JP2007255986A - Position measuring system - Google Patents

Position measuring system Download PDF

Info

Publication number
JP2007255986A
JP2007255986A JP2006078613A JP2006078613A JP2007255986A JP 2007255986 A JP2007255986 A JP 2007255986A JP 2006078613 A JP2006078613 A JP 2006078613A JP 2006078613 A JP2006078613 A JP 2006078613A JP 2007255986 A JP2007255986 A JP 2007255986A
Authority
JP
Japan
Prior art keywords
axis
detection
coil
outputs
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006078613A
Other languages
Japanese (ja)
Inventor
Fumio Sakata
文男 坂田
Nobuyoshi Yamazaki
宣悦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakata Denki Co Ltd
Original Assignee
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakata Denki Co Ltd filed Critical Sakata Denki Co Ltd
Priority to JP2006078613A priority Critical patent/JP2007255986A/en
Publication of JP2007255986A publication Critical patent/JP2007255986A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position measuring system capable of acquiring accurately a lateral moving amount and a moving direction in the sea or under the ground in a reclamation work field or in a wide landslide area. <P>SOLUTION: A transmitter 10 having a uniaxial coil 12 for generating an alternating field is buried under the ground or under the sea-bottom ground. In order to receive the alternating field, a detection coil system including the first and second coils CA, CC installed at an interval on the first axis S1 arranged on the ground surface or near the sea surface and the third and fourth coils CB, CD installed at an interval on the second axis S2 orthogonal to the first axis S1 is prepared. A signal processing circuit system includes band-pass filters 16A-16D, differential circuits 17-1, 17-2, and phase detection circuits 18-1, 18-2, processes each detection signal from the first to fourth coils, and determines two-dimensionally a relative position between the axial position of the uniaxial coil and the detection coil system center from a differential signal between each detection signal from the first and second coils and a differential signal between each detection signal from the third and fourth coils. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は位置測定方式に関し、特に港湾埋め立て工事において埋め立て土砂の荷重により海底地盤が側方へ移動する現象や、地すべり地帯においてすべり面上側の土塊が移動した際における移動量と移動方向を測定するのに適した位置測定方式に関する。   The present invention relates to a position measurement method, and in particular, measures the amount of movement and the direction of movement when the seabed ground moves sideways due to the load of the reclaimed earth and sand, and when the soil mass above the slip surface moves in the landslide area. The present invention relates to a position measurement method suitable for.

海上空港の建設においては、海底地盤に多量の土砂を埋め立て、陸地を形成することで地上施設の建設が行われる。これまでの工事では主として海底地盤自体の沈下が問題視されており、主として圧力センサとテレメータを用いることで、水圧の変化から海底地盤の沈下量を測定する方式が用いられていた。   In the construction of offshore airports, ground facilities are constructed by reclaiming a large amount of earth and sand on the seabed and forming land. Until now, the subsidence of the submarine ground itself has been regarded as a problem, and a method of measuring the subsidence of the submarine ground from changes in water pressure has been used mainly by using pressure sensors and telemeters.

この理由として、埋め立て工事における土砂量が工事費用の大半を占めることから、定期的に海底地盤の沈下量を管理することが工事費用を軽減するために重要視されていた。   The reason for this is that the amount of earth and sand in landfilling accounts for the majority of the construction cost, so regular management of the amount of subsidence in the seabed was regarded as important in order to reduce the construction cost.

一方、海底地盤の沈下が少ない地域(海底)における埋め立て工事では、埋め立て土砂の荷重によって生じる海底地盤(ヘドロ等)の側方流動が重要視されており、海底地盤の移動量と移動方向を常に管理することが必要とされている。   On the other hand, in landfill work in areas where the subsidence of the seabed is low (the seabed), the lateral flow of the seabed (such as sludge) caused by the load of the landfill is regarded as important. There is a need to manage.

また、地すべり地帯においても、地すべり発生時における土塊の移動量と移動方向を測定する場合、クラック発生箇所のような地表面に明らかな変化が見られる領域においては、地すべり計や歪計といった従来型の測定器による観測を行うことが実施されていた。一方、広域の土塊が移動するような場合、すべり面近くの上側土塊と下側地盤との相対的移動量の変化とその移動方向を測ることは困難であり、すべり面を挟んですべり面の下側にワイヤを固定し地表面におけるワイヤの引き込み量を測定することで相対的移動量を求める方式(例えば、特許文献1参照)が用いられる程度で正確な測定はこれまで行われていない。また、このような地域は植生が多いこともあり光学測量やGPSなどの使用も制約があった。   Also, in the landslide area, when measuring the amount and direction of movement of the mass at the time of landslide occurrence, in conventional areas such as landslides and strain gauges in areas where there are obvious changes in the ground surface such as cracks, Observing with the measuring instrument of was carried out. On the other hand, when a large-scale soil mass moves, it is difficult to measure the change in the relative amount of movement between the upper soil mass near the slip surface and the lower ground and the direction of the movement, and the slip surface across the slip surface is difficult. An accurate measurement has not been performed so far, in which a method (for example, see Patent Document 1) in which a wire is fixed on the lower side and a wire pull-in amount on the ground surface is used to obtain a relative movement amount is used. In addition, in such areas, there are many vegetation, and the use of optical surveying and GPS is also limited.

特開平8−21750号公報JP-A-8-21750 特開平09−53958号公報JP 09-53958 A 特開2004−234335号公報JP 2004-234335 A

港湾における埋め立て工事や広範囲の地すべり地帯における地盤(海底)や土塊の移動方向の観測においては、海の場合は海水中における計測であるため、落下してくる土砂、潮の流れ、波浪などの外乱要因が存在する。これらは物理的な構築物を用いた機械的測定手法を用いる場合、多くの問題点を生じるだけでなく工事で用いられる用船の運航にも障害となる。さらに海水中であるため、電波の減衰や音波の反射(泡などによる)の影響もあり、一般的な無線テレメータや超音波を用いた計測手段が使えない環境となっている。この点は陸上の地すべり地帯における条件も似ており、地中内部と地表との測定手段として無線や超音波あるいは光などを用いることが難しい。   In land reclamation works in harbors and in the observation of the direction of movement of the ground (sea floor) and soil blocks in a wide range of landslide areas, in the case of the sea, measurements are made in seawater, so disturbances such as falling sediments, tide flow, and waves There are factors. When using a mechanical measurement method using a physical structure, these not only cause many problems, but also hinder the operation of charter vessels used in construction. Furthermore, since it is in seawater, it is affected by the attenuation of radio waves and the reflection of sound waves (due to bubbles, etc.), which makes it impossible to use general wireless telemeters and measuring means using ultrasonic waves. In this respect, conditions in the landslide area on land are similar, and it is difficult to use radio waves, ultrasonic waves, light, or the like as means for measuring the inside of the ground and the ground surface.

本発明の目的は上記のような埋め立て工事現場や広い地すべり地帯において海中や土中の側方移動量と移動方向を正確に捉えることが出来る位置測定方式を提供することである。   An object of the present invention is to provide a position measurement method that can accurately capture the amount of lateral movement and the direction of movement in the sea or soil in a landfill site or a wide landslide area as described above.

本発明の第1の態様によれば、地中または海底地盤中に埋設され交番磁界を生成する単軸コイルを内蔵した発信機と、前記交番磁界を受けるために地表または海面近傍に配置される第一軸上に間隔をおいて設置された第一及び第二のコイルと前記第一軸と直交する第二軸上に間隔をおいて設置された第三及び第四のコイルとを含む検出コイル系とを含み、前記第一から第四のコイルの出力から磁界強度を求め、第一から第四のコイルで得た磁界強度に基づいて前記単軸コイルの軸線の位置と前記検出コイル系中心の相対位置を二次元的に求めることを特徴とする位置測定方式が提供される。   According to the first aspect of the present invention, a transmitter embedded with a single-axis coil that is buried in the ground or in the seabed ground and generates an alternating magnetic field, and disposed near the ground surface or the sea surface to receive the alternating magnetic field. Detection including first and second coils spaced apart on a first axis and third and fourth coils spaced apart on a second axis perpendicular to the first axis A magnetic field strength obtained from the outputs of the first to fourth coils, and based on the magnetic field strength obtained by the first to fourth coils, the position of the axis of the single-axis coil and the detection coil system There is provided a position measurement method characterized in that the relative position of the center is obtained two-dimensionally.

第1の態様による位置測定方式においては、前記検出コイル系を、前記第一から第四のコイルの軸線が前記単軸コイルの軸線と平行又は垂直となるように配置することが好ましい。   In the position measurement system according to the first aspect, it is preferable that the detection coil system is arranged so that the axes of the first to fourth coils are parallel or perpendicular to the axis of the single-axis coil.

第1の態様による位置測定方式においてはまた、前記第一から第四のコイルはそれぞれ、軸線がそれぞれ直交する三成分のコイルからなるものでも良い。   In the position measurement method according to the first aspect, each of the first to fourth coils may be a three-component coil whose axes are orthogonal to each other.

第1の態様による位置測定方式においてはさらに、前記第一から第四のコイルをそれぞれ複数のコイルとしても良い。   In the position measurement method according to the first aspect, each of the first to fourth coils may be a plurality of coils.

本発明の第2の態様によれば、地中または海底地盤中に埋設され交番磁界を生成する単軸コイルを内蔵した発信機と、前記交番磁界を受けるために地表または海面近傍に配置される第一軸上に間隔をおいて設置された第一及び第二のコイルと前記第一軸と直交する第二軸上に間隔をおいて設置された第三及び第四のコイルとを含む検出コイル系と、前記第一から第四のコイルの出力を受ける第一から第四のバンドパスフィルタと、該第一及び第二のバンドパスフィルタの出力を受けて差信号を出力する第一の差動回路と、前記第三及び第四のバンドパスフィルタの出力を受けて差信号を出力する第二の差動回路と、これら第一及び第二の差動回路の出力をそれぞれ受ける第一及び第二の位相検波回路とを含む信号処理回路系とを含み、前記第一及び第二の位相検波回路は、前記第一から第四のバンドパスフィルタのいずれかの出力を検波信号として受けて同期検波を行い、前記単軸コイルの上方領域において前記第一及び第二の位相検波回路の出力が最小となる時の前記検出コイル系の中心位置を前記単軸コイルの直上の位置として求めることを特徴とする位置測定方式が提供される。   According to the second aspect of the present invention, a transmitter embedded with a single-axis coil that is buried in the ground or in the seabed ground and generates an alternating magnetic field, and disposed near the ground surface or the sea surface to receive the alternating magnetic field. Detection including first and second coils spaced apart on a first axis and third and fourth coils spaced apart on a second axis perpendicular to the first axis A coil system, first to fourth bandpass filters that receive the outputs of the first to fourth coils, and a first that outputs the difference signal in response to the outputs of the first and second bandpass filters A differential circuit; a second differential circuit that receives the outputs of the third and fourth bandpass filters and outputs a difference signal; and a first differential circuit that receives the outputs of the first and second differential circuits, respectively. And a signal processing circuit system including a second phase detection circuit, And the second phase detection circuit receives the output of any of the first to fourth bandpass filters as a detection signal and performs synchronous detection, and the first and second phase detection circuits in the upper region of the single-axis coil. A position measurement method is provided, wherein the center position of the detection coil system when the output of the phase detection circuit is minimized is obtained as a position immediately above the single-axis coil.

