JP2007255343A - Exhaust emission control method and exhaust emission control system - Google Patents

Exhaust emission control method and exhaust emission control system Download PDF

Info

Publication number
JP2007255343A
JP2007255343A JP2006082207A JP2006082207A JP2007255343A JP 2007255343 A JP2007255343 A JP 2007255343A JP 2006082207 A JP2006082207 A JP 2006082207A JP 2006082207 A JP2006082207 A JP 2006082207A JP 2007255343 A JP2007255343 A JP 2007255343A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
gas purification
nox
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006082207A
Other languages
Japanese (ja)
Other versions
JP4830570B2 (en
Inventor
Ryusuke Fujino
竜介 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006082207A priority Critical patent/JP4830570B2/en
Publication of JP2007255343A publication Critical patent/JP2007255343A/en
Application granted granted Critical
Publication of JP4830570B2 publication Critical patent/JP4830570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control method and an exhaust emission control system usable even in small-sized cars, capable of efficiently promoting the vaporization and diffusion of a depurative at a short distance in an exhaust pipe, and enabling the depurative to reach an exhaust emission control device in a uniformized state. <P>SOLUTION: In this exhaust emission control method, the depurative F consumed in the exhaust emission control device 10 disposed in the exhaust passage 4 of an internal combustion engine E is supplied into the exhaust passage 4 on the upstream side more than the exhaust emission control device 10 by an exhaust pipe inside injection device 13 and mixed with exhaust gases G. A shielding member 14 is installed in the exhaust passage 4. The depurative F is jetted to the downstream side of the shielding member 14 to promote the pulverization of the depurative F. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の排気ガスを排気通路内に浄化剤を噴射して排気ガスを浄化又は排気ガス浄化装置の再生を行う排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification method and an exhaust gas purification system that purify exhaust gas from an internal combustion engine into an exhaust passage to purify exhaust gas or regenerate an exhaust gas purification device.

自動車に対する排ガス規制は厳しさを増し、エンジン側の技術開発だけでは追いつけない状況となりつつある。そのため、排気ガスを後処理装置によって浄化することが必要不可欠であり、ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOx(窒素酸化物)を還元除去するためのNOx触媒や、これらの排気ガス中の粒子状物質(パティキュレート・マター:以下、PM)を除去するディーゼルパティキュレートフィルタ装置(以下、DPF装置)について、種々の研究や提案がなされている。   Exhaust gas regulations on automobiles are becoming stricter, and it is becoming a situation that cannot be caught up by technological development on the engine side alone. For this reason, it is indispensable to purify the exhaust gas with an aftertreatment device, and NOx (nitrogen oxide) is reduced and removed from the exhaust gas of internal combustion engines such as diesel engines and some gasoline engines and various combustion devices. Various researches and proposals have been made on NOx catalysts for the purpose and diesel particulate filter devices (hereinafter referred to as DPF devices) that remove particulate matter (hereinafter referred to as PM) in these exhaust gases. .

その中に、ディーゼルエンジン用のNOx低減触媒として、アンモニア選択還元型NOx触媒(Selective Catalystic Reduction:SCR触媒)やNOx吸蔵還元型触媒とNOx直接還元型触媒がある。   Among these, as NOx reduction catalysts for diesel engines, there are ammonia selective reduction type NOx catalysts (Selective Catalystic Reduction: SCR catalysts), NOx storage reduction type catalysts and NOx direct reduction type catalysts.

アンモニア選択還元型NOx触媒を備えた排気ガス浄化システムでは、エンジン出口からアンモニア選択還元型NOx触媒までの排気管の中に尿素水溶液、アンモニア、アンモニア水等のアンモニア系溶液(ここでは「浄化剤」という)を噴射し、排気ガスとアンモニア系溶液を混合し、発生したアンモニアのNOxとの選択的な還元反応により、NOxを浄化している。   In an exhaust gas purification system equipped with an ammonia selective reduction type NOx catalyst, an ammonia-based solution such as an aqueous urea solution, ammonia, aqueous ammonia (herein, “purifying agent”) is placed in the exhaust pipe from the engine outlet to the ammonia selective reduction type NOx catalyst NOx is purified by a selective reduction reaction of the generated ammonia with NOx by mixing exhaust gas and ammonia-based solution.

この排気ガス浄化システムでは、現在は主にアンモニアを反応させるSCR触媒が主流であるが、添加する浄化剤は毒性のあるアンモニアの代りに排気ガス中でアンモニアに変化する無害の尿素水溶液を添加する方式に移行しつつある。   In this exhaust gas purification system, an SCR catalyst that mainly reacts with ammonia is mainly used at present, but a purifying agent to be added is an innocuous urea aqueous solution that changes to ammonia in exhaust gas instead of toxic ammonia. We are shifting to the method.

この尿素水溶液は排気管中に噴射すると、これ自身の熱容量と蒸発潜熱が大きいため、容易に気体にはならず、液滴状態のままとなり、この液滴状態が続くと排気ガス中での拡散性が著しく低下する。そのため、尿素噴霧が排気ガス中で偏り、十分に均一拡散できないままSCR触媒に尿素が到達し、尿素から変化したアンモニアが不均一に分散し、過剰な部分では未反応のアンモニアがそのまま大気中に排出し(アンモニアスリップ)、不足の部分では、未反応のNOxがそのまま大気中に排出される。   When this aqueous urea solution is injected into the exhaust pipe, it has a large heat capacity and latent heat of vaporization, so it does not easily turn into a gas and remains in a droplet state. When this droplet state continues, diffusion in the exhaust gas Remarkably deteriorates. Therefore, urea spray is biased in the exhaust gas, urea reaches the SCR catalyst without being able to diffuse sufficiently uniformly, the ammonia changed from urea is dispersed unevenly, and unreacted ammonia is left in the atmosphere as it is in excess. When exhausted (ammonia slip) and insufficient, unreacted NOx is discharged as it is into the atmosphere.

また、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵還元型触媒は、酸化機能を持つ貴金属触媒と、アルカリ金属等のNOx吸蔵機能を持つNOx吸蔵材を担持しており、これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を発揮する。そして、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気ガスの空燃比をリッチ状態にして、NOx吸蔵能力回復用の再生制御を行うが、この再生制御の一つに、排気管へ直接燃料等の炭化水素(ここでは「浄化剤」という)を供給する排気管内噴射リッチ制御がある。   Further, in the exhaust gas purification system provided with the NOx occlusion reduction type catalyst, the NOx occlusion reduction type catalyst carries a noble metal catalyst having an oxidation function and a NOx occlusion material having a NOx occlusion function such as alkali metal. Thus, two functions of NOx occlusion and NOx release / purification are exhibited depending on the oxygen concentration in the exhaust gas. When the estimated NOx occlusion amount becomes the NOx occlusion saturation amount, the exhaust gas air-fuel ratio is made rich, and regeneration control for restoring NOx occlusion capability is performed. One of the regeneration controls is to the exhaust pipe. There is an exhaust pipe injection rich control that directly supplies hydrocarbons such as fuel (herein referred to as “purifier”).

また、NOx直接還元型触媒を備えた排気ガス浄化システムでは、NOx直接還元型触媒は、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持し、NOxを直接還元する。そして、NOx還元性能が悪化してくると、排気ガスの空燃比をリッチ空燃比にして、触媒の活性物質を再生して活性化するNOx還元性能回復用の再生制御を行うが、この再生制御の一つに、排気管へ直接燃料等の炭化水素(ここでは「浄化剤」という)を供給する排気管内噴射リッチ制御がある。   Further, in the exhaust gas purification system provided with the NOx direct reduction catalyst, the NOx direct reduction catalyst carries a metal such as rhodium (Rh) or palladium (Pd), which is a catalyst component, on a support such as β-type zeolite, NOx is reduced directly. When the NOx reduction performance deteriorates, the regeneration control for recovering the NOx reduction performance is performed by regenerating and activating the active substance of the catalyst by setting the air-fuel ratio of the exhaust gas to a rich air-fuel ratio. One of them is in-pipe injection rich control for supplying hydrocarbons such as fuel (herein referred to as “purifier”) directly to the exhaust pipe.

