JP2007250911A - Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element - Google Patents
Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element Download PDFInfo
- Publication number
- JP2007250911A JP2007250911A JP2006073468A JP2006073468A JP2007250911A JP 2007250911 A JP2007250911 A JP 2007250911A JP 2006073468 A JP2006073468 A JP 2006073468A JP 2006073468 A JP2006073468 A JP 2006073468A JP 2007250911 A JP2007250911 A JP 2007250911A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- conductive composition
- conductive
- coefficient thermistor
- temperature coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
Abstract
Description
本発明は、導電性組成物、導電性組成物シートおよびそれらを用いた有機質正特性サーミスタ素子ならびに該有機質正特性サーミスタ素子の製造方法に関する。 The present invention relates to a conductive composition, a conductive composition sheet, an organic positive temperature coefficient thermistor element using the same, and a method for manufacturing the organic positive temperature coefficient thermistor element.
ポリエチレンやエチレン共重合体等の有機ポリマーに、カーボンブラックや金属粉末等の導電性物質の粉末を分散させた導電性組成物は、温度が上昇するとその抵抗値が上昇するというPTC(positive temperature coefficient)特性を有することが知られている。このような組成物は、例えば、特許文献1および2に開示されている。 A conductive composition in which a conductive material such as carbon black or metal powder is dispersed in an organic polymer such as polyethylene or ethylene copolymer has a positive temperature coefficient that increases its resistance as the temperature rises. ) Is known to have properties. Such a composition is disclosed in Patent Documents 1 and 2, for example.
PTC特性を有する素子(正特性サーミスタ素子)は、素子の温度がある閾温度に達すると、急激に高抵抗(トリップ状態)となる。このような高抵抗の状態になる場合としては、正特性サーミスタ素子に過剰電流が流れて素子の温度がある閾温度に達する場合や、機器の環境温度が上昇して素子の温度が閾温度に達する場合などが考えられる。 An element having a PTC characteristic (positive characteristic thermistor element) rapidly becomes high resistance (trip state) when the temperature of the element reaches a certain threshold temperature. Such a high resistance state can be caused by excessive current flowing through the positive temperature coefficient thermistor element and when the element temperature reaches a certain threshold temperature, or when the environmental temperature of the device rises and the element temperature reaches the threshold temperature. The case where it reaches is considered.
前述のように、正特性サーミスタ素子は、素子の温度がある閾温度に達すると、急激に高抵抗(トリップ状態)となる。これにより、素子に流れる電流を遮断することができる。このため、正特性サーミスタ素子は、電気回路を過電流から保護する用途等に用いられている。 As described above, the positive temperature coefficient thermistor element rapidly becomes high resistance (trip state) when the temperature of the element reaches a certain threshold temperature. Thereby, the electric current which flows into an element can be interrupted | blocked. For this reason, the positive temperature coefficient thermistor element is used for the purpose of protecting an electric circuit from overcurrent.
電気回路を過電流から保護する用途に用いる場合、正特性サーミスタ素子には次のような特性が求められる。室温での抵抗値が小さいこと、トリップ状態になったときの抵抗値の増加率が大きいこと、トリップ状態を繰り返しても室温での抵抗値が大きくならないこと、トリップ状態を繰り返しても発火などの異常現象が生じないこと等である。 When the electric circuit is used for protection from overcurrent, the following characteristics are required for the positive temperature coefficient thermistor element. The resistance value at room temperature is small, the rate of increase in resistance value when the trip state is reached, the resistance value at room temperature does not increase even if the trip state is repeated, and firing is repeated even if the trip state is repeated. The abnormal phenomenon does not occur.
しかしながら、ポリマー系正特性サーミスタ素子の場合、トリップ状態ではポリマーが熱により軟化しているため、導電性物質が動きやすい。このため、導電性物質の再凝集により、トリップ状態での抵抗値が減少するなどの変化が起こりやすい。さらには、トリップ状態の繰り返しによって室温における抵抗値が上昇し、ポリマーが発火を起こす場合がある。 However, in the case of a polymer-based positive temperature coefficient thermistor element, since the polymer is softened by heat in the trip state, the conductive substance is easy to move. For this reason, changes such as a decrease in the resistance value in the trip state are likely to occur due to re-aggregation of the conductive material. Furthermore, the resistance value at room temperature increases due to repeated tripping, and the polymer may ignite.
本発明は、かかる問題点に鑑みてなされたものであって、室温での抵抗値が小さく、一方、トリップ状態になったときの抵抗値の増加率は大きく、かつ、トリップ状態を繰り返しても室温での抵抗値が大きくならず、発火などの異常現象が生じることもない、有機質正特性サーミスタ素子を提供することを目的とする。また、該サーミスタ素子の作製に用いる導電性組成物および導電性組成物シートを提供することも目的とする。 The present invention has been made in view of such problems, and the resistance value at room temperature is small, while the increase rate of the resistance value when the trip state is reached is large, and the trip state is repeated. An object of the present invention is to provide an organic positive temperature coefficient thermistor element in which the resistance value at room temperature does not increase and an abnormal phenomenon such as ignition does not occur. It is another object of the present invention to provide a conductive composition and a conductive composition sheet used for manufacturing the thermistor element.
本発明に係る導電性組成物は、有機ポリマー中に導電性粉末と窒化ホウ素粉末とが分散している導電性組成物であって、前記窒化ホウ素粉末を前記導電性組成物の全容量に対して1〜20容量%含有していることを特徴とする。 The conductive composition according to the present invention is a conductive composition in which conductive powder and boron nitride powder are dispersed in an organic polymer, and the boron nitride powder is added to the total capacity of the conductive composition. 1 to 20% by volume.