第2の態様による位置測定方式においては、前記検出コイル系がさらに、前記第一軸及び第二軸と直交する第三軸に設置された第五のコイルを有し、前記信号処理回路系がさらに、前記第五のコイルの出力を受ける第五のバンドパスフィルタを有し、前記第一及び第二の位相検波回路の検波信号として前記第五のバンドパスフィルタの出力を用いることが好ましい。   In the position measurement method according to the second aspect, the detection coil system further includes a fifth coil installed on a third axis orthogonal to the first axis and the second axis, and the signal processing circuit system includes Furthermore, it is preferable to have a fifth bandpass filter that receives the output of the fifth coil, and to use the output of the fifth bandpass filter as the detection signal of the first and second phase detection circuits.

第2の態様による位置測定方式においてはまた、前記第一軸及び第二軸にそれぞれ間隔をおいて設置される前記第一から第四のコイルをそれぞれ2個ずつとし、これら2個ずつのコイル出力を切換え回路を用いて対応する前記バンドパスフィルタの入力に接続し、前記第五のコイルの出力を検波信号として同期検波を行うことで、一軸あたり2種類の出力を用いることができる。   In the position measurement method according to the second aspect, the first to fourth coils, which are installed at intervals on the first axis and the second axis, are each two, and each of these two coils. By connecting the output to the input of the corresponding bandpass filter using a switching circuit and performing synchronous detection using the output of the fifth coil as the detection signal, two types of outputs can be used per axis.

本発明の第3の態様によれば、地中または海底地盤中に埋設され電界を生成する単軸の電極対を有する発信機と、前記電界を検出するために地表または海面近傍に配置される第一軸上に間隔をおいて設置された第一及び第二の電極と前記第一軸と直交する第二軸上に間隔をおいて設置された第三及び第四の電極とを含む検出電極系と、前記第一及び第二の電極の出力を受けて差信号を出力する第一の差動回路と、前記第三及び第四の電極の出力を受けて差信号を出力する第二の差動回路と、前記第一及び第二の差動回路の出力を受ける第一及び第二のバンドパスフィルタと、これら第一及び第二のバンドパスフィルタの出力をそれぞれ受ける第一及び第二の位相検波回路とを含む信号処理回路系とを含み、前記第一及び第二の位相検波回路は、前記第一から第四の電極のいずれかの出力を検波信号として受けて同期検波を行い、前記単軸の電極対の上方領域において前記第一及び第二の位相検波回路の出力が最小となる時の前記検出電極系の中心位置を前記単軸の電極対の直上の位置として求めることを特徴とする位置測定方式が提供される。   According to the third aspect of the present invention, a transmitter having a single-axis electrode pair embedded in the ground or in the seabed ground to generate an electric field, and disposed near the ground surface or the sea surface to detect the electric field. Detection comprising first and second electrodes spaced apart on a first axis and third and fourth electrodes spaced apart on a second axis perpendicular to the first axis An electrode system; a first differential circuit that receives the outputs of the first and second electrodes and outputs a difference signal; and a second that receives the outputs of the third and fourth electrodes and outputs a difference signal Differential circuit, first and second band-pass filters receiving the outputs of the first and second differential circuits, and first and second receiving the outputs of the first and second band-pass filters, respectively. A signal processing circuit system including a second phase detection circuit, and the first and second phase detection circuits are Synchronous detection is performed by receiving the output of any of the first to fourth electrodes as a detection signal, and the outputs of the first and second phase detection circuits are minimized in the region above the uniaxial electrode pair. A position measuring method is provided, wherein the center position of the detection electrode system at the time is obtained as a position immediately above the uniaxial electrode pair.

第3の態様による位置測定方式においては、前記検出電極系がさらに、前記第一軸及び第二軸と直交する第三軸に設置された対の電極からなる第五の電極を有し、前記信号処理回路系がさらに、前記第五の電極の対の出力を受けて差信号を出力する第三の差動回路と、該第三の差動回路の出力を受ける第三のバンドパスフィルタを有し、前記第一及び第二の位相検波回路の検波信号として前記第三のバンドパスフィルタの出力を用いることが好ましい。   In the position measurement method according to the third aspect, the detection electrode system further includes a fifth electrode composed of a pair of electrodes disposed on a third axis orthogonal to the first axis and the second axis, The signal processing circuit further includes a third differential circuit that receives the output of the fifth electrode pair and outputs a difference signal, and a third bandpass filter that receives the output of the third differential circuit. Preferably, the output of the third bandpass filter is used as a detection signal of the first and second phase detection circuits.

第3の態様による位置測定方式においてはまた、前記検出電極系において前記第一軸及び第二軸にそれぞれ間隔をおいて設置される前記第一から第四の電極をそれぞれ2個ずつとし、前記信号処理回路系においてはこれら2個ずつの電極出力をそれぞれ差動回路に出力し、前記第一軸上の2個ずつの電極出力の2つの差信号を前記第一の差動回路に入力し、前記第二軸上の2個ずつの電極出力の2つの差信号を前記第二の差動回路に入力し、前記第三のバンドパスフィルタの出力を検波信号として同期検波を行うことで、一軸あたり2種類の出力を用いることができる。
[発明の作用]
In the position measurement method according to the third aspect, the detection electrode system includes two each of the first to fourth electrodes that are installed at intervals on the first axis and the second axis, respectively, In the signal processing circuit system, these two electrode outputs are output to the differential circuit, and two difference signals of the two electrode outputs on the first axis are input to the first differential circuit. , By inputting two difference signals of two electrode outputs on the second axis to the second differential circuit, and performing synchronous detection using the output of the third bandpass filter as a detection signal, Two types of outputs can be used per axis.
[Operation of the invention]

上記の測定方式においては、地中あるいは海底地盤側の単軸のコイルあるいは電極対(以下、送信系と呼ぶ)で発生される磁界または電界は単軸の送信系の軸線を中心として線対称に形成される。磁界方式の場合、位置検出信号として磁界成分は水平軸上に配置された複数のコイルによって電圧信号として求まり、電界方式の場合、電界強度(分布)は水平軸上に配置された複数の電極によって電圧信号として求まる。これらの電圧信号は単軸の送信系直上の点を境として電圧信号の位相が異なるため、位相検波(同期検波)を行えば極性の判別する単軸の送信系直上の点からのコイルあるいは電極のずれ量及びその方向が判り、その結果、単軸の送信系直上の水平座標を求めることが可能となる。   In the measurement method described above, the magnetic field or electric field generated by a single-axis coil or electrode pair (hereinafter referred to as a transmission system) on the ground or the seabed is symmetrical with respect to the axis of the single-axis transmission system. It is formed. In the magnetic field method, the magnetic field component is obtained as a voltage signal by a plurality of coils arranged on the horizontal axis as a position detection signal, and in the electric field method, the electric field strength (distribution) is obtained by a plurality of electrodes arranged on the horizontal axis. It is obtained as a voltage signal. These voltage signals differ in phase from the point just above the single-axis transmission system, so if phase detection (synchronous detection) is performed, the polarity or the coil or electrode from the point just above the single-axis transmission system can be discriminated. As a result, the horizontal coordinate immediately above the uniaxial transmission system can be obtained.

本発明によれば、地中地盤に設置した単軸コイルを内蔵した発信機で形成される磁界成分や電界成分をコイルや電極を用いて検出することで、その直上座標を求めることが容易に可能となる。これにより、海上空港工事などの埋設工事における海底地盤の側方移動(流動)測定や陸上の地すべり地帯におけるすべり面上側の土塊の移動量測定などを容易に行うことができることから、工事費用の節減など得られる効果は大である。   According to the present invention, it is easy to obtain the coordinates directly above by detecting a magnetic field component and an electric field component formed by a transmitter having a single-axis coil installed in the ground using a coil or an electrode. It becomes possible. As a result, it is possible to easily measure the lateral movement (flow) of the submarine ground in burial work such as offshore airport construction, and the amount of movement of the clumps above the slip surface in the land landslide area. The effect obtained is great.

以下、本発明による位置測定方式の実施形態について図面を参照して説明する。   Embodiments of a position measurement method according to the present invention will be described below with reference to the drawings.

(磁界方式)
図1は本発明を磁界方式に適用した場合の第一実施例におけるコイルの配置を示す図である。発振器11及び単軸コイル(送信コイル)12を内蔵した発信機10が地中に埋設される。発信機10に内蔵されたバッテリ等の電源(図示せず)に接続した発振器11から出力される交流電力を単軸コイル12に印加することで単軸コイル12が励磁され、誘導磁界(交番磁界)が形成される。特に、電源、発振器、及び単軸コイルの組合せにより1kHz〜10kHz程度の低周波磁界信号と呼ばれる磁界信号を生成し、送信アンテナを通して送信することが好ましい。低周波磁界信号は、地中、水中、岩盤等、電磁波や超音波の伝送しにくい伝送媒体でも伝搬するという特徴を持つ。これは以降で述べられる磁界方式の実施例すべてについて適用することができる。
(Magnetic field method)
FIG. 1 is a diagram showing the arrangement of coils in the first embodiment when the present invention is applied to a magnetic field system. A transmitter 10 including an oscillator 11 and a single-axis coil (transmission coil) 12 is embedded in the ground. By applying AC power output from an oscillator 11 connected to a power source (not shown) such as a battery built in the transmitter 10 to the single-axis coil 12, the single-axis coil 12 is excited, and an induction magnetic field (alternating magnetic field) ) Is formed. In particular, it is preferable to generate a magnetic field signal called a low-frequency magnetic field signal of about 1 kHz to 10 kHz by a combination of a power source, an oscillator, and a single-axis coil and transmit it through a transmission antenna. The low-frequency magnetic field signal has a characteristic that it propagates even in a transmission medium that is difficult to transmit electromagnetic waves and ultrasonic waves, such as underground, underwater, and rock. This can be applied to all magnetic field embodiments described below.

一方、上記低周波磁界信号を検出するために、地表又は海面近くに第一〜第四の検出コイルCA〜CDが配置される。これら第一〜第四の検出コイルCA〜CDは、第一軸S1上に間隔をおいて検出コイルCAとCCが同心状に配置され、第二軸S2上に同じ間隔をおいて検出コイルCBとCDが同心状に配置される。これら第一軸S1及び第二軸S2と単軸コイル12の延長軸は互いに直交する配置を取ることが望ましい。第一軸S1及び第二軸S2を形成する素材には非磁性材の棒材又は中空素材が用いられる。尚、検出コイルCA、CCは特許請求の範囲に記載された第一、第二のコイルに対応し、検出コイルCB、CDは特許請求の範囲に記載された第三、第四のコイルに対応する。以降のすべての実施例の説明では、このような複数の検出コイルをまとめて検出コイル系と呼ぶことがある。   On the other hand, in order to detect the low frequency magnetic field signal, first to fourth detection coils CA to CD are arranged near the ground surface or the sea surface. In the first to fourth detection coils CA to CD, the detection coils CA and CC are arranged concentrically with an interval on the first axis S1, and the detection coil CB with the same interval on the second axis S2. And CD are arranged concentrically. It is desirable that the first axis S1 and the second axis S2 and the extension axis of the single axis coil 12 are arranged orthogonal to each other. A nonmagnetic rod or hollow material is used as the material forming the first axis S1 and the second axis S2. The detection coils CA and CC correspond to the first and second coils described in the claims, and the detection coils CB and CD correspond to the third and fourth coils described in the claims. To do. In the following description of all the embodiments, such a plurality of detection coils may be collectively referred to as a detection coil system.