また、排気ガス中のPM(粒子状物質)を捕集する連続再生型DPFを備えた排気ガス浄化システムでは、フィルタ部分に捕集され蓄積されたPMを燃焼除去してフィルタを再生するために、排気管内噴射により、排気管内に軽油燃料等の炭化水素(ここでは「浄化剤」という)を供給して、フィルタの上流側に配置した酸化触媒又はフィルタに担持された酸化触媒で、この炭化水素を酸化させることによって、フィルタの温度を上昇させてフィルタのPMを燃焼除去することが行われている。   Further, in an exhaust gas purification system equipped with a continuously regenerating DPF that collects PM (particulate matter) in exhaust gas, in order to regenerate the filter by burning and removing the PM collected and accumulated in the filter portion Then, hydrocarbons such as light oil fuel (herein referred to as “purifiers”) are supplied into the exhaust pipe by injection into the exhaust pipe, and this carbonization is carried out by an oxidation catalyst arranged on the upstream side of the filter or an oxidation catalyst carried on the filter. Oxidation of hydrogen raises the temperature of the filter and burns and removes the PM of the filter.

これらの排気管内噴射においては、浄化剤が偏った状態で触媒や連続再生型DPFに到達すると、排気ガスのNOx浄化やNOx触媒の再生や連続再生型DPFの再生の効率が下がり、また、浄化剤が十分に消費されず、下流側に排出されてしまう。そのため、浄化剤を排気ガス中に略均一に供給し、排気ガスと浄化剤の混合濃度を均一化することが重要で、様々な工夫がなされている。   In these exhaust pipe injections, the efficiency of NOx purification of NOx, regeneration of NOx catalyst and regeneration of continuous regeneration type DPF is reduced when the catalyst reaches the catalyst or continuous regeneration type DPF in a state where the purifier is biased. The agent is not consumed sufficiently and is discharged downstream. For this reason, it is important to supply the purifying agent into the exhaust gas substantially uniformly to make the mixed concentration of the exhaust gas and the purifying agent uniform, and various devices have been made.

その一つに、排気中に還元剤を均一に拡散させるために、還元剤噴射装置(混入部)の下流位置の排気管内に、絞り部を設けて局所的に高流速で低圧の状態を造り、還元剤の気化を促すか、又は、還元剤噴射装置(混入部)の下流位置の排気管内に、撹拌部材を設けて乱流を起こし、排気流れの撹拌を促すエンジンの排気浄化構造も提案されている(例えば、特許文献1参照。)。   For example, in order to evenly diffuse the reducing agent in the exhaust, a throttling part is provided in the exhaust pipe downstream of the reducing agent injection device (mixing part) to create a locally high flow rate and low pressure state. Also proposed is an engine exhaust purification system that promotes vaporization of the reducing agent, or provides a stirring member in the exhaust pipe downstream of the reducing agent injection device (mixing part) to create turbulent flow and promote exhaust gas stirring. (For example, refer to Patent Document 1).

しかしながら、絞り部を設けた場合には、還元剤が噴霧状態の場合には、絞り部で流れの方向が中心方向に変化するため、慣性力が作用している噴霧状態の還元剤が絞り部の壁面に衝突して液状に付着するという問題がある。また、撹拌部材を設けた場合には、同様に、噴霧状態の還元剤が撹拌部材に衝突して液状に付着するという問題がある。   However, in the case where the throttle part is provided, when the reducing agent is in the spray state, the flow direction changes in the central direction in the throttle part. There is a problem that it collides with the wall surface of and adheres to the liquid. Further, when the stirring member is provided, similarly, there is a problem that the reducing agent in the spray state collides with the stirring member and adheres to the liquid.

更に、還元剤と排出ガスとの混合物を形成するための装置で、排出ガスと還元剤を導入可能な混合物形成領域を備え、この混合物形成領域の壁部を少なくとも部分的に、隆起部及び凹部を備えて、特に波形に形成して、言い換えれば、排気管に波形管を用いて渦流を起こして還元剤を混合する装置及び排出ガス浄化装置が提案されている(例えば、特許文献2参照。)。   Furthermore, an apparatus for forming a mixture of a reducing agent and an exhaust gas, comprising a mixture forming region into which the exhaust gas and the reducing agent can be introduced, wherein at least part of the wall portion of the mixture forming region is a ridge and a recess. In particular, a device and an exhaust gas purification device that are formed into a corrugated shape, in other words, cause a vortex to flow in the exhaust pipe and mix the reducing agent are proposed (for example, see Patent Document 2). ).

しかしながら、波形管を用いると、この凹部に煤が溜まり易く腐食の原因となったり、波形管は剛性が低くなるため、排気管の振動が誘因されたりするという問題がある。   However, when a corrugated tube is used, there is a problem that soot is easily accumulated in the concave portion and causes corrosion, and the rigidity of the corrugated tube is low, so that vibration of the exhaust pipe is induced.

また、圧縮空気と浄化剤を混合させて排気管中に噴霧させて、蒸発し易いように微細化を図るエアアシスト式という方法もあるが、この方法はエアタンクを装備している中・大型車でのみ可能な方法である。そのため、エアタンクを装備していない小型車では、均一拡散できるように、長い末広管を設けて蒸発と拡散ができる余地を与える方法が考えられている。しかしながら、この方法では、過渡運転による排ガス規制走行モードに対しては、応答性遅れのため排気ガス浄化制御が追随できなくなるという問題がある。そのため、浄化剤を如何に短時間で効率よく蒸発と拡散を行って均一に排気ガス浄化装置に到達させることが重要な課題となっている。
特開2002−213233号公報 特開2004−510909号公報
There is also an air-assist method that mixes compressed air and purifiers and sprays them into the exhaust pipe to make them finer so that they can easily evaporate. This is possible only with For this reason, in a small car not equipped with an air tank, a method of providing a room for evaporation and diffusion by providing a long divergent tube so as to allow uniform diffusion has been considered. However, this method has a problem that the exhaust gas purification control cannot follow the exhaust gas regulation travel mode due to transient operation due to a delay in response. For this reason, it is an important issue how to efficiently evaporate and diffuse the purifying agent in a short time to reach the exhaust gas purifying device uniformly.
JP 2002-213233 A JP 2004-510909 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、エアアシスト方式が採用できない小型車であっても、排気管内において短い距離で効率良く浄化剤の蒸発及び拡散を促進できて、浄化剤を均一化した状態で排気ガス浄化装置に到達させることができる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   The present invention has been made to solve the above problems, and its purpose is to efficiently promote the evaporation and diffusion of the purifier within a short distance in the exhaust pipe even in a small vehicle that cannot adopt the air assist method. An object of the present invention is to provide an exhaust gas purification method and an exhaust gas purification system that can reach the exhaust gas purification device in a state where the purification agent is made uniform.

上記のような目的を達成するための排気ガス浄化方法は、内燃機関の排気通路に配設された排気ガス浄化装置で消費される浄化剤を、排気管内噴射装置によって前記排気ガス浄化装置より上流側の前記排気通路内に供給して排気ガスに混入させる排気ガス浄化方法において、前記排気通路に遮蔽部材を設けると共に、前記遮蔽部材の下流側に前記浄化剤を噴射して、前記浄化剤の微粒化を促進させることを特徴とする。   In the exhaust gas purification method for achieving the above object, a purification agent consumed in an exhaust gas purification device disposed in an exhaust passage of an internal combustion engine is upstream of the exhaust gas purification device by an exhaust pipe injection device. In the exhaust gas purification method in which the exhaust gas is supplied into the exhaust passage on the side and mixed into the exhaust gas, a shielding member is provided in the exhaust passage, and the purification agent is injected downstream of the shielding member, It is characterized by promoting atomization.

なお、この遮蔽部材の下流側とは、噴射(又は噴霧)された浄化剤の少なくとも一部が遮蔽部材で生じる渦流に巻き込まれる範囲の下流側のことをいう。また、この遮蔽部材の形状は、排気通路の一部を狭くして、排気ガスの流れに渦流を発生できれば良く、特に限定されない。また、遮蔽部材の大きさは、排気通路の断面の多くを覆う必要はなく、浄化剤の噴射口に直接、排気ガスが直接当たることを妨げることができる程度の大きさと位置でよい。   In addition, the downstream side of this shielding member means the downstream side of the range where at least a part of the sprayed (or sprayed) cleaning agent is caught in the vortex generated by the shielding member. The shape of the shielding member is not particularly limited as long as a part of the exhaust passage can be narrowed to generate a vortex in the exhaust gas flow. Further, the size of the shielding member does not need to cover most of the cross section of the exhaust passage, and may be a size and a position that can prevent the exhaust gas from directly hitting the injection port of the purifying agent.

