JP2017220517A - Self temperature control type resin resistor paste composition and self temperature control type resin resistor - Google Patents

Self temperature control type resin resistor paste composition and self temperature control type resin resistor Download PDF

Info

Publication number
JP2017220517A
JP2017220517A JP2016112670A JP2016112670A JP2017220517A JP 2017220517 A JP2017220517 A JP 2017220517A JP 2016112670 A JP2016112670 A JP 2016112670A JP 2016112670 A JP2016112670 A JP 2016112670A JP 2017220517 A JP2017220517 A JP 2017220517A
Authority
JP
Japan
Prior art keywords
resin
temperature
self
powder
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016112670A
Other languages
Japanese (ja)
Inventor
哲也 向井
Tetsuya Mukai
哲也 向井
昌次 二木
Shoji Futaki
昌次 二木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016112670A priority Critical patent/JP2017220517A/en
Publication of JP2017220517A publication Critical patent/JP2017220517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Thermistors And Varistors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a self temperature control type resin resistor paste composition for forming a thin film having a self temperature control function in a temperature region of 150-300°C by optimizing materials and compositions of three types of a resin, conductive powder and an inorganic filler, and to provide a self temperature control type resin resistor using the paste composition.SOLUTION: A self temperature control type resin resistor paste composition contains an uncured liquid made of an uncured liquid resin, conductive powder and an inorganic filler, where the uncured liquid is any one of an uncured thermosetting resin, a liquid obtained by dissolving the thermosetting resin in an organic solvent, a liquid obtained by dissolving a thermoplastic resin having a glass transition point of 250°C or higher in an organic solvent, and a liquid obtained by dissolving a mixture of the thermosetting resin and the thermoplastic resin in the organic solvent, an inorganic filler to be contained is plate-like powder, and a content of the inorganic filler is 3-20 vol.% with respect to the volume of a self temperature control type resin resistor being a cured product of a self temperature control type resin resistor paste.SELECTED DRAWING: Figure 1

Description

本発明は、自己温度調整型樹脂抵抗体を通電による発熱の温度上昇や雰囲気の温度上昇させた場合の抵抗値上昇の割合の変化が始まる温度(以下、自己調整温度ともいう)が、150℃以上にある自己温度調整型樹脂抵抗体に関し、また、その自己温度調整型樹脂抵抗体を形成する為の自己温度調整型樹脂抵抗体ペースト組成物に関する。   In the present invention, the temperature at which the rate of increase in the resistance value when the self-temperature-regulating resin resistor is heated and the temperature of the atmosphere is increased (hereinafter also referred to as self-regulating temperature) is 150 ° C. The present invention relates to the above self-temperature-controlling resin resistor, and also relates to a self-temperature-controlling resin resistor paste composition for forming the self-temperature-controlling resin resistor.

ポリエチレンやポリプロピレン等の有機ポリマーに、カーボンブラックや金属粉等の導電性物質を分散させた導電性組成物は、その抵抗値が温度とともに変化し、抵抗値が上昇するというPTC(positive temperature coefficient)特性を有することが知られている。このような組成物が、特許文献1に開示されている。   A conductive composition in which a conductive material such as carbon black or metal powder is dispersed in an organic polymer such as polyethylene or polypropylene has a resistance value that changes with temperature, and the resistance value increases. PTC (positive temperature coefficient) It is known to have properties. Such a composition is disclosed in Patent Document 1.

このようなPTC特性を有する素子(以下、PTC素子と呼ぶ)は、PTC素子に過剰電流が流れることで、そのPTC素子の温度自体がある温度T(変曲点)に達した場合、又は機器の環境温度が上昇し、PTC素子の温度がTに達した場合、PTC素子は急激に高抵抗(トリップ状態)となることにより、素子に流れる電流を遮断することにより、PTC素子が組み込まれた電気回路を保護する、保護回路として用いられている。 An element having such a PTC characteristic (hereinafter referred to as a PTC element) has an excessive current flowing in the PTC element, and when the temperature of the PTC element itself reaches a certain temperature T 0 (inflection point), or When the environmental temperature of the device rises and the temperature of the PTC element reaches T 0 , the PTC element suddenly becomes a high resistance (trip state), thereby interrupting the current flowing through the element, thereby incorporating the PTC element. It is used as a protection circuit that protects electrical circuits.

PTC特性を利用することによって、導電性組成物が設定(材料設計)温度を保持する機能を有し、自己温度制御ヒーターとしてリボン状やフィルム状のフレキシブルヒーターとして様々なメーカーで製品化、市販されている。   By utilizing the PTC characteristics, the conductive composition has the function of maintaining the set (material design) temperature, and has been commercialized and marketed by various manufacturers as a ribbon-like or film-like flexible heater as a self-temperature control heater. ing.