前記導電性粉末を、前記導電性組成物の全容量に対して20〜65容量%含有していることが好ましい。 It is preferable that the conductive powder is contained in an amount of 20 to 65% by volume with respect to the total volume of the conductive composition.
前記導電性粉末として、金属粉末および/または非金属粉末を用いることができる。前記金属粉末にはニッケル、銅、白金、コバルト等を用いることができるが、価格と耐候性の観点から、ニッケル粉末、ニッケル系合金粉末、または、ニッケル系コート粉末を用いることが好ましい。前記非金属粉末は、カーボンブラック粉末、窒化チタン粉末および窒化ジルコニウム粉末からなる群から選択された少なくとも1つの粉末であることが好ましい。 Metal powder and / or non-metal powder can be used as the conductive powder. Nickel, copper, platinum, cobalt and the like can be used for the metal powder, but nickel powder, nickel-based alloy powder, or nickel-based coated powder is preferably used from the viewpoint of price and weather resistance. The non-metallic powder is preferably at least one powder selected from the group consisting of carbon black powder, titanium nitride powder and zirconium nitride powder.
前記有機ポリマーとして、ポリエチレン、エチレン共重合体、フッ化ビニリデンおよびポリアミドからなる群から選択された少なくとも1つを用いることができる。 As the organic polymer, at least one selected from the group consisting of polyethylene, ethylene copolymer, vinylidene fluoride, and polyamide can be used.
本発明に係る導電性組成物シートは、前記導電性組成物を用いて形成され、該シートに電子線やγ線を照射すると安定な状態となる。電子線やγ線の照射量は80〜4000kGyであることが好ましい。 The conductive composition sheet according to the present invention is formed using the conductive composition, and becomes stable when the sheet is irradiated with an electron beam or γ-ray. The irradiation amount of electron beam or γ ray is preferably 80 to 4000 kGy.
本発明に係る有機質正特性サーミスタ素子は、電子線やγ線照射後の導電性組成物シートの両面に少なくとも一対の電極を設けることで得ることができる。あるいは、本発明に係る有機質正特性サーミスタ素子は、電子線やγ線照射前の導電性組成物シートの両面に少なくとも一対の電極を設け、その後に電子線やγ線を照射して得ることもできる。 The organic positive temperature coefficient thermistor element according to the present invention can be obtained by providing at least a pair of electrodes on both surfaces of a conductive composition sheet after irradiation with an electron beam or γ-ray. Alternatively, the organic positive temperature coefficient thermistor element according to the present invention may be obtained by providing at least a pair of electrodes on both surfaces of the conductive composition sheet before irradiation with an electron beam or γ-ray, and then irradiating with an electron beam or γ-ray. it can.
本発明に係る有機質正特性サーミスタ素子の製造方法は、有機ポリマーに、金属粉末および/または非金属粉末と、窒化ホウ素粉末とを添加し、混練をして、導電性組成物を得る工程と、前記導電性組成物を加工して導電性組成物シートを得る工程と、前記導電性組成物シートに電子線やγ線を照射する工程と、前記導電性組成物シートに電極を取り付ける工程と、を有することを特徴とする。 A method for producing an organic positive temperature coefficient thermistor element according to the present invention includes a step of adding a metal powder and / or a non-metal powder and a boron nitride powder to an organic polymer and kneading to obtain a conductive composition; Processing the conductive composition to obtain a conductive composition sheet; irradiating the conductive composition sheet with an electron beam or γ-ray; attaching an electrode to the conductive composition sheet; It is characterized by having.
本発明に係る導電性組成物は、導電性組成物の全容量に対して窒化ホウ素粉末が1〜20容量%含有されているので、該導電性組成物を用いて形成された有機質正特性サーミスタ素子は、室温での抵抗値が小さく、一方、トリップ状態になったときの抵抗値の増加率は大きく、かつ、トリップ状態を繰り返しても室温での抵抗値が大きくならず、発火などの異常現象が生じることもない優れた特性を有する。 Since the conductive composition according to the present invention contains 1 to 20% by volume of boron nitride powder with respect to the total capacity of the conductive composition, an organic positive temperature coefficient thermistor formed using the conductive composition The element has a low resistance value at room temperature. On the other hand, the rate of increase in resistance value when tripped is large, and the resistance value does not increase even when tripping is repeated, causing abnormalities such as ignition. It has excellent characteristics that do not cause any phenomenon.
有機質正特性サーミスタ素子を製造するためには、ポリエチレンやエチレン共重合体等の有機ポリマーに、カーボンブラックや金属粉末等の導電性粉末を分散させた導電性組成物を製造する必要がある。本発明者は、電気特性の改善を目的として、カーボンブラックや金属粉末等の導電性粉末を添加すると同時に、窒化ホウ素粉末を有機ポリマーに特定量添加して導電性組成物を製造し、得られた導電性組成物で有機質正特性サーミスタ素子を作製した。 In order to manufacture an organic positive temperature coefficient thermistor element, it is necessary to manufacture a conductive composition in which a conductive powder such as carbon black or metal powder is dispersed in an organic polymer such as polyethylene or ethylene copolymer. The inventors have obtained a conductive composition by adding a specific amount of boron nitride powder to an organic polymer at the same time as adding conductive powder such as carbon black or metal powder for the purpose of improving electrical characteristics. An organic positive temperature coefficient thermistor device was fabricated using the conductive composition.