この構成により、排気通路(排気管)に設けた遮蔽部材により、安定した排気ガスの流れを故意に乱流化及び低速化させ、渦流を発生させて、この渦流が発生する部分の近傍の排気ガス中に浄化剤を噴射する。噴射され微粒化された浄化剤は、遮蔽部材によって発生する渦流と戻り流による淀み領域で微粒化した浄化剤が滞留し、徐々に下流へ流れて行くため、浄化剤の噴霧が偏って生じる局部的な排気ガス温度の低下が起こらず、浄化剤の蒸発が効率よく行われる。そのため、浄化剤は、排気管内において、短い距離で効率良く蒸発及び拡散し均一化した状態で排気ガス浄化装置に到達するようになる。   With this configuration, the shielding member provided in the exhaust passage (exhaust pipe) deliberately turbulent and slows down the flow of stable exhaust gas to generate a vortex, and the exhaust near the portion where the vortex is generated A purifier is injected into the gas. The sprayed and atomized cleaning agent stays in the stagnation region due to the vortex generated by the shielding member and the stagnation of the return flow, and gradually flows downstream. The exhaust gas temperature is not lowered, and the purifier is efficiently evaporated. Therefore, the purifier reaches the exhaust gas purification device in a state in which it is evaporated and diffused efficiently at a short distance and is uniformized in the exhaust pipe.

従って、浄化剤の噴射位置と排気ガス浄化装置の距離が短い配置であっても、浄化剤を均一に拡散させて排気ガス浄化装置へ送ることができる。そのため、過渡運転による排ガス規制走行モードであっても、応答遅れが少なくなり、浄化制御や再生制御の追従性が向上する。また、この遮蔽部材を設ける構成、即ち、排気通路の断面積を不連続に変化させる構成は単純となる。   Accordingly, even if the distance between the cleaning agent injection position and the exhaust gas purification device is short, the purification agent can be uniformly diffused and sent to the exhaust gas purification device. Therefore, even in the exhaust gas regulation travel mode by transient operation, the response delay is reduced, and the followability of the purification control and the regeneration control is improved. Moreover, the structure which provides this shielding member, ie, the structure which changes the cross-sectional area of an exhaust passage discontinuously, becomes simple.

更に、上記の排気ガス浄化方法において、前記排気通路内に噴射された浄化剤を分散部材に衝突させて、前記浄化剤の微粒化を促進させると、より微粒化及び均一分散化できる。この分散部材としては、浄化剤が衝突する部分を、浄化剤の噴射方向に対して、適当に(例えば、30°〜60°)に傾斜させた衝突板等がある。なお、噴射方向を排気ガスの流れに平行な方向とした場合には、分散部材を円錐の頂点を浄化剤の噴射口に対向させた円錐形状の棒状体で形成することもできる。   Furthermore, in the above exhaust gas purification method, when the purifying agent injected into the exhaust passage collides with the dispersing member to promote atomization of the purifying agent, atomization and uniform dispersion can be further achieved. As this dispersing member, there is a collision plate or the like in which a portion where the cleaning agent collides is appropriately inclined (for example, 30 ° to 60 °) with respect to the injection direction of the cleaning agent. When the injection direction is a direction parallel to the flow of exhaust gas, the dispersing member can be formed of a conical rod-like body with the apex of the cone facing the cleaning agent injection port.

なお、浄化剤が衝突する面の形状は、通常は加工が容易であるため、平面が用いられるが、噴射された浄化剤の拡散分布を最適にするために、円柱面や球面や円錐面等の曲面を使用することもできる。   The surface on which the cleaning agent collides is usually flat because it is easy to process, but in order to optimize the diffusion distribution of the injected cleaning agent, a cylindrical surface, spherical surface, conical surface, etc. The curved surface can also be used.

そして、上記のような目的を達成するための排気ガス浄化システムは、内燃機関の排気通路に排気ガス浄化装置を備えると共に、該排気ガス浄化装置で消費される浄化剤を前記排気ガス浄化装置の上流側の前記排気通路内に供給して排気ガスに混入させる排気管内噴射装置を備えた排気ガス浄化システムにおいて、前記排気通路に遮蔽部材を、前記排気管内噴射装置の噴射口の上流側に設けて構成する。   An exhaust gas purification system for achieving the above object includes an exhaust gas purification device in an exhaust passage of an internal combustion engine, and a purification agent consumed in the exhaust gas purification device is supplied to the exhaust gas purification device. In the exhaust gas purification system including an exhaust pipe injection device that supplies the exhaust gas into the exhaust passage on the upstream side and mixes it with the exhaust gas, a shielding member is provided in the exhaust passage on the upstream side of the injection port of the exhaust pipe injection device. Configure.

この構成により、遮蔽部材で発生する排気ガスの渦流部分に又はその近傍に浄化剤を噴射することができるので、この渦流により、排気ガスとの混合が促進され、この混合により、浄化剤の分散均一化と蒸発が短距離で効率良く行われる。そのため、排気管内噴射装置の噴射口と排気ガス浄化装置との間が短くても、浄化剤は、均一分散状態で排気ガス浄化装置に到達する。また、排気通路に遮蔽部材を設ける構成は、構造が単純となる。   With this configuration, since the purifying agent can be injected into or near the swirl portion of the exhaust gas generated by the shielding member, mixing with the exhaust gas is promoted by this swirl flow. Uniformization and evaporation are performed efficiently over a short distance. Therefore, even if the distance between the injection port of the in-pipe injection device and the exhaust gas purification device is short, the purifier reaches the exhaust gas purification device in a uniformly dispersed state. Further, the structure in which the shielding member is provided in the exhaust passage has a simple structure.

また、上記の排気ガス浄化システムで、前記排気通路内において、前記浄化剤の噴射経路に前記浄化剤の微粒化を促進させる分散部材を設けて構成すると、排気通路内に噴射された浄化剤を分散部材に衝突させて、浄化剤の微粒化を促進させることができ、より微粒化及び均一分散化できる。この分散機構としては、噴射の衝突によって微粒化作用と噴射方向を分散化させる衝突部材等を用いることができる。   Further, in the above exhaust gas purification system, when the dispersion member for promoting atomization of the purification agent is provided in the injection passage of the purification agent in the exhaust passage, the purification agent injected into the exhaust passage By colliding with the dispersing member, atomization of the purifier can be promoted, and atomization and uniform dispersion can be further achieved. As this dispersion mechanism, a collision member or the like that disperses the atomization action and the injection direction by the collision of the injection can be used.

そして、上記の排気ガス浄化システムにおいて、前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であるように構成される。このアンモニア系溶液としては、アンモニア選択還元型NOx触媒で使用されるアンモニア水、アンモニア水溶液、尿素水溶液等がある。   In the exhaust gas purification system, the exhaust gas purification device is formed with an ammonia selective reduction type NOx catalyst, and the purification agent is an ammonia-based solution. Examples of the ammonia-based solution include ammonia water, ammonia aqueous solution, urea aqueous solution and the like used in the ammonia selective reduction type NOx catalyst.

あるいは、上記の排気ガス浄化システムにおいて、前記排気ガス浄化装置が、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成された排気ガス浄化装置、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成された排気ガス浄化装置、あるいは、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成された排気ガス浄化装置のいずれか一つで構成され、前記浄化剤が炭化水素であるように構成される。   Alternatively, in the exhaust gas purification system, the exhaust gas purification device includes an upstream oxidation catalyst and a downstream NOx storage reduction catalyst, an upstream oxidation catalyst and a downstream side. The exhaust gas purification device formed with a NOx direct reduction type catalyst or the exhaust gas purification device formed with a continuous regeneration type diesel particulate filter having an oxidation catalyst, The purification agent is configured to be a hydrocarbon.

これらの構成により、それぞれの排気ガス浄化システムにおいて、浄化剤を適宜、排気ガス中に均一的に混入して、排気ガス浄化装置に供給することができるので、効率よく、NOxの浄化、NOx吸蔵還元型触媒やNOx直接還元型触媒の再生、連続再生型ディーゼルパティキュレートフィルタの再生を行うことができる。   With these configurations, in each exhaust gas purification system, the purifying agent can be appropriately mixed uniformly into the exhaust gas and supplied to the exhaust gas purification device, so that the NOx purification and NOx occlusion can be performed efficiently. Regeneration of the reduction catalyst or NOx direct reduction catalyst and regeneration of the continuous regeneration type diesel particulate filter can be performed.

