JP2007255925A - Joint evaluation method and joint evaluation device - Google Patents

Joint evaluation method and joint evaluation device Download PDF

Info

Publication number
JP2007255925A
JP2007255925A JP2006077224A JP2006077224A JP2007255925A JP 2007255925 A JP2007255925 A JP 2007255925A JP 2006077224 A JP2006077224 A JP 2006077224A JP 2006077224 A JP2006077224 A JP 2006077224A JP 2007255925 A JP2007255925 A JP 2007255925A
Authority
JP
Japan
Prior art keywords
resistance
change rate
resistance change
rate
solder joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077224A
Other languages
Japanese (ja)
Other versions
JP4728852B2 (en
Inventor
Yuichi Aoki
雄一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2006077224A priority Critical patent/JP4728852B2/en
Publication of JP2007255925A publication Critical patent/JP2007255925A/en
Application granted granted Critical
Publication of JP4728852B2 publication Critical patent/JP4728852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely perform the reliable judgment of accelerated life with respect to a solder joint part by a simple method. <P>SOLUTION: The joint evaluation device is equipped with a cooling part 12 and a heating part 13 both of which repeatedly perform heating and cooling with respect to a solder joint part 8, a measuring circuit part 11 and a measuring part 22 both of which measure the resistance value of the solder joint part 8 at a predetermined cycle during hot supply, an arithmetic part 23 for calculating a resistance change ratio and the change speed of the resistance change ratio from the resistance value at each time when the resistance value is measured, a judge part 24 for judging whether the resistance value reaches an inflection point, where the lowering of the change speed of the resistance change ratio is started, from the calculated change speed of the resistance change ratio, an evaluation part 25 for starting the evaluation related to the reliability of the solder joint part 8 by comparing the resistance change ratio with a preset reference threshold value and an information part 3 for reporting that the resistance change ratio exceeds the preset reference threshold value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、プリント基板等に電気素子等を実装するための、はんだボールやはんだバンプにはんだ付けされたはんだ接合部に対する熱疲労等に起因する信頼性に関する接合評価方法及びその装置に関する。   The present invention relates to a bonding evaluation method and apparatus related to reliability due to thermal fatigue or the like of a solder joint soldered to a solder ball or solder bump for mounting an electric element or the like on a printed circuit board or the like.

従来、半導体ICチップ等の回路素子を配線基板に装着するための接合部に用いられるはんだ等の接合材料の寿命に関する評価方法として種々の方法が提案されている。一般には、はんだ接合部に加熱と冷却を交互に加える温度サイクル試験による加速寿命評価試験が採用されており、はんだ亀裂が発生し、破断する場合の判断方法として、電気抵抗法が知られている。しかし、この方法は、試験期間に数ヶ月も要してしまうため、製品開発期間が長期になるという問題があった。特許文献1には、前記温度サイクル試験中に、一組のはんだ接合部間の抵抗値を四端子法により繰り返し測定し、抵抗値の変化から熱疲労度を連続的に観察可能にした接合材料の熱疲労度測定方法が記載されている。   Conventionally, various methods have been proposed as methods for evaluating the lifetime of a bonding material such as solder used for a bonding portion for mounting a circuit element such as a semiconductor IC chip on a wiring board. In general, an accelerated life evaluation test using a temperature cycle test in which heating and cooling are alternately applied to a solder joint is employed, and an electrical resistance method is known as a method for determining when a solder crack occurs and breaks. . However, this method has a problem that the product development period becomes long because the test period takes several months. Patent Document 1 discloses a bonding material in which a resistance value between a pair of solder joints is repeatedly measured by a four-terminal method during the temperature cycle test, and a thermal fatigue degree can be continuously observed from a change in the resistance value. A method for measuring thermal fatigue is described.

また、はんだ接合部の寿命を予測する他の方法として、以下の特許文献2〜6及び非特許文献1,2に記載されたような、有限要素法二次元の弾塑性解析から求めた熱応力に起因する塑性ひずみと、はんだ接合部の観察から求めたき裂進展速度とから求めたき裂進展速度式を採用するもの、寿命サイクル数と歪み振幅との間の関係式と熱応力シミュレーションとを利用するもの、はんだ接合部の表面粗さの変化を利用するものが提案されている。
特開昭61−138153号公報 特開2005−148016号公報 特開2000−46905号公報 特開2004−45343号公報 特開平3−128431号公報 特開2002―310888号公報 「はんだバンプ接続のき裂進展挙動評価」日本機械学会論文集A編、2001年3月発行 「Sn-3.0Ag-0.5Cuはんだ接合部における相成長による熱疲労き裂発生評価」エレクトロニクス実装学会誌、2004年9月発行
Further, as another method for predicting the life of the solder joint, thermal stress obtained from two-dimensional elasto-plastic analysis of the finite element method as described in the following Patent Documents 2 to 6 and Non-Patent Documents 1 and 2. Using the crack growth rate equation obtained from the plastic strain caused by the crack and the crack growth rate obtained from observation of the solder joint, using the relational equation between the life cycle number and strain amplitude and thermal stress simulation Have been proposed that utilize changes in the surface roughness of solder joints.
JP 61-138153 A JP 2005-148016 A JP 2000-46905 A JP 2004-45343 A Japanese Patent Laid-Open No. 3-128431 JP 2002-310888 A "Evaluation of crack propagation behavior of solder bump connection", Japan Society of Mechanical Engineers, Proceedings A, published in March 2001 "Evaluation of thermal fatigue crack initiation by phase growth in Sn-3.0Ag-0.5Cu solder joints" published by Japan Institute of Electronics Packaging, September 2004

しかしながら、上記の各文献に記載された方法では、接合寿命を予測することが精度的に十分とは言い難く、実用に際して検証を必要とする。また、予め試験を行って必要なデータベースを構築する必要があり、さらに、コンピュータシミュレーションによる複雑な計算を要する。また、解析ステップが多いため、労力の割には限定された用途にしか利用できないという問題がある。   However, in the methods described in the above-mentioned documents, it is difficult to accurately predict the bonding life, and verification is required for practical use. Further, it is necessary to construct a necessary database by conducting a test in advance, and further, complicated calculation by computer simulation is required. Moreover, since there are many analysis steps, there exists a problem that it can utilize only for the use limited for the labor.

本発明は、上記従来の問題を解決するもので、変曲点を越えた後に、信頼性の評価を行うことで、より効率的に、かつ精度の高い信頼性評価が可能となり、そして、簡易な方法で、はんだ接合部に対する加速寿命の信頼性評価を精度良く行い得る接合評価方法およびその装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and by evaluating the reliability after exceeding the inflection point, it becomes possible to evaluate the reliability more efficiently and with high accuracy. It is an object of the present invention to provide a bonding evaluation method and apparatus capable of accurately performing reliability evaluation of accelerated life for a soldered portion by a simple method.