図2は図1の検出コイル系のための信号処理回路系の構成を示すブロック図である。検出コイルCA〜CDの出力はそれぞれ増幅器15A〜15Dで増幅された後、バンドバスフィルタ16A〜16Dにより発振器11の発振周波数と同じ単一の周波数成分が取り出される。続いて、第一軸S1上の検出コイルCAとCC間の差信号と第二軸S2上の検出コイルCBとCD間の差信号とをそれぞれ差動回路17−1、17−2で作り、位相検波回路18−1、18−2に入力する。ここで、位相検波回路18−1、18−2における検波信号は検出コイル系におけるいずれかの検出コイルの出力を用いることが可能である。図2では検出コイルCAの系統からの信号を検波信号として用いているが、切換えスイッチにより4つの検出コイルの何れかを任意に選択できるようにしても良い。バンドパスフィルタ、差動回路、位相検波回路はアナログ回路で構成する方式以外にA/Dコンバータ、FFT演算といったデジタル演算を用いるコンピュータ処理で同様の結果が得られることは言うまでもない。   FIG. 2 is a block diagram showing a configuration of a signal processing circuit system for the detection coil system of FIG. The outputs of the detection coils CA to CD are amplified by the amplifiers 15A to 15D, respectively, and then a single frequency component that is the same as the oscillation frequency of the oscillator 11 is extracted by the band-pass filters 16A to 16D. Subsequently, a difference signal between the detection coils CA and CC on the first axis S1 and a difference signal between the detection coils CB and CD on the second axis S2 are formed by the differential circuits 17-1 and 17-2, respectively. Input to the phase detection circuits 18-1 and 18-2. Here, the output of one of the detection coils in the detection coil system can be used as the detection signal in the phase detection circuits 18-1 and 18-2. In FIG. 2, a signal from the detection coil CA system is used as a detection signal, but any one of the four detection coils may be arbitrarily selected by a changeover switch. Needless to say, the bandpass filter, the differential circuit, and the phase detection circuit can obtain the same result by computer processing using digital operations such as an A / D converter and FFT operation, in addition to the method in which the analog circuit is configured.

図3は本発明の第一実施例における発信機と検出コイルの配置を断面図で示す。発信機の埋設時にその位置が初期位置としてあらかじめ計測される。地中に埋設された単軸コイル12により形成された誘導磁界成分は地表または海面上にも拡がり、検出コイル系の第一軸S1上に形成された二つの検出コイル(CAとCCの組合せ、またはCBとCDの組合せ)に鎖交すると検出コイルに交流電圧が誘起される。ここで、二つの検出コイルCAとCCの組合せについて言えば、これらの間隔が一定に保たれた状態で水平方向に移動させると、二つの検出コイルに誘起する交流電圧の振幅に変化が生じる。仮に、単軸コイル12の直上に二つの検出コイル(CAとCC)の中間点が来た場合、これら二つの検出コイルに誘起される交流電圧は極性が異なるものの同じ振幅となるので、位相検波器18−1の出力は最小値となる。このとき、単軸コイル12直上の一次元座標は、二つの検出コイル(CAとCC)の中間点を通る紙面に直交する座標として求まることになる。他の一次元座標についても第二軸S2上に設置された二つの検出コイル(CBとCD)によって同様に求まることになる。   FIG. 3 is a sectional view showing the arrangement of the transmitter and the detection coil in the first embodiment of the present invention. When the transmitter is buried, the position is measured in advance as an initial position. The induction magnetic field component formed by the single-axis coil 12 embedded in the ground also spreads on the ground surface or the sea surface, and two detection coils (combinations of CA and CC, formed on the first axis S1 of the detection coil system, Alternatively, an alternating voltage is induced in the detection coil when linked to a combination of CB and CD. Here, regarding the combination of the two detection coils CA and CC, if the horizontal movement is performed with these intervals kept constant, the amplitude of the AC voltage induced in the two detection coils changes. If the intermediate point between the two detection coils (CA and CC) comes directly above the single-axis coil 12, the AC voltages induced in these two detection coils have the same amplitude although they have different polarities. The output of the device 18-1 is the minimum value. At this time, the one-dimensional coordinates immediately above the single-axis coil 12 are obtained as coordinates orthogonal to the paper surface passing through the midpoint between the two detection coils (CA and CC). Other one-dimensional coordinates are similarly obtained by two detection coils (CB and CD) installed on the second axis S2.

上記初期位置の設定は、以下の2つの方法で行われる。第1の方法は、例えば後述する地すべりの移動量を測定する場合に適用され、発信機10を埋設した地盤が移動しないことを前提とする場合である。この場合、地すべり地帯において予測される地すべり部分よりも深い地盤中に発信機10を埋設し、埋設した地表面にマーキングを施しておく。地すべりが発生するとマーキングされている地表面が移動するが、発信機10の位置は変化しない。そこで、上記の検出コイル系をマーキングされている場所から移動させ、位相検波器18−1、18−2の出力が最小値となる位置を探索する。探索された位置は発信機10の直上の位置であり、この位置と地すべり発生後のマーキング位置との間の距離がずれ量(移動量)、両者を結ぶ線分の方向が移動方向となる。   The initial position is set by the following two methods. The first method is applied, for example, when measuring the amount of landslide movement described later, and is based on the assumption that the ground in which the transmitter 10 is embedded does not move. In this case, the transmitter 10 is embedded in the ground deeper than the predicted landslide part in the landslide zone, and marking is performed on the buried ground surface. When a landslide occurs, the marked ground surface moves, but the position of the transmitter 10 does not change. Therefore, the detection coil system is moved from the marked location to search for a position where the outputs of the phase detectors 18-1 and 18-2 are minimum values. The searched position is a position directly above the transmitter 10, and the distance between this position and the marking position after the occurrence of the landslide is a shift amount (movement amount), and the direction of the line segment connecting the two becomes the movement direction.

第2の方法は、例えば後述する海底地盤の側方移動量を測定する場合に適用され、発信機10を埋設した地盤が移動することを前提とする場合である。この場合、側方移動が予測される海底地盤中に発信機10を埋設し、埋設場所の直上位置(海面における直上位置)をGPS等の方法で初期位置として計測しておく。海底地盤に側方移動があると発信機10の位置が変化する。そこで、上記の検出コイル系を海面近傍で上記初期位置から移動させ、位相検波器18−1、18−2の出力が最小値となる位置を探索する。探索された位置は発信機10の直上の位置であり、この位置をGPS等の方法で計測すれば、この計測位置と初期位置との間の距離が移動量、両者を結ぶ線分の方向が移動方向となる。   The second method is applied, for example, when measuring the amount of lateral movement of the seabed ground described later, and is based on the assumption that the ground in which the transmitter 10 is embedded moves. In this case, the transmitter 10 is embedded in the seabed ground where lateral movement is predicted, and the position immediately above the embedded position (directly above the sea surface) is measured as the initial position by a method such as GPS. The position of the transmitter 10 changes when there is a lateral movement on the seabed ground. Therefore, the detection coil system is moved from the initial position in the vicinity of the sea surface to search for a position where the outputs of the phase detectors 18-1 and 18-2 are minimum values. The searched position is a position immediately above the transmitter 10. If this position is measured by a method such as GPS, the distance between the measured position and the initial position is the amount of movement, and the direction of the line segment connecting the two is It becomes the moving direction.

何を測定するかに応じて、上記のような設定方法が以降で説明されるすべての実施例に適用される。   Depending on what is measured, the setting method as described above is applied to all embodiments described below.

以上の動作原理から、単軸コイル12はその軸線が鉛直方向となるように設置されることが必要であり、検出コイル系は第一軸S1、第二軸S2、つまり各検出コイルの軸線がこの鉛直方向に垂直な水平面上にある状態で検出動作を実行するようにされることが好ましい。また、発信機10の構成要素は水密構造のケースに収容され、外部電源でなくバッテリ電源の場合はその長寿命化を実現するために、発振器11は連続発振ではなく、タイマー等の手段により間欠的に動作するようにされることが好ましいことは言うまでも無い。これらの点は、後述するいずれの実施例でも同様である。   From the above operation principle, the single-axis coil 12 needs to be installed such that its axis is in the vertical direction, and the detection coil system has the first axis S1, the second axis S2, that is, the axis of each detection coil. It is preferable that the detection operation is performed in a state where the surface is on a horizontal plane perpendicular to the vertical direction. Further, the constituent elements of the transmitter 10 are housed in a watertight case, and in the case of battery power instead of external power, the oscillator 11 is not continuously oscillated but intermittently by means such as a timer. Needless to say, it is preferable that the operation is performed automatically. These points are the same in any of the embodiments described later.

図4は本発明の第二実施例におけるコイル配置を示す図である。地中に埋設された発信機10の発振器11から出力される交流出力を単軸コイル12に印加することで単軸コイル12が励磁され、誘導磁界が形成される。地表又は海面近くに配置される第一〜第四の検出コイルCA〜CDは図1に示されたものと同じである。一方、図4では第一軸S1と第二軸S2に直交する第三軸S3が設けられ、この第三軸S3に第五の検出コイルCEが配置された検出コイル系が構成されている。   FIG. 4 is a diagram showing a coil arrangement in the second embodiment of the present invention. By applying an alternating current output from the oscillator 11 of the transmitter 10 buried in the ground to the single axis coil 12, the single axis coil 12 is excited and an induction magnetic field is formed. The first to fourth detection coils CA to CD arranged near the ground surface or the sea surface are the same as those shown in FIG. On the other hand, in FIG. 4, a third axis S3 orthogonal to the first axis S1 and the second axis S2 is provided, and a detection coil system in which a fifth detection coil CE is arranged on the third axis S3 is configured.

第五の検出コイルCEを備える理由は以下の通りである。図中の第一〜第四の検出コイルCA〜CDは地表又は海面近くに置かれ、その位置によっては検出コイルに対して単軸コイル12で作られた磁界が全く鎖交しない配置となることがある。つまり、図1のコイル配置及び図2で示されたブロック図の回路構成で測定を行った場合、検出コイルCAから検出信号が全く得られない状態が発生する場合が想定される。この問題を解決することを目的として4個の検出コイルCA〜CDとは感度軸が異なる第三軸S3に第五の検出コイルCEを設け、この検出コイルCEから得られる信号を検波信号として用いることで、上記のような検波信号の欠如が生じることを防止することが可能となる。   The reason why the fifth detection coil CE is provided is as follows. The first to fourth detection coils CA to CD in the figure are placed near the ground surface or the sea surface, and depending on their positions, the magnetic field created by the single-axis coil 12 is not linked to the detection coil at all. There is. That is, when measurement is performed with the coil arrangement of FIG. 1 and the circuit configuration of the block diagram shown in FIG. 2, it is assumed that a state in which no detection signal is obtained from the detection coil CA occurs. In order to solve this problem, a fifth detection coil CE is provided on the third axis S3 having a sensitivity axis different from that of the four detection coils CA to CD, and a signal obtained from the detection coil CE is used as a detection signal. Thus, it is possible to prevent the absence of the detection signal as described above.

図5は図4の検出コイル系のための信号処理回路系を示すブロック図である。検出コイルCA〜CDの出力はそれぞれ増幅器15A〜15Dで増幅された後、バンドパスフィルタ16A〜16Dにより発振器11の周波数と同じ単一の周波数成分が取り出される。続いて、第一軸S1上の検出コイルCAとCC間の差信号と第二軸S2上の検出コイルCBとCD間の差信号をそれぞれ差動回路17−1、17−2で作り、位相検波回路18−1、18−2に被検波信号として入力する。図2で示したブロック図では位相検波回路18−1、18−2の検波信号は検出コイルCA〜CDのいずれかから得ていたが、図5では第五の検出コイルCEからの信号を検波信号として用いている。   FIG. 5 is a block diagram showing a signal processing circuit system for the detection coil system of FIG. The outputs of the detection coils CA to CD are amplified by the amplifiers 15A to 15D, respectively, and then a single frequency component same as the frequency of the oscillator 11 is extracted by the band pass filters 16A to 16D. Subsequently, a difference signal between the detection coils CA and CC on the first axis S1 and a difference signal between the detection coils CB and CD on the second axis S2 are generated by the differential circuits 17-1 and 17-2, respectively. The detected signals are input to the detection circuits 18-1 and 18-2. In the block diagram shown in FIG. 2, the detection signals of the phase detection circuits 18-1 and 18-2 are obtained from any one of the detection coils CA to CD, but in FIG. 5, the signal from the fifth detection coil CE is detected. Used as a signal.