作製した有機質正特性サーミスタ素子の評価を行ったところ、室温での抵抗値が小さく、一方、トリップ状態になったときの抵抗値の増加率が正特性サーミスタ素子として十分に大きく、かつ、トリップ状態を繰り返しても室温での抵抗値が大きくならず、発火などの異常現象も生じなかった。 When the fabricated organic positive temperature coefficient thermistor element was evaluated, the resistance value at room temperature was small. On the other hand, the increase rate of the resistance value in the trip state was sufficiently large as the positive temperature coefficient thermistor element, and the trip state The resistance value at room temperature did not increase even when the process was repeated, and abnormal phenomena such as ignition did not occur.
本発明者は、この知見に基づき、本発明をするに至った。以下、本発明に係る有機質正特性サーミスタ素子について詳細に説明する。 The present inventor has come to make the present invention based on this finding. Hereinafter, the organic positive temperature coefficient thermistor element according to the present invention will be described in detail.
まず、有機質正特性サーミスタ素子について、一般的な説明をする。有機質正特性サーミスタ素子は、有機ポリマーに導電性粉末を分散させた導電性組成物からなるシートを、二枚の金属電極箔で挟み込む構造をしている。 First, a general description of the organic positive temperature coefficient thermistor element will be given. The organic positive temperature coefficient thermistor element has a structure in which a sheet made of a conductive composition in which a conductive powder is dispersed in an organic polymer is sandwiched between two metal electrode foils.
PTC特性は、有機ポリマーの融点に依存する。すなわち、有機ポリマーの温度を上昇させていくと、融点近傍おいて有機ポリマーに大きな体積膨張が生じ、導電パスが切断され、抵抗値が上昇する。 PTC properties depend on the melting point of the organic polymer. That is, when the temperature of the organic polymer is raised, a large volume expansion occurs in the organic polymer near the melting point, the conductive path is cut, and the resistance value rises.
有機ポリマーとしては、ポリエチレンやエチレン共重合体などが一般に使用されている。導電性粉末としては、カーボンブラックや金属粉末が一般に使用されている。有機質正特性サーミスタ素子においては、一般的には導電性粉末が約20〜65容量%含まれ、残りが有機ポリマーとなっている。 As the organic polymer, polyethylene or ethylene copolymer is generally used. As the conductive powder, carbon black or metal powder is generally used. In the organic positive temperature coefficient thermistor element, generally, about 20 to 65% by volume of conductive powder is contained, and the rest is an organic polymer.
次に、本発明に係る有機質正特性サーミスタ素子について説明する。本発明に係る有機質正特性サーミスタ素子においては、有機ポリマー中に導電性粉末と窒化ホウ素粉末とを分散させた導電性組成物を用いる。窒化ホウ素粉末は、トリップ状態における抵抗値の低下を防ぐとともに、トリップの繰り返しにより室温での抵抗値が上昇することや、発火などの異常現象が発生することを抑える働きがある。 Next, the organic positive temperature coefficient thermistor element according to the present invention will be described. In the organic positive temperature coefficient thermistor element according to the present invention, a conductive composition in which conductive powder and boron nitride powder are dispersed in an organic polymer is used. Boron nitride powder has a function of preventing a decrease in resistance value in a trip state and suppressing an increase in resistance value at room temperature due to repeated trips and occurrence of abnormal phenomena such as ignition.
該導電性組成物の全容量に対して窒化ホウ素粉末を1〜20容量%含有させる。用いる窒化ホウ素粉末は、平均粒子径0.01〜20μmのものを用いることが好ましい。窒化ホウ素粉末の平均粒子径が0.01μm未満では酸素含有量が多くなり酸窒化ホウ素となってしまい、前記した働きが得られにくくなる。一方、窒化ホウ素粉末の平均粒子径が20μmを上回ると、導電粉末より粒径が大きくなり、混合させても添加効果が得られにくくなる。 Boron nitride powder is contained in an amount of 1 to 20% by volume with respect to the total volume of the conductive composition. The boron nitride powder used preferably has an average particle size of 0.01 to 20 μm. When the average particle diameter of the boron nitride powder is less than 0.01 μm, the oxygen content increases and boron oxynitride is formed, and the above-described function is hardly obtained. On the other hand, when the average particle size of the boron nitride powder exceeds 20 μm, the particle size becomes larger than that of the conductive powder, and even if mixed, it is difficult to obtain the effect of addition.
ここで言う平均粒子径とは、レーザー回折・散乱方式の粒度分布測定装置マイクロトラック(日機装株式会社製)を用いて測定したD50(粉体の集団の全体積を100%として累積カーブを求めたとき、その累積カーブが50%となる点の粒子径)のことである。 The average particle size referred to here is D50 (measured using a laser diffraction / scattering particle size distribution measuring device Microtrac (manufactured by Nikkiso Co., Ltd.)), and a cumulative curve was determined with the total volume of the powder group as 100%. The particle diameter at which the cumulative curve becomes 50%.
有機ポリマー中に導電性粉末を添加すると同時に、窒化ホウ素粉末を添加してもよいし、また、有機ポリマー中に導電性粉末を分散させたものに窒化ホウ素粉末を添加して導電性組成物を作製してもよい。 The boron nitride powder may be added simultaneously with the addition of the conductive powder in the organic polymer, or the conductive composition is obtained by adding the boron nitride powder to a dispersion of the conductive powder in the organic polymer. It may be produced.
窒化ホウ素粉末の含有量は1〜20容量%が好ましく、特に5〜15容量%であることがより好ましい。窒化ホウ素粉末の導電性組成物に対する添加量が1容量%より少ないと、窒化ホウ素粉末を添加した効果が十分には生ぜず、トリップ状態における抵抗値が低下したり、トリップの繰り返しにより室温での抵抗値が大きくなったり、発火などの異常現象が生じたりするおそれがある。一方、窒化ホウ素粉末の導電性組成物に対する添加量が20容量%より多いと、抵抗値が大きくなりすぎて、PTC特性を示さなくなる場合がある。 The content of boron nitride powder is preferably 1 to 20% by volume, and more preferably 5 to 15% by volume. If the amount of boron nitride powder added to the conductive composition is less than 1% by volume, the effect of adding boron nitride powder will not be sufficiently produced, and the resistance value in the trip state will decrease, or the trip may be repeated at room temperature due to repeated trips. There is a risk that the resistance value may increase or abnormal phenomena such as ignition may occur. On the other hand, if the amount of boron nitride powder added to the conductive composition is more than 20% by volume, the resistance value may become too large to exhibit PTC characteristics.