本発明の接合評価装置は、はんだ接合部に対して加熱と冷却とを繰り返し行う熱供給部と、熱供給中の前記はんだ接合部の電気的な抵抗値を所定周期で測定する抵抗値測定部と、抵抗値が測定される毎に得られた抵抗値から抵抗変化率及び抵抗変化率の変化速度を算出する演算手段と、算出された前記抵抗変化率の変化速度から該抵抗変化率の変化速度が低下を開始する変曲点に達したか否かを判断する判断手段と、前記変曲点に達した後に、前記抵抗変化率と予め設定された基準閾値とを比較することで前記はんだ接合部の信頼性に関する評価を開始する評価手段と、前記抵抗変化率が予め設定された基準閾値を超えたとき、その旨を報知する報知部とを備えたことを特徴とするものである。   The joint evaluation apparatus of the present invention includes a heat supply unit that repeatedly heats and cools a solder joint, and a resistance value measurement unit that measures an electrical resistance value of the solder joint during heat supply in a predetermined cycle. And a calculating means for calculating a resistance change rate and a change rate of the resistance change rate from the resistance value obtained each time the resistance value is measured, and a change in the resistance change rate from the calculated change rate of the resistance change rate. Judgment means for judging whether or not the inflection point at which the speed starts to decrease has been reached, and after reaching the inflection point, the resistance change rate is compared with a preset reference threshold value to compare the solder. It is characterized by comprising evaluation means for starting an evaluation relating to the reliability of the joint portion, and a notifying portion for notifying that when the resistance change rate exceeds a preset reference threshold value.

また、本発明の接合評価方法は、はんだ接合部に対して熱供給部によって加熱と冷却とを繰り返し行い、熱供給中の前記はんだ接合部の電気的な抵抗値を抵抗値測定部によって所定周期で測定し、抵抗値が測定される毎に得られた抵抗値から抵抗変化率及び抵抗変化率の変化速度を算出し、算出された前記抵抗変化率の変化速度から該抵抗変化率の変化速度が低下を開始する変曲点に達したか否かを判断し、前記変曲点に達した後に、前記抵抗変化率と予め設定された基準閾値とを比較することで前記はんだ接合部の信頼性に関する評価を開始し、前記抵抗変化率が予め設定された基準閾値を超えたとき、その旨を報知部から報知することを特徴とするものである。   Further, in the bonding evaluation method of the present invention, heating and cooling are repeatedly performed on the solder joint by the heat supply unit, and the electrical resistance value of the solder joint during heat supply is determined by the resistance value measurement unit at a predetermined cycle. The resistance change rate and the change rate of the resistance change rate are calculated from the resistance value obtained each time the resistance value is measured, and the change rate of the resistance change rate is calculated from the calculated change rate of the resistance change rate. Whether or not an inflection point at which a decrease starts has been reached, and after reaching the inflection point, the resistance change rate is compared with a preset reference threshold value to determine the reliability of the solder joint. The evaluation regarding the property is started, and when the resistance change rate exceeds a preset reference threshold value, a notification to that effect is given.

これらの構成によれば、はんだ接合部は加熱雰囲気と冷却雰囲気とに繰り返し晒され、この間に前記はんだ接合部の電気的な抵抗値が所定周期で測定される。周期的に測定される抵抗値から抵抗変化率、さらに抵抗変化率の変化速度が算出され、試験開始後、該抵抗変化率の変化速度が低下を開始する変曲点に達したか否かの判断が行われる。変曲点に達したのであれば、前記抵抗変化率と予め設定された基準閾値とが比較されることで前記はんだ接合部の信頼性に関する評価が開始される。従って、変曲点を越えるまでは評価処理が行われず、誤判断もなくなる。そして、変曲点を越えた後に、信頼性の評価を行うことで、より効率的に、かつ精度の高い評価が可能となる。すなわち、より早く信頼性の評価結果を出すためには、基準閾値は低い方が好ましい。しかしながら、基準閾値が低い場合、試験開始から変曲点が出現するまでに、抵抗変化率が基準閾値を超えて誤った評価結果が得られる可能性も考えられる。そこで、加熱雰囲気と冷却雰囲気とに繰り返し晒されるはんだ接合部の熱疲労の特性を考慮して変曲点を超えた後に評価の判断を行うようにしている。これによって、簡易な方法でありながら、はんだ接合部に対する加速寿命の信頼性評価が精度よく行われる。   According to these configurations, the solder joint is repeatedly exposed to the heating atmosphere and the cooling atmosphere, and during this time, the electrical resistance value of the solder joint is measured at a predetermined period. The resistance change rate and the rate of change of the resistance change rate are calculated from the resistance value measured periodically, and whether or not the inflection point at which the rate of change of the resistance change rate starts decreasing after the start of the test is determined. Judgment is made. If the inflection point has been reached, the resistance change rate is compared with a preset reference threshold value to start evaluation regarding the reliability of the solder joint. Therefore, the evaluation process is not performed until the inflection point is exceeded, and erroneous determination is eliminated. Then, after the inflection point is exceeded, by evaluating the reliability, it is possible to evaluate more efficiently and with high accuracy. That is, in order to obtain the reliability evaluation result earlier, it is preferable that the reference threshold value is lower. However, when the reference threshold is low, there is a possibility that the resistance change rate exceeds the reference threshold and an erroneous evaluation result is obtained before the inflection point appears from the start of the test. Therefore, the evaluation judgment is made after the inflection point is exceeded in consideration of the thermal fatigue characteristics of the solder joint that is repeatedly exposed to the heating atmosphere and the cooling atmosphere. Thereby, although it is a simple method, the reliability evaluation of the accelerated life with respect to a solder joint part is performed accurately.

また、前記抵抗値測定部は、前記抵抗変化率の変化速度が低下を開始する変曲点に達した後、測定周期を短縮するのが好ましい。この構成によれば、抵抗変化率に変曲点が生じた後に測定周期が短縮されて測定頻度が増大する分、評価をより早く行うことが可能となる。   The resistance value measurement unit preferably shortens the measurement cycle after reaching an inflection point at which the rate of change in the resistance change rate starts to decrease. According to this configuration, since the measurement cycle is shortened after the inflection point is generated in the resistance change rate and the measurement frequency is increased, the evaluation can be performed earlier.

また、前記抵抗変化率の変化速度が低下を開始する変曲点に達した後、前記はんだ接合部に振動を付与する加振部を備えたことを特徴とする。この構成によれば、変曲点を越えた後は、はんだ接合部に亀裂の進展が存している可能性が高いため、振動を与えて、その亀裂の進展を助長する操作を施すことによって信頼性評価をより早めることが可能となる。   Further, the present invention is characterized in that an oscillating portion for applying vibration to the solder joint portion is provided after the inflection point at which the rate of change of the resistance change rate starts to decrease. According to this configuration, after the inflection point is exceeded, there is a high possibility that cracks are present in the solder joints. Therefore, by applying an operation to promote the cracks by applying vibration. Reliability evaluation can be accelerated.

また、前記報知部は、前記抵抗変化率が予め設定された基準閾値を越えたとき、寿命に関する報知を行うものである。この構成によれば、抵抗変化率と残存強度とが相関している事情を考慮すれば、はんだ接合部の信頼性に関する評価が、抵抗変化率が基準閾値を超えるか否かで寿命と判断される。   In addition, the notification unit performs a notification regarding the life when the resistance change rate exceeds a preset reference threshold value. According to this configuration, in consideration of the fact that the rate of change in resistance and the residual strength are correlated, the evaluation of the reliability of the solder joint is determined to be a life based on whether the rate of change in resistance exceeds a reference threshold. The

また、前記基準閾値は、10%又は残存強度50%に対応する値であることが好ましい。この構成によれば、基準閾値の設定が10%又は残存強度50%を目安に行われるので、実情に即した試験が可能となる。   The reference threshold value is preferably a value corresponding to 10% or a residual intensity of 50%. According to this configuration, the reference threshold value is set with 10% or the remaining strength of 50% as a guideline, so that a test in accordance with the actual situation is possible.