図6は本発明の第二実施例におけるコイル配置を示す断面図である。図3のコイル配置と異なる点は第一〜第四の検出コイルCA〜CDとは感度軸が90度異なる第五の検出コイルCEを配置することで、この第五の検出コイルCEは単軸コイル(送信コイル)12の上方領域においてその位置によらず常に磁気信号が受信されることを示している。   FIG. 6 is a sectional view showing the coil arrangement in the second embodiment of the present invention. 3 is different from the coil arrangement of FIG. 3 in that a fifth detection coil CE having a sensitivity axis different from that of the first to fourth detection coils CA to CD is arranged by 90 degrees. In the upper region of the coil (transmission coil) 12, a magnetic signal is always received regardless of its position.

図7は本発明の第三実施例におけるコイルの配置を示す図である。地中に埋設された発信機10内の単軸コイル12によって磁界が形成される点については図1と同様である。地表又は海面近くに配置される検出コイルを、第一軸S1に4個(CA1、CA2、CC1、CC2)、第二軸S2に4個(CB1、CB2、CD1、CD2)とし、さらに第一軸S1および第二軸S2と直交する第三軸S3に1個(CE)の計9個用いる配置となっている。勿論、検出コイルCA1とCA2の間隔、検出コイルCC1とCC2の間隔、検出コイルCB1とCB2の間隔、検出コイルCD1とCD2の間隔は同じにされ、検出コイルCA1、CA2の組と検出コイルCC1、CC2の組の間隔、検出コイルCB1、CB2の組と検出コイルCD1、CD2の組の間隔も同じにされる。尚、図では検出コイルをCA1、CA2と2個ずつの組合せとして示しているが、CA1、CA2、CA3のように3個ずつの組合せを用いることも可能であり、検出コイルの数を増やせば各コイル間隔も広くとることができるため、測定上は有利となる。   FIG. 7 is a view showing the arrangement of coils in the third embodiment of the present invention. The point that a magnetic field is formed by the single-axis coil 12 in the transmitter 10 embedded in the ground is the same as in FIG. There are four detection coils (CA1, CA2, CC1, CC2) on the first axis S1 and four detection coils (CB1, CB2, CD1, CD2) on the second axis S2 The arrangement is such that a total of nine (CE) is used for the third axis S3 orthogonal to the axis S1 and the second axis S2. Of course, the distance between the detection coils CA1 and CA2, the distance between the detection coils CC1 and CC2, the distance between the detection coils CB1 and CB2, and the distance between the detection coils CD1 and CD2 are made the same, and the set of the detection coils CA1 and CA2 and the detection coil CC1, The interval between the sets of CC2 and the interval between the sets of detection coils CB1 and CB2 and the sets of detection coils CD1 and CD2 are also made the same. In the drawing, the detection coils are shown as two combinations of CA1 and CA2, but three combinations such as CA1, CA2 and CA3 can be used, and the number of detection coils can be increased. Since the distance between the coils can be wide, it is advantageous in measurement.

図8は図7の検出コイル系のための信号処理回路系の構成を示すブロック図である。図8の信号処理回路系では増幅器が受け持つ検出コイルが2系統となることから増幅器15A〜15Dの入力側にそれぞれ切換え回路19A〜19Dを配置している。但し、これらの切換え回路19A〜19Dは、ばらばらに切換えを行うのではなく、検出コイルCA1、CB1、CC1、CD1の組か、あるいは、検出コイルCA2、CB2、CC2、CD2の組のいずれかを選択するように用いられるのが好ましい。増幅器以降の回路及び動作は図5の信号処理回路系とまったく同じである。尚、切換え回路を用いない場合は検出コイルと同数の増幅器、バンドパスフィルタ等を並列に使用することでも同様の結果が得られる。   FIG. 8 is a block diagram showing a configuration of a signal processing circuit system for the detection coil system of FIG. In the signal processing circuit system of FIG. 8, since the detection coil which the amplifier is responsible for has two systems, switching circuits 19A to 19D are arranged on the input sides of the amplifiers 15A to 15D, respectively. However, these switching circuits 19A to 19D do not perform switching separately, but either one of the detection coil CA1, CB1, CC1, CD1 or the detection coil CA2, CB2, CC2, CD2 is set. It is preferably used to select. The circuit and operation after the amplifier are exactly the same as those of the signal processing circuit system of FIG. If no switching circuit is used, the same result can be obtained by using the same number of amplifiers, band-pass filters, etc. as the detection coil in parallel.

図9は本発明の第三実施例におけるコイル配置を示す断面図である。図6と図9で異なる点は、水平方向に感度軸を持つ検出コイルCA1〜CD1に、同じく水平方向に感度軸を持つ検出コイルCA2〜CD2を追加したことである。鉛直方向に感度軸を持つ検出コイルCEの両側にそれぞれ2箇所に検出コイルを配置することで単軸コイル12直上の水平方向の座標を求めることが容易になる利点を有する。特に単軸コイル12と各検出コイルとの距離が離れている場合において、測定作業を開始してから単軸コイル12直上座標の方向性を早く見つけられる点で効果がある。   FIG. 9 is a sectional view showing a coil arrangement in the third embodiment of the present invention. 6 and 9 is that detection coils CA2 to CD2 having sensitivity axes in the horizontal direction are added to detection coils CA1 to CD1 having sensitivity axes in the horizontal direction. By arranging the detection coils at two positions on both sides of the detection coil CE having the sensitivity axis in the vertical direction, there is an advantage that it is easy to obtain the horizontal coordinate immediately above the single-axis coil 12. In particular, when the distance between the single-axis coil 12 and each detection coil is large, there is an effect in that the directivity of the coordinates immediately above the single-axis coil 12 can be found quickly after starting the measurement operation.

(電界方式)
図10は本発明を電界方式に適用した第四実施例における電極の配置を示す図である。地中に埋設された発信機10内の発振器11から出力される交流出力を単軸の2つの電極E1、E2間に印加することで単軸の電極E1、E2間に電界が形成される(電流が流れる)。地表又は海面近くに配置される第一〜第六の検出電極EA、EB、EC、ED、EE、EFは、電極E1、E2による電界の電位を検出するためのものであり、第一軸S1上に間隔をおいて検出電極EAとEC、第二軸S2上に同じ間隔をおいて検出電極EBとEDがそれぞれ配置され、さらに第一軸S1及び第二軸S2と直交する第三軸S3上に検出電極EEとEFが配置される。ここで、磁界方式の場合と同様に、発信機10は単軸の電極E1、E2の軸線が鉛直方向になるように設置し、第一軸S1と第二軸S2も互いに直交する配置を取ることが望ましい。さらに、第一軸S1〜第三軸S3を形成する素材には絶縁性の棒又は中空素材が用いられる。検出電極EA〜EDは単軸の2つの電極E1、E2直上の座標や方向を検出するために用いられ、検出電極EEとEFは位相検波に使用する検出信号を得るために用いられる。尚、検出電極EA、ECは特許請求の範囲に記載された第一、第二の電極に対応し、検出電極EB、EDは特許請求の範囲に記載された第三、第四の電極に対応する。以降の説明では、このような複数の検出電極をまとめて検出電極系と呼ぶことがある。
(Electric field method)
FIG. 10 is a diagram showing the arrangement of electrodes in a fourth embodiment in which the present invention is applied to an electric field system. An electric field is formed between the uniaxial electrodes E1 and E2 by applying an alternating current output from the oscillator 11 in the transmitter 10 buried in the ground between the two uniaxial electrodes E1 and E2 ( Current flows). The first to sixth detection electrodes EA, EB, EC, ED, EE, and EF disposed near the ground surface or the sea surface are for detecting the electric potential of the electric field by the electrodes E1 and E2, and have a first axis S1. The detection electrodes EA and EC are spaced apart from each other, the detection electrodes EB and ED are disposed at the same spacing on the second axis S2, and the third axis S3 is orthogonal to the first axis S1 and the second axis S2. The detection electrodes EE and EF are arranged on the top. Here, as in the case of the magnetic field method, the transmitter 10 is installed so that the axes of the single-axis electrodes E1 and E2 are in the vertical direction, and the first axis S1 and the second axis S2 are also orthogonal to each other. It is desirable. Further, an insulating rod or a hollow material is used as the material forming the first axis S1 to the third axis S3. The detection electrodes EA to ED are used to detect coordinates and directions immediately above the two single-axis electrodes E1 and E2, and the detection electrodes EE and EF are used to obtain detection signals used for phase detection. The detection electrodes EA and EC correspond to the first and second electrodes described in the claims, and the detection electrodes EB and ED correspond to the third and fourth electrodes described in the claims. To do. In the following description, such a plurality of detection electrodes may be collectively referred to as a detection electrode system.

図11は図10の検出電極系のための信号処理回路系の構成を示すブロック図である。検出電極EA〜EFで検出された各々の電位は各軸上に配置された電極の組合せ毎(EAとECの組、EBとEDの組、EEとEFの組)に差動回路20−1、20−2、20−3によって差電位として検出される。これらの差信号から検出電極EA〜EDによって被検波信号が作られ、検出電極EEとEFによって検波信号が作られる。差動回路20−1〜20−3の差信号はバンドパスフィルタ21−1〜21−3により発振器11の発振周波数と同じ周波数成分が取り出される。位相検波回路22−1、22−2はバンドパスフィルタ21−1、21−2の信号を受け、バンドパスフィルタ21−3の信号を検波信号として同期検波を行い、第一軸S1方向と第二軸S2方向の電位差を出力する。磁界方式の場合と同様に、検出電極系の中心が単軸の電極E1、E2の軸線上に位置した時に、電位差が最小値となる。尚、これらの回路もアナログ回路で構成する方法以外にA/Dコンバータによってデジタル値に変換することによりコンピュータ処理することでも同様の効果が得られる。   FIG. 11 is a block diagram showing a configuration of a signal processing circuit system for the detection electrode system of FIG. The potentials detected by the detection electrodes EA to EF are different from each other for each electrode combination (EA and EC, EB and ED, and EE and EF) arranged on each axis. , 20-2 and 20-3 are detected as differential potentials. From these difference signals, a detection signal is generated by the detection electrodes EA to ED, and a detection signal is generated by the detection electrodes EE and EF. The same frequency components as the oscillation frequency of the oscillator 11 are extracted from the difference signals of the differential circuits 20-1 to 20-3 by the band-pass filters 21-1 to 21-3. The phase detection circuits 22-1 and 22-2 receive the signals of the bandpass filters 21-1 and 21-2, perform synchronous detection using the signals of the bandpass filter 21-3 as detection signals, The potential difference in the biaxial S2 direction is output. As in the case of the magnetic field method, the potential difference becomes the minimum value when the center of the detection electrode system is positioned on the axes of the uniaxial electrodes E1 and E2. In addition to the method of configuring these circuits with analog circuits, the same effect can be obtained by computer processing by converting them into digital values using an A / D converter.