本発明に係る導電性組成物においては、導電性粉末として、金属粉末だけでなく、カーボンブラック、窒化チタン、窒化ジルコニウムなどの非金属粉末も好適に使用することができる。これら導電性粉末の合計含有量は、ポリマーと導電性粉末からなる導電性組成物の全容量に対して、20〜65容量%であることが好ましい。20容量%より少ないと、導電性が不十分となり、65容量%を上回るとPTC特性を示さなくなるおそれがある。また、導電性粉末は、平均粒子径が0.005〜100μmのものを用いることが好ましい。導電性粉末の平均粒子径が0.005μm未満では混合が困難となり、100μmを上回るとかえって抵抗が高くなることがある。 In the conductive composition according to the present invention, not only a metal powder but also a nonmetal powder such as carbon black, titanium nitride, and zirconium nitride can be suitably used as the conductive powder. The total content of these conductive powders is preferably 20 to 65% by volume with respect to the total volume of the conductive composition comprising the polymer and the conductive powder. If it is less than 20% by volume, the conductivity becomes insufficient, and if it exceeds 65% by volume, PTC characteristics may not be exhibited. Moreover, it is preferable to use the conductive powder having an average particle diameter of 0.005 to 100 μm. When the average particle size of the conductive powder is less than 0.005 μm, mixing becomes difficult, and when it exceeds 100 μm, the resistance may be increased.
金属粉末としてはニッケル、銅、白金、コバルト等を用いることができるが、価格と耐候性の点から、ニッケル粉末、ニッケル系合金粉末、または、ニッケル系コート粉末を好適に使用することができる。有機ポリマーに分散させることのできるニッケル粉末、ニッケル系合金粉末、ニッケル系コート粉末は、特に限定されず、例えば、市販されているフィラー用ニッケル粉末(平均粒子径数μmから数十μmのもの)を使用することができる。また、ニッケル水溶液をヒドラジンなどの還元剤で還元して作製したニッケル粉末を使用することもできる。 As the metal powder, nickel, copper, platinum, cobalt, or the like can be used. From the viewpoint of price and weather resistance, nickel powder, nickel-based alloy powder, or nickel-based coated powder can be preferably used. Nickel powder, nickel-based alloy powder, and nickel-based coating powder that can be dispersed in the organic polymer are not particularly limited. For example, commercially available nickel powder for filler (having an average particle diameter of several μm to several tens of μm) Can be used. Moreover, nickel powder produced by reducing a nickel aqueous solution with a reducing agent such as hydrazine can also be used.
ニッケル系合金粉末としては、コバルト、クロム、アルミニウム、チタン、亜鉛、銅、錫等との合金粉末があげられる。また、ニッケル系コート粉末としては、ニッケル粉末の表面がコバルト、クロム、アルミニウム、チタン、亜鉛、銅、錫などの金属あるいはニッケルとの合金、もしくはカーボンブラック、窒化チタン、窒化ジルコニウムなどの導電性非金属物質等でコートされているものがあげられる。 Examples of the nickel-based alloy powder include alloy powders with cobalt, chromium, aluminum, titanium, zinc, copper, tin and the like. In addition, as for nickel-based coating powder, the surface of nickel powder is a non-conductive metal such as cobalt, chromium, aluminum, titanium, zinc, copper, tin or alloy with nickel, or carbon black, titanium nitride, zirconium nitride. Examples thereof include those coated with a metal substance.
なお、窒化ホウ素の添加による電気特性の改善がどのような機構でなされているのかは明確ではないが、窒化ホウ素の有する優れた熱伝導性、絶縁性、潤滑性、環境安定性等が寄与していると考えられる。 The mechanism by which boron nitride is added to improve electrical characteristics is not clear, but the excellent thermal conductivity, insulation, lubricity, environmental stability, etc. of boron nitride contribute. It is thought that.
本発明に係る導電性組成物においては、有機ポリマーとして、ポリエチレンやエチレン共重合体のほか、フッ化ビニリデン、ポリアミド等を使用することができる。 In the conductive composition according to the present invention, as the organic polymer, in addition to polyethylene and an ethylene copolymer, vinylidene fluoride, polyamide and the like can be used.
次に、前述のようにして作製した導電性組成物を加熱プレス機等を用いてシート状に加工する。作製した導電性組成物シートの両面に、加熱プレス機を用いて、ニッケル箔等の電極を圧着する。 Next, the conductive composition produced as described above is processed into a sheet using a heating press or the like. Electrodes, such as nickel foil, are pressure-bonded to both surfaces of the produced conductive composition sheet using a hot press.