また、前記加熱と冷却との繰り返し回数をカウントするカウンタを備え、前記報知部は、前記評価結果の報知時に前記カウント値を報知するものである。この構成によれば、試験開始からの寿命までの時間に関する情報が得られる。   Moreover, the counter which counts the repetition frequency of the said heating and cooling is provided, and the said alerting | reporting part alert | reports the said count value at the time of alerting | reporting of the said evaluation result. According to this configuration, information on the time from the start of the test to the lifetime can be obtained.

請求項1、7記載の発明によれば、変曲点を越えた後に、信頼性の評価を行うことで、より効率的に、かつ精度の高い信頼性評価が可能となる。そして、簡易な方法でありながら、はんだ接合部に対する加速寿命の信頼性評価を精度よく行うことができる。   According to the first and seventh aspects of the invention, it is possible to evaluate the reliability more efficiently and with high accuracy by evaluating the reliability after exceeding the inflection point. And although it is a simple method, the reliability evaluation of the accelerated lifetime with respect to a solder joint part can be performed accurately.

請求項2、8記載の発明によれば、抵抗変化率に変曲点が生じた後に測定周期を短縮して測定頻度を増大する分、評価をより早く行うことが可能となる。   According to the second and eighth aspects of the present invention, it is possible to perform the evaluation earlier because the measurement cycle is shortened and the measurement frequency is increased after the inflection point is generated in the resistance change rate.

請求項3、9記載の発明によれば、変曲点を越えた後は、はんだ接合部に亀裂の進展が存している可能性が高いため、振動を与えて、その亀裂の進展を助長する操作を施すことによって信頼性評価をより早めることができる。   According to the third and ninth aspects of the present invention, after the inflection point is exceeded, there is a high possibility that cracks are present in the solder joints, so vibration is applied to promote the cracks. The reliability evaluation can be further accelerated by performing the operation.

請求項4、10記載の発明によれば、抵抗変化率と残存強度とが相関している事情を考慮して、はんだ接合部の信頼性に関する評価を、抵抗変化率が基準閾値を超えるか否かで寿命と判断でき、精度の良い寿命評価が可能となる。   According to the fourth and tenth aspects of the present invention, in consideration of the fact that the rate of change in resistance and the residual strength are correlated, the evaluation regarding the reliability of the solder joint portion is performed, whether the rate of change in resistance exceeds a reference threshold value. Therefore, it is possible to determine the life and accurate life evaluation is possible.

請求項5,11記載の発明によれば、基準閾値の設定が10%又は残存強度50%を目安に行われるので、実情に即した試験が可能となる。   According to the fifth and eleventh aspects of the present invention, the reference threshold value is set based on 10% or the remaining strength of 50%, so that a test in accordance with the actual situation is possible.

請求項6、12記載の発明によれば、試験開始からの寿命までの時間に関する情報を得ることができる。   According to invention of Claim 6, 12, the information regarding the time from the test start to the lifetime can be obtained.

図1は、本発明に係る接合評価装置の一実施形態を示すブロック図である。本装置は、試験槽1、制御部2、報知部3、入力操作部4及びメモリ部5を備えている。試験槽1は公知の環境試験器が採用可能である。試験槽1は内部に、図2に示す試験対象物に対して四端子法により電気的な電圧値(実質的には抵抗値)を測定するための測定回路部11、試験槽1内を所定の低温度に、ここでは−40℃に冷却する、例えばペルチエ効果を利用した、冷熱を供給する冷却部12、試験対象物を所定の高温度である、ここでは125℃に加熱する例えば電気的ヒータを利用した、高熱を供給する加熱部13、及び試験対象物に所定の振動、ここでは周期的な微小振動を与える加振部14を備える。   FIG. 1 is a block diagram showing an embodiment of a bonding evaluation apparatus according to the present invention. The apparatus includes a test tank 1, a control unit 2, a notification unit 3, an input operation unit 4, and a memory unit 5. The test tank 1 can employ a known environmental tester. The test tank 1 includes a measurement circuit unit 11 for measuring an electrical voltage value (substantially resistance value) with respect to the test object shown in FIG. Is cooled to -40 ° C., for example, using the Peltier effect, the cooling unit 12 for supplying cold heat, and the test object is heated to a predetermined high temperature, here 125 ° C. A heating unit 13 that uses a heater to supply high heat and a vibration unit 14 that applies predetermined vibrations, here, periodic minute vibrations, to the test object are provided.

図2は、試験対象物の一例を示す側断面図で、図2(a)は試験開始時の状態を示し、図2(b)は試験途中においてはんだ接合部8に亀裂81が進展している状態を示している。図2(a)において、試験対象物は図略の試験台上に戴置される。試験対象物はプリント基板6と、半導体ICチップ等の電気素子7と、はんだ接合部8とから構成されている。プリント基板6の上面には所要厚を有する金属製のランド61が形成されており、その上部に電気素子7に形成されている電極71がはんだ接合部8を介して実装されている。   FIG. 2 is a side sectional view showing an example of a test object. FIG. 2 (a) shows a state at the start of the test, and FIG. 2 (b) shows that a crack 81 has developed in the solder joint 8 during the test. It shows the state. In FIG. 2A, the test object is placed on a test table (not shown). The test object includes a printed circuit board 6, an electric element 7 such as a semiconductor IC chip, and a solder joint 8. A metal land 61 having a required thickness is formed on the upper surface of the printed circuit board 6, and an electrode 71 formed on the electric element 7 is mounted thereon via a solder joint 8.

測定回路部11は、測定精度を高めるために公知の四端子法が採用されている。図では省略しているが、ランド61と電極71に対してそれぞれ、所定レベルの電流を供給する接触端子と、ランド61と電極71間の電圧を測定する接触端子とが当接乃至は接続されている。各接触端子は電気リード線を介して試験槽1外に導出されている。   The measurement circuit unit 11 employs a known four-terminal method in order to increase measurement accuracy. Although not shown in the figure, a contact terminal that supplies a predetermined level of current to the land 61 and the electrode 71 and a contact terminal that measures the voltage between the land 61 and the electrode 71 are in contact with or connected to each other. ing. Each contact terminal is led out of the test chamber 1 through an electrical lead wire.

加熱部13は、例えばヒータを直接電気素子7あるいは電極71に接触させた構成とされ、ヒータに電力を供給することで電気素子7あるいは電極71を加熱するようになっている。電極71とランド61やプリント基板6との熱膨張率の差、また加熱時の電極71とランド61との経時方向の温度差によって、実際と同様に、はんだ接合部8に熱応力を発生させることができるようにしている。   The heating unit 13 has a configuration in which, for example, a heater is brought into direct contact with the electric element 7 or the electrode 71, and the electric element 7 or the electrode 71 is heated by supplying electric power to the heater. Thermal stress is generated in the solder joint portion 8 in the same manner as in reality due to the difference in coefficient of thermal expansion between the electrode 71 and the land 61 or the printed circuit board 6 and the temperature difference in the time direction between the electrode 71 and the land 61 during heating. To be able to.