図12は本発明の第四実施例における電極配置を示す断面図である。地中に埋設された単軸の電極E1−E2により形成された電界(電流)成分は地表または海面付近で大きく曲げられ単軸の電極E1−E2直上を始点として、表面上を放射状に拡がる。これらの成分は表面下に配置された複数の検出電極によって電位が検出され、同一軸上で離れた2点間の検出電極の差信号を求めることで電位差として検出される。このことから交叉する二軸上に各々間隔が等しい検出電極を配置すると二次元上の電位差が検出され、その電位差が最小となる場合、二つの検出電極の中間点が単軸の電極E1−E2の直上に一致することになる。位相検波を用いていることから単軸の電極で形成される交流電界と同じ周波数成分を検波信号として利用することで雑音成分の除去も同時に行うことができる。   FIG. 12 is a sectional view showing an electrode arrangement in the fourth embodiment of the present invention. The electric field (current) component formed by the uniaxial electrode E1-E2 embedded in the ground is greatly bent near the surface of the earth or the sea surface and spreads radially on the surface starting from the uniaxial electrode E1-E2 immediately above. The potential of these components is detected by a plurality of detection electrodes arranged below the surface, and is detected as a potential difference by obtaining a difference signal of the detection electrodes between two points separated on the same axis. From this, when two detection electrodes having the same interval are arranged on two intersecting axes, a two-dimensional potential difference is detected, and when the potential difference is minimized, the middle point of the two detection electrodes is a single-axis electrode E1-E2. Will match directly above. Since phase detection is used, noise components can be removed at the same time by using the same frequency component as an AC electric field formed by a single-axis electrode as a detection signal.

尚、第三軸S3及び検出電極EEとEFは省略されても良く、この場合、検波信号は、検出電極EA〜EDのいずれかの出力を用いる。   The third axis S3 and the detection electrodes EE and EF may be omitted. In this case, the detection signal uses the output of any of the detection electrodes EA to ED.

図13は本発明を地すべり移動量の測定に適用する場合の第五実施例を示す図である。地すべり発生が予測される地帯にボーリングを行い、予想されるすべり面より下側の深さに、発振器11と単軸コイル12等を内蔵する発信機10を設置する。ここで、ボーリング孔45の跡は、前述した初期位置設定における第1の設定方法のマーキングとして利用することができる。前述したように発信機10は内蔵のタイマーによって所定の時刻に発振器11を起動して単軸コイル12から磁界を発生させることにより、同じく内蔵のバッテリの消耗を防止することが可能となる。さらに、磁界方式の場合には、発信機10に組み込まれている磁界発生用の単軸コイル12を受信コイルとしても用い、単軸コイル12には受信回路を組合せ、地表から磁気信号によって起動信号を与えることにより発振器11を起動させることも可能である。これらの方法についての詳細は、例えば特許文献2、3に開示されている。   FIG. 13 is a diagram showing a fifth embodiment when the present invention is applied to the measurement of landslide movement. Boring is performed in a region where landslide is expected to occur, and a transmitter 10 including an oscillator 11 and a single-axis coil 12 is installed at a depth below the predicted slip surface. Here, the trace of the boring hole 45 can be used as the marking of the first setting method in the initial position setting described above. As described above, the transmitter 10 can prevent the built-in battery from being exhausted by starting the oscillator 11 at a predetermined time and generating a magnetic field from the single-axis coil 12 by the built-in timer. Further, in the case of the magnetic field system, the single-axis coil 12 for generating a magnetic field incorporated in the transmitter 10 is also used as a reception coil, and a reception circuit is combined with the single-axis coil 12 and a start signal is generated by a magnetic signal from the ground surface. It is also possible to start the oscillator 11 by giving. Details of these methods are disclosed in Patent Documents 2 and 3, for example.

発信機10埋設以後の地すべり移動量の測定は以下のようにして行われる。地上には非磁性材料で作られた移動台41によって地表面に側線が設定され、この側線に沿って検出コイル系40を移動可能とする。この移動台41は水平が維持されるように構築することが好ましい。   The amount of landslide movement after the transmitter 10 is buried is measured as follows. A side line is set on the ground surface by a moving table 41 made of a nonmagnetic material on the ground, and the detection coil system 40 can be moved along the side line. The movable table 41 is preferably constructed so that the level is maintained.

第一実施例の場合について言えば、マーキング場所を基準として検出コイル系40を水平移動させ、位相検波器18−1、18−2の出力が最小値となる位置を探索する。もし、地すべりが無ければ位相検波器18−1、18−2の出力はマーキング場所で最小値となる。一方、地すべりによる移動が発生していれば、マーキング場所から水平方向に移動したある場所、つまり発信機10の直上の位置で位相検波器18−1、18−2の出力が最小値となる。この探索位置と地すべり発生後のマーキング位置との間の距離がずれ量(移動量)、両者を結ぶ線分の方向が移動方向となる。   In the case of the first embodiment, the detection coil system 40 is horizontally moved with reference to the marking location, and a position where the outputs of the phase detectors 18-1 and 18-2 are minimum is searched. If there is no landslide, the outputs of the phase detectors 18-1 and 18-2 are minimum values at the marking location. On the other hand, if the movement due to the landslide has occurred, the outputs of the phase detectors 18-1 and 18-2 become the minimum value at a certain place moved in the horizontal direction from the marking place, that is, a position immediately above the transmitter 10. The distance between this search position and the marking position after the occurrence of a landslide is the shift amount (movement amount), and the direction of the line segment connecting the two is the movement direction.

検出コイル系40及び信号処理回路系には、前述したすべての実施例を適用することができる。但し、電界方式の場合、図10及び図11の検出電極系及び信号処理回路系の形態をとることは言うまでも無い。   All the embodiments described above can be applied to the detection coil system 40 and the signal processing circuit system. However, in the case of the electric field method, it goes without saying that the detection electrode system and the signal processing circuit system shown in FIGS. 10 and 11 are used.

図14は本発明を港湾等の埋め立て工事に適用する場合の第六実施例を示す図である。海上空港の建設工事では、陸地近くの港湾の土砂埋め立てを行って形成した人工地盤の上に空港施設の建設が行われる。この土砂埋め立てを行う場合、埋め立て領域の近くの海底地盤では埋め立て荷重による側方移動が発生する。この移動量を測定するため、海底地盤内に交流磁界発生用の発信機10を設置して海中に磁界を発生させる。一方、海面近くにフロート50等を用いて海水中に検出コイル系40を配置し、フロート50にはGPS受信機51を設置する。GPS受信機51の位置はGPSや光学測量によって容易に求めることができ、既に実用化されている。   FIG. 14 is a diagram showing a sixth embodiment in the case where the present invention is applied to landfill work such as a harbor. In the construction of the offshore airport, the airport facilities are constructed on the artificial ground formed by landfill in the port near the land. When this earth and sand reclamation is performed, lateral movement due to the reclamation load occurs on the seabed near the landfill area. In order to measure the amount of movement, a transmitter 10 for generating an alternating magnetic field is installed in the seabed ground to generate a magnetic field in the sea. On the other hand, a detection coil system 40 is arranged in seawater using a float 50 or the like near the sea surface, and a GPS receiver 51 is installed in the float 50. The position of the GPS receiver 51 can be easily obtained by GPS or optical surveying, and has already been put into practical use.

本第六実施例においても、検出コイル系(検出電極系)及び信号処理回路系は前述の第一〜第五実施例のいずれを適用しても良い。尚、フロート50と検出コイル系40をつなぐワイヤ部分にはバネや板等(図示せず)を用いて波面の動きを伝えないようにする工夫が併用されることは言うまでもない。また、検出コイル系(検出電極系)は常時配置する形態でも良いが、測定を行わない場合には引き上げておき、測定に際して海上に投棄する形態でも良い。いずれにしても、各検出コイル(検出電極)からの検出信号はフロート50を経由してケーブルにより船上の信号処理回路系に入力されるが、増幅器はフロート50側に備えるようにしても良い。   Also in the sixth embodiment, any of the first to fifth embodiments described above may be applied to the detection coil system (detection electrode system) and the signal processing circuit system. Needless to say, the wire portion connecting the float 50 and the detection coil system 40 is used together with a device for preventing the wavefront motion from being transmitted using a spring, a plate or the like (not shown). In addition, the detection coil system (detection electrode system) may be arranged at all times, but may be pulled up when the measurement is not performed and dumped on the sea during the measurement. In any case, the detection signal from each detection coil (detection electrode) is input to the signal processing circuit system on the ship via a cable via the float 50, but the amplifier may be provided on the float 50 side.

本第六実施例では、あらかじめGPS受信機51を用いて発信機10を埋設した時の初期位置が測定される。以後、定期的に発信機10を起動させ、検出コイル系40を移動させて発信機10の位置を二次元的に測定する作業を行う。例えば、第一実施例による検出コイル系及び信号処理回路系を用いる場合、仮に、海底地盤に側方移動が発生していると、位相検波器18−1、18−2の出力が最小となる位置も初期位置からずれることになる。GPS受信機51によれば、初期位置からずれた現在の位置を知ることができるので、2軸座標面上での初期位置と現在位置とから海底地盤の水平方向の移動量及び移動方向を容易に算出することができる。   In the sixth embodiment, the initial position when the transmitter 10 is embedded using the GPS receiver 51 is measured in advance. Thereafter, the transmitter 10 is periodically activated, the detection coil system 40 is moved, and the work of measuring the position of the transmitter 10 two-dimensionally is performed. For example, when the detection coil system and the signal processing circuit system according to the first embodiment are used, the output of the phase detectors 18-1 and 18-2 is minimized if a lateral movement occurs in the seabed ground. The position will also deviate from the initial position. According to the GPS receiver 51, since the current position deviated from the initial position can be known, the horizontal movement amount and movement direction of the seabed ground can be easily determined from the initial position and the current position on the biaxial coordinate plane. Can be calculated.

図15は本発明の第七実施例における電極の配置を示す図である。地中に埋設された発信機10内の発振器11から出力される交流(電圧)出力を単軸の電極E1、E2に印加することで電極E1、E2間に電界が形成される。ここでは、検出電極系が対の電極を等間隔に配置して構成され、第一〜第五の検出電極対EG〜EKが地表又は海面近くに配置される。具体的には、第一軸S1上に第一、第三の電極対EG、EI、第二軸S2上に第二、第四の電極対EH、EJ、さらに第一軸S1及び第二軸S2と直交する第三軸S3に第五の電極対EKが配置される。前述したように、電極E1、E2の軸線が鉛直方向となり、第一軸S1と第二軸S2は互いに直交する配置とすることが望ましい。   FIG. 15 is a diagram showing the arrangement of electrodes in the seventh embodiment of the present invention. An electric field is formed between the electrodes E1 and E2 by applying an alternating current (voltage) output output from the oscillator 11 in the transmitter 10 embedded in the ground to the uniaxial electrodes E1 and E2. Here, the detection electrode system is configured by arranging pairs of electrodes at equal intervals, and the first to fifth detection electrode pairs EG to EK are arranged near the ground surface or the sea surface. Specifically, the first and third electrode pairs EG and EI on the first axis S1, the second and fourth electrode pairs EH and EJ on the second axis S2, and the first axis S1 and the second axis. The fifth electrode pair EK is arranged on the third axis S3 orthogonal to S2. As described above, it is desirable that the axes of the electrodes E1 and E2 are in the vertical direction, and the first axis S1 and the second axis S2 are arranged orthogonal to each other.