以上説明したように、本発明に係る排気ガス浄化方法及び排気ガス浄化システムによれば、排気管内において、短い距離で効率良く浄化剤の蒸発及び拡散を促進できて、浄化剤を均一分散状態で排気ガス浄化装置に供給することができる。   As described above, according to the exhaust gas purification method and the exhaust gas purification system of the present invention, the evaporation and diffusion of the purification agent can be efficiently promoted at a short distance in the exhaust pipe, and the purification agent is uniformly dispersed. It can supply to an exhaust gas purification device.

しかも、圧縮空気を使用しないので、エアアシスト方式が使えない小型車等においても使用可能となる。   In addition, since compressed air is not used, it can also be used in small vehicles that cannot use the air assist method.

以下、本発明に係る実施の形態の排気ガス浄化システムについて、図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system according to an embodiment of the present invention will be described with reference to the drawings.

図1に、本発明の第1の実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1では、エンジン(内燃機関)Eの排気通路4に、アンモニア選択還元型NOx触媒11を有する排気ガス浄化装置10が配置される。   FIG. 1 shows a configuration of an exhaust gas purification system 1 according to a first embodiment of the present invention. In the exhaust gas purification system 1, an exhaust gas purification device 10 having an ammonia selective reduction type NOx catalyst 11 is disposed in an exhaust passage 4 of an engine (internal combustion engine) E.

このアンモニア選択還元型NOx触媒11は、コージェライトや酸化アルミニウムや酸化チタン等で形成されるハニカム構造の担持体(触媒構造体)に、チタニアーバナジウム、ゼオライト、酸化クロム、酸化マンガン、酸化モリブデン、酸化チタン、酸化タングステン等を担持して形成される。   This ammonia selective reduction type NOx catalyst 11 has a honeycomb structure carrier (catalyst structure) formed of cordierite, aluminum oxide, titanium oxide or the like, titania-vanadium, zeolite, chromium oxide, manganese oxide, molybdenum oxide, It is formed by supporting titanium oxide, tungsten oxide or the like.

このアンモニア選択還元型NOx触媒11では、酸素過剰の雰囲気で、排気通路4内に、尿素水溶液、アンモニア、アンモニア水等のアンモニア系溶液(浄化剤)Fを噴射して、アンモニアをアンモニア選択還元型NOx触媒11に供給して、排気ガス中のNOxに対してアンモニアと選択的に反応させることにより、NOxを窒素に還元して浄化する。   In this ammonia selective reduction type NOx catalyst 11, ammonia-based solution (purifying agent) F such as urea aqueous solution, ammonia, ammonia water or the like is injected into the exhaust passage 4 in an oxygen-excess atmosphere, and ammonia is selectively reduced by ammonia. By supplying the NOx catalyst 11 and selectively reacting ammonia with NOx in the exhaust gas, NOx is reduced to nitrogen and purified.

そのため、アンモニア選択還元型NOx触媒11の上流側の排気通路4に、NOxの還元剤となるアンモニア系溶液Fを噴射又は噴霧により供給するための排気管内噴射装置13を設ける。この排気管内噴射装置13は、図示しない貯蔵タンクから図示しない配管を経由して供給されてくるアンモニア系溶液Fを排気通路4内に直接噴射する。   Therefore, an exhaust pipe injection device 13 is provided in the exhaust passage 4 on the upstream side of the ammonia selective reduction type NOx catalyst 11 for supplying the ammonia-based solution F serving as a NOx reducing agent by injection or spraying. The in-pipe injection device 13 directly injects the ammonia-based solution F supplied from a storage tank (not shown) via a pipe (not shown) into the exhaust passage 4.

また、アンモニア選択還元型NOx触媒11の温度を測定するために、上流側温度センサー15と下流側温度センサー16を、アンモニア選択還元型NOx触媒11の上流側と下流側、即ち、前後にそれぞれ配置する。この二箇所に設置した温度センサ15、16の温度差により、触媒11内の温度差を推定する。   Further, in order to measure the temperature of the ammonia selective reduction type NOx catalyst 11, the upstream side temperature sensor 15 and the downstream side temperature sensor 16 are respectively arranged on the upstream side and the downstream side of the ammonia selective reduction type NOx catalyst 11, that is, before and after. To do. The temperature difference in the catalyst 11 is estimated from the temperature difference between the temperature sensors 15 and 16 installed at these two locations.

更に、排気ガス浄化システム1の制御装置が、エンジンEの制御装置20に組み込まれ、エンジンEの運転制御と並行して、排気ガス浄化システム1の制御を行う。この排気ガス浄化システム1の制御装置は、排気管内噴射装置13のアンモニア系溶液Fの噴射制御を行う。   Further, the control device of the exhaust gas purification system 1 is incorporated in the control device 20 of the engine E, and controls the exhaust gas purification system 1 in parallel with the operation control of the engine E. The control device of the exhaust gas purification system 1 performs injection control of the ammonia-based solution F in the exhaust pipe injection device 13.

この噴射制御では、エンジンEの運転状態(回転数や負荷)によって、アンモニア系溶液Fの噴射量を変化させて、排気ガスGの流量が変化しても、より効率よく排気ガスG中のNOxを還元すると共に、排気ガス浄化装置10の下流側の浄化された排気ガスGc中へのアンモニアの流出(アンモニアスリップ)が極力少なくなるように制御する。   In this injection control, even if the injection amount of the ammonia-based solution F is changed and the flow rate of the exhaust gas G is changed depending on the operating state (the rotational speed and the load) of the engine E, the NOx in the exhaust gas G is more efficiently changed. Is controlled so that the outflow of ammonia (ammonia slip) into the purified exhaust gas Gc on the downstream side of the exhaust gas purification device 10 is minimized.

そして、本発明においては、図1〜図3に示すように、排気通路4における排気管内噴射装置13の噴射口13aの上流側に遮蔽板(遮蔽部材)14を設ける。この遮蔽板14の形状や、排気通路4への突出量dや閉塞率や、幅Bや円弧の角度α等は特に限定せず、排気ガスGが直接噴射口13aに直接当たることを防ぐことができる大きさや配置で、かつ、排気通路の一部を狭くして、排気ガスの流れに渦流を発生できれば良い。また、遮蔽板14と噴射口13aの距離は、噴射(又は噴霧)された浄化剤の少なくとも一部が遮蔽部材で生じる渦流に巻き込まれる範囲であれば良い。   And in this invention, as shown in FIGS. 1-3, the shielding board (shielding member) 14 is provided in the upstream of the injection port 13a of the injection apparatus 13 in the exhaust pipe 4 in the exhaust passage 4. As shown in FIG. There are no particular limitations on the shape of the shielding plate 14, the projection amount d or the blocking rate to the exhaust passage 4, the width B, the arc angle α, etc., and the exhaust gas G is prevented from directly hitting the injection port 13 a. It is only necessary that the exhaust passage has a size and arrangement that can be reduced, and a part of the exhaust passage is narrowed to generate a vortex in the exhaust gas flow. The distance between the shielding plate 14 and the injection port 13a may be in a range where at least a part of the sprayed (or sprayed) cleaning agent is caught in the vortex generated by the shielding member.

なお、この遮蔽板14の大きさと配置位置は、実験や数値計算によって定めることができるが、簡易的には、排気通路4の上流側の軸方向から見た場合に噴射口13aが遮蔽板14によって遮られて見えないような大きさや配置とすればよい。   The size and arrangement position of the shielding plate 14 can be determined by experiment or numerical calculation, but for simplicity, the injection port 13a is located at the shielding plate 14 when viewed from the axial direction upstream of the exhaust passage 4. The size and the arrangement may be such that they cannot be seen by being blocked.

また、図1の構成では、排気管内噴射装置13は、アンモニア系溶液Fを排気通路4の排気ガスGの流れの方向に対して垂直方向に噴射するように噴射口(開口部)13aを排気通路4の内壁に沿って設ける。つまり、噴射口13aから噴射されるアンモニア系溶液Fの流れの向きを排気通路4の軸方向と垂直な方向にする。   In the configuration of FIG. 1, the in-pipe injection device 13 exhausts the injection port (opening) 13 a so as to inject the ammonia-based solution F in a direction perpendicular to the flow direction of the exhaust gas G in the exhaust passage 4. It is provided along the inner wall of the passage 4. That is, the flow direction of the ammonia-based solution F injected from the injection port 13 a is set to a direction perpendicular to the axial direction of the exhaust passage 4.