制御部2は、冷却、加熱及び加振動作等の試験環境を調整する環境制御部21、所定周期で電流供給用の接触端子間に電流を通じ、かつ電圧測定用の各接触端子間の電圧を検出する測定部22、測定部22で電圧値が検出される毎に検出された電圧値からランド61と電極71間の抵抗値を算出すると共に、抵抗値の変化率(%)及び抵抗変化率の変化速度を算出する演算部23、算出された抵抗変化率の変化速度から抵抗変化率の速変化度が試験開始後に低下を開始する変曲点に達したか否かを判断する判断部24、はんだ接合部8の熱疲労によるはんだ接合部8の亀裂等に対する信頼性(例えば寿命)を評価する評価部25、及び試験開始からの温度サイクル数をカウントするカウンタ26を備える。   The control unit 2 adjusts the test environment such as cooling, heating, and vibration operation, passes the current between the contact terminals for supplying current at a predetermined cycle, and sets the voltage between the contact terminals for voltage measurement. The resistance value between the land 61 and the electrode 71 is calculated from the voltage value detected every time the voltage value is detected by the measurement unit 22 to be detected, and the resistance value change rate (%) and the resistance change rate. A calculation unit 23 for calculating the change rate of the resistance, and a determination unit 24 for determining whether or not the calculated rate of change in the resistance change rate has reached an inflection point at which the rate of change in the resistance change rate starts decreasing after the test starts. And an evaluation unit 25 that evaluates reliability (for example, life) of the solder joint 8 due to thermal fatigue of the solder joint 8 and a counter 26 that counts the number of temperature cycles from the start of the test.

また、報知部3は評価部25による評価結果等を音声乃至は視認可能な態様で出力するスピーカ、ブザーあるいはモニタや点灯ランプである。スピーカでは音声で、モニタでは文字情報やグラフ等で報知される。入力操作部4は、例えばテンキー等を備え、試験の条件、たとえば、後述する基準閾値としての抵抗変化率(R)や、加熱周期等の必要な各種条件を入力するものである。メモリ部5は試験動作プログラムや必要な演算式を格納するROM、測定結果や演算結果を一時的に格納するRAMで構成されている。   The notification unit 3 is a speaker, a buzzer, a monitor, or a lighting lamp that outputs an evaluation result or the like by the evaluation unit 25 in a voice or visually recognizable manner. It is notified by voice on the speaker and by character information or graphs on the monitor. The input operation unit 4 includes, for example, a numeric keypad, and is used to input various test conditions such as a resistance change rate (R) as a reference threshold described later and a heating cycle. The memory unit 5 includes a ROM for storing test operation programs and necessary arithmetic expressions, and a RAM for temporarily storing measurement results and calculation results.

演算部23は、上述の抵抗値の変化率(%)を算出する他、検出周期と、検出された抵抗値あるいは算出した抵抗変化率とから抵抗変化率の変化速度を算出するものである。   The computing unit 23 calculates the rate of change of the resistance change rate from the detection period and the detected resistance value or the calculated resistance change rate, in addition to calculating the above-described change rate (%) of the resistance value.

環境制御部21は、−40℃の冷却環境にされた試験槽1内部で電気素子7を加熱部13によって125℃に加熱する動作をそれぞれ所定周期で、ここでは15分周期で交互に切り替える指令を冷却部12、加熱部13に出力するものである。   The environment control unit 21 is a command for alternately switching the operation of heating the electric element 7 to 125 ° C. by the heating unit 13 in the test chamber 1 in a cooling environment of −40 ° C. at a predetermined cycle, here 15-minute cycle. Is output to the cooling unit 12 and the heating unit 13.

また、環境制御部21は、判断部24が前記変曲点に達したと判断した場合に、その後に振動指令を加振部14に出力することができる。測定部22は、判断部24が前記変曲点に達したと判断した場合、電圧検出周期をそれまでの周期に比して短縮した周期、例えば1秒以下の周期、好ましくはμ(マイクロ)秒のオーダーに変更するようにすることができる。
ここで、本発明の評価原理について説明する。図3は、はんだ接合部8の温度サイクル試験におけるサイクル数と抵抗変化率との関係を示す特性図である。試験開始、すなわち温度サイクル試験が開始され、所定周期、例えば温度サイクルと同一の30分毎(あるいは15分毎でもよい)に抵抗変化率が算出され、その結果をプロットしたものである。
Further, when the determination unit 24 determines that the inflection point has been reached, the environment control unit 21 can output a vibration command to the vibration unit 14 thereafter. When the determination unit 24 determines that the inflection point has been reached, the measurement unit 22 shortens the voltage detection cycle compared to the previous cycle, for example, a cycle of 1 second or less, preferably μ (micro). It can be changed to the order of seconds.
Here, the evaluation principle of the present invention will be described. FIG. 3 is a characteristic diagram showing the relationship between the number of cycles and the resistance change rate in the temperature cycle test of the solder joint 8. The test is started, that is, the temperature cycle test is started, and the resistance change rate is calculated at a predetermined period, for example, every 30 minutes (or every 15 minutes) which is the same as the temperature cycle, and the result is plotted.

試験期間は、抵抗値の変化の状況によって領域A、B,Cに分けられている。本試験条件の下では、領域Aは温度サイクルでほぼ900回あたりまでであり、領域Bは温度サイクルでほぼ900〜2400回あたりであり、領域Cはそれ以降である。なお、各領域は、はんだ接合部8の形状、材質、試験条件(特に冷却温度、加熱温度、その周期等)に依存している。   The test period is divided into regions A, B, and C depending on the change in resistance value. Under this test condition, the region A is up to about 900 times in the temperature cycle, the region B is around 900 to 2400 times in the temperature cycle, and the region C is thereafter. Each region depends on the shape, material, and test conditions of the solder joint 8 (particularly, the cooling temperature, the heating temperature, its cycle, etc.).

領域Aでは亀裂発生初期段階と考えられ、急速に抵抗値が上昇していることが判る。抵抗値の変化ははんだ接合部8が熱疲労を受けて亀裂を生じ、これによって抵抗値が上昇しており、また接合部自体の強度(残存強度)が低下していることを表しているといえる。そして、その後の領域Bでは抵抗値の上昇が安定していることが判る。最後に領域Cでは急激に抵抗値が増大し、はんだ接合部8が破断したものであることが判る。領域Aと領域Bの境界あたりでは、変曲点の出現が認められる。変曲点とは、図3に示すように、試験開始後に、抵抗変化率の変化速度(図3において、抵抗変化率を示す特性線の傾きに相当)がある程度大きな状態から安定した状態(小さい状態)に切り替わる(移行する)時点をいう。   In the region A, it is considered that the initial stage of crack generation, and it can be seen that the resistance value rapidly increases. The change in the resistance value indicates that the solder joint portion 8 is subjected to thermal fatigue and cracks, thereby increasing the resistance value and reducing the strength (residual strength) of the joint portion itself. I can say that. In the subsequent region B, it can be seen that the increase in resistance value is stable. Finally, it can be seen that in region C, the resistance value suddenly increases and the solder joint 8 is broken. In the vicinity of the boundary between the region A and the region B, the inflection point appears. As shown in FIG. 3, the inflection point is a state in which the rate of change in the resistance change rate (corresponding to the slope of the characteristic line indicating the resistance change rate in FIG. 3) is stable from a certain level (small) after the start of the test. This is the point in time when switching to (status).