図16は図15の検出電極系のための信号処理回路系の構成を示すブロック図である。各検出電極対EG〜EKで検出された各々の対の電位から、はじめに差動回路61G〜61Kで差電位が取り出される。次に、差動回路62−1、62−2により第一の電極対EGの差電位と第三の電極対EIの差電位との差電位、第二の電極対EHの差電位と第四の電極対EJの差電位との差電位がそれぞれ取り出され、各軸の差電位として検出される。第一軸S1、第二軸S2の差電位からバンドパスフィルタ63−1、63−2により発振器11の発振周波数と同じ周波数成分が取り出され、差動回路61Kの差電位からバンドパスフィルタ63−3により発振器11の発振周波数と同じ周波数成分が取り出される。このようにして、第一の電極対EG〜第四の電極対EJによって被検波信号が作られ、第五の電極対EKによって検波信号が作られる。二組の位相検波回路64−1、64−2はこれらの信号を受けて同期検波を行い、第一軸S1方向と第二軸S2方向の電位差を出力する。   FIG. 16 is a block diagram showing a configuration of a signal processing circuit system for the detection electrode system of FIG. First, the differential potentials 61G to 61K are extracted from the potentials of the respective pairs detected by the respective detection electrode pairs EG to EK. Next, the differential circuits 62-1 and 62-2 use the difference potential between the difference potential of the first electrode pair EG and the difference potential of the third electrode pair EI, the difference potential of the second electrode pair EH, and the fourth difference. The difference potential with respect to the difference potential of the electrode pair EJ is taken out and detected as the difference potential of each axis. The same frequency component as the oscillation frequency of the oscillator 11 is extracted from the difference potential between the first axis S1 and the second axis S2 by the bandpass filters 63-1 and 63-2, and the bandpass filter 63- from the difference potential of the differential circuit 61K. 3 extracts the same frequency component as the oscillation frequency of the oscillator 11. In this way, a detection signal is generated by the first electrode pair EG to the fourth electrode pair EJ, and a detection signal is generated by the fifth electrode pair EK. The two sets of phase detection circuits 64-1 and 64-2 receive these signals, perform synchronous detection, and output a potential difference between the first axis S1 direction and the second axis S2 direction.

図17は本発明の第七実施例における検出電極系の電極配置を示す断面図である。地中に埋設された単軸の電極E1、E2により形成された電界(電流)成分は地表または海面付近で大きく曲げられ、単軸の電極直上を始点として表面上を放射状に拡がる。これらの電界成分は水面下(近傍)に配置された検出電極系によって電位が検出され、同軸上の離れた2領域間の電極対同士の差信号を求めることで電位差として検出される。このことから、交叉する二軸上に各々間隔が等しい電極対を配置すると、二次元上の電位差が検出され、この電位差が最小となる場合に一軸上の2つの電極対の中間点が単軸の電極E1、E2の直上に位置することになる。   FIG. 17 is a sectional view showing the electrode arrangement of the detection electrode system in the seventh embodiment of the present invention. The electric field (current) component formed by the uniaxial electrodes E1 and E2 embedded in the ground is greatly bent near the surface of the earth or the sea surface, and spreads radially on the surface starting from directly above the uniaxial electrode. These electric field components are detected as a potential difference by detecting a potential by a detection electrode system disposed below (in the vicinity of) the water surface and obtaining a difference signal between two pairs of electrodes on the same axis. Therefore, when electrode pairs with the same interval are arranged on two intersecting axes, a two-dimensional potential difference is detected. When this potential difference is minimized, the intermediate point between two electrode pairs on one axis is a single axis. It is located immediately above the electrodes E1 and E2.

図18は本発明を港湾等の海上埋め立て工事に適用する際の第八実施例を示す図である。海面近くに検出コイル系(あるいは検出電極系)を配置する場合、船舶から吊り下げると波浪による船舶の動きが検出コイル系(あるいは検出電極系)に伝わり、常に移動(変位)が伝わることになり安定した計測(測定)が難しい。この問題を解決するため、本実施例ではフロート50と検出コイル系40(あるいは検出電極系)との間にバネ等の伸縮性部材55を1つ以上(ここでは2つ)介在させると共に、2つの伸縮性部材55の間に水の抵抗を受ける板56を併用させている。これにより検出コイル系40(あるいは検出電極系)を水中で安定に維持することができ、波浪の影響を低減させる効果が得られる。尚、検出コイル系や検出電極系を固定するフレームを移動させる手段として、船で曳航しても良いが、フロート50にモーターとスクリュー及び舵を取付け、船上からリモートコントロールを行うようにしても良い。尚、リモートコントロールを容易に行うため、フロート50にはGPS受信機51や方位計等を取付け、フロート50の座標情報を船上で常にモニターしながら作業を行うことで作業性を高めることが容易となる。この実施例も、前述した第一〜第四、第七の実施例のいずれを適用しても良い。   FIG. 18 is a diagram showing an eighth embodiment when the present invention is applied to land reclamation work such as a harbor. When the detection coil system (or detection electrode system) is placed near the sea surface, if it is hung from the ship, the movement of the ship due to waves will be transmitted to the detection coil system (or detection electrode system), and movement (displacement) will always be transmitted. Stable measurement (measurement) is difficult. In order to solve this problem, in this embodiment, one or more (two in this case) elastic members 55 such as springs are interposed between the float 50 and the detection coil system 40 (or the detection electrode system), and 2 A plate 56 that receives water resistance is used between the two elastic members 55. Thereby, the detection coil system 40 (or the detection electrode system) can be stably maintained in water, and an effect of reducing the influence of waves can be obtained. As a means for moving the frame for fixing the detection coil system and the detection electrode system, the ship may be towed, but a motor, a screw and a rudder may be attached to the float 50 and remote control may be performed from the ship. . In order to easily perform remote control, a GPS receiver 51, an azimuth meter, etc. are attached to the float 50, and it is easy to improve workability by performing work while constantly monitoring the coordinate information of the float 50 on the ship. Become. In this embodiment, any of the first to fourth and seventh embodiments described above may be applied.

図19は本発明に使用される検出コイルから得られる磁界信号の検出出力が、単軸コイルに対する検出コイルの方向性と相対位置によって変化することを説明するための図である。図19において、送信側の単軸コイルは零点の直下で距離eの場所に配置されているものとして検出コイルの出力から磁界強度を求めている。図19の特性(a)は検出最大感度軸が垂直方向となる検出コイルを水平方向に移動させた際に測定される磁界強度分布を示し、単軸コイルの直上で最大となることは明らかである。一方、図19の特性(b)は検出最大感度軸が水平方向となる検出コイル(本発明の各実施例に相当)を移動させた際に測定される磁界強度分布を示している。ここで、特性(b)が図中左半分で負となる領域は受信信号の位相成分を加味した演算を行っているために生じている。図19の横軸は送信側の単軸コイルの中心までの距離eを用いて表している。なお、このような磁界強度分布あるいは磁界の分布(拡がり)は計算によって求めることも可能である。   FIG. 19 is a diagram for explaining that the detection output of the magnetic field signal obtained from the detection coil used in the present invention changes depending on the directionality and relative position of the detection coil with respect to the single-axis coil. In FIG. 19, the magnetic field strength is obtained from the output of the detection coil on the assumption that the transmission-side single-axis coil is arranged at a distance e immediately below the zero point. The characteristic (a) in FIG. 19 shows the magnetic field intensity distribution measured when the detection coil whose detection maximum sensitivity axis is in the vertical direction is moved in the horizontal direction, and it is clear that the maximum is directly above the single axis coil. is there. On the other hand, the characteristic (b) of FIG. 19 shows the magnetic field strength distribution measured when the detection coil (corresponding to each embodiment of the present invention) whose detection maximum sensitivity axis is in the horizontal direction is moved. Here, the region in which the characteristic (b) is negative in the left half of the figure is generated because the calculation is performed in consideration of the phase component of the received signal. The horizontal axis in FIG. 19 represents the distance e to the center of the transmission-side single-axis coil. Such a magnetic field strength distribution or magnetic field distribution (spreading) can also be obtained by calculation.

図20は本発明に使用される検出コイルが検出した磁界信号の出力を微分した結果を示す図である。図19で求められた特性(a)、(b)に対し、微分演算処理を行うと、図19の特性(a)は図20の特性(c)となり、同じく図19の特性(b)は図20の特性(d)として示される。ここで注目すべき点は、特性(c)と(d)が図中左側の位置で交叉し、その交点座標が0.21eすなわち、送信側の単軸コイルの中心までの距離eの21%に相当することである。このことは、水平軸に最大感度を持つ検出コイルと垂直軸に最大感度を持つ検出コイルの両方を併用し、信号レベルが大きい方を選択する切換え位置として上記の値0.21eを利用することで、測定上の利点となる。   FIG. 20 is a diagram showing the result of differentiating the output of the magnetic field signal detected by the detection coil used in the present invention. When differential calculation processing is performed on the characteristics (a) and (b) obtained in FIG. 19, the characteristic (a) in FIG. 19 becomes the characteristic (c) in FIG. 20, and the characteristic (b) in FIG. This is shown as characteristic (d) in FIG. The point to be noted here is that characteristics (c) and (d) intersect at the position on the left side in the figure, and the coordinate of the intersection is 0.21e, that is, 21% of the distance e to the center of the single-axis coil on the transmission side. It is equivalent to. This means that both the detection coil having the maximum sensitivity on the horizontal axis and the detection coil having the maximum sensitivity on the vertical axis are used together, and the above value 0.21e is used as the switching position for selecting the higher signal level. This is a measurement advantage.

図21は本発明に用いられる検出コイル系の具体例を示す。固定部100に、軸S1−1と軸S1−2とを取り付けて第一軸を構成し、軸S2−1と軸S2−2とを取り付けて第二軸を構成している。固定部100及び各軸は塩化ビニール、アクリル等の非磁性材料でかつ非導電性の素材を用いて作られる。検出コイルCA〜CDは、各軸を固定部100に取り付けた後に後加工で設置することができるので、防水加工も含めて製作上のメリットが大きい。本例は、図1に示した検出コイル系に適しているが、固定部100を中空にして検出コイルを内蔵させ、このコイルの軸線を検出コイルCA、CCの軸線、検出コイルCB、CDの軸線に直交するように配置することで図4に示す検出コイル系を実現することができる。勿論、各軸に複数の検出コイルを設置することで図7に示す検出コイル系を実現できる。   FIG. 21 shows a specific example of the detection coil system used in the present invention. A shaft S1-1 and a shaft S1-2 are attached to the fixed portion 100 to constitute a first shaft, and a shaft S2-1 and a shaft S2-2 are attached to constitute a second shaft. The fixed part 100 and each shaft are made of a non-magnetic material such as vinyl chloride or acrylic and a non-conductive material. Since the detection coils CA to CD can be installed by post-processing after attaching the respective shafts to the fixed portion 100, the merit in manufacturing including waterproof processing is great. Although this example is suitable for the detection coil system shown in FIG. 1, the fixed portion 100 is hollow and the detection coil is built in, and the axis of this coil is the axis of the detection coils CA and CC, the detection coils CB and CD. The detection coil system shown in FIG. 4 can be realized by arranging so as to be orthogonal to the axis. Of course, the detection coil system shown in FIG. 7 can be realized by installing a plurality of detection coils on each axis.

