described above with a winding machine (winding type). It is manufactured by a method of overlapping in parallel via an insulating film (simple stacking type), a method of folding a unit battery layer and an insulating film in a predetermined width and arranging them in parallel (a 99-fold type). You.

【0013】前記絶縁膜として用いる絶縁性物質粒子集
合体は、絶縁性物質粒子とバインダー、あるいは絶縁性
物質粒子のみからなり、絶縁性物質粒子としては、酸化
物(Li2O、BeO、B23、Na2O、MgO、Al
23、SiO2、P25、CaO、Cr2O3、Fe
23、ZnO2、ZrO、TiO2等)、ゼオライト、窒
化物(BN、AlN、Si34、Ba32等)、炭酸塩
(MgCO3、CaCO3等)、硫酸塩(CaSO4、B
aSo4等)、および樹脂(ポリエチレン、ポリプロピ
レン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリ
デン、ポリアクリロニトリル、ポリメタクリル酸メチ
ル、ポリアクリル酸エステル、フッ素樹脂(ポリテトラ
フルオロエチレン、ポリフッ化ビニリデン等)、ポリア
ミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリカ
ーボネート樹脂、ポリフェニレンオキサイド樹脂、ケイ
素樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポ
リウレタン樹脂、ポリエーテル樹脂(ポリエチレンオキ
サイド、ポリプロピレンオキサイド等)、エポキシ樹
脂、アセタール樹脂、AS樹脂、ABS樹脂等)等の粒
子が挙げられ、好ましくは無機物や耐熱性樹脂の粒子、
より好ましくは無機物の粒子が挙げられる。このような
粒子は電池内の副反応物や残留水分等を吸着し、更に絶
縁膜として用いることでその他の方法よりも、電池性能
を落とすことなく、電池缶内に持ち込む量を多くするこ
とが出来るようになる。 前記絶縁性物質粒子の粒径
は、例えば平均粒径が100μmのもの、好ましくは1
0μm以下のもの、より好ましくは1μm以下のものが
使用される。前記絶縁膜の膜厚は、特に限定されるもの
ではないが、1μm〜100μmであることが好まし
く、10μm〜50μmであることがより好ましい。
The insulative material particle aggregate used as the insulating film includes only the insulative material particles and a binder or the insulative material particles. The insulating material particles include oxides (Li 2 O, BeO, B 2 O 3 , Na 2 O, MgO, Al
2 O 3 , SiO 2 , P 2 O 5 , CaO, Cr 2 O 3, Fe
2 O 3 , ZnO 2 , ZrO, TiO 2 , zeolite, nitride (BN, AlN, Si 3 N 4 , Ba 3 N 2, etc.), carbonate (MgCO 3 , CaCO 3, etc.), sulfate (CaSO 4) , B
aSo4, etc.) and resins (polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyacrylonitrile, polymethyl methacrylate, polyacrylate, fluorine resins (polytetrafluoroethylene, polyvinylidene fluoride, etc.), polyamide resins , Polyimide resin, polyester resin, polycarbonate resin, polyphenylene oxide resin, silicon resin, phenol resin, urea resin, melamine resin, polyurethane resin, polyether resin (polyethylene oxide, polypropylene oxide, etc.), epoxy resin, acetal resin, AS resin, ABS resin, etc.), and preferably particles of an inorganic substance or a heat-resistant resin,
More preferably, inorganic particles are used. By adsorbing by-products and residual moisture in the battery, such particles can be used as an insulating film to increase the amount brought into the battery can without lowering the battery performance than other methods. become able to do. The particle diameter of the insulating material particles is, for example, one having an average particle diameter of 100 μm, preferably 1 μm.
Those having a size of 0 μm or less, more preferably those having a size of 1 μm or less are used. The thickness of the insulating film is not particularly limited, but is preferably 1 μm to 100 μm, and more preferably 10 μm to 50 μm.

【0014】また、前記絶縁性物質粒子集合体に用いる
バインダーとしては、フッ素ゴム、ポリフッ化ビニリデ
ン、ラテックス等が挙げられ、耐熱性や耐溶剤性を考慮
するとフッ素ゴムやフッ素樹脂等のフッ素系バインダー
が好ましい。前記バインダーの量としては、前記バイン
ダーの体積が前記絶縁体粒子の体積に対して5/3倍以
下である、好ましくは1/2倍以下である、より好まし
くは1/5倍以下である、ことが挙げられる。
As the binder used for the above-mentioned insulating material particle aggregate, fluorine rubber, polyvinylidene fluoride, latex and the like can be mentioned. In consideration of heat resistance and solvent resistance, a fluorine-based binder such as fluorine rubber and fluororesin is used. Is preferred. The amount of the binder is such that the volume of the binder is 5/3 times or less, preferably 1/2 times or less, more preferably 1/5 times or less of the volume of the insulating particles. It is mentioned.