ところで、変曲点Tより高温のトリップ状態では、ポリマーが軟化や膨張し導電物質が動き抵抗値が上昇する。そして、PTC素子の温度が変曲点より低下すると、ポリマーの軟化や膨張が解消し、導電物質が再凝集するので抵抗値が低下する。また、PTC素子によっては、変曲点を150℃以上に設定することが必要な場合もある。
そこで、150℃以上の高い温度で動作するPTC抵抗体として非熱可塑性ポリイミドと導電性粉末からなる温度自己制御性成形体の技術が特許文献2に開示されている。
しかし、特許文献2に開示された技術では、ポリイミド樹脂の分子を変化させて、変曲点を制御しているので、変曲点を想定する際の設計の自由度が低い問題がある。
By the way, in a trip state higher than the inflection point T 0 , the polymer softens or expands, the conductive material moves, and the resistance value increases. And if the temperature of a PTC element falls from an inflection point, softening and expansion | swelling of a polymer will be eliminated, and since a conductive material re-aggregates, resistance value will fall. Depending on the PTC element, it may be necessary to set the inflection point to 150 ° C. or higher.
Therefore, Patent Document 2 discloses a technique of a temperature self-controllable molded body made of non-thermoplastic polyimide and conductive powder as a PTC resistor that operates at a high temperature of 150 ° C. or higher.
However, in the technique disclosed in Patent Document 2, since the inflection point is controlled by changing the molecule of the polyimide resin, there is a problem that the degree of freedom of design when assuming the inflection point is low.

また、チタン酸バリウムのキューリー点での抵抗値変化特性を用いたセラミックスヒーターで同様な特性を持つ製品が販売されている。しかし、セラミックヒーターでは、自己温度調整型樹脂抵抗体の形状を自由に選択することが困難となる。   In addition, products with similar characteristics are being marketed with ceramic heaters that use resistance change characteristics at the Curie point of barium titanate. However, with a ceramic heater, it is difficult to freely select the shape of the self-temperature-controlling resin resistor.

特公昭55−012683号公報Japanese Patent Publication No. 55-012683 特開2006−173586号公報JP 2006-173586 A

従来、150℃以上の高温のトリップ状態では、ポリマーが軟化し導電物質が動きやすくなり、再凝集による抵抗値の減少などの変化を起こすために、安定したPTC特性を発現する自己温度調整型樹脂抵抗体が得られにくいとの問題がある。しかも、変曲点が150℃以上で動作する自己温度調整型樹脂抵抗体では、分子設計をする必要がある。   Conventionally, in a trip state at a high temperature of 150 ° C. or higher, the polymer softens and the conductive material easily moves, and changes such as a decrease in resistance value due to re-aggregation cause self-temperature-adjustable resin that exhibits stable PTC characteristics There is a problem that it is difficult to obtain a resistor. In addition, it is necessary to design a molecule for the self-temperature-regulating resin resistor that operates at an inflection point of 150 ° C. or higher.

以上の状況に鑑み、本発明は、樹脂、導電性粉末、無機フィラーの3種類の材料、組成を適正化することにより150〜300℃の温度領域で自己温調機能を有する薄膜を形成するための自己温度調整型樹脂抵抗体ペースト組成物を提供すると共に、そのペースト組成物を用いた自己温度調整型樹脂抵抗体を提供するものである。   In view of the above situation, the present invention forms a thin film having a self-temperature control function in a temperature range of 150 to 300 ° C. by optimizing three types of materials and composition of resin, conductive powder, and inorganic filler. The self-temperature-controlling resin resistor paste composition is provided, and a self-temperature-controlling resin resistor using the paste composition is provided.