図22は、本発明に用いられる検出コイル系の他の例を示す。本例では立方格子状の枠体110を用い、その各コーナー部分に検出コイルC1、C2、C3を設置するようにしている。枠体110の材料は、上述した図21の例と同様、塩化ビニール、アクリル等の非磁性材料でかつ非導電性の素材を用いることが好ましい。1つのコーナーについて言えば、互いに直交するX軸、Y軸、Z軸の三軸に検出コイルが設置された三成分のコイルと見なすことができる。コーナー毎にこれらの三成分のコイルの切換えを行う切換え手段を備えることでどの検出コイルを検出に用いるかを任意に選択することができる。図の上部又は下部の検出コイルを用いれば平面的な検出コイル系を構成することができ、上部及び下部の検出コイルの両方を用いれば立体的な検出コイル系を構成することができる。このような立方格子状の枠体110を用いることで、水中以外に地上での設置に際しても安定性を確保することが容易となる。なお例として、図中、一点鎖線で示すように、枠体110を形成している四角形の枠の中に更に交差する枠を設け、交差する枠に検出コイルを設置することで図1に示されるような検出コイル系をも兼ねる検出コイル系を実現できることは言うまでも無い。   FIG. 22 shows another example of the detection coil system used in the present invention. In this example, a cubic lattice-shaped frame 110 is used, and detection coils C1, C2, and C3 are installed at each corner portion. The material of the frame 110 is preferably a non-magnetic material such as vinyl chloride or acrylic and a non-conductive material, as in the example of FIG. 21 described above. Speaking of one corner, it can be regarded as a three-component coil in which detection coils are installed on three axes of X axis, Y axis, and Z axis orthogonal to each other. By providing switching means for switching these three component coils for each corner, it is possible to arbitrarily select which detection coil is used for detection. If the upper or lower detection coil in the figure is used, a planar detection coil system can be configured, and if both the upper and lower detection coils are used, a three-dimensional detection coil system can be configured. By using such a cubic lattice-shaped frame body 110, it becomes easy to ensure stability even when installed on the ground in addition to underwater. As an example, as shown by the alternate long and short dash line in the figure, a further intersecting frame is provided in the quadrangular frame forming the frame 110, and a detection coil is installed in the intersecting frame as shown in FIG. It goes without saying that a detection coil system that also serves as a detection coil system can be realized.

図1は本発明を磁界方式に適用した場合の第一実施例におけるコイルの配置を示す図である。FIG. 1 is a diagram showing the arrangement of coils in the first embodiment when the present invention is applied to a magnetic field system. 図2は図1の検出コイル系のための信号処理回路系の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a signal processing circuit system for the detection coil system of FIG. 図3は本発明の第一実施例における発信機とコイルの配置を断面図で示す。FIG. 3 is a sectional view showing the arrangement of the transmitter and the coil in the first embodiment of the present invention. 図4は本発明を磁界方式に適用した場合の第二実施例におけるコイルの配置を示す図である。FIG. 4 is a diagram showing the coil arrangement in the second embodiment when the present invention is applied to a magnetic field system. 図5は図4の検出コイル系のための信号処理回路系の構成を示すブロック図である。FIG. 5 is a block diagram showing a configuration of a signal processing circuit system for the detection coil system of FIG. 図6は本発明の第二実施例における発信機とコイルの配置を示す断面図である。FIG. 6 is a sectional view showing the arrangement of the transmitter and the coil in the second embodiment of the present invention. 図7は本発明を磁界方式に適用した場合の第三実施例におけるコイルの配置を示す図である。FIG. 7 is a diagram showing the coil arrangement in the third embodiment when the present invention is applied to a magnetic field system. 図8は図7の検出コイル系のための信号処理回路系の構成を示すブロック図である。FIG. 8 is a block diagram showing a configuration of a signal processing circuit system for the detection coil system of FIG. 図9は本発明の第三実施例における発信機とコイルの配置を示す断面図である。FIG. 9 is a sectional view showing the arrangement of the transmitter and the coil in the third embodiment of the present invention. 図10は本発明を電界方式に適用した場合の第四実施例における電極の配置を示す図である。FIG. 10 is a diagram showing the arrangement of electrodes in the fourth embodiment when the present invention is applied to an electric field system. 図11は図10の検出電極系のための信号処理回路系の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of a signal processing circuit system for the detection electrode system of FIG. 図12は本発明の第四実施例における発信機と電極の配置を示す断面図である。FIG. 12 is a cross-sectional view showing the arrangement of a transmitter and electrodes in the fourth embodiment of the present invention. 図13は本発明を地すべり移動量の測定に適用する場合の第五実施例を示す図である。FIG. 13 is a diagram showing a fifth embodiment when the present invention is applied to the measurement of landslide movement. 図14は本発明を港湾等の埋め立て工事に適用する場合の第六実施例を示す図である。FIG. 14 is a diagram showing a sixth embodiment in the case where the present invention is applied to landfill work such as a harbor. 図15は本発明を電界方式に適用した場合の第七実施例における電極の配置を示す図である。FIG. 15 is a diagram showing the arrangement of electrodes in the seventh embodiment when the present invention is applied to an electric field system. 図16は図15の検出電極系のための信号処理回路系の構成を示すブロック図である。FIG. 16 is a block diagram showing a configuration of a signal processing circuit system for the detection electrode system of FIG. 図17は本発明の第七実施例における発信機と電極の配置を示す断面図である。FIG. 17 is a cross-sectional view showing the arrangement of the transmitter and electrodes in the seventh embodiment of the present invention. 図18は本発明を港湾等の海上埋め立て工事に適用する際の第八実施例を示す図である。FIG. 18 is a diagram showing an eighth embodiment when the present invention is applied to land reclamation work such as a harbor. 図19は本発明に使用される検出コイルから得られる磁界信号の検出出力が、単軸コイルに対する検出コイルの方向性と相対位置によって変化することを説明するための図である。FIG. 19 is a diagram for explaining that the detection output of the magnetic field signal obtained from the detection coil used in the present invention changes depending on the directionality and relative position of the detection coil with respect to the single-axis coil. 図20は図19に示された磁界信号の出力を微分した結果を示す図である。FIG. 20 is a diagram showing a result of differentiating the output of the magnetic field signal shown in FIG. 図21は本発明に用いられる検出コイル系の具体例を示した図である。FIG. 21 is a diagram showing a specific example of the detection coil system used in the present invention. 図22は本発明に用いられる検出コイル系の他の例を示した図である。FIG. 22 is a diagram showing another example of the detection coil system used in the present invention.

符号の説明Explanation of symbols

CA、CB、CC、CD、CE 検出コイル
S1、S2、S3 第一軸、第二軸、第三軸
EA、EB、EC、ED、EE、EF 検出電極
15A〜15E 増幅器
16A〜16E バンドパスフィルタ
17−1、17−2 差動回路
18−1、18−2 位相検波器
CA, CB, CC, CD, CE Detection coils S1, S2, S3 1st axis, 2nd axis, 3rd axis EA, EB, EC, ED, EE, EF Detection electrode 15A-15E Amplifier 16A-16E Band pass filter 17-1, 17-2 Differential circuit 18-1, 18-2 Phase detector

Claims (12)