【0015】前記絶縁性物質粒子を固定する方法として
は、溶媒にバインダーを溶解した溶液に、絶縁性物質粒
子を分散し、作製したスラリーを集電体箔上に塗布した
後、高温で乾燥することによって溶媒を除去する方法な
どが挙げられる。このほかにも、スプレー法、バインダ
ーと絶縁性物質粒子を混合したものを集電体箔上に配置
しバインダーの溶融温度以上に加熱した後、冷却する方
法などが挙げられるが、特に限定するものではない。
As a method of fixing the insulating substance particles, the insulating substance particles are dispersed in a solution in which a binder is dissolved in a solvent, and the prepared slurry is applied on a current collector foil, and then dried at a high temperature. To remove the solvent. In addition, a spray method, a method in which a mixture of a binder and insulating material particles are arranged on a current collector foil, heated to a temperature equal to or higher than the melting temperature of the binder, and then cooled, and the like are included, but particularly limited ones are included. is not.

【0016】前記非水系電池に用いられる非水電解液と
しては、LiBF4、LiPF6、LiClO4、LiA
sF6、CF3SO3Li、(CF3SO2)2N・Li、
LiI、LiAlCl4、NaClO4、NaBF4、N
aI、(n−Bu)4NClO4、(n−Bu)4NB
4、KPF6等の電解質を単独または2種以上を混合し
て有機溶媒に溶解して、有機電解液として使用すること
が出来る。特に、フッ素を含む電解質を用いた場合には
本発明における高温下での劣化防止の効果が大きい。有
機電解液中の電解質濃度は約0.1〜2.5Mであるこ
とが好ましい。
The non-aqueous electrolyte used for the non-aqueous battery includes LiBF 4 , LiPF 6 , LiClO 4 , LiA
sF 6 , CF 3 SO 3 Li, (CF 3 SO 2 ) 2 N · Li,
LiI, LiAlCl 4 , NaClO 4 , NaBF 4 , N
aI, (n-Bu) 4NClO 4, (n-Bu) 4NB
An electrolyte such as F 4 or KPF 6 may be used alone or in combination of two or more and dissolved in an organic solvent to be used as an organic electrolyte. In particular, when an electrolyte containing fluorine is used, the effect of preventing deterioration under high temperature in the present invention is great. The electrolyte concentration in the organic electrolyte is preferably about 0.1 to 2.5M.

【0017】用いられる有機溶媒としては、例えば、エ
ーテル類、ケトン類、ラクトン類、ニトリル類、アミン
類、アミド類、硫黄化合物、塩素化炭化水素類、エステ
ル類、カーボネート類、ニトロ化合物、燐酸エステル系
化合物、スルホラン系化合物等を用いることが出来る
が、これらのうちでもエーテル類、ケトン類、ニトリル
類、塩素化炭化水素類、カーボネート類、スルホラン系
化合物が特に好ましい。更に好ましくは、環状カーボネ
ート類である。これらの代表例としては、テトラヒドロ
フラン、γ−ブチロラクトン、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、プロピレンカーボネー
ト、エチレンカーボネート、ジメチルスルホキシド、ジ
メチルカーボネート、ジエチルカーボネート、メチルエ
チルカーボネートおよびこれらの混合溶媒等を挙げるこ
とが出来るが、必ずしもこれらに限定されるものではな
い。
Examples of the organic solvent used include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphate esters. Compounds, sulfolane compounds and the like can be used, and among them, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonates, and sulfolane compounds are particularly preferable. More preferred are cyclic carbonates. Typical examples thereof include tetrahydrofuran, γ-butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, propylene carbonate, ethylene carbonate, dimethyl sulfoxide, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate and mixtures thereof. Although a solvent etc. can be mentioned, it is not necessarily limited to these.

【0018】[0018]

【発明の実施の形態】以下、実施例により本発明を更に
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples.

【0019】[0019]

【実施例1】図1は、電極積層体が捲回型である円筒状
の非水系電池を示す横断面図である。 〔正極板4の作製〕前記正極活物質としてLiCoO2
を用いた。LiCoO2と、導電材としての鱗片状グラ
ファイトを100:5の重量比で混合したものを、ミラ
フロン(旭化成工業(株)製)を酢酸エチルと2−エト
キシエタノール(エチレングリコールモノエチルエーテ
ル)の混合溶媒に溶解させた4.3wt%のミラフロン
溶液に分散して、正極活物質分散液を得た。アルミニウ
ムからなる集電体箔4aの片面のみに、LiCoO2
含む正極活物質分散液を塗布、乾燥して、正極活物質層
4bを87μmの厚みで被着した。
Embodiment 1 FIG. 1 is a cross-sectional view showing a cylindrical non-aqueous battery in which the electrode laminate is a wound type. [Production of positive electrode plate 4] LiCoO 2 was used as the positive electrode active material.
Was used. A mixture of LiCoO 2 and flaky graphite as a conductive material mixed at a weight ratio of 100: 5, and a mixture of milafuron (manufactured by Asahi Chemical Industry Co., Ltd.) of ethyl acetate and 2-ethoxyethanol (ethylene glycol monoethyl ether) It was dispersed in a 4.3 wt% milaphron solution dissolved in a solvent to obtain a positive electrode active material dispersion. The positive electrode active material dispersion containing LiCoO 2 was applied to only one surface of the current collector foil 4a made of aluminum, dried, and the positive electrode active material layer 4b was applied to a thickness of 87 μm.