電極を圧着した導電性組成物シートに、電子線やγ線を照射する。電子線やγ線を照射することによりPTC特性が安定化する。照射する電子線やγ線の量は、80〜4000kGyが好ましい。照射する電子線やγ線の量が4000kGyを上回るとコスト面で割高となる。材料の組み合わせと必要とされるPTCサーミスタの特性によっては、電子線やγ線を照射する必要はない。なお、導電性組成物シートに電子線やγ線を照射した後に電極を圧着してもよい。 The conductive composition sheet having the electrode bonded thereto is irradiated with an electron beam or γ-ray. Irradiation with an electron beam or γ-ray stabilizes the PTC characteristics. The amount of electron beam or γ-ray to be irradiated is preferably 80 to 4000 kGy. If the amount of electron beam or γ-ray to be irradiated exceeds 4000 kGy, the cost will be high. Depending on the combination of materials and the properties of the required PTC thermistor, there is no need to irradiate an electron beam or γ-ray. Note that the electrode may be pressure-bonded after the conductive composition sheet is irradiated with an electron beam or γ-ray.
電極を圧着し、電子線やγ線を照射した後の導電性組成物シートを、パンチングマシーンを用いて所定の寸法に打ち抜く。そして、リードとなる金属箔を前記電極にハンダ付けすることにより、有機質正特性サーミスタ素子を得ることができる。 The conductive composition sheet after the electrodes are pressure-bonded and irradiated with an electron beam or γ-ray is punched into a predetermined size using a punching machine. An organic positive temperature coefficient thermistor element can be obtained by soldering a metal foil to be a lead to the electrode.
(実施例1〜5、比較例1〜3)
導電性物質としてニッケル粉末を用いて、有機質正特性サーミスタ素子を作製した。該ニッケル粉末は、以下のようにして、二段階で還元析出させて作製した。
(Examples 1-5, Comparative Examples 1-3)
An organic positive temperature coefficient thermistor element was fabricated using nickel powder as the conductive material. The nickel powder was prepared by reduction precipitation in two stages as follows.
酒石酸を含む水酸化ナトリウム水溶液(1125mL)水溶液を攪拌しながら85℃に加熱し、19.5gのニッケルを含む塩化ニッケル水溶液と還元剤としてのヒドラジン89.1gを加え、ニッケル粉末を還元析出させた後、さらに19.5gのニッケルを含む塩化ニッケル水溶液を加えてニッケルを還元析出させ、その後、ろ過および水洗し、80℃、真空中で乾燥させてニッケル粉末を得た。得られたニッケル粉末の平均粒子径は30μmであった。 An aqueous sodium hydroxide solution (1125 mL) containing tartaric acid was heated to 85 ° C. with stirring, an aqueous solution of nickel chloride containing 19.5 g of nickel and 89.1 g of hydrazine as a reducing agent were added, and nickel powder was reduced and precipitated. Thereafter, a nickel chloride aqueous solution containing 19.5 g of nickel was further added to reduce and precipitate nickel, and then filtered and washed with water, followed by drying in vacuum at 80 ° C. to obtain nickel powder. The average particle diameter of the obtained nickel powder was 30 μm.
そして、有機ポリマーとしてのポリエチレン樹脂に、前記のようにして作製したニッケル粉末と、平均粒子径2μmの窒化ホウ素粉末(電気化学社製、SP−2)とを、それぞれ表1(実施例1〜5、比較例1〜3)に示した割合になるように添加し、樹脂混練機にて180℃の温度で混練を行い、導電性組成物を作製した。作製した導電性組成物を、加熱プレス機を用いて、厚さ0.5mmのシートに加工した。そして、ニッケル箔電極を該シートの両面に加熱プレス機を用いて、200℃の温度で圧着し、さらに1000kGyの電子線を照射した。その後、該シートを3×4mmのサイズに打抜き、リードとなる金属箔をニッケル箔電極にハンダ付けすることにより、有機質正特性サーミスタ素子を作製した。 Then, nickel powder prepared as described above and polyethylene nitride as an organic polymer and boron nitride powder having an average particle diameter of 2 μm (manufactured by Electrochemical Co., Ltd., SP-2) are respectively shown in Table 1 (Examples 1 to 1). 5, it added so that it might become the ratio shown to Comparative Examples 1-3), it knead | mixed with the temperature of 180 degreeC with the resin kneader, and produced the electrically conductive composition. The produced conductive composition was processed into a sheet having a thickness of 0.5 mm using a heating press. And the nickel foil electrode was crimped | bonded to the both surfaces of this sheet | seat using the heating press machine at the temperature of 200 degreeC, and also the electron beam of 1000 kGy was irradiated. Thereafter, the sheet was punched into a size of 3 × 4 mm, and a metal foil serving as a lead was soldered to a nickel foil electrode to produce an organic positive temperature coefficient thermistor element.
作製した素子の特性を評価するため、抵抗−温度特性(以降、R−T特性と記す。)の測定と、トリップの繰り返しによる抵抗値の上昇の具合および発火の有無(以降、トリップサイクル特性と記す。)の測定を行った。 In order to evaluate the characteristics of the fabricated device, the resistance-temperature characteristics (hereinafter referred to as RT characteristics) are measured, the resistance increases due to repeated trips, and the presence or absence of ignition (hereinafter referred to as trip cycle characteristics and Measurement) was carried out.
R−T特性の測定は、強制的に素子温度を上昇させてトリップを起こさせることにより行った。 The RT characteristics were measured by forcibly raising the element temperature to cause a trip.
具体的には、素子を乾燥機内に設置し、乾燥機内の温度を昇温速度1.5℃/minで室温から160℃まで昇温して、30分間保持した。そして、160℃から40℃まで降温速度1℃/minで降温した。この温度サイクル(室温→160℃→40℃)を1サイクル目とした。 Specifically, the device was placed in a dryer, and the temperature in the dryer was increased from room temperature to 160 ° C. at a temperature increase rate of 1.5 ° C./min and held for 30 minutes. Then, the temperature was decreased from 160 ° C. to 40 ° C. at a temperature decreasing rate of 1 ° C./min. This temperature cycle (room temperature → 160 ° C. → 40 ° C.) was defined as the first cycle.