本発明の第1の発明は、自己温度調整型樹脂抵抗体ペースト組成物であって、未硬化の液状の樹脂である未硬化液状物と導電性粉末と無機フィラーを含み、その未硬化液状物が、「未硬化の熱硬化型樹脂」、「未硬化の熱硬化型樹脂を有機溶剤に溶かした液体」、「ガラス転移点が250℃以上の熱可塑性樹脂を有機溶剤に溶かした液体」、「未硬化の熱硬化型樹脂とガラス転移点が250℃以上の熱可塑性樹脂の混合物を有機溶剤に溶かした液体」のいずれかであり、含まれる無機フィラーが板状粉末で、その無機フィラーの含有率が、自己温度調整型樹脂抵抗体ペーストの硬化物である自己温度調整型樹脂抵抗体の体積の3〜20体積%となるように含まれていることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。
なお、「未硬化の熱硬化型樹脂、ガラス転移点が250℃以上の熱可塑性樹脂、それらの混合物のいずれかを有機溶剤に溶かした液体」を、以後「ワニス」とも称す場合がある。
A first invention of the present invention is a self-temperature-regulating resin resistor paste composition, which includes an uncured liquid material that is an uncured liquid resin, a conductive powder, and an inorganic filler, and the uncured liquid material Are “uncured thermosetting resin”, “liquid in which uncured thermosetting resin is dissolved in an organic solvent”, “liquid in which a thermoplastic resin having a glass transition point of 250 ° C. or higher is dissolved in an organic solvent”, It is one of “a liquid obtained by dissolving a mixture of an uncured thermosetting resin and a thermoplastic resin having a glass transition point of 250 ° C. or higher in an organic solvent”, and the contained inorganic filler is a plate-like powder. A self-temperature-controlling resin characterized in that the content is 3 to 20% by volume of the volume of the self-temperature-controlling resin resistor, which is a cured product of the self-temperature-controlling resin resistor paste It is a resistor paste composition.
In addition, “an uncured thermosetting resin, a thermoplastic resin having a glass transition point of 250 ° C. or higher, or a liquid obtained by dissolving any mixture thereof in an organic solvent” may be hereinafter also referred to as “varnish”.

本発明の第2の発明は、第1の発明における導電性粉末が、自己温度調整型樹脂抵抗体の体積の5〜20体積%となるような含有率で、自己温度調整型抵抗体ペーストに含まれることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。   According to a second aspect of the present invention, the conductive powder according to the first aspect of the present invention has a content such that the conductive powder is 5 to 20% by volume of the volume of the self-temperature-adjustable resin resistor. A self-temperature-regulating resin resistor paste composition characterized in that it is contained.

本発明の第3の発明は、第1及び第2の発明における導電性粉末が、金属粉末、非金属粉末のいずれか、或いは両者であることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。   According to a third aspect of the present invention, there is provided a self-temperature-controlling resin resistor paste composition, wherein the conductive powder in the first and second aspects is either a metal powder or a non-metal powder, or both. It is a thing.

本発明の第4の発明は、第1から第3の発明における無機フィラーが、窒化ホウ素、又はベントナイト、マイカ、カオリンから選ばれる1種の層状粘土鉱物であることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。   According to a fourth aspect of the present invention, the inorganic filler according to the first to third aspects is a layered clay mineral selected from boron nitride, bentonite, mica, and kaolin. It is a resin resistor paste composition.

本発明の第5の発明は、第1から第4の発明における未硬化液状物に含まれる樹脂が熱硬化性樹脂であればエポキシ樹脂であり、熱可塑性樹脂であればポリアミドイミド樹脂であることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。   The fifth invention of the present invention is an epoxy resin if the resin contained in the uncured liquid material in the first to fourth inventions is a thermosetting resin, and a polyamide-imide resin if it is a thermoplastic resin. Is a self-temperature-regulating resin resistor paste composition.

本発明の第6の発明は、第3の発明における導電性粉末に金属粉末が含まれる場合、その金属粉末が、ニッケル粉末、ニッケル系合金粉末、ニッケル系コート粉末のいずれかであることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。   6th invention of this invention, when the metal powder is contained in the electroconductive powder in 3rd invention, the metal powder is either nickel powder, nickel-type alloy powder, or nickel-type coat powder, It is characterized by the above-mentioned. Is a self-temperature-controlling resin resistor paste composition.

本発明の第7の発明は、第3の発明における導電性粉末に非金属粉末が含まれる場合、その非金属粉末が、カーボンブラック粉末、窒化チタン粉末、窒化ジルコニウム粉末からなる群から選択された少なくとも1種の粉末であることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物である。   In a seventh aspect of the present invention, when the conductive powder in the third aspect includes a non-metallic powder, the non-metallic powder is selected from the group consisting of carbon black powder, titanium nitride powder, and zirconium nitride powder. A self-temperature-controlling resin resistor paste composition, characterized in that it is at least one powder.

本発明の第8の発明は、樹脂に導電性物質が分散したPTC特性を有する自己温度調整型樹脂抵抗体であって、その樹脂が、熱硬化型樹脂、ガラス転移点が250℃以上の熱可塑性樹脂のいずれか、或いは両者であり、導電性物質を自己温度調整型樹脂抵抗体の体積の5〜20体積%含み、その自己温度調整型樹脂抵抗体の体積の3〜20体積%の板状粉末の無機フィラーを含むことを特徴とする自己温度調整型樹脂抵抗体である。   An eighth invention of the present invention is a self-temperature-controlling resin resistor having PTC characteristics in which a conductive substance is dispersed in a resin, the resin being a thermosetting resin and a glass transition point of 250 ° C. or higher. A plate which is either or both of a plastic resin and contains 5 to 20% by volume of the volume of the self-temperature-adjustable resin resistor, and 3 to 20% by volume of the volume of the self-temperature-adjustable resin resistor A self-temperature-controlling resin resistor comprising an inorganic filler in the form of a powder.