【0020】〔負極板5の作製〕前記負極活物質として
メソフェーズピッチカーボンファイバーグラファイトと
鱗片状グラファイトが重量比で90:10で混合されて
いるものを用いた。このグラファイトの混合物をカルボ
キシメチルセルロースの2.0%水溶液に分散した後、
更に4.2wt%ラテックス水溶液を加えて、グラファ
イト混合物:カルボキシメチルセルロース:ラテックス
=100:1:2となるようにして、負極活物質分散液
を得た。銅からなる集電体箔5aの片面にのみ負極活物
質スラリーを塗布、乾燥して、負極活物質層5bを81
μmの厚みで被着した。
[Preparation of Negative Electrode Plate 5] A mixture of mesophase pitch carbon fiber graphite and flaky graphite at a weight ratio of 90:10 was used as the negative electrode active material. After dispersing this graphite mixture in a 2.0% aqueous solution of carboxymethylcellulose,
Further, a 4.2 wt% latex aqueous solution was added to obtain a negative electrode active material dispersion such that the ratio of graphite mixture: carboxymethylcellulose: latex = 100: 1: 2. The negative electrode active material slurry is applied to only one side of the current collector foil 5a made of copper and dried to form the negative electrode active material layer 5b with 81%.
It was applied with a thickness of μm.

【0021】〔絶縁膜の作製〕平均粒径1.0μmのα
−Al23粉体とポリフッ化ビニリデン(PVDF)粉
体を重量比100:5で粉体状態のまま混合し、それに
N−メチルピロリドン(NMP)を加えて更に混合し、
固形分率56.8%の分散液を得た。この分散液を前記
正極および負極の活物質を被着していない側の集電体箔
の表面に均一に塗布、120℃で乾燥して、約15μm
の絶縁性物質粒子集合体からなる絶縁膜7を固定した。
[Preparation of Insulating Film] α having an average particle size of 1.0 μm
-Al 2 O 3 powder and polyvinylidene fluoride (PVDF) powder are mixed in the powder state at a weight ratio of 100: 5, and N-methylpyrrolidone (NMP) is added thereto and further mixed,
A dispersion having a solid content of 56.8% was obtained. This dispersion is uniformly applied to the surface of the current collector foil on the side where the active materials of the positive electrode and the negative electrode are not adhered, and dried at 120 ° C.
The insulating film 7 composed of the aggregate of the insulating material particles was fixed.

【0022】〔電極積層体の作製〕絶縁膜7を固定した
正極4および負極5を捲回に必要な幅(正極54mm、
負極56mm)の帯状に切断した後、電流取り出し端子
を取り付けて、両者の活物質被着面同士が対向するよう
に配置し、その間に34μmのポリエチレン製微多孔膜
からなるセパレーター6(幅58mm)を挟んだ単位電
池層3を、捲回機によって巻き取り、円筒状の電極積層
体1を得た。
[Preparation of Electrode Laminate] The width required for winding the positive electrode 4 and the negative electrode 5 to which the insulating film 7 is fixed (the positive electrode 54 mm,
After cutting into a strip shape of a negative electrode (56 mm), a current extraction terminal was attached, and the two were placed so that the surfaces on which the active materials were attached faced each other. Between them, a separator 6 (width: 58 mm) made of a 34 μm polyethylene microporous film was used. Was wound by a winding machine to obtain a cylindrical electrode laminate 1.

【0023】〔電池缶の作製〕前記円筒状の電極積層体
を円筒状の金属外装缶2内に挿入し、負極の電流取り出
し端子を金属外装缶に、正極の電流取り出し端子を蓋に
溶接した。これに、エチレンカーボネート(EC)とジ
エチルカーボネート(DEC)の体積比1:1の混合溶
媒にLiPF6を1Mの濃度で溶解した電解液を注液
し、密閉して18650サイズ(直径18mm、高さ6
5mm)の円筒缶電池(実施例1)を作製した。
[Preparation of Battery Can] The cylindrical electrode laminate was inserted into a cylindrical metal outer can 2, and the negative electrode current takeout terminal was welded to the metal outer can and the positive electrode current takeout terminal was welded to the lid. . An electrolytic solution obtained by dissolving LiPF 6 at a concentration of 1 M in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1 was poured into the mixture, sealed, and sealed to a size of 18650 (diameter 18 mm, high 6
(5 mm) cylindrical can battery (Example 1).