2サイクル目の温度サイクルを40℃→160℃→40℃とし、3サイクル目の温度サイクルを40℃→160℃→40℃とした。昇温速度、降温速度、160℃での保持時間について、2サイクル目と3サイクル目は、1サイクル目と同様にした。 The temperature cycle of the second cycle was 40 ° C. → 160 ° C. → 40 ° C., and the temperature cycle of the third cycle was 40 ° C. → 160 ° C. → 40 ° C. Regarding the temperature increase rate, the temperature decrease rate, and the holding time at 160 ° C., the second and third cycles were the same as the first cycle.
このような温度サイクルで、昇温と降温を3サイクル繰り返し、この間、素子の抵抗値を20秒間隔で測定し、R−T特性を測定した。 In such a temperature cycle, the temperature rise and the temperature fall were repeated three times, and during this time, the resistance value of the element was measured at intervals of 20 seconds, and the RT characteristic was measured.
R−T特性の良否は、トリップ領域での抵抗値の低下が認められないものを○(良好)とし、トリップ領域での抵抗値の低下が認められるものの、抵抗値が1×104Ωを下回らないものを△とし、トリップ領域での抵抗値が1×104Ωを下回るものを×(不良)と判断した。 As for the quality of the RT characteristic, the resistance value in the trip region is not recognized as good (good), and the resistance value in the trip region is recognized as low, but the resistance value is 1 × 10 4 Ω. A case where the resistance value in the trip region was less than 1 × 10 4 Ω was judged as × (defect).
トリップサイクル特性の測定は、トリップサイクル試験により行った。トリップサイクル試験は、12V−18Aの定電流電圧装置を用い、素子に過電流を流して、トリップを繰り返し起こさせ、この間の室温における抵抗値を測定するとともに、発火の有無を観察することより行った。 Trip cycle characteristics were measured by a trip cycle test. The trip cycle test is performed by using a constant current voltage device of 12V-18A, causing an overcurrent to flow through the element, repeatedly causing trips, measuring the resistance value at room temperature during this time, and observing the presence or absence of ignition. It was.
具体的には、電圧を6秒間印加してトリップを起こさせた後、次の54秒間は電圧を印可せず、流れる電流をゼロにする過程を1サイクルとし、このサイクルを1000回、3000回、6000回と繰り返し、この間の抵抗値を測定するとともに、発火の有無を観察した。 Specifically, after applying a voltage for 6 seconds to cause a trip, the voltage is not applied for the next 54 seconds, and the process of zeroing the flowing current is defined as one cycle. This cycle is 1000 times and 3000 times. , 6000 times was repeated, the resistance value during this time was measured, and the presence or absence of ignition was observed.
トリップサイクル特性の良否は、前記サイクルを6000回繰り返しても発火せず、かつ、室温における抵抗値が試験実施前の抵抗値の5倍以内であるものを○(良好)とし、前記サイクルを6000回繰り返しても発火しないが、室温における抵抗値が試験実施前の抵抗値の5倍以上に上昇したものを△とし、前記サイクルを6000回繰返す前に発火したものを×(不良)と判断した。 The trip cycle characteristic is good (good) when the cycle does not ignite even after repeating the cycle 6000 times, and the resistance value at room temperature is within 5 times the resistance value before the test, and the cycle is 6000. Although it does not ignite even if it is repeated a number of times, it is determined that the resistance value at room temperature has risen to 5 times or more of the resistance value before the test is conducted, and the one that has ignited before repeating the cycle 6000 times is judged as x (defect). .
作製した素子についてのR−T特性およびトリップサイクル特性の評価結果を表1に示す。また、実施例2と比較例1については、R−T特性の測定結果のグラフをそれぞれ図1および図2に示し、トリップサイクル試験の結果のグラフを図3に示す。なお、R−T特性の評価試験において、測定できる抵抗値の上限が53.1MΩであるため、抵抗値が53.1MΩを超える測定点については、抵抗値を53.1MΩとして図1にプロットしている。 Table 1 shows the evaluation results of the RT characteristics and trip cycle characteristics of the fabricated devices. Moreover, about Example 2 and Comparative Example 1, the graph of the measurement result of RT characteristic is shown in FIG. 1 and FIG. 2, respectively, and the graph of the result of a trip cycle test is shown in FIG. In the evaluation test of the RT characteristic, since the upper limit of the measurable resistance value is 53.1 MΩ, the resistance value of the measurement value exceeding 53.1 MΩ is plotted in FIG. 1 as the resistance value of 53.1 MΩ. ing.
(実施例6〜8、比較例4)
導電性物質として用いるニッケル粉末を、市販のニッケル粉末(インコ社製、INCO210)とした以外は、実施例1〜3および比較例1と同様にして、サーミスタ素子を作製し、実施例1〜3および比較例1と同様の特性評価を行った。評価結果を表1に示す。
(Examples 6 to 8, Comparative Example 4)
A thermistor element was produced in the same manner as in Examples 1 to 3 and Comparative Example 1 except that the nickel powder used as the conductive material was a commercially available nickel powder (INCO210, manufactured by Inco Corporation). The same characteristic evaluation as in Comparative Example 1 was performed. The evaluation results are shown in Table 1.
(実施例9〜11)
導電性物質として用いる金属粉末として、ニッケル−コバルト合金でコートしたニッケル系コート粉末を用いた以外は実施例1〜3と同様にして、有機質正特性サーミスタ素子を作製した。
(Examples 9 to 11)
Organic positive temperature coefficient thermistor elements were produced in the same manner as in Examples 1 to 3, except that nickel-based coated powder coated with a nickel-cobalt alloy was used as the metal powder used as the conductive material.