また、アンモニア系溶液Fの噴射中心の傾斜角度、噴射の拡がり範囲、噴射口13aの位置等もそれぞれの排気ガス浄化システム1の構造に対応させて最適な構成を採用することができる。つまり、排気ガスGの流れの方向に対して垂直方向に噴射する構成以外の、例えば、排気ガスGの流れの方向に対して並行な方向に噴射する構成も採用できる。   In addition, the angle of inclination of the injection center of the ammonia-based solution F, the expansion range of the injection, the position of the injection port 13a, and the like can be adopted in accordance with the structure of each exhaust gas purification system 1. In other words, for example, a configuration in which injection is performed in a direction parallel to the flow direction of the exhaust gas G other than the configuration in which injection is performed in a direction perpendicular to the flow direction of the exhaust gas G may be employed.

この構成によれば、排気通路4の直線状部分に遮蔽板14を設けて安定した排気ガスの流れに故意に渦流を発生させると共に、この遮蔽板14の下流側近傍に排気管内噴射装置13の噴射口13aを設けてアンモニア系溶液Fを噴射する構成により、アンモニア系溶液Fは、この遮蔽板14で発生する渦流により排気ガスGと混合し、拡散するので、排気ガス温度が均一化し、温度の低い部分が発生しないのでアンモニア系溶液Fの蒸発が効率よく行われ、排気通路4内において、短い距離で効率良く蒸発及び拡散し均一に排気ガス浄化装置10に到達する。そのため、排気管内噴射装置13の噴射口13aと排気ガス浄化装置10の距離が短い配置であっても、アンモニア系溶液Fを均一に拡散させて排気ガス浄化装置10へ供給することができる。   According to this configuration, the shielding plate 14 is provided in the linear portion of the exhaust passage 4 to intentionally generate a vortex in the stable exhaust gas flow, and the exhaust pipe injection device 13 is disposed in the vicinity of the downstream side of the shielding plate 14. Due to the configuration in which the injection port 13a is provided to inject the ammonia-based solution F, the ammonia-based solution F is mixed and diffused with the exhaust gas G by the vortex generated by the shielding plate 14, so that the exhaust gas temperature becomes uniform and the temperature Therefore, the ammonia-based solution F is efficiently evaporated and is efficiently evaporated and diffused in a short distance in the exhaust passage 4 to reach the exhaust gas purification device 10 uniformly. Therefore, even when the distance between the injection port 13a of the exhaust pipe injection device 13 and the exhaust gas purification device 10 is short, the ammonia-based solution F can be uniformly diffused and supplied to the exhaust gas purification device 10.

次に、第2の実施の形態について説明する。この第2の実施の形態においては、図4及び図5に示すように、第1の実施の形態の排気ガス浄化システム1の構成に加えて、排気通路4内において、アンモニア系溶液(浄化剤)Fの噴射経路にアンモニア系溶液Fの微粒化を促進させる分散部材としての衝突板17、17Aを設ける。この衝突板17、17Aの分散効果によりアンモニア系溶液Fの微粒化を促進させることができ、より微粒化及び均一分散化できる。   Next, a second embodiment will be described. In the second embodiment, as shown in FIGS. 4 and 5, in addition to the configuration of the exhaust gas purification system 1 of the first embodiment, an ammonia-based solution (purifying agent) is provided in the exhaust passage 4. ) Colliding plates 17 and 17A as dispersion members for promoting atomization of the ammonia-based solution F are provided in the F injection path. Due to the dispersion effect of the collision plates 17 and 17A, atomization of the ammonia-based solution F can be promoted, and further atomization and uniform dispersion can be achieved.

この衝突板17、17Aは、この衝突板17、17Aに噴射されてくるアンモニア系溶液Fを分散させる機能を有するものであれば良い。なお、この衝突板17、17Aに噴射の分散機能に加えて、排気ガスGの流れを渦流にする渦流発生機能を持たせると、アンモニア系溶液Fのより分散化、均一化を図ることができる。   The collision plates 17 and 17A only need to have a function of dispersing the ammonia-based solution F injected to the collision plates 17 and 17A. If the collision plates 17 and 17A are provided with a function of generating a vortex that makes the flow of the exhaust gas G a vortex in addition to the function of dispersing the injection, the ammonia-based solution F can be more dispersed and uniform. .

図4に示す構成では、アンモニア系溶液Fが衝突する部分を、噴射方向に対して適当に(例えば、30°〜60°)に傾斜させた平面を有する衝突板17で形成する。この衝突板17は、アンモニア系溶液Fの噴射方向が排気ガスGの流れ方向に垂直か垂直に近い角度となる時に大きな効果を奏することができる。   In the configuration shown in FIG. 4, the portion where the ammonia-based solution F collides is formed by the collision plate 17 having a plane inclined appropriately (for example, 30 ° to 60 °) with respect to the injection direction. The collision plate 17 can exert a great effect when the injection direction of the ammonia-based solution F is perpendicular to or nearly perpendicular to the flow direction of the exhaust gas G.

また、図5に示す構成では、円錐の頂点を浄化剤の噴射口に対向させた円錐形状の棒状体で衝突板17Aを形成する。また、遮蔽板14は、噴射口13a部分に対して流れを遮蔽できればよいので、この斜線部分のみで遮蔽して、その他の部分14aはこの遮蔽部分を支持する支持部14aで構成する。この構成は、アンモニア系溶液Fの噴射方向が排気ガスGの流れ方向に平行か並行に近い角度となる時に大きな効果を奏することができる。   In the configuration shown in FIG. 5, the collision plate 17 </ b> A is formed of a conical rod-shaped body with the apex of the cone facing the cleaning agent injection port. Further, since the shielding plate 14 only needs to shield the flow from the injection port 13a portion, the shielding plate 14 is shielded only by the shaded portion, and the other portion 14a is constituted by a support portion 14a that supports the shielding portion. This configuration can have a great effect when the injection direction of the ammonia-based solution F is at an angle that is parallel or close to parallel to the flow direction of the exhaust gas G.

次に、第3及び第4の実施の形態の排気ガス浄化システムについて説明する。この第3及び第4の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び2の実施の形態と同様である。   Next, the exhaust gas purification systems of the third and fourth embodiments will be described. In the exhaust gas purification systems of the third and fourth embodiments, the exhaust gas purification device 10 is formed with an upstream oxidation catalyst and a downstream NOx occlusion reduction type catalyst, and the purification agent is hydrocarbon. Configured to be. Other configurations are the same as those of the first and second embodiments, respectively.

この酸化触媒は、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。また、NOx吸蔵還元型触媒は、酸化機能を持つ白金(Pt)等の貴金属触媒と、アルカリ金属やアルカリ土類金属や希土類等のNOx吸蔵機能を持つNOx吸蔵材を担持し、これらにより、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を発揮する。   The oxidation catalyst is formed by supporting a catalytic metal such as platinum, rhodium, or palladium on a monolith catalyst formed of a structural material such as cordierite, silicon carbide, or stainless steel. Further, the NOx occlusion reduction type catalyst carries a noble metal catalyst such as platinum (Pt) having an oxidation function and a NOx occlusion material having a NOx occlusion function such as an alkali metal, an alkaline earth metal, and a rare earth, and thereby, exhaust gas is exhausted. Two functions of NOx occlusion and NOx release / purification are exhibited depending on the oxygen concentration in the gas.

そして、このNOx吸蔵還元型触媒は、通常運転時にNOxを触媒金属に吸蔵し、吸蔵能力が飽和に近づくと、適時、流入してくる排気ガスの空燃比をリッチ空燃比にして、吸蔵したNOxを放出させると共に、放出されたNOxを触媒の三元機能で還元する。   And this NOx occlusion reduction type catalyst occludes NOx in the catalyst metal during normal operation, and when the occlusion capacity approaches saturation, the air-fuel ratio of the exhaust gas that flows in is made the rich air-fuel ratio at a proper time, and the occluded NOx And the released NOx is reduced by the three-way function of the catalyst.

このNOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気管内噴射装置13により、排気通路4に直接燃料等の炭化水素(浄化剤)Fを供給する。この炭化水素Fを、上流側の酸化触媒で酸化することにより、排気ガスGの空燃比をリッチ状態にして、吸収したNOxを放出させる。この放出されたNOxを貴金属触媒により還元させる。この再生処理により、NOx吸蔵能力を回復する。   In the exhaust gas purification system equipped with this NOx occlusion reduction type catalyst, when the estimated NOx occlusion amount becomes the NOx occlusion saturation amount, the exhaust pipe injection device 13 causes the hydrocarbons such as fuel (purifier) to be directly introduced into the exhaust passage 4. F is supplied. The hydrocarbon F is oxidized by the upstream side oxidation catalyst to make the air-fuel ratio of the exhaust gas G rich, and the absorbed NOx is released. This released NOx is reduced by a noble metal catalyst. This regeneration process restores the NOx storage capacity.

次に、第5及び第6の実施の形態の排気ガス浄化システムについて説明する。この第5及び第6の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び第2の実施の形態と同様である。   Next, exhaust gas purification systems according to fifth and sixth embodiments will be described. In the exhaust gas purification systems of the fifth and sixth embodiments, the exhaust gas purification device 10 is formed with an upstream oxidation catalyst and a downstream NOx direct reduction catalyst, and the purification agent is hydrocarbon. Configured to be. Other configurations are the same as those of the first and second embodiments, respectively.

この酸化触媒は、第3及び第4の実施の形態と同様に、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。NOx直接還元型触媒は、β型ゼオライト等の担体に触媒成分であるロジウム(Rh)やパラジウム(Pd)等の金属を担持させて形成する。更に、金属の酸化作用を軽減し、NOx還元能力の保持に寄与するセリウム(Ce)を配合したり、下層に三元触媒を設けて酸化還元反応、特に排気ガスリッチ状態におけるNOxの還元反応を促進するようにしたり、NOxの浄化率を向上させるために単体に鉄(Fe)を加える等する。   As in the third and fourth embodiments, this oxidation catalyst carries a catalyst metal such as platinum, rhodium or palladium on a monolith catalyst formed of a structural material such as cordierite, silicon carbide, or stainless steel. Formed. The NOx direct reduction catalyst is formed by supporting a catalyst component such as rhodium (Rh) or palladium (Pd) on a support such as β-type zeolite. In addition, cerium (Ce), which contributes to maintaining the NOx reduction ability, is reduced by reducing the metal oxidizing action, and a three-way catalyst is provided in the lower layer to promote the NOx reduction reaction, especially in the exhaust gas rich state. In order to improve the NOx purification rate, iron (Fe) is added to the single body.

そして、このNOx直接還元型触媒は、通常運転時のリーン状態でNOxを直接還元するが、この還元の際に触媒の活性物質である金属に酸素(O2 )が吸着して還元性能が悪化する。そのため、NOx還元性能が悪化してきた時に、排気管内噴射装置13により、排気通路4に直接燃料等の炭化水素(浄化剤)Fを供給する。この炭化水素Fを、上流側の酸化触媒で酸化することにより、排気ガスGの空燃比をリッチ状態にして、触媒の活性物質である金属を再生して活性化する。 The NOx direct reduction type catalyst directly reduces NOx in a lean state during normal operation. During this reduction, oxygen (O 2 ) is adsorbed on the metal that is the active substance of the catalyst, and the reduction performance deteriorates. To do. For this reason, when the NOx reduction performance has deteriorated, hydrocarbon (purifier) F such as fuel is supplied directly to the exhaust passage 4 by the exhaust pipe injection device 13. By oxidizing this hydrocarbon F with an upstream oxidation catalyst, the air-fuel ratio of the exhaust gas G is made rich to regenerate and activate the metal that is the active substance of the catalyst.

次に、第7及び第8の実施の形態の排気ガス浄化システムについて説明する。この第7及び第8の実施の形態の排気ガス浄化システムでは、排気ガス浄化装置10は、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成され、浄化剤が炭化水素であるように構成される。その他の構成は、それぞれ第1及び第2の実施の形態と同様である。   Next, exhaust gas purification systems according to seventh and eighth embodiments will be described. In the exhaust gas purification systems of the seventh and eighth embodiments, the exhaust gas purification device 10 is formed with a continuous regeneration type diesel particulate filter having an oxidation catalyst so that the purification agent is a hydrocarbon. Composed. Other configurations are the same as those of the first and second embodiments, respectively.

なお、この酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタとしては、上流側の酸化触媒と下流側のフィルタとから形成されるものや、酸化触媒を担持したフィルタから形成されるもの等がある。   Examples of the continuous regeneration type diesel particulate filter having this oxidation catalyst include those formed from an upstream oxidation catalyst and a downstream filter, and those formed from a filter carrying an oxidation catalyst.

この上流側の酸化触媒は、第3及び第4の実施の形態と同様に、コージェライト、炭化ケイ素、又はステンレス等の構造材で形成されたモノリス触媒に、白金やロジウムやパラジウム等の触媒金属を担持して形成される。フィルタは、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じした、即ち、市松模様状に目封じしたモノリスハニカム型ウォールスルータイプのフィルタで形成される。このフィルタで排気ガス中のPM(粒子状物質)を捕集する。   As in the third and fourth embodiments, the upstream-side oxidation catalyst is formed of a catalytic metal such as platinum, rhodium, or palladium on a monolith catalyst formed of a structural material such as cordierite, silicon carbide, or stainless steel. Is formed. The filter is formed of a monolith honeycomb type wall-through type filter in which the inlet and outlet of the channel of the porous ceramic honeycomb are alternately plugged, that is, in a checkered pattern. This filter collects PM (particulate matter) in the exhaust gas.

また、酸化触媒を担持したフィルタは、モノリスハニカム型ウォールスルータイプのフィルタに、白金やロジウムやパラジウム等の触媒金属を担持して形成され、このフィルタで排気ガス中のPMを捕集する。   The filter carrying the oxidation catalyst is formed by carrying a catalytic metal such as platinum, rhodium or palladium on a monolith honeycomb wall-through type filter, and this filter collects PM in the exhaust gas.

そして、フィルタ部分に捕集され蓄積されたPMを燃焼除去するために、排気管内噴射13により、排気通路4内に軽油燃料等の炭化水素(浄化剤)Fを供給して、フィルタの上流側に配置した酸化触媒又はフィルタに担持された酸化触媒で、この炭化水素Fを酸化させることによって、フィルタの温度を上昇させてフィルタのPMを燃焼除去する。   Then, in order to burn and remove the PM collected and accumulated in the filter portion, a hydrocarbon (purifier) F such as light oil fuel is supplied into the exhaust passage 4 by the injection 13 in the exhaust pipe, and the upstream side of the filter The hydrocarbon F is oxidized by an oxidation catalyst disposed on the filter or an oxidation catalyst carried on the filter, whereby the temperature of the filter is raised and PM of the filter is burned and removed.

上記の第1〜第8の実施の形態の排気ガス浄化システムによれば、浄化剤Fを排気通路4内に供給する排気ガス浄化システム1において、遮蔽板14の下流側の近傍に噴射された浄化剤Fは、この遮蔽板14や衝突板17、17Aで発生する渦流により排気ガスとの混合が促進され、この混合により、浄化剤Fの分散均一化と蒸発が短距離で行われる。そのため、浄化剤Fは、短い距離で効率良く蒸発及び拡散し、均一化した状態で排気ガス浄化装置に到達する。   According to the exhaust gas purification systems of the first to eighth embodiments described above, the exhaust gas purification system 1 that supplies the purifier F into the exhaust passage 4 is injected near the downstream side of the shielding plate 14. Mixing of the purifying agent F with the exhaust gas is promoted by the vortex generated in the shielding plate 14 and the collision plates 17 and 17A, and by this mixing, the purifying agent F is uniformly dispersed and evaporated in a short distance. Therefore, the purifier F efficiently evaporates and diffuses over a short distance, and reaches the exhaust gas purification device in a uniform state.

従って、浄化剤Fの噴射位置と排気ガス浄化装置10の距離が短い配置であっても、浄化剤Fを均一に拡散させて排気ガス浄化装置10へ供給することができる。   Therefore, even if the distance between the injection position of the purification agent F and the exhaust gas purification device 10 is short, the purification agent F can be uniformly diffused and supplied to the exhaust gas purification device 10.

本発明の第2の実施の形態において、図4に示すように、遮蔽板(遮蔽部材)14と衝突板(分散部材)17を設けたものを実施例とし、図6に示すように、遮蔽板14を設けず衝突板17のみを設けたものを比較例1とした。また、図7に示すように、遮蔽板14を設けず、段差4bと衝突板17を設けたものを比較例2とした。   In the second embodiment of the present invention, as shown in FIG. 4, a shield plate (shielding member) 14 and a collision plate (dispersion member) 17 are provided as examples, and as shown in FIG. A comparative example 1 was prepared by providing only the collision plate 17 without providing the plate 14. Further, as shown in FIG. 7, the shield plate 14 was not provided, but the step 4 b and the collision plate 17 were provided as Comparative Example 2.