【0024】比較例として、集電体箔間の絶縁膜に、セ
パレーターと同じ34μmのポリエチレン製微多孔膜を
用いた以外は、実施例1と同じ円筒缶電池(比較例1)
を作製した。横断面図を図2に示した。 〔充放電試験〕以下の条件で充放電試験を行った。 1サイクル 充電:4.2V、0.5C、6時間、定電流定電圧充電 放電:2.7V、0.5C、定電流放電 2サイクル 充電:4.2V、1.0C、3時間、定電流定電圧充電 放電:2.7V、1.0C、定電流放電 3サイクル 充電:4.2V、1.0C、3時間、定電流定電圧充電 充電状態で、85℃、24時間保存 3サイクル 放電:2.7V、1.0C、定電流放電 4サイクル 充電:4.2V、1.0C、3時間、定電流定電圧充電 放電:2.7V、1.0C、定電流放電 結果を図3に示す。
As a comparative example, the same cylindrical can battery as in Example 1 (Comparative Example 1) except that the same microporous polyethylene film of 34 μm as the separator was used for the insulating film between the current collector foils.
Was prepared. A cross-sectional view is shown in FIG. [Charge / Discharge Test] A charge / discharge test was performed under the following conditions. 1 cycle charge: 4.2V, 0.5C, 6 hours, constant current constant voltage charge Discharge: 2.7V, 0.5C, constant current discharge 2 cycles charge: 4.2V, 1.0C, 3 hours, constant current Constant voltage charge Discharge: 2.7 V, 1.0 C, constant current discharge 3 cycles Charge: 4.2 V, 1.0 C, 3 hours, constant current constant voltage charge In a charged state, storage at 85 ° C. for 24 hours 3 cycles Discharge: 2.7 V, 1.0 C, constant current discharge 4 cycles Charge: 4.2 V, 1.0 C, 3 hours, constant current constant voltage charge Discharge: 2.7 V, 1.0 C, constant current discharge The results are shown in FIG. .

【0025】図3に示されるように、高温保存を行った
場合の放電容量の低下が実施例では小さくなっている。
これは、電池缶内の副生成物や残留水分を絶縁膜として
用いた絶縁性物質粒子が吸着することによって、高温で
の電池の性能低下が小さくなったものと推察される。
As shown in FIG. 3, the decrease in the discharge capacity when the high-temperature storage is performed is small in the embodiment.
This is presumed to be due to the fact that by-products and residual moisture in the battery can were adsorbed by the insulating material particles used as the insulating film, thereby reducing the performance degradation of the battery at high temperatures.

【0026】[0026]

【実施例2】セパレーターとして絶縁性物質粒子を用い
た。 〔正極板4の作製〕前記正極活物質としてLiCoO2
を用いた。LiCoO2と、導電材としての鱗片状グラ
ファイトを100:5の重量比で混合したものを、ミラ
フロン(旭化成工業(株)製)を酢酸エチルと2−エト
キシエタノール(エチレングリコールモノエチルエーテ
ル)の混合溶媒に溶解させた4.3wt%のミラフロン
溶液に分散して、正極活物質分散液を得た。アルミニウ
ムからなる集電体箔4aの片面のみに、LiCoO2
含む正極活物質分散液を塗布、乾燥して、正極活物質層
4bを87μmの厚みで被着した。
Example 2 Insulating material particles were used as a separator. [Production of positive electrode plate 4] LiCoO 2 was used as the positive electrode active material.
Was used. A mixture of LiCoO 2 and flaky graphite as a conductive material mixed at a weight ratio of 100: 5, and a mixture of milafuron (manufactured by Asahi Chemical Industry Co., Ltd.) of ethyl acetate and 2-ethoxyethanol (ethylene glycol monoethyl ether) It was dispersed in a 4.3 wt% milaphron solution dissolved in a solvent to obtain a positive electrode active material dispersion. The positive electrode active material dispersion containing LiCoO 2 was applied to only one surface of the current collector foil 4a made of aluminum, dried, and the positive electrode active material layer 4b was applied to a thickness of 87 μm.

【0027】〔負極板5の作製〕前記負極活物質として
メソフェーズピッチカーボンファイバーグラファイトと
鱗片状グラファイトが重量比で90:10で混合されて
いるものを用いた。このグラファイトの混合物をカルボ
キシメチルセルロースの2.0%水溶液に分散した後、
更に4.2wt%ラテックス水溶液を加えて、グラファ
イト混合物:カルボキシメチルセルロース:ラテックス
=100:1:2となるようにして、負極活物質分散液
を得た。銅からなる集電体箔5aの片面にのみ負極活物
質スラリーを塗布、乾燥して、負極活物質層5bを81
μmの厚みで被着した。
[Preparation of Negative Electrode Plate 5] A mixture of mesophase pitch carbon fiber graphite and flaky graphite at a weight ratio of 90:10 was used as the negative electrode active material. After dispersing this graphite mixture in a 2.0% aqueous solution of carboxymethylcellulose,
Further, a 4.2 wt% latex aqueous solution was added to obtain a negative electrode active material dispersion such that the ratio of graphite mixture: carboxymethylcellulose: latex = 100: 1: 2. The negative electrode active material slurry is applied to only one side of the current collector foil 5a made of copper and dried to form the negative electrode active material layer 5b with 81%.
It was applied with a thickness of μm.

【0028】〔セパレーターの作製〕平均粒径1.0μ
mのα−Al23粉体とポリフッ化ビニリデン(PVD
F)粉体を重量比100:5で粉体状態のまま混合し、
それに1−メチル−2−ピロリドン(NMP)を加えて
更に混合し、固形分率56.8%の分散液を得た。この
分散液を前記正極および負極の活物質層面に均一に塗
布、120℃で乾燥して、約15μmの絶縁性物質粒子
集合体からなる多孔性の絶縁膜をセパレーター6として
固定した。
[Preparation of Separator] Average particle size 1.0 μm
m-α-Al 2 O 3 powder and polyvinylidene fluoride (PVD
F) mixing the powder in a powder state at a weight ratio of 100: 5,
1-Methyl-2-pyrrolidone (NMP) was added thereto and further mixed to obtain a dispersion having a solid content of 56.8%. This dispersion was uniformly applied to the surfaces of the active material layers of the positive electrode and the negative electrode, and dried at 120 ° C. to fix a porous insulating film made of an aggregate of insulating material particles of about 15 μm as a separator 6.