まず、酒石酸を含む水酸化ナトリウム水溶液(1125mL)を攪拌しながら85℃に加熱し、19.5gのニッケルを含む塩化ニッケル水溶液と還元剤としてのヒドラジン89.1gを加え、ニッケル粉末を還元析出させた後、さらに17.6gのニッケルおよび2.0gのコバルトを含む塩化ニッケルおよび塩化コバルト混合水溶液を加えて、ニッケルおよびコバルトをニッケル粉末の表面にさらに還元析出させ、ニッケル−コバルト合金コートニッケル粉末を得た。その後、ろ過および水洗し、80℃、真空中で乾燥させて導電物質のニッケル粉末を得た。作製した素子についてのR−T特性およびトリップサイクル特性の評価結果を表1に示す。 First, a sodium hydroxide aqueous solution (1125 mL) containing tartaric acid was heated to 85 ° C. while stirring, 19.5 g nickel chloride aqueous solution containing nickel and hydrazine 89.1 g as a reducing agent were added, and nickel powder was reduced and precipitated. After that, a mixed aqueous solution of nickel chloride and cobalt chloride containing 17.6 g of nickel and 2.0 g of cobalt was further added to further reduce and precipitate nickel and cobalt on the surface of the nickel powder. Obtained. Then, it filtered and washed with water, and it was made to dry in a vacuum at 80 degreeC, and obtained the nickel powder of the electrically conductive material. Table 1 shows the evaluation results of the RT characteristics and trip cycle characteristics of the fabricated devices.
表1に示す試験結果からわかるように、窒化ホウ素粉末の含有量が本発明の範囲内である実施例1〜11は、R−T特性、トリップサイクル特性ともに良好であった。 As can be seen from the test results shown in Table 1, Examples 1 to 11 in which the content of the boron nitride powder is within the scope of the present invention were good in both RT characteristics and trip cycle characteristics.
これに対して、窒化ホウ素粉末の含有量が本発明の範囲の下限値である1容量%を下回っている比較例1、2、4は、R−T特性、トリップサイクル特性ともに良好ではなかった。窒化ホウ素粉末の含有量が本発明の範囲の上限値である20容量%を上回っている比較例3は、抵抗値が大きくなりすぎ、PTC特性を示さなかった。 In contrast, Comparative Examples 1, 2, and 4 in which the content of the boron nitride powder was less than 1% by volume, which is the lower limit of the range of the present invention, were not good in both RT characteristics and trip cycle characteristics. . In Comparative Example 3 in which the content of boron nitride powder exceeds 20% by volume, which is the upper limit of the range of the present invention, the resistance value was too large and PTC characteristics were not exhibited.
図1は、実施例2のR−T特性の測定結果を示すグラフであるが、昇温と降温を3サイクル繰り返しても、トリップ領域における抵抗値が低下していないことがわかる。これに対して、図2は、比較例1のR−T特性の測定結果を示すグラフであるが、1サイクル目の昇温過程と降温過程および2サイクル目の昇温過程ではトリップ領域における抵抗値の低下が観察されていないものの、2サイクル目の降温過程および3サイクル目の昇温過程と降温過程では、トリップ領域における抵抗値が低下している。 FIG. 1 is a graph showing the measurement results of the RT characteristic of Example 2, and it can be seen that the resistance value in the trip region does not decrease even when the temperature increase and decrease are repeated three cycles. On the other hand, FIG. 2 is a graph showing the measurement results of the RT characteristic of Comparative Example 1, but the resistance in the trip region in the temperature rising process and the temperature decreasing process in the first cycle and the temperature rising process in the second cycle. Although no decrease in value has been observed, the resistance value in the trip region decreases in the temperature decrease process in the second cycle and the temperature increase process and temperature decrease process in the third cycle.
図3は、実施例2および比較例1のトリップサイクル試験の結果を示すグラフであるが、比較例1は実施例2よりも、サイクル回数の増加に伴う室温における抵抗値の上昇率が大きくなっている。なお、実施例2では、サイクル回数6000回まで試験を行っても、サンプル6個中1個も発火しなかったが、比較例1では、サイクル回数1000回までにサンプル6個中1個が発火し、サイクル回数3000回までにサンプル6個中3個が発火し、サイクル回数6000回までにサンプル6個中6個が発火した。 FIG. 3 is a graph showing the results of the trip cycle test of Example 2 and Comparative Example 1. In Comparative Example 1, the rate of increase in resistance value at room temperature with an increase in the number of cycles is greater than that of Example 2. ing. In Example 2, even if the test was performed up to 6000 cycles, none of the 6 samples ignited. In Comparative Example 1, 1 out of 6 samples ignited by 1000 cycles. 3 out of 6 samples ignited by the number of cycles of 3000, and 6 out of 6 samples ignited by the number of cycles of 6000.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006073468A JP2007250911A (en) | 2006-03-16 | 2006-03-16 | Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006073468A JP2007250911A (en) | 2006-03-16 | 2006-03-16 | Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007250911A true JP2007250911A (en) | 2007-09-27 |
Family
ID=38594870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006073468A Pending JP2007250911A (en) | 2006-03-16 | 2006-03-16 | Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007250911A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130207029A1 (en) * | 2010-06-28 | 2013-08-15 | Dsm Ip Assets B.V. | Thermally conductive polymer composition |
JP2015138915A (en) * | 2014-01-23 | 2015-07-30 | 住友金属鉱山株式会社 | Nickel-based alloy fine particle for laminate capacitors, and method for manufacturing the same |
JP2017220517A (en) * | 2016-06-06 | 2017-12-14 | 住友金属鉱山株式会社 | Self temperature control type resin resistor paste composition and self temperature control type resin resistor |
CN114749200A (en) * | 2022-04-07 | 2022-07-15 | 中国科学技术大学 | Active hexagonal boron nitride material, preparation method and application thereof, and photocatalytic hydrogen production method |
CN115595008A (en) * | 2022-09-21 | 2023-01-13 | 河南普力特克新材料有限公司(Cn) | Conductive micro powder for polymer-based PTC (Positive temperature coefficient) material, preparation method of conductive micro powder and PTC self-temperature-control coating |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107104A (en) * | 1986-10-24 | 1988-05-12 | 日本メクトロン株式会社 | Ptc compound, manufacture of the same and ptc device |