そして、抵抗変化率の変化速度が所定の大きさを超えるか否かによって、はんだ接合部8に対する良否評価が行われる。図3の例では、領域Bの抵抗変化率の変化速度が所定の大きさを超えており、その結果、領域Cの途中で抵抗変化率が急激に上昇、つまり亀裂を生じ、はんだ接合部8が破断(寿命に達)している。ここでは、基準閾値(R)として7.5%を設定しておくことで、短期間、すなわち領域B内で信頼性(寿命)評価が可能となる。すなわち、信頼性の評価結果をより早く得るためには、基準閾値(R)は低い方が好ましい。しかしながら、基準閾値(R)が低い場合、試験開始から変曲点が出現するまでに、すなわち領域A内で、抵抗変化率が基準閾値を超えて誤った評価結果を出してしまう可能性も考えられる。そこで、加熱雰囲気と冷却雰囲気とに繰り返し晒されるはんだ接合部8の熱疲労の特性を考慮して変曲点を超えた後に寿命評価の判断を行うようにしている。   And the quality evaluation with respect to the solder joint part 8 is performed by whether the change rate of resistance change rate exceeds a predetermined magnitude | size. In the example of FIG. 3, the rate of change of the resistance change rate in the region B exceeds a predetermined magnitude. As a result, the rate of change in resistance suddenly increases in the middle of the region C, that is, a crack is generated. Has broken (life reached). Here, by setting 7.5% as the reference threshold (R), reliability (life) evaluation can be performed in a short period, that is, in the region B. That is, in order to obtain the reliability evaluation result earlier, it is preferable that the reference threshold value (R) is low. However, when the reference threshold value (R) is low, there is a possibility that the rate of change in resistance exceeds the reference threshold value before the inflection point appears from the start of the test, that is, in the region A, and an erroneous evaluation result is output. It is done. Therefore, considering the thermal fatigue characteristics of the solder joint 8 that is repeatedly exposed to the heating atmosphere and the cooling atmosphere, the life evaluation is judged after exceeding the inflection point.

このように、変曲点を超えた後に、信頼性の評価を行うことで、より効率的に、かつ精度の高い評価が可能となる。これによって、簡易な方法でありながら、はんだ接合部に対する加速寿命の信頼性評価を精度良く行うことが可能となる。   In this way, by evaluating the reliability after exceeding the inflection point, it is possible to evaluate more efficiently and with high accuracy. Thereby, although it is a simple method, it becomes possible to accurately evaluate the reliability of the accelerated life for the solder joint.

図4は、同一サイズのチップ抵抗のはんだ接合部8について、図4(a)は共晶はんだの実験結果を示す図で、図4(b)は鉛フリーはんだの実験結果を示す図で、両者の特性を比較するためのものである。横軸は温度サイクル数であり、縦軸は抵抗変化率及び残存強度である。なお、残存強度は、はんだ接合部8に対して強度試験を行って得ている。さらに断面観察(例えば図2(b)参照)による亀裂の進展度合を考慮に含めてもよい。   4A and 4B are diagrams showing experimental results of eutectic solder, and FIG. 4B is a diagram showing experimental results of lead-free solder, for solder joints 8 having the same size chip resistance. This is for comparing the characteristics of the two. The horizontal axis is the number of temperature cycles, and the vertical axis is the resistance change rate and the residual strength. The residual strength is obtained by performing a strength test on the solder joint 8. Furthermore, the degree of progress of cracks by cross-sectional observation (see, for example, FIG. 2B) may be included in consideration.

図4において、共晶はんだの場合も鉛フリーはんだにおいても、温度サイクル試験が開始されると、図3に示す領域A、領域Bで見られる基本特性と同様な傾向が表れている。図4(a)(b)において、特性線A1、B1は抵抗変化率が最大の例、特性線A2、B2は抵抗変化率が最少の例、線A0、B0はそれぞれの平均を示している。特性線A1、A2、B1、B2を見ると、いずれの場合にも、温度サイクル1000回あたりで、変曲点が発生している。   In FIG. 4, in the case of eutectic solder and lead-free solder, when the temperature cycle test is started, the same tendency as the basic characteristics seen in the regions A and B shown in FIG. 3 appears. 4 (a) and 4 (b), characteristic lines A1 and B1 are examples with the highest resistance change rate, characteristic lines A2 and B2 are examples with the lowest resistance change rate, and lines A0 and B0 show their averages. . Looking at the characteristic lines A1, A2, B1, and B2, in any case, an inflection point occurs around 1000 temperature cycles.

図4(a)の特性線A1では、亀裂発生初期段階で抵抗変化率の上昇が大きく、また変曲点以降も領域Aよりも僅かに低いとはいいながらも、高い抵抗変化率の変化速度で抵抗値が増大していることが判る。そして、温度サイクル1600回あたりで、破断を生じている。図4(a)の特性線A2では、亀裂発生初期段階で抵抗変化率の上昇が小さく、変曲点以降も領域Aよりも多少低い抵抗変化率の変化速度で抵抗値が増大していることが判る。そして、温度サイクル2500回あたりで、より高い抵抗変化率の変化速度を示している。線A0では、亀裂発生初期段階で抵抗変化率の上昇が続いた後に変曲点が表れ、その後、領域Aよりも僅かに低い抵抗変化率の変化速度で抵抗値が増大していることが判る。そして、温度サイクル1600回あたりで、破断を生じている。なお、はんだ接合部8の残存強度は、抵抗変化率が10%(アップした)時点では、50%以下となっていることが判る。   In the characteristic line A1 in FIG. 4 (a), the rate of change in resistance is large at the initial stage of crack generation, and the rate of change in the high rate of resistance change is slightly lower than the region A after the inflection point. It can be seen that the resistance value increases. And the fracture | rupture has arisen about 1600 times of temperature cycles. In the characteristic line A2 of FIG. 4A, the increase in the resistance change rate is small at the initial stage of crack generation, and the resistance value increases at a slightly lower rate of change in the resistance change rate than the region A after the inflection point. I understand. And the rate of change of a higher resistance change rate is shown around 2500 temperature cycles. In line A0, an inflection point appears after the resistance change rate continues to increase at the initial stage of crack generation, and thereafter the resistance value increases at a slightly lower rate of change in resistance change rate than region A. . And the fracture | rupture has arisen about 1600 times of temperature cycles. It can be seen that the residual strength of the solder joint 8 is 50% or less when the rate of change in resistance is 10% (up).

図4(b)の特性線B1では、亀裂発生初期段階で抵抗変化率の上昇が大きく、また変曲点以降も領域Aよりも僅かに低いとはいいながらも、比較的高い抵抗変化率の変化速度で抵抗値が増大していることが判る。そして、温度サイクル2500回あたりで、より高い抵抗変化率の変化速度を示している。図4(b)の特性線B2では、亀裂発生初期段階で抵抗変化率の上昇が特性線B1よりも多少小さく、変曲点以降は領域Aよりもさらに低い抵抗変化率の変化速度で抵抗値が微増していることが判る。そして、試験温度サイクル内では抵抗変化率10%を超えていない。線B0では、亀裂発生初期段階で抵抗変化率の上昇が続いた後変曲点が表れ、その後、領域Aよりもさらに低い抵抗変化率の変化速度で抵抗値が増大していることが判る。そして、温度サイクル2000回あたりで、抵抗変化率10%を超えている。なお、はんだ接合部8の残存強度は、抵抗変化率が10%(アップした)時点では、50%以下となっていることが判る。   In the characteristic line B1 in FIG. 4B, the resistance change rate increases greatly at the initial stage of crack generation, and after the inflection point, although slightly lower than the region A, the resistance change rate is relatively high. It can be seen that the resistance value increases at the rate of change. And the rate of change of a higher resistance change rate is shown around 2500 temperature cycles. In the characteristic line B2 of FIG. 4B, the increase in the resistance change rate is slightly smaller than that in the characteristic line B1 at the initial stage of crack generation, and the resistance value at a lower rate of change in the resistance change rate than the region A after the inflection point. It can be seen that there is a slight increase. The resistance change rate does not exceed 10% within the test temperature cycle. In line B0, an inflection point appears after the resistance change rate continues to increase in the initial stage of crack generation, and thereafter the resistance value increases at a lower rate of change in resistance change rate than that of region A. The resistance change rate exceeds 10% per 2000 temperature cycles. It can be seen that the residual strength of the solder joint 8 is 50% or less when the rate of change in resistance is 10% (up).