【0029】〔絶縁膜の作製〕前記セパレーターと同じ
分散液をを前記正極および負極の活物質を被着していな
い側の集電体箔の表面に均一に塗布した後、120℃で
乾燥して、約15μmの絶縁性物質粒子集合体からなる
絶縁膜7を固定した。 〔電極積層体の作製〕絶縁膜を固定した正極板4および
負極板5を捲回に必要な幅(正極56mm、負極58m
m)の帯状に切断した後、電流取り出し端子を取り付け
て、両者の活物質被着面同士が対向するように配置し、
捲回機によって巻き取り、円筒状の電極積層体1を得
た。
[Preparation of Insulating Film] The same dispersion as that of the separator was uniformly applied to the surface of the current collector foil on the side where the active materials of the positive electrode and the negative electrode were not adhered, and then dried at 120 ° C. Thus, the insulating film 7 composed of an aggregate of insulating material particles of about 15 μm was fixed. [Preparation of Electrode Laminate] The width required for winding the positive electrode plate 4 and the negative electrode plate 5 having the insulating film fixed thereon (positive electrode 56 mm, negative electrode 58 m
m), after cutting into a band shape, attaching a current extraction terminal, and arranging such that both active material-coated surfaces face each other;
It was wound up by a winding machine to obtain a cylindrical electrode laminate 1.

【0030】その後の工程は実施例1と同様に行い、円
筒缶電池(実施例2)を得た。横断面図を図4に示し
た。円筒型電池缶実施例1、実施例2、比較例1を下記
の条件で充放電した際の放電容量は、実施例1:135
0mAH、実施例2:1399mAH、比較例1:13
43mAHであった。
The subsequent steps were performed in the same manner as in Example 1 to obtain a cylindrical can battery (Example 2). A cross-sectional view is shown in FIG. The discharge capacities when the cylindrical battery cans of Example 1, Example 2, and Comparative Example 1 were charged and discharged under the following conditions were as follows: Examples 1: 135
0 mAH, Example 2: 1399 mAH, Comparative Example 1: 13
43 mAH.

【0031】 充放電条件 充電:4.2V、0.5C、6時間、定電流定電圧充電 放電:2.7V、0.5C、定電流放電 実施例2のように、イオン伝導性が必要なセパレーター
部分にも、絶縁膜と同じ絶縁体物質粒子集合体を用いる
ことで、ポリオレフィン微多孔膜のような独立膜のセパ
レーターでは必ず必要だった幅方向の電極からのはみ出
し部が省略できて、容量が向上することが確認できた。
Charge / discharge conditions Charge: 4.2 V, 0.5 C, 6 hours, constant current constant voltage charge Discharge: 2.7 V, 0.5 C, constant current discharge As in Example 2, ionic conductivity is required. By using the same aggregate of insulator material particles as the insulating film for the separator part, it is possible to omit the protrusion from the electrode in the width direction, which was always necessary for a separator of an independent film such as a polyolefin microporous film, and the capacity was increased. Was confirmed to be improved.

【0032】[0032]

【実施例3】 〔正極板4の作製〕前記正極活物質としてLiCoO2
を用いた。LiCoO2と、導電材としての鱗片状グラ
ファイトを100:5の重量比で混合したものを、ミラ
フロン(旭化成工業(株)製)を酢酸エチルと2−エト
キシエタノール(エチレングリコールモノエチルエーテ
ル)の混合溶媒に溶解させた4.3wt%のミラフロン
溶液に分散して、正極活物質分散液を得た。アルミニウ
ムからなる集電体箔4aの片面のみに、LiCoO2
含む正極活物質分散液を塗布、乾燥して、正極活物質層
4bを87μmの厚みで被着した。
Embodiment 3 [Preparation of Positive Electrode Plate 4] LiCoO 2 was used as the positive electrode active material.
Was used. A mixture of LiCoO 2 and flaky graphite as a conductive material mixed at a weight ratio of 100: 5, and a mixture of milafuron (manufactured by Asahi Chemical Industry Co., Ltd.) of ethyl acetate and 2-ethoxyethanol (ethylene glycol monoethyl ether) It was dispersed in a 4.3 wt% milaphron solution dissolved in a solvent to obtain a positive electrode active material dispersion. The positive electrode active material dispersion containing LiCoO 2 was applied to only one surface of the current collector foil 4a made of aluminum, dried, and the positive electrode active material layer 4b was applied to a thickness of 87 μm.