ここで、実施例1では、排気通路4の直径Dが90mmφで遮蔽板14の形状は図3に示す円弧状の形状であり、その突出量dは15mmで、直径Dの17%で、根本の広がり角度αは根本部に対して60度である。比較例2では、小径部4aの直径D1が50mmφ、大径部4cの直径D2が90mmφである。   Here, in Example 1, the diameter D of the exhaust passage 4 is 90 mmφ, and the shape of the shielding plate 14 is the arc shape shown in FIG. 3, and the protruding amount d is 15 mm, 17% of the diameter D. Is 60 degrees with respect to the root portion. In Comparative Example 2, the diameter D1 of the small diameter portion 4a is 50 mmφ, and the diameter D2 of the large diameter portion 4c is 90 mmφ.

実施例1における遮蔽板14と噴射口13aとの距離は50mmで、比較例2における段差4bと噴射口13aとの距離は145mmである。また、衝突板17に関しては、いずれも、衝突板17のアンモニア系溶液Fが衝突する面の中心は、壁面から10mmの距離に置かれ、その衝突面は排気ガスの流れに対しても、また、アンモニア系溶液Fの主噴射方向に対しても、45°傾斜している。   The distance between the shielding plate 14 and the injection port 13a in Example 1 is 50 mm, and the distance between the step 4b and the injection port 13a in Comparative Example 2 is 145 mm. As for the collision plate 17, the center of the surface of the collision plate 17 where the ammonia-based solution F collides is placed at a distance of 10 mm from the wall surface. Also, it is inclined 45 ° with respect to the main injection direction of the ammonia-based solution F.

この実施例と比較例1、2に関して、NOx浄化試験を行った。このNOx浄化試験は、ガソリン13モードの9モード目(定格回転の60%回転、60%トルク)で行った。この結果を図8と図9に示す。   A NOx purification test was conducted on this example and Comparative Examples 1 and 2. This NOx purification test was conducted in the ninth mode of gasoline 13 mode (60% rotation of rated rotation, 60% torque). The results are shown in FIGS.

図8及び図9に示す横軸の当量比とは、理想状態でNOxと反応するアンモニアの比率である。当量比1の場合は、噴霧した尿素から発生するアンモニアの量が排気管中のNOxと1:1で反応する量である。   The equivalent ratio on the horizontal axis shown in FIGS. 8 and 9 is the ratio of ammonia that reacts with NOx in an ideal state. When the equivalence ratio is 1, the amount of ammonia generated from the sprayed urea is an amount that reacts 1: 1 with NOx in the exhaust pipe.

このNOx浄化率を比較した図8によれば、実施例(実線A)と比較例2(点線C)は、ほぼ理想状態のNOx浄化率で推移し、当量比1.0ではNOx浄化率が、目標NOx浄化率90%以上に対して、それぞれ99%、98%と目標値を上回っているが、それと比較して、比較例1(一点鎖線B)は当量比0.5付近から既に理想浄化率(当量比0.5の場合は浄化率50%)を若干下回り始め、当量比1.0においても82%というNOx浄化率となっていることが分かる。   According to FIG. 8 in which the NOx purification rates are compared, Example (solid line A) and Comparative Example 2 (dotted line C) change at an ideal NOx purification rate, and the NOx purification rate is 1.0 at an equivalent ratio of 1.0. Compared to the target values of 99% and 98% for the target NOx purification rate of 90% or higher, respectively, Comparative Example 1 (dashed line B) is already ideal from around the equivalent ratio of 0.5. It can be seen that the purification rate (a purification rate of 50% in the case of an equivalence ratio of 0.5) starts slightly below, and the NOx purification rate of 82% is obtained even at an equivalence ratio of 1.0.

また、図9によれば、アンモニアスリップは、実施例(実線A)と比較例2(点線C)では当量比1.0付近まで殆ど出ていないが、NOx浄化率が低い比較例1(一点鎖線B)では著しいことが分かる。   Further, according to FIG. 9, ammonia slip hardly appears up to an equivalence ratio of about 1.0 in Example (solid line A) and Comparative Example 2 (dotted line C), but Comparative Example 1 (one point) with a low NOx purification rate. It can be seen that this is remarkable in the chain line B).

従って、排気管内噴射装置13の上流側の近傍に遮蔽板14を設けた排気管形状では、排気管に段差4bを設けることなく、段差付き排気管形状と同様に、高いNOx浄化率を得られることが分かる。   Therefore, in the exhaust pipe shape in which the shielding plate 14 is provided in the vicinity of the upstream side of the in-pipe injection device 13, a high NOx purification rate can be obtained as in the exhaust pipe shape with a step without providing the step 4b in the exhaust pipe. I understand that.

本発明に係る第1実施の形態の排気ガス浄化システムの全体構成を示す図である。It is a figure showing the whole exhaust gas purification system composition of a 1st embodiment concerning the present invention. 排気管内噴射装置の上流側に遮蔽板を設けた構成を示す部分図である。It is a fragmentary figure which shows the structure which provided the shielding board in the upstream of the injection apparatus in an exhaust pipe. 遮蔽板と排気通路の関係を示す排気通路の断面図である。It is sectional drawing of an exhaust passage which shows the relationship between a shielding board and an exhaust passage. 第2の実施の形態の衝突板で形成される分散部材を設けた構成を示す部分図である。It is a fragmentary figure which shows the structure which provided the dispersion | distribution member formed with the collision board of 2nd Embodiment. 第2の実施の形態の円錐を頭部に有する棒状体で形成される分散部材を設けた構成を示す部分図である。It is a fragmentary figure which shows the structure which provided the dispersion member formed with the rod-shaped body which has the cone of 2nd Embodiment in the head. 比較例1の遮蔽板を設けず分散部材を設けた構成を示す部分図である。It is a fragmentary figure which shows the structure which provided the dispersion member without providing the shielding board of the comparative example 1. 比較例2の段差と分散部材を設けた構成を示す部分図である。It is a fragmentary figure which shows the structure which provided the level | step difference and the dispersion member of the comparative example 2. 実施例と比較例1、2のNOx浄化率を示す図である。It is a figure which shows the NOx purification rate of an Example and Comparative Examples 1 and 2. 実施例と比較例1、2のアンモニアスリップを示す図である。It is a figure which shows the ammonia slip of an Example and Comparative Examples 1 and 2. FIG.

符号の説明Explanation of symbols

E エンジン
1 排気ガス浄化システム
4 排気通路
10 排気ガス浄化装置
11 アンモニア選択還元型NOx触媒
13 排気管内噴射装置
13a 噴射口
14 遮蔽板(遮蔽部材)
17 衝突板(分散部材)
17A 円錐形状の棒状体
F アンモニア系溶液(浄化剤、液滴)
G 排気ガス
Gc 浄化された排気ガス
E Engine 1 Exhaust gas purification system 4 Exhaust passage 10 Exhaust gas purification device 11 Ammonia selective reduction type NOx catalyst 13 In-pipe injection device 13a Injection port 14 Shield plate (shield member)
17 Collision plate (dispersion member)
17A Conical rod-shaped body F Ammonia-based solution (cleaning agent, droplet)
G Exhaust gas Gc Purified exhaust gas

Claims (6)