ここで、信頼性(寿命)判断の基準として、抵抗変化率5%を設定する場合では、線A0、B0から判るように、その差は1.09倍であり、有意な差が見られない。一方、信頼性(寿命)判断の基準として、抵抗変化率10%を設定する場合では、前述したように、残存強度も50%以下となっており、かつ、線A0、B0から判るように、その差は1.24(2025/1636)倍であり、有意な差が見られる。   Here, when the resistance change rate of 5% is set as a criterion for determining reliability (life), the difference is 1.09 times as seen from the lines A0 and B0, and no significant difference is observed. . On the other hand, when a resistance change rate of 10% is set as a criterion for determining reliability (life), as described above, the residual strength is 50% or less, and as can be seen from the lines A0 and B0, The difference is 1.24 (2025/1636) times, and a significant difference is seen.

図4(a)(b)において、領域Cへの突入時点は、領域Bの抵抗変化率の変化速度と相関があり、この現象は、その他の種類の試験対象物においても同様の現象が確認できている。このことから、領域Bでの抵抗値変化率の速度変化を観察することで、相対的に寿命予測をより早く、すなわち領域Cで生じる抵抗値変化率の急峻な上昇変化を待つまでもなく、行うことが可能となる。   4 (a) and 4 (b), the point of entry into the region C correlates with the rate of change in the resistance change rate in the region B, and this phenomenon is confirmed in other types of test objects. is made of. From this, by observing the speed change of the resistance value change rate in the region B, it is relatively faster to predict the lifetime, that is, without waiting for the steep rise in the resistance value change rate occurring in the region C. Can be done.

図5は、本発明における接合評価方法を実行するフローチャートである。まず、試験に先立って、信頼性判定基準としたい抵抗変化率(R)が入力操作部4の操作を経てメモリ部5に基準閾値として取り込まれる(ステップS1)。そして、試験が開始される(ステップS3)。すなわち、冷却部12、加熱部13を駆動制御することで、−40℃と125℃との間での温度変化が15分周期で繰り返される。この周期はカウンタ26でカウントされる。また、四端子法によるランド61と電極71との間の電圧値の検出動作も測定部22によって併せて開始される。特に四端子法を採用することで、微小電圧に対しても高精度で測定される。   FIG. 5 is a flowchart for executing the joint evaluation method according to the present invention. First, prior to the test, the resistance change rate (R) that is to be used as a reliability criterion is taken into the memory unit 5 as a reference threshold value through the operation of the input operation unit 4 (step S1). Then, the test is started (step S3). That is, by controlling the driving of the cooling unit 12 and the heating unit 13, the temperature change between −40 ° C. and 125 ° C. is repeated at a cycle of 15 minutes. This period is counted by the counter 26. Further, the operation of detecting the voltage value between the land 61 and the electrode 71 by the four-terminal method is also started by the measuring unit 22. In particular, by using the four-terminal method, even a minute voltage can be measured with high accuracy.

次いで、測定部22で検出された電圧値は、演算部23で、供給電流値を利用して得た抵抗値と最初に得た抵抗値とから、抵抗変化率(r)(%)に換算され(ステップS5)、続いて、抵抗変化率の変化速度(dr/dt)が算出され、メモリ部5に記憶される(ステップS7)。抵抗変化率の変化速度(dr/dt)は、図3、図4でいえば、特性線の傾きを示している。   Next, the voltage value detected by the measurement unit 22 is converted into a resistance change rate (r) (%) from the resistance value obtained by using the supply current value and the first resistance value obtained by the calculation unit 23. Then, the rate of change in resistance change rate (dr / dt) is calculated and stored in the memory unit 5 (step S7). The rate of change in resistance change rate (dr / dt) indicates the slope of the characteristic line in FIGS.

続いて、抵抗変化率の変化速度の経時方向での変化を監視し、変曲点を超えたか否かの判断が行われる(ステップS9)。抵抗変化率の変化速度の経時方向での変化の監視は、直前の抵抗変化率の変化速度と今回得た抵抗変化率の変化速度との差が小さくなったか、あるいは所定の値だけ小さくなったか否かで判断するようにしている。なお、直前の抵抗変化率の変化速度に代えて、直前の2回乃至は所定回数分の平均値を採用して、不必要な変動要素を除いたものとしてもよい。また、所定の閾値だけ小さくなったか否かの判断も、1回だけの判断に限らず、所定回数連続して小さいと判断したとき、変曲点に達したと判断するようにして、誤判定を防止するようにしてもよい。変曲点を超えていなければ、ステップS3に戻って、最新の抵抗変化率の変化速度の算出(ステップS7)が行われる。   Subsequently, the change in the change rate of the resistance change rate in the temporal direction is monitored to determine whether or not the inflection point has been exceeded (step S9). Whether the change rate of the rate of change of resistance in the direction of time is monitored is whether the difference between the rate of change of the previous rate of change of resistance and the rate of change of the rate of change of resistance obtained this time has decreased, or has been reduced by a predetermined value. Judgment is based on no. Instead of the change rate of the previous resistance change rate, an average value for the previous two times or a predetermined number of times may be adopted, and unnecessary fluctuation elements may be removed. In addition, the determination of whether or not the threshold value has become smaller is not limited to a single determination. When it is determined that the predetermined threshold value is continuously small, it is determined that the inflection point has been reached, and thus an erroneous determination is made. May be prevented. If the inflection point is not exceeded, the process returns to step S3, and the latest rate of change in resistance change is calculated (step S7).

変曲点を超えると、環境制御部21から指令が発せられて加振部14が作動され(ステップS11)、併せて、ランド61と電極71との間の電圧値の検出周期を短くして行う指示を測定部22に出力する(ステップS13)。そして、新たに得られる抵抗変化率の変化速度から、抵抗変化率が所定の温度サイクル回数内に基準抵抗変化率(R)を超えるか否かが判断される(ステップS15)。超えていなければ、ステップS3に戻り、超えたのであれば、報知部3から、寿命に達した等の旨のメッセージが出力される(ステップS17)。このとき、報知内容の形態として、単に寿命に達した旨の報知の他に、カウンタ26でカウントした温度サイクル回数を併せて、つまり寿命内容を報知する態様でもよい。寿命となる温度サイクル回数は、プリント基板6に実装された電気素子7が適用される電子機器等の寿命との関係において決定されるものであることから、ステップS15での肯定判断時に寿命と見なされる温度サイクル回数を報知するようにしてもよい。   When the inflection point is exceeded, a command is issued from the environment control unit 21 to activate the vibration unit 14 (step S11), and at the same time, the detection cycle of the voltage value between the land 61 and the electrode 71 is shortened. The instruction | indication to perform is output to the measurement part 22 (step S13). Then, it is determined whether or not the resistance change rate exceeds the reference resistance change rate (R) within a predetermined number of temperature cycles from the newly obtained change rate of the resistance change rate (step S15). If not exceeded, the process returns to step S3, and if exceeded, a message to the effect that the life has been reached is output from the notification unit 3 (step S17). At this time, as a form of the notification content, in addition to the notification that the life has been reached, the number of temperature cycles counted by the counter 26 may be combined, that is, the life content may be notified. Since the number of temperature cycles for the life is determined in relation to the life of the electronic device or the like to which the electric element 7 mounted on the printed circuit board 6 is applied, it is regarded as the life when making an affirmative determination in step S15. You may make it alert | report the number of temperature cycles to be performed.