地中または海底地盤中に埋設され交番磁界を生成する単軸コイルを内蔵した発信機と、前記交番磁界を受けるために地表または海面近傍に配置される第一軸上に間隔をおいて設置された第一及び第二のコイルと前記第一軸と直交する第二軸上に間隔をおいて設置された第三及び第四のコイルとを含む検出コイル系とを含み、
前記第一から第四のコイルの出力から磁界強度を求め、第一から第四のコイルで得た磁界強度に基づいて前記単軸コイルの軸線の位置と前記検出コイル系中心の相対位置を二次元的に求めることを特徴とする位置測定方式。
A transmitter with a built-in single-axis coil that is buried in the ground or in the seabed and generates an alternating magnetic field, and a first shaft that is placed near the surface of the earth or near the sea surface to receive the alternating magnetic field. A detection coil system including first and second coils and third and fourth coils spaced apart on a second axis orthogonal to the first axis;
The magnetic field strength is obtained from the outputs of the first to fourth coils, and the position of the axis of the single-axis coil and the relative position of the center of the detection coil system are determined based on the magnetic field strength obtained from the first to fourth coils. A position measurement method characterized by dimensional determination.
請求項1に記載の位置測定方式において、前記検出コイル系を、前記第一から第四のコイルの軸線が前記単軸コイルの軸線と平行又は垂直となるように配置することを特徴とする位置測定方式。   2. The position measuring method according to claim 1, wherein the detection coil system is arranged so that the axes of the first to fourth coils are parallel or perpendicular to the axis of the single-axis coil. Measurement method. 請求項1に記載の位置測定方式において、前記第一から第四のコイルはそれぞれ、軸線がそれぞれ直交する三成分のコイルからなることを特徴とする位置測定方式。   2. The position measuring method according to claim 1, wherein each of the first to fourth coils includes a three-component coil whose axes are orthogonal to each other. 請求項1に記載の位置測定方式において、前記第一から第四のコイルをそれぞれ複数のコイルとしたことを特徴とする位置測定方式。   2. The position measuring method according to claim 1, wherein each of the first to fourth coils is a plurality of coils. 地中または海底地盤中に埋設され交番磁界を生成する単軸コイルを内蔵した発信機と、
前記交番磁界を受けるために地表または海面近傍に配置される第一軸上に間隔をおいて設置された第一及び第二のコイルと前記第一軸と直交する第二軸上に間隔をおいて設置された第三及び第四のコイルとを含む検出コイル系と、
前記第一から第四のコイルの出力を受ける第一から第四のバンドパスフィルタと、該第一及び第二のバンドパスフィルタの出力を受けて差信号を出力する第一の差動回路と、前記第三及び第四のバンドパスフィルタの出力を受けて差信号を出力する第二の差動回路と、これら第一及び第二の差動回路の出力をそれぞれ受ける第一及び第二の位相検波回路とを含む信号処理回路系とを含み、
前記第一及び第二の位相検波回路は、前記第一から第四のバンドパスフィルタのいずれかの出力を検波信号として受けて同期検波を行い、
前記単軸コイルの上方領域において前記第一及び第二の位相検波回路の出力が最小となる時の前記検出コイル系の中心位置を前記単軸コイルの直上の位置として求めることを特徴とする位置測定方式。
A transmitter with a built-in single-axis coil that is buried in the ground or in the seabed and generates an alternating magnetic field;
In order to receive the alternating magnetic field, the first and second coils arranged at a distance on the first axis arranged near the ground surface or the sea surface and the second axis orthogonal to the first axis are spaced apart. A detection coil system including third and fourth coils installed
First to fourth bandpass filters that receive the outputs of the first to fourth coils; and a first differential circuit that receives the outputs of the first and second bandpass filters and outputs a difference signal; A second differential circuit that receives the outputs of the third and fourth bandpass filters and outputs a difference signal; and first and second differential circuits that receive the outputs of the first and second differential circuits, respectively. A signal processing circuit system including a phase detection circuit,
The first and second phase detection circuits receive the output of any of the first to fourth bandpass filters as a detection signal, perform synchronous detection,
A position in which the center position of the detection coil system when the outputs of the first and second phase detection circuits are minimized in the upper region of the single axis coil is determined as a position immediately above the single axis coil. Measurement method.
請求項5に記載の位置測定方式において、前記検出コイル系はさらに、前記第一軸及び第二軸と直交する第三軸に設置された第五のコイルを有し、前記信号処理回路系はさらに、前記第五のコイルの出力を受ける第五のバンドパスフィルタを有し、前記第一及び第二の位相検波回路の検波信号として前記第五のバンドパスフィルタの出力を用いることを特徴とする位置測定方式。   6. The position measurement method according to claim 5, wherein the detection coil system further includes a fifth coil installed on a third axis orthogonal to the first axis and the second axis, and the signal processing circuit system is And a fifth bandpass filter for receiving the output of the fifth coil, wherein the output of the fifth bandpass filter is used as a detection signal of the first and second phase detection circuits. Position measurement method to do. 請求項6に記載の位置測定方式において、前記第一軸及び第二軸にそれぞれ間隔をおいて設置される前記第一から第四のコイルをそれぞれ2個ずつとし、これら2個ずつのコイル出力を切換え回路を用いて対応する前記バンドパスフィルタの入力に接続し、前記第五のコイルの出力を検波信号として同期検波を行うことで、一軸あたり2種類の出力を用いることを特徴とする位置測定方式。   7. The position measuring method according to claim 6, wherein two each of the first to fourth coils respectively installed at intervals on the first axis and the second axis are provided, and each of the two coil outputs is provided. Is connected to the input of the corresponding band-pass filter using a switching circuit, and synchronous detection is performed using the output of the fifth coil as a detection signal, so that two types of outputs are used per axis. Measurement method. 地中または海底地盤中に埋設され電界を生成する単軸の電極対を有する発信機と、
前記電界を検出するために地表または海面近傍に配置される第一軸上に間隔をおいて設置された第一及び第二の電極と前記第一軸と直交する第二軸上に間隔をおいて設置された第三及び第四の電極とを含む検出電極系と、
前記第一及び第二の電極の出力を受けて差信号を出力する第一の差動回路と、前記第三及び第四の電極の出力を受けて差信号を出力する第二の差動回路と、前記第一及び第二の差動回路の出力を受ける第一及び第二のバンドパスフィルタと、これら第一及び第二のバンドパスフィルタの出力をそれぞれ受ける第一及び第二の位相検波回路とを含む信号処理回路系とを含み、
前記第一及び第二の位相検波回路は、前記第一から第四の電極のいずれかの出力を検波信号として受けて同期検波を行い、
前記単軸の電極対の上方領域において前記第一及び第二の位相検波回路の出力が最小となる時の前記検出電極系の中心位置を前記単軸の電極対の直上の位置として求めることを特徴とする位置測定方式。
A transmitter having a single-axis electrode pair embedded in the ground or in the seabed and generating an electric field;
In order to detect the electric field, the first and second electrodes arranged on the first axis disposed near the ground surface or near the sea surface are spaced apart from each other on the second axis orthogonal to the first axis. A sensing electrode system comprising third and fourth electrodes installed
A first differential circuit that receives the outputs of the first and second electrodes and outputs a difference signal, and a second differential circuit that receives the outputs of the third and fourth electrodes and outputs a difference signal First and second bandpass filters that receive the outputs of the first and second differential circuits, and first and second phase detectors that receive the outputs of the first and second bandpass filters, respectively. And a signal processing circuit system including a circuit,
The first and second phase detection circuits receive the output of any of the first to fourth electrodes as a detection signal, perform synchronous detection,
Obtaining the center position of the detection electrode system as the position immediately above the uniaxial electrode pair when the outputs of the first and second phase detection circuits are minimized in the upper region of the uniaxial electrode pair. Characteristic position measurement method.
請求項5に記載の位置測定方式において、前記検出電極系はさらに、前記第一軸及び第二軸と直交する第三軸に設置された対の電極からなる第五の電極を有し、前記信号処理回路系はさらに、前記第五の電極の対の出力を受けて差信号を出力する第三の差動回路と、該第三の差動回路の出力を受ける第三のバンドパスフィルタを有し、前記第一及び第二の位相検波回路の検波信号として前記第三のバンドパスフィルタの出力を用いることを特徴とする位置測定方式。   6. The position measurement system according to claim 5, wherein the detection electrode system further includes a fifth electrode including a pair of electrodes disposed on a third axis orthogonal to the first axis and the second axis, The signal processing circuit system further includes a third differential circuit that receives the output of the fifth electrode pair and outputs a difference signal, and a third band-pass filter that receives the output of the third differential circuit. And a position measuring method using the output of the third bandpass filter as a detection signal of the first and second phase detection circuits. 請求項9に記載の位置測定方式において、前記検出電極系において前記第一軸及び第二軸にそれぞれ間隔をおいて設置される前記第一から第四の電極をそれぞれ2個ずつとし、前記信号処理回路系においてはこれら2個ずつの電極出力をそれぞれ差動回路に出力し、前記第一軸上の2個ずつの電極出力の2つの差信号を前記第一の差動回路に入力し、前記第二軸上の2個ずつの電極出力の2つの差信号を前記第二の差動回路に入力し、前記第三のバンドパスフィルタの出力を検波信号として同期検波を行うことで、一軸あたり2種類の出力を用いることを特徴とする位置測定方式。   10. The position measurement method according to claim 9, wherein the detection electrode system includes two each of the first to fourth electrodes installed at intervals on the first axis and the second axis, respectively. In the processing circuit system, these two electrode outputs are output to the differential circuit, and two difference signals of the two electrode outputs on the first axis are input to the first differential circuit, Two differential signals of two electrode outputs on the second axis are input to the second differential circuit, and synchronous detection is performed using the output of the third bandpass filter as a detection signal. A position measurement method characterized by using two types of outputs per unit. 請求項5から7の何れかに記載の位置測定方式を用いて陸上の地すべりによる移動量及び移動方向を測定する方法であって、
前記発信機を、予想される地すべり面よりも下側の深さに埋設し、
埋設された発信機の直上の地表面に初期位置としてマーキングを施しておき、
以後、定期的に前記発信機を起動させると共に、前記検出コイル系を地表面上を移動させて、前記第一及び第二の位相検波回路の出力が最小となる時の前記検出コイル系の中心位置を前記発信機の直上の位置として検出し、
前記マーキングお施された初期位置と前記検出された位置との間の距離及び線分から移動量及び移動方向を計測するようにしたことを特徴とする地すべりによる移動量及び移動方向の測定方法。
A method for measuring a moving amount and a moving direction due to a landslide on land using the position measurement method according to claim 5,
Embed the transmitter at a depth below the expected landslide surface,
Marking the ground surface directly above the buried transmitter as the initial position,
Thereafter, the transmitter is periodically started and the detection coil system is moved on the ground surface, so that the center of the detection coil system when the outputs of the first and second phase detection circuits are minimized. Detecting the position as the position directly above the transmitter,
A method for measuring a movement amount and a movement direction by a landslide, wherein a movement amount and a movement direction are measured from a distance and a line segment between the initial position where the marking is performed and the detected position.
請求項5から7の何れかに記載の位置測定方式を用いて海底地盤の側方移動量及び移動方向を測定する方法であって、
前記発信機を、側方移動が予想される海底地盤に埋設し、
埋設された発信機の直上の海面上の位置をあらかじめ初期位置として計測しておき、
以後、定期的に前記発信機を起動させると共に、前記検出コイル系を海面あるいは海面近傍で移動させて、前記第一及び第二の位相検波回路の出力が最小となる時の前記検出コイル系の中心位置を海面上での前記発信機の直上の位置として検出し、
前記初期位置と前記検出された位置との間の距離及び線分から側方移動量及び移動方向を計測するようにしたことを特徴とする海底地盤の側方移動量及び移動方向の測定方法。
A method for measuring a lateral movement amount and a movement direction of the seabed ground using the position measurement method according to any one of claims 5 to 7,
The transmitter is buried in the seabed where lateral movement is expected,
Measure the position on the sea level directly above the buried transmitter as the initial position,
Thereafter, the transmitter is periodically activated, and the detection coil system is moved near or at sea level, so that the output of the first and second phase detection circuits is minimized. Detect the center position as the position directly above the transmitter on the sea surface,
A method for measuring a lateral movement amount and a moving direction of a seabed ground, wherein a lateral movement amount and a moving direction are measured from a distance and a line segment between the initial position and the detected position.
JP2006078613A 2006-03-22 2006-03-22 Position measuring system Withdrawn JP2007255986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078613A JP2007255986A (en) 2006-03-22 2006-03-22 Position measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078613A JP2007255986A (en) 2006-03-22 2006-03-22 Position measuring system

Publications (1)

Publication Number Publication Date
JP2007255986A true JP2007255986A (en) 2007-10-04

Family

ID=38630389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078613A Withdrawn JP2007255986A (en) 2006-03-22 2006-03-22 Position measuring system

Country Status (1)

Country Link
JP (1) JP2007255986A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128253A (en) * 2007-11-26 2009-06-11 Sakata Denki Position measuring system
JP2010203078A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Movable breakwater, movable wave breaking facility, and method for estimating gas leakage section of the movable breakwater
JP2010203077A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Movable breakwater and movable wave breaking facility
JP2012088144A (en) * 2010-10-19 2012-05-10 National Agriculture & Food Research Organization Landslide observation system
JP2015111109A (en) * 2013-11-01 2015-06-18 株式会社沖縄中央エンジニアリング Detection method of magnetic matter and magnetic sensor
WO2015141568A1 (en) * 2014-03-17 2015-09-24 フジテコム株式会社 Buried-metal detection method, and detection device therefor
US11419082B2 (en) 2018-12-05 2022-08-16 Koninklijke Philips N.V. Method for device synchronization

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128253A (en) * 2007-11-26 2009-06-11 Sakata Denki Position measuring system
JP2010203078A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Movable breakwater, movable wave breaking facility, and method for estimating gas leakage section of the movable breakwater
JP2010203077A (en) * 2009-02-27 2010-09-16 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd Movable breakwater and movable wave breaking facility
JP2012088144A (en) * 2010-10-19 2012-05-10 National Agriculture & Food Research Organization Landslide observation system
JP2015111109A (en) * 2013-11-01 2015-06-18 株式会社沖縄中央エンジニアリング Detection method of magnetic matter and magnetic sensor
WO2015141568A1 (en) * 2014-03-17 2015-09-24 フジテコム株式会社 Buried-metal detection method, and detection device therefor
JP2015175786A (en) * 2014-03-17 2015-10-05 大阪瓦斯株式会社 Buried metal search method and search device thereof
US9939546B2 (en) 2014-03-17 2018-04-10 Fuji Tecom Inc. Detection method and detection device of buried metal
US11419082B2 (en) 2018-12-05 2022-08-16 Koninklijke Philips N.V. Method for device synchronization

Similar Documents

Publication Publication Date Title
JP2007255986A (en) Position measuring system
DK177603B1 (en) Electromagnetic marine exploration for low water hydrocarbons
JP2009515163A (en) Hydrocarbon reservoir mapping method and apparatus for implementing the method
AU2012200951A1 (en) Method for determining positions of sensor streamers during geophysical surveying
CN101258422A (en) Method for performing controlled source electromagnetic surveying with multiple transmitters
AU2015232585B2 (en) Detection method and detection device of buried metal
NO339765B1 (en) Method for interpreting transient electromagnetic measurements
KR20110058313A (en) Three-dimension electromagnetic induction surveying equipment for surveying of underground facilities
CN105116452A (en) Method and device of determining resistivity and polarizability of geological abnormal body
CN111708088A (en) Transient electromagnetic real-time dynamic advanced detection method and system based on magnetic gradient tensor
Pedrera et al. The fracture system and the melt emplacement beneath the Deception Island active volcano, South Shetland Islands, Antarctica
KR101911937B1 (en) System and method for detecting water leak route
CN108267787B (en) Electromagnetism separates AMT detection method, device and equipment
CN203759264U (en) Nuclear magnetic resonance bipolarity superposition de-noising device based on power frequency full cycle
GB2540260A (en) Leak detection system
RU2439520C1 (en) Method of locating main pipeline leaks
KR101714647B1 (en) Seismoelectric survey system using electrode-bar and geophone
CN104535847A (en) Combined oceanic electric field sensor
US20120112738A1 (en) Sensors for Integrated Monitoring and Mitigation of Scour
US9175558B2 (en) Seismic navigation
CN104090304A (en) Method and system for directly conducting remote detection on nonmetal pipelines
US20130091939A1 (en) Sensors for integrated monitoring and mitigation of erosion
Zakaria et al. Application of very low frequency (VLF) method for estimating Karst underground river in tanjungsari district
GOTO et al. Controlled source audio-frequency magnetotelluric (csamt) and time domain electromagnetic (tdem) resistivity measurements at noboribetsu geothermal field, kuttara volcano, hokkaido, japan
JP2011133308A (en) Magnetic probing system and method of determining magnetic probing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602