【0033】〔負極板5の作製〕前記負極活物質として
メソフェーズピッチカーボンファイバーグラファイトと
鱗片状グラファイトが重量比で90:10で混合されて
いるものを用いた。このグラファイトの混合物をカルボ
キシメチルセルロースの2.0%水溶液に分散した後、
更に4.2wt%ラテックス水溶液を加えて、グラファ
イト混合物:カルボキシメチルセルロース:ラテックス
=100:1:2となるようにして、負極活物質分散液
を得た。銅からなる集電体箔5aの片面にのみ負極活物
質スラリーを塗布、乾燥して、負極活物質層5bを81
μmの厚みで被着した。
[Preparation of Negative Electrode Plate 5] A mixture of mesophase pitch carbon fiber graphite and flaky graphite at a weight ratio of 90:10 was used as the negative electrode active material. After dispersing this graphite mixture in a 2.0% aqueous solution of carboxymethylcellulose,
Further, a 4.2 wt% latex aqueous solution was added to obtain a negative electrode active material dispersion such that the ratio of graphite mixture: carboxymethylcellulose: latex = 100: 1: 2. The negative electrode active material slurry is applied to only one side of the current collector foil 5a made of copper and dried to form the negative electrode active material layer 5b with 81%.
It was applied with a thickness of μm.

【0034】〔絶縁膜の作製〕平均粒径1.0μmのα
−Al23粉体とポリフッ化ビニリデン(PVDF)粉
体を重量比100:5で粉体状態のまま混合し、それに
1−メチル−2−ピロリドン(NMP)を加えて更に混
合し、固形分率56.8%の分散液を得た。前記セパレ
ーターと同じ分散液を前記負極の活物質を被着していな
い側の集電体箔の表面に均一に塗布した後、120℃で
乾燥して、約10μmの絶縁性物質粒子集合体からなる
絶縁膜7を固定した。
[Preparation of Insulating Film] α having an average particle size of 1.0 μm
-Al 2 O 3 powder and polyvinylidene fluoride (PVDF) powder are mixed in a powder ratio in a weight ratio of 100: 5, 1-methyl-2-pyrrolidone (NMP) is added thereto, and the mixture is further mixed. A dispersion having a fraction of 56.8% was obtained. After uniformly applying the same dispersion liquid as the separator to the surface of the current collector foil on the side where the active material of the negative electrode is not adhered, dried at 120 ° C., and from the aggregate of insulating material particles of about 10 μm. The insulating film 7 was fixed.

【0035】〔電極積層体の作製〕絶縁膜を固定した正
極板4および負極板5を捲回に必要な幅(正極56m
m、負極58mm)の帯状に切断した後、電流取り出し
端子を取り付けて、両者の活物質被着面同士が対向する
ように配置し、捲回機によって巻き取り、円筒状の電極
積層体1を得た。
[Preparation of Electrode Laminated Body] The width required for winding the positive electrode plate 4 and the negative electrode plate 5 having the insulating film fixed thereon (positive electrode 56 m
m, a negative electrode 58 mm), and a current extraction terminal was attached thereto. The two electrodes were arranged so that their active material-coated surfaces faced each other, and were wound by a winding machine to obtain a cylindrical electrode laminate 1. Obtained.

【0036】その後の工程は実施例1と同様に行い、円
筒缶電池(実施例3)を得た。円筒型電池缶実施例1、
実施例3を下記の条件で充放電した際の放電容量は、実
施例1:1350mAH、実施例3:1396mAHで
あった。 充放電条件 充電:4.2V、0.5C、6時間、定電流定電圧充電 放電:2.7V、0.5C、定電流放電 実施例3のように、絶縁膜として絶縁体物質粒子集合体
を用いると、ポリオレフィン微多孔膜のような独立膜の
セパレーターでは不可能な厚さにまで、絶縁膜を薄くす
ることができるため、同じサイズの電池缶に収納できる
電極を長くすることが出来る。そのために実施例3では
実施例1よりも容量が向上することが確認できた。実施
例2のようにセパレーターとしても絶縁性物質粒子集合
体を用いることによって、活物質層間のセパレーターを
薄くすることも可能となり、更に容量の向上が出来る。
The subsequent steps were performed in the same manner as in Example 1 to obtain a cylindrical can battery (Example 3). Example 1 of cylindrical battery can,
The discharge capacities when Example 3 was charged and discharged under the following conditions were Example 1: 1350 mAH and Example 3: 1396 mAH. Charge / discharge conditions Charge: 4.2 V, 0.5 C, 6 hours, constant current / constant voltage charge Discharge: 2.7 V, 0.5 C, constant current discharge As in Example 3, an insulating material particle aggregate as an insulating film By using, the thickness of the insulating film can be reduced to a thickness that cannot be achieved by a separator having an independent membrane such as a microporous polyolefin membrane, and thus the length of an electrode that can be accommodated in a battery can of the same size can be increased. Therefore, in Example 3, it was confirmed that the capacity was improved as compared with Example 1. By using the insulating material particle aggregate as the separator as in Example 2, the thickness of the separator between the active material layers can be reduced, and the capacity can be further improved.