内燃機関の排気通路に配設された排気ガス浄化装置で消費される浄化剤を、排気管内噴射装置によって前記排気ガス浄化装置より上流側の前記排気通路内に供給して排気ガスに混入させる排気ガス浄化方法において、前記排気通路に遮蔽部材を設けると共に、前記遮蔽部材の下流側に前記浄化剤を噴射して、前記浄化剤の微粒化を促進させることを特徴とする排気ガス浄化方法。   Exhaust gas that is supplied to the exhaust gas passage upstream of the exhaust gas purifying device by an exhaust pipe injection device and that is mixed with the exhaust gas by the exhaust gas injection device, in the exhaust gas purifying device disposed in the exhaust passage of the internal combustion engine In the gas purification method, an exhaust gas purification method characterized by providing a shielding member in the exhaust passage and injecting the purification agent downstream of the shielding member to promote atomization of the purification agent. 前記排気通路内に噴射された浄化剤を分散部材に衝突させて、前記浄化剤の微粒化を促進させることを特徴とする請求項1記載の排気ガス浄化方法。   The exhaust gas purification method according to claim 1, wherein the purification agent injected into the exhaust passage collides with a dispersion member to promote atomization of the purification agent. 内燃機関の排気通路に排気ガス浄化装置を備えると共に、該排気ガス浄化装置で消費される浄化剤を前記排気ガス浄化装置の上流側の前記排気通路内に供給して排気ガスに混入させる排気管内噴射装置を備えた排気ガス浄化システムにおいて、前記排気通路に遮蔽部材を、前記排気管内噴射装置の噴射口の上流側に設けたことを特徴とする排気ガス浄化システム。   In the exhaust pipe, an exhaust gas purification device is provided in the exhaust passage of the internal combustion engine, and a purification agent consumed in the exhaust gas purification device is supplied into the exhaust passage upstream of the exhaust gas purification device and mixed into the exhaust gas. The exhaust gas purification system provided with the injection apparatus WHEREIN: The exhaust-gas purification system characterized by providing the shielding member in the said exhaust passage in the upstream of the injection port of the said injection apparatus in an exhaust pipe. 前記排気通路内において、前記浄化剤の噴射経路に前記浄化剤の微粒化を促進させる分散部材を設けたことを特徴とする請求項3記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 3, wherein a dispersion member that promotes atomization of the purification agent is provided in the injection path of the purification agent in the exhaust passage. 前記排気ガス浄化装置がアンモニア選択還元型NOx触媒を備えて形成され、前記浄化剤がアンモニア系溶液であることを特徴とする少なくとも請求項3又は4に記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 3 or 4, wherein the exhaust gas purification device is formed with an ammonia selective reduction type NOx catalyst, and the purification agent is an ammonia-based solution. 前記排気ガス浄化装置が、上流側の酸化触媒と下流側のNOx吸蔵還元型触媒を備えて形成された排気ガス浄化装置、上流側の酸化触媒と下流側のNOx直接還元型触媒を備えて形成された排気ガス浄化装置、あるいは、酸化触媒を有する連続再生型ディーゼルパティキュレートフィルタを備えて形成された排気ガス浄化装置のいずれか一つで構成され、前記浄化剤が炭化水素であることを特徴とする少なくとも請求項3又は4に記載の排気ガス浄化システム。
The exhaust gas purification device is formed with an exhaust gas purification device formed with an upstream oxidation catalyst and a downstream NOx occlusion reduction catalyst, an upstream oxidation catalyst and a downstream NOx direct reduction catalyst. Or an exhaust gas purification device formed with a continuous regeneration type diesel particulate filter having an oxidation catalyst, and the purification agent is a hydrocarbon. The exhaust gas purification system according to claim 3 or 4, at least.
JP2006082207A 2006-03-24 2006-03-24 Exhaust gas purification system Active JP4830570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006082207A JP4830570B2 (en) 2006-03-24 2006-03-24 Exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006082207A JP4830570B2 (en) 2006-03-24 2006-03-24 Exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2007255343A true JP2007255343A (en) 2007-10-04
JP4830570B2 JP4830570B2 (en) 2011-12-07

Family

ID=38629822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006082207A Active JP4830570B2 (en) 2006-03-24 2006-03-24 Exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4830570B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330838A (en) * 2006-06-12 2007-12-27 Miura Co Ltd Mixing promotion unit for denitration apparatus and denitration apparatus provided with it
DE102009026754A1 (en) 2008-06-05 2009-12-10 DENSO CORPORATION, Kariya-shi Exhaust gas purification device and method for purifying exhaust gas
JP2010084710A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
CN101856598A (en) * 2010-05-28 2010-10-13 中电投远达环保工程有限公司 Smoke gas mixing element and smoke gas denitration system
JP2017150790A (en) * 2016-02-26 2017-08-31 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler, and method of removing solid particulate
CN107131032A (en) * 2011-09-08 2017-09-05 田纳科汽车营运公司 Preform injection exhaust gas flow adjuster
KR101855828B1 (en) * 2016-10-26 2018-05-11 주식회사 애니텍 Wet scrubber apparatus to improve mixture efficiency of cleaning liquid and NOx, SOx of exhaust gas
CN111420544A (en) * 2020-05-09 2020-07-17 浙江南化防腐设备有限公司 Hydrogen peroxide low-temperature denitration device and denitration process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166410A (en) * 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JPH11319491A (en) * 1998-05-20 1999-11-24 Meidensha Corp Denitration equipment
JP2004532954A (en) * 2001-06-30 2004-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixing equipment for exhaust gas purification equipment
JP2005291088A (en) * 2004-03-31 2005-10-20 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006046252A (en) * 2004-08-06 2006-02-16 Isuzu Motors Ltd Exhaust emission control method and engine provided with exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166410A (en) * 1997-12-04 1999-06-22 Hino Motors Ltd Exhaust emission control device
JPH11319491A (en) * 1998-05-20 1999-11-24 Meidensha Corp Denitration equipment
JP2004532954A (en) * 2001-06-30 2004-10-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Mixing equipment for exhaust gas purification equipment
JP2005291088A (en) * 2004-03-31 2005-10-20 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
JP2006046252A (en) * 2004-08-06 2006-02-16 Isuzu Motors Ltd Exhaust emission control method and engine provided with exhaust emission control device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007330838A (en) * 2006-06-12 2007-12-27 Miura Co Ltd Mixing promotion unit for denitration apparatus and denitration apparatus provided with it
DE102009026754A1 (en) 2008-06-05 2009-12-10 DENSO CORPORATION, Kariya-shi Exhaust gas purification device and method for purifying exhaust gas
JP2010084710A (en) * 2008-10-01 2010-04-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
CN101856598A (en) * 2010-05-28 2010-10-13 中电投远达环保工程有限公司 Smoke gas mixing element and smoke gas denitration system
CN107131032A (en) * 2011-09-08 2017-09-05 田纳科汽车营运公司 Preform injection exhaust gas flow adjuster
CN107131032B (en) * 2011-09-08 2019-09-27 田纳科汽车营运公司 Preform injection exhaust gas flow adjuster
JP2017150790A (en) * 2016-02-26 2017-08-31 三菱日立パワーシステムズ株式会社 Exhaust duct and boiler, and method of removing solid particulate
KR101855828B1 (en) * 2016-10-26 2018-05-11 주식회사 애니텍 Wet scrubber apparatus to improve mixture efficiency of cleaning liquid and NOx, SOx of exhaust gas
CN111420544A (en) * 2020-05-09 2020-07-17 浙江南化防腐设备有限公司 Hydrogen peroxide low-temperature denitration device and denitration process

Also Published As

Publication number Publication date
JP4830570B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP3938187B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4961847B2 (en) Exhaust gas purification method and exhaust gas purification system
CN101627190B (en) Exhaust gas purification apparatus for internal combustion engine
JP4816967B2 (en) Exhaust gas purification device for internal combustion engine
JP4830570B2 (en) Exhaust gas purification system
RU2278281C2 (en) Device for and method of processing of waste gases formed when engine operates on lean mixtures by selective catalytic reduction of nitrogen oxides
JP5251266B2 (en) Exhaust gas purification device and exhaust gas purification system
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
US20090173063A1 (en) Mitigation of Particulates and NOx in Engine Exhaust
JP2014080979A (en) Exhaust processing method
KR20060069355A (en) Methods of controlling reductant addition
US9605573B2 (en) System and method for gas/liquid mixing in an exhaust aftertreatment system
WO2011136320A1 (en) Exhaust purification system for internal combustion engine
JP2010019239A (en) Exhaust emission control device
JP2009156071A (en) Exhaust emission control device for internal combustion engine
KR20180068808A (en) Exhaust gas purification system and controlling method thereof
JP2008240722A (en) Exhaust emission control device
JP2009062928A (en) Additive distribution board structure for exhaust passage
JP2018105248A (en) Exhaust emission control device
JP2009156067A (en) Exhaust emission control device for internal combustion engine
JP2009138592A (en) Additive distribution board structure of exhaust passage
JP2005207289A (en) System for fuel addition in exhaust pipe of diesel engine
JP4622903B2 (en) Additive supply device
US10041391B2 (en) Apparatus for purifying exhaust gas
US20140041370A1 (en) Exhaust Treatment System for Internal Combustion Engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3