また、本発明は以下の態様を採用してもよい。
(1)本実施形態では、ステップST11の処理を採用したが、必ずしも採用しなくともよく、その場合には加振部14が不要となり、構成が簡素化される。
(2)本実施形態では、ステップST13の処理を採用したが、必ずしも採用しなくともよく、その場合には制御部2の測定動作のためのソフトウエアの負担が軽減される。
(3)本実施形態では、ランド61と電極71間の電圧測定に四端子法を採用したが、一般的な二端子法であってもよく、その場合には測定回路部11の構成が簡素化される。
(4)温度サイクルの与え方も、本実施形態に限定されず、種々の形態が採用可能である。また、加熱方式についても、試料への直接加熱方式に代えて、槽内温度自体を加温する加熱方式も考えられる。冷却についても同様に、直接、間接いずれの方式も可能である。
In addition, the present invention may adopt the following aspects.
(1) In the present embodiment, the process of step ST11 is adopted. However, it is not always necessary, and in this case, the vibration unit 14 is not necessary, and the configuration is simplified.
(2) In the present embodiment, the process of step ST13 is adopted, but it is not always necessary, and in that case, the burden of software for the measurement operation of the control unit 2 is reduced.
(3) In this embodiment, the four-terminal method is adopted for measuring the voltage between the land 61 and the electrode 71. However, a general two-terminal method may be used, and in this case, the configuration of the measurement circuit unit 11 is simple. It becomes.
(4) The method of giving the temperature cycle is not limited to this embodiment, and various forms can be adopted. As for the heating method, instead of the direct heating method for the sample, a heating method in which the temperature in the tank itself is heated is also conceivable. Similarly, for cooling, either direct or indirect methods are possible.

本発明に係る接合評価装置に一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment in the joining evaluation apparatus which concerns on this invention. 試験対象物の一例を示す側断面図で、図2(a)は試験開始時の状態を示し、図2(b)は試験途中においてはんだ接合部に亀裂が進展している状態を示している。FIG. 2A is a side sectional view showing an example of a test object, and FIG. 2A shows a state at the start of the test, and FIG. 2B shows a state in which a crack is developed in the solder joint part during the test. . はんだ接合部の温度サイクル試験におけるサイクル数と抵抗変化率との関係を示す特性図である。It is a characteristic view which shows the relationship between the cycle number and resistance change rate in the temperature cycle test of a solder joint part. 同一サイズのチップ抵抗のはんだ接合部について、図4(a)は共晶はんだの実験結果を示す図で、図4(b)は鉛フリーはんだの実験結果を示す図で、両者の特性を比較するためのものである。FIG. 4A is a diagram showing experimental results of eutectic solder, and FIG. 4B is a diagram showing experimental results of lead-free solder for solder joints having the same size chip resistance. Is to do. 本発明における接合評価方法を実行するフローチャートである。It is a flowchart which performs the joining evaluation method in this invention.

符号の説明Explanation of symbols

1 試験槽
2 制御部
3 報知部
4 入力操作部
5 メモリ部
11 測定回路部(抵抗値測定部)
12 冷却部(熱供給部)
13 加熱部(熱供給部)
14 加振部
21 環境制御部
22 測定部(抵抗値測定部)
23 演算部
24 判断部(判断手段)
25 評価部(評価手段)
26 カウンタ
61 ランド
71 電極
8 はんだ接合部
81 亀裂
DESCRIPTION OF SYMBOLS 1 Test tank 2 Control part 3 Notification part 4 Input operation part 5 Memory part 11 Measurement circuit part (resistance value measurement part)
12 Cooling unit (heat supply unit)
13 Heating unit (heat supply unit)
14 Excitation Unit 21 Environmental Control Unit 22 Measurement Unit (Resistance Measurement Unit)
23 arithmetic unit 24 determination unit (determination means)
25 Evaluation Department (Evaluation Means)
26 Counter 61 Land 71 Electrode 8 Solder joint 81 Crack

Claims (12)