【0037】[0037]

【実施例4】 〔正極板4の作製〕前記正極活物質としてLiMn24
を用いた。LiMn24、導電材としての鱗片状グラフ
ァイトを100:5の重量比で混合したものと、PVD
F粉体を100:5の重量比で混合し、NMPを加えて
更に混合・分散して、正極活物質分散液を得た。アルミ
ニウムからなる集電体箔4aの片面のみに、LiMn2
4をを含む正極活物質分散液を塗布、乾燥して、正極
活物質層4bを99μmの厚みで被着した。
Example 4 [Preparation of positive electrode plate 4] LiMn 2 O 4 was used as the positive electrode active material.
Was used. A mixture of LiMn 2 O 4 , flaky graphite as a conductive material in a weight ratio of 100: 5, and PVD
The F powder was mixed at a weight ratio of 100: 5, NMP was added, and the mixture was further mixed and dispersed to obtain a positive electrode active material dispersion. LiMn 2 is provided on only one side of the current collector foil 4a made of aluminum.
A positive electrode active material dispersion containing O 4 was applied and dried, and a positive electrode active material layer 4b was applied to a thickness of 99 μm.

【0038】以後の過程は実施例1と同様に行い、円筒
缶電池(実施例3)を作製した。比較例として、集電体
箔間の絶縁膜に、セパレーターと同じ34μmのポリエ
チレン製微多孔膜を用いた以外は、実施例4と同じ円筒
缶電池(比較例2)を作製した。横断面図は図2であ
る。 〔充放電試験〕以下の条件で充放電試験を行った。 1サイクル 充電:4.2V、0.5C、6時間、定電流定電圧充電 放電:2.7V、0.5C、定電流放電 2サイクル 充電:4.2V、1.0C、3時間、定電流定電圧充電 放電:2.7V、1.0C、定電流放電 3サイクル 充電:4.2V、1.0C、3時間、定電流定電圧充電 充電状態で、85℃、24時間保存 3サイクル 放電:2.7V、1.0C、定電流放電 4サイクル 充電:4.2V、1.0C、3時間、定電流定電圧充電 放電:2.7V、1.0C、定電流放電 結果を図5に示す。
The subsequent steps were performed in the same manner as in Example 1 to produce a cylindrical can battery (Example 3). As a comparative example, a cylindrical can battery (Comparative Example 2) was produced in the same manner as in Example 4 except that the same microporous polyethylene film of 34 μm as the separator was used for the insulating film between the current collector foils. FIG. 2 is a cross-sectional view. [Charge / Discharge Test] A charge / discharge test was performed under the following conditions. 1 cycle charge: 4.2V, 0.5C, 6 hours, constant current constant voltage charge Discharge: 2.7V, 0.5C, constant current discharge 2 cycles charge: 4.2V, 1.0C, 3 hours, constant current Constant voltage charge Discharge: 2.7 V, 1.0 C, constant current discharge 3 cycles Charge: 4.2 V, 1.0 C, 3 hours, constant current constant voltage charge In a charged state, storage at 85 ° C. for 24 hours 3 cycles Discharge: 2.7V, 1.0C, constant current discharge, 4 cycles Charge: 4.2V, 1.0C, 3 hours, constant current, constant voltage charge Discharge: 2.7V, 1.0C, constant current discharge The results are shown in FIG. .

【0039】図5に示されるように、高温保存を行った
場合の放電容量の低下が実施例では小さくなっている。
これは、電池缶内の副生成物や残留水分を絶縁膜として
用いた絶縁性物質粒子が吸着することによって、高温で
の電池の性能低下が小さくなったものと推察される。更
に、実施例1と比較例1の差と実施例4と比較例2の差
を比較すると、後者の方が大きく、正極としてLiMn
2O4を用いた電池に対して、高温保存の性能を向上させ
る効果が大きいことが分かる。
As shown in FIG. 5, the decrease in the discharge capacity when the high-temperature storage is performed is small in the embodiment.
This is presumed to be due to the fact that by-products and residual moisture in the battery can were adsorbed by the insulating material particles used as the insulating film, thereby reducing the performance degradation of the battery at high temperatures. Furthermore, comparing the difference between Example 1 and Comparative Example 1 and the difference between Example 4 and Comparative Example 2, the latter is larger, and LiMn is used as the positive electrode.
It can be seen that the effect of improving the performance of high-temperature storage is great for a battery using 2O4.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に示したような、絶縁膜とし
て絶縁性物質粒子集合体を用いた、電極積層体が捲回型
である円筒状の非水系電池を示す横断面図である。
FIG. 1 is a cross-sectional view showing a cylindrical non-aqueous battery in which an electrode laminate is a wound type using an insulating material particle aggregate as an insulating film as shown in Example 1 of the present invention. is there.

【図2】比較例1のような、従来のポリオレフィン製微
多孔膜を絶縁膜として用いた、電極積層体が捲回型であ
る円筒状の非水系電池を示す横断面図である。
FIG. 2 is a cross-sectional view showing a cylindrical non-aqueous battery having a wound electrode stack using a conventional polyolefin microporous film as an insulating film, as in Comparative Example 1.

【図3】実施例1と比較例1の放電容量の変化を示した
グラフである。
FIG. 3 is a graph showing a change in discharge capacity in Example 1 and Comparative Example 1.