JPS6456775A (en) * | 1987-08-26 | 1989-03-03 | Matsushita Electric Ind Co Ltd | Electrically conductive coating |
JPH05217711A (en) * | 1992-02-07 | 1993-08-27 | Nok Corp | Ptc composition |
JPH10116703A (en) * | 1996-10-08 | 1998-05-06 | Emerson Electric Co | Conductive polymer composition material and ptc device |
JP2004047792A (en) * | 2002-07-12 | 2004-02-12 | Nec Tokin Corp | Polymeric ptc device |
WO2005122190A1 (en) * | 2004-06-08 | 2005-12-22 | Tyco Electronics Raychem K.K. | Polymer ptc device |
-
2006
- 2006-03-16 JP JP2006073468A patent/JP2007250911A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107104A (en) * | 1986-10-24 | 1988-05-12 | 日本メクトロン株式会社 | Ptc compound, manufacture of the same and ptc device |
JPS6456775A (en) * | 1987-08-26 | 1989-03-03 | Matsushita Electric Ind Co Ltd | Electrically conductive coating |
JPH05217711A (en) * | 1992-02-07 | 1993-08-27 | Nok Corp | Ptc composition |
JPH10116703A (en) * | 1996-10-08 | 1998-05-06 | Emerson Electric Co | Conductive polymer composition material and ptc device |
JP2004047792A (en) * | 2002-07-12 | 2004-02-12 | Nec Tokin Corp | Polymeric ptc device |
WO2005122190A1 (en) * | 2004-06-08 | 2005-12-22 | Tyco Electronics Raychem K.K. | Polymer ptc device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130207029A1 (en) * | 2010-06-28 | 2013-08-15 | Dsm Ip Assets B.V. | Thermally conductive polymer composition |
JP2015138915A (en) * | 2014-01-23 | 2015-07-30 | 住友金属鉱山株式会社 | Nickel-based alloy fine particle for laminate capacitors, and method for manufacturing the same |
JP2017220517A (en) * | 2016-06-06 | 2017-12-14 | 住友金属鉱山株式会社 | Self temperature control type resin resistor paste composition and self temperature control type resin resistor |
CN114749200A (en) * | 2022-04-07 | 2022-07-15 | 中国科学技术大学 | Active hexagonal boron nitride material, preparation method and application thereof, and photocatalytic hydrogen production method |
CN115595008A (en) * | 2022-09-21 | 2023-01-13 | 河南普力特克新材料有限公司(Cn) | Conductive micro powder for polymer-based PTC (Positive temperature coefficient) material, preparation method of conductive micro powder and PTC self-temperature-control coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4734593B2 (en) | Polymer PTC element | |
KR100308445B1 (en) | Conductive polymer composition | |
CN101887766A (en) | Conductive composite material with resistance positive temperature coefficient and over-current protection element | |
CN106317544B (en) | Conductive polymer compositions, conducting polymer sheet material, electric device and their preparation method | |
US6828362B1 (en) | PTC composition and PTC device comprising it | |
JP2007250911A (en) | Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element | |
JP2007146251A (en) | Nickel powder, its production method and polymer-ptc element using the nickel powder | |
US6512446B2 (en) | Over-current protection apparatus | |
JP3813611B2 (en) | Conductive polymer having PTC characteristics, method for controlling PTC characteristics of the polymer, and electronic device using the polymer | |
CN103762012A (en) | Low-temperature PTC conducting composition, PTC over-current protection device and manufacturing method of PTC over-current protection device | |
JP3911345B2 (en) | Organic positive temperature coefficient thermistor | |
EP3477678B1 (en) | Pptc composition and device having thermal degradation resistance | |
JP2001167905A (en) | Organic ptc composition | |
US20160012934A1 (en) | Composite Formulation and Composite Product | |
CN106189219A (en) | A kind of polymer base conductive composite material and circuit protecting element | |
JP3729426B2 (en) | PTC element | |
JP3587163B2 (en) | Organic positive temperature coefficient thermistor composition and organic positive temperature coefficient thermistor element | |
JP2013214591A (en) | Thick film composition for forming thermistor, paste composition, and thermistor using the same | |
CN113410015B (en) | Low-resistivity high-voltage PPTC material and preparation method and application thereof | |
CN103205056B (en) | A kind of Positive temperature coefficient composite material and a kind of thermistor | |
TWI674593B (en) | PTC current protection device | |
JPH10223406A (en) | Ptc composition and ptc element employing it | |
KR100985965B1 (en) | Manufacturing method of polymer ptc thermistor which has fast recovery time back to post trip resistance level | |
JP3609573B2 (en) | Organic PTC composition | |
JP4299215B2 (en) | Organic PTC thermistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090306 |
|
A977 | Report on retrieval |
Effective date: 20110117 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Effective date: 20110506 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Effective date: 20111213 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A711 | Notification of change in applicant |
Effective date: 20111228 Free format text: JAPANESE INTERMEDIATE CODE: A711 |
|
A521 | Written amendment |
Effective date: 20111228 Free format text: JAPANESE INTERMEDIATE CODE: A821 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120703 |