はんだ接合部に対して加熱と冷却とを繰り返し行う熱供給部と、熱供給中の前記はんだ接合部の電気的な抵抗値を所定周期で測定する抵抗値測定部と、抵抗値が測定される毎に得られた抵抗値から抵抗変化率及び抵抗変化率の変化速度を算出する演算手段と、算出された前記抵抗変化率の変化速度から該抵抗変化率の変化速度が低下を開始する変曲点に達したか否かを判断する判断手段と、前記変曲点に達した後に、前記抵抗変化率と予め設定された基準閾値とを比較することで前記はんだ接合部の信頼性に関する評価を開始する評価手段と、前記抵抗変化率が予め設定された基準閾値を超えたとき、その旨を報知する報知部とを備えたことを特徴とする接合評価装置。   A heat supply unit that repeatedly heats and cools the solder joint, a resistance value measurement unit that measures an electrical resistance value of the solder joint during heat supply in a predetermined cycle, and a resistance value are measured A calculation means for calculating a resistance change rate and a change rate of the resistance change rate from the resistance value obtained every time, and an inflection in which the change rate of the resistance change rate starts to decrease from the calculated change rate of the resistance change rate A judgment means for judging whether or not a point has been reached, and after reaching the inflection point, the resistance change rate is compared with a preset reference threshold to evaluate the reliability of the solder joint. A joining evaluation apparatus comprising: an evaluation unit that starts; and a notification unit that notifies that when the rate of change in resistance exceeds a preset reference threshold value. 前記抵抗値測定部は、前記抵抗変化率の変化速度が低下を開始する変曲点に達した後、測定周期を短縮するものである請求項1記載の接合評価装置。   The joint evaluation apparatus according to claim 1, wherein the resistance value measurement unit shortens a measurement cycle after reaching an inflection point at which a change rate of the resistance change rate starts to decrease. 前記抵抗変化率の変化速度が低下を開始する変曲点に達した後、前記はんだ接合部に振動を付与する加振部を備えたことを特徴とする請求項1又は2に記載の接合評価装置。   3. The joint evaluation according to claim 1, further comprising a vibration unit that applies vibration to the solder joint after the rate of change of the resistance change rate reaches an inflection point at which a decrease starts. apparatus. 前記報知部は、前記抵抗変化率が予め設定された基準閾値を超えたとき、寿命に関する報知を行うものである請求項1〜3のいずれかに記載の接合評価装置。   The joint evaluation apparatus according to any one of claims 1 to 3, wherein the notification unit performs a notification regarding a life when the resistance change rate exceeds a preset reference threshold value. 前記基準閾値は、10%又は残存強度50%に対応する値であることを特徴とする請求項1〜4のいずれかに記載の接合評価装置。   The joint evaluation apparatus according to claim 1, wherein the reference threshold value is a value corresponding to 10% or a residual strength of 50%. 前記加熱と冷却との繰り返し回数をカウントするカウンタを備え、前記報知部は、前記評価結果の報知時に前記カウント値を報知するものである請求項1〜5のいずれかに記載の接合評価装置。   The bonding evaluation apparatus according to claim 1, further comprising a counter that counts the number of repetitions of heating and cooling, wherein the notification unit notifies the count value when the evaluation result is notified. はんだ接合部に対して熱供給部によって加熱と冷却とを繰り返し行い、熱供給中の前記はんだ接合部の電気的な抵抗値を抵抗値測定部によって所定周期で測定し、抵抗値が測定される毎に得られた抵抗値から抵抗変化率及び抵抗変化率の変化速度を算出し、算出された前記抵抗変化率の変化速度から該抵抗変化率の変化速度が低下を開始する変曲点に達したか否かを判断し、前記変曲点に達した後に、前記抵抗変化率と予め設定された基準閾値とを比較することで前記はんだ接合部の信頼性に関する評価を開始し、前記抵抗変化率が予め設定された基準閾値を超えたとき、その旨を報知部から報知することを特徴とする接合評価方法。   Heating and cooling are repeatedly performed on the solder joint by the heat supply unit, and the electrical resistance value of the solder joint during heat supply is measured at a predetermined cycle by the resistance value measurement unit, and the resistance value is measured. The resistance change rate and the change rate of the resistance change rate are calculated from the resistance value obtained every time, and the inflection point where the change rate of the resistance change rate starts to decrease from the calculated change rate of the resistance change rate is reached. After reaching the inflection point, the resistance change rate is compared with a preset reference threshold to start evaluation on the reliability of the solder joint, and the resistance change When the rate exceeds a preset reference threshold, a notification to that effect is provided from the notification unit. 前記抵抗値測定部が、前記抵抗変化率の変化速度が低下を開始する変曲点に達した後に、測定周期を短縮することを特徴とする請求項7記載の接合評価方法。   The joint evaluation method according to claim 7, wherein the resistance measurement unit shortens the measurement cycle after reaching an inflection point at which the rate of change of the resistance change rate starts to decrease. 前記抵抗変化率の変化速度が低下を開始する変曲点に達した後、前記はんだ接合部に加振部によって振動を付与することを特徴とする請求項7又は8に記載の接合評価方法。   The joint evaluation method according to claim 7 or 8, wherein after the inflection point at which the rate of change of the resistance change rate starts to decrease, vibration is applied to the solder joint by a vibration unit. 前記報知部が、前記抵抗変化率が予め設定された基準閾値を越えたとき、寿命に関する報知を行うことを特徴とする請求項7〜9のいずれかに記載の接合評価方法。   The joint evaluation method according to any one of claims 7 to 9, wherein when the rate of change of resistance exceeds a preset reference threshold, the notification unit performs notification regarding a life. 前記基準閾値が10%又は残存強度50%に対応する値であることを特徴とする請求項7〜10のいずれかに記載の接合評価方法。   The joint evaluation method according to claim 7, wherein the reference threshold value is a value corresponding to 10% or a residual strength of 50%. 前記加熱と冷却との繰り返し回数をカウンタによってカウントし、前記報知部が、前記評価結果の報知時に前記カウント値を報知することを特徴とする請求項7〜11のいずれかに記載の接合評価方法。   The joint evaluation method according to claim 7, wherein the number of repetitions of heating and cooling is counted by a counter, and the notification unit notifies the count value when the evaluation result is notified. .
JP2006077224A 2006-03-20 2006-03-20 Bonding evaluation method and apparatus Active JP4728852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077224A JP4728852B2 (en) 2006-03-20 2006-03-20 Bonding evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077224A JP4728852B2 (en) 2006-03-20 2006-03-20 Bonding evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2007255925A true JP2007255925A (en) 2007-10-04
JP4728852B2 JP4728852B2 (en) 2011-07-20

Family

ID=38630338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077224A Active JP4728852B2 (en) 2006-03-20 2006-03-20 Bonding evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP4728852B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114227A (en) * 2010-11-24 2012-06-14 Espec Corp Solar cell module reliability test apparatus and solar cell module reliability test method
KR20190117592A (en) * 2017-03-13 2019-10-16 가부시키가이샤 고베 세이코쇼 Welding state determination system and welding state determination method
CN112684324A (en) * 2020-12-30 2021-04-20 无锡市同步电子科技有限公司 Method for rapidly exciting and verifying faults of PCB for airborne electronic controller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655955B (en) * 2014-08-01 2017-02-15 江苏大学 Method and experimental device for predicting service life of bus joint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138153A (en) * 1984-12-11 1986-06-25 Fujitsu Ltd Method for measuring thermal fatigue of joining material
JP2005148016A (en) * 2003-11-19 2005-06-09 Toshiba Corp Method and device for diagnosing thermal fatigue life of solder weld part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138153A (en) * 1984-12-11 1986-06-25 Fujitsu Ltd Method for measuring thermal fatigue of joining material
JP2005148016A (en) * 2003-11-19 2005-06-09 Toshiba Corp Method and device for diagnosing thermal fatigue life of solder weld part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114227A (en) * 2010-11-24 2012-06-14 Espec Corp Solar cell module reliability test apparatus and solar cell module reliability test method
KR20190117592A (en) * 2017-03-13 2019-10-16 가부시키가이샤 고베 세이코쇼 Welding state determination system and welding state determination method
KR102202535B1 (en) * 2017-03-13 2021-01-13 가부시키가이샤 고베 세이코쇼 Welding condition judgment system and welding condition judgment method
CN112684324A (en) * 2020-12-30 2021-04-20 无锡市同步电子科技有限公司 Method for rapidly exciting and verifying faults of PCB for airborne electronic controller

Also Published As

Publication number Publication date
JP4728852B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4728852B2 (en) Bonding evaluation method and apparatus
KR101798110B1 (en) Method for monitoring of resistance welding quality of a nuclear fuel rod
CN1318747A (en) Crack fatigue detecting senser, its mfg. and method for estimating failure using the same
JP2011220331A5 (en)
JP4669424B2 (en) Bonding evaluation method and apparatus
JP2008142739A (en) Ultrasonic welder and method for controlling the same, and welding inspection apparatus for ultrasonic welding and welding inspection method therefor
JP3772175B2 (en) Ultrasonic welding equipment
CN113646647B (en) Method for evaluating the thermal load of a converter
JP5810065B2 (en) Protection tube deterioration detection device and method
JP4071703B2 (en) Thermal fatigue life diagnosis method and apparatus for solder joints
Nozaki et al. Notch effect on creep–fatigue life for Sn–3.5 Ag solder
JP2020003373A (en) Lifetime prediction method, lifetime prediction device, and lifetime prediction device program
JP2015052503A (en) Method for evaluating filling state of grout of prestressed concrete structure
JP2011058888A (en) Apparatus and method for predicting crack initiation life
JP6255585B2 (en) Discharge inspection apparatus, wire bonding apparatus, and discharge inspection method
JP2006084248A (en) Method for evaluating reliability of fatigue behavior of solder inserting and joint part
JP5152159B2 (en) Tool inspection method, inverter manufacturing method
Zhang et al. Advances in LED Solder Joint Reliability Testing and Prediction
JP2004045343A (en) Life diagnostic method and device of solder joint part
JP2004085397A (en) Life estimation method for solder junction part
JP3927190B2 (en) Ultrasonic welding equipment
KR100911723B1 (en) Method For Welding Monitoring Using Arc Welding Power Source Device
Khatibi et al. Towards adequate qualification testing of electronic products: Review and extension
Naumann et al. Reliability characterization of heavy wire bonding materials
JP2006110554A (en) Method for judging quality of resistance spot welding and monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4728852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250