【図4】実施例2のような、絶縁膜およびセパレーター
に絶縁性物質粒子を用いた、電極積層体が捲回型である
円筒状の非水系電池を示す横断面図である。
FIG. 4 is a cross-sectional view showing a cylindrical non-aqueous battery in which an electrode laminate is a wound type using insulating material particles for an insulating film and a separator as in Example 2.

【図5】実施例3と比較例2の放電容量の変化を示した
グラフである。
FIG. 5 is a graph showing a change in discharge capacity in Example 3 and Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 電極積層体 2 外装缶 3 単位電池層 4 正極板 4a 正極集電体箔 4b 正極活物質層 5 負極板 5a 負極集電体箔 5b 負極活物質層 6 セパレーター 7 絶縁膜 7a 負極集電体に固定された絶縁膜 7b 正極集電体に固定された絶縁膜 DESCRIPTION OF SYMBOLS 1 Electrode laminated body 2 Outer can 3 Unit battery layer 4 Positive electrode plate 4a Positive electrode current collector foil 4b Positive electrode active material layer 5 Negative electrode plate 5a Negative electrode current collector foil 5b Negative electrode active material layer 6 Separator 7 Insulating film 7a Negative electrode current collector Fixed insulating film 7b Insulating film fixed to positive electrode current collector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 集電体箔の片面にのみ正極活物質が被着
された正極板と、集電体箔の片面にのみ負極活物質が被
着された負極板とが、活物質層同士が向き合うように配
置されており、その間に介在するセパレーターを備えた
非水系電池において、正極板および負極板の少なくとも
一方の集電体箔の、活物質層が被着されていない側の片
面に、絶縁性物質粒子集合体からなる絶縁膜が固定され
ていることを特徴とする非水系電池。
1. A positive electrode plate having a positive electrode active material deposited on only one side of a current collector foil and a negative electrode plate having a negative electrode active material deposited on only one side of a current collector foil are composed of active material layers. Are disposed so as to face each other, and in a nonaqueous battery provided with a separator interposed therebetween, at least one of the current collector foils of the positive electrode plate and the negative electrode plate, on one surface on the side where the active material layer is not adhered. A non-aqueous battery, wherein an insulating film made of an aggregate of insulating material particles is fixed.
JP9043477A 1997-02-27 1997-02-27 Nonaqueous system battery Withdrawn JPH10241740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9043477A JPH10241740A (en) 1997-02-27 1997-02-27 Nonaqueous system battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9043477A JPH10241740A (en) 1997-02-27 1997-02-27 Nonaqueous system battery

Publications (1)

Publication Number Publication Date
JPH10241740A true JPH10241740A (en) 1998-09-11

Family

ID=12664810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9043477A Withdrawn JPH10241740A (en) 1997-02-27 1997-02-27 Nonaqueous system battery

Country Status (1)

Country Link
JP (1) JPH10241740A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302877A (en) * 2005-03-23 2006-11-02 Hitachi Maxell Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007257848A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009211824A (en) * 2008-02-29 2009-09-17 Tdk Corp Electrochemical device and manufacturing method of same
JP2010257893A (en) * 2009-04-28 2010-11-11 Nissan Motor Co Ltd Bipolar type electrode and bipolar type secondary battery using this

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302877A (en) * 2005-03-23 2006-11-02 Hitachi Maxell Ltd Nonaqueous electrolyte battery and its manufacturing method
JP4549992B2 (en) * 2005-03-23 2010-09-22 日立マクセル株式会社 Nonaqueous electrolyte battery and manufacturing method thereof
JP2007257848A (en) * 2006-03-20 2007-10-04 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009211824A (en) * 2008-02-29 2009-09-17 Tdk Corp Electrochemical device and manufacturing method of same
JP2010257893A (en) * 2009-04-28 2010-11-11 Nissan Motor Co Ltd Bipolar type electrode and bipolar type secondary battery using this

Similar Documents

Publication Publication Date Title
US20190245184A1 (en) Separator and battery
JP4605287B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP4337875B2 (en) Positive electrode mixture, non-aqueous electrolyte secondary battery, and manufacturing method thereof
JP4905267B2 (en) Positive electrode mixture and non-aqueous electrolyte battery
KR100587437B1 (en) Nonaqueous Secondary Battery
JPH04284372A (en) Nonaqueous electrolyte secondary battery
KR20010062467A (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
JP4031635B2 (en) Electrochemical devices
JP2018147769A (en) Separator for electrochemical element and nonaqueous electrolyte battery
US10541453B2 (en) Battery module for starting a power equipment
US20210210789A1 (en) Secondary battery
JPH10241657A (en) Battery
US20220085411A1 (en) Secondary battery
US11929485B2 (en) Secondary battery
JPH10241740A (en) Nonaqueous system battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
WO2020059874A1 (en) Secondary battery
JPH10241655A (en) Battery
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy
JP7143943B2 (en) Negative electrode active material, negative electrode and secondary battery
WO2020218019A1 (en) Negative electrode active material, negative electrode and secondary battery
US20210143435A1 (en) Nonaqueous electrolyte secondary battery
KR20230129926A (en) Separator for lithium secondary battery and method of making the same
WO2020138317A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040511