本発明の第9の発明は、第8の発明における導電性物質が導電性粉末であり、金属粉末、非金属粉末、或いは両者であることを特徴とする自己温度調整型樹脂抵抗体である。   According to a ninth aspect of the present invention, there is provided a self-temperature-controlling resin resistor characterized in that the conductive substance in the eighth aspect is a conductive powder and is a metal powder, a non-metallic powder, or both.

本発明の第10の発明は、第8及び第9の発明における無機フィラーが、窒化ホウ素、或いはベントナイト、マイカ、カオリンから選ばれた少なくとも1種の層状粘土鉱物であることを特徴とする自己温度調整型樹脂抵抗体である。   In a tenth aspect of the present invention, the inorganic filler in the eighth and ninth aspects is boron nitride, or at least one layered clay mineral selected from bentonite, mica, and kaolin. It is an adjustment type resin resistor.

本発明の第11の発明は、第8〜第10の発明における樹脂が、熱硬化性樹脂であればエポキシ樹脂であり、熱可塑性樹脂であればポリイミド樹脂又はポリアミドイミド樹脂であることを特徴とする自己温度調整型樹脂抵抗体である。   The eleventh invention of the present invention is characterized in that the resin in the eighth to tenth inventions is an epoxy resin if it is a thermosetting resin, and is a polyimide resin or a polyamide-imide resin if it is a thermoplastic resin. Self-regulating resin resistor.

本発明の第12の発明は、第9の発明における導電性粉末が金属粉末を含む場合、金属粉末はニッケル粉末、ニッケル系合金粉末、ニッケル系コート粉末のいずれかであることを特徴とする自己温度調整型樹脂抵抗体である。   In a twelfth aspect of the present invention, when the conductive powder in the ninth aspect includes a metal powder, the metal powder is any one of a nickel powder, a nickel-based alloy powder, and a nickel-based coated powder. It is a temperature control type resin resistor.

本発明の第13の発明は、第9の発明における導電性粉末に非金属粉末を含む場合、前記非金属粉末が、カーボンブラック粉末、窒化チタン粉末、窒化ジルコニウム粉末からなる群から選択された少なくとも1種の粉末であることを特徴とする自己温度調整型樹脂抵抗体である。   In a thirteenth aspect of the present invention, when the conductive powder in the ninth aspect includes a nonmetallic powder, the nonmetallic powder is at least selected from the group consisting of carbon black powder, titanium nitride powder, and zirconium nitride powder. A self-temperature-controlling resin resistor characterized by being one type of powder.

本発明の第14の発明は、第8〜第13の発明における自己温度調整型樹脂抵抗体が、温度上昇による抵抗値上昇の割合が変化する自己調整温度が、150℃以上であることを特徴とする自己温度調整型樹脂抵抗体である。   In a fourteenth aspect of the present invention, the self-temperature-regulating resin resistor according to the eighth to thirteenth aspects is characterized in that a self-regulating temperature at which the rate of increase in resistance value due to temperature rise changes is 150 ° C. or higher. It is a self-temperature adjusting type resin resistor.

本発明によれば、樹脂の選択と、導電性粉末と無機フィラーの含有率を選択することで、150℃〜300℃の温度範囲で自己調整温度を制御できる自己温度調整型樹脂抵抗体を実現できる。   According to the present invention, a self-regulating resin resistor that can control the self-regulating temperature in a temperature range of 150 ° C. to 300 ° C. is realized by selecting the resin and selecting the content ratio of the conductive powder and the inorganic filler. it can.

本発明の実施例1に係る自己温度調整型樹脂抵抗体の「電気抵抗−温度特性」を示し、自己温度調整温度の評価方法を表す図である。It is a figure which shows the "electric resistance-temperature characteristic" of the self-temperature adjustment type | mold resin resistor which concerns on Example 1 of this invention, and represents the evaluation method of self temperature adjustment temperature. 実施例2に係る「電気抵抗−温度特性」を示す図である。FIG. 6 is a diagram showing “electric resistance-temperature characteristics” according to Example 2. 実施例3に係る「電気抵抗−温度特性」を示す図である。FIG. 6 is a diagram illustrating “electric resistance-temperature characteristics” according to Example 3; 比較例1に係る「電気抵抗−温度特性」を示す図である。6 is a diagram showing “electric resistance-temperature characteristics” according to Comparative Example 1. FIG. 比較例5に係る「電気抵抗−温度特性」を示す図である。FIG. 10 is a diagram showing “electric resistance-temperature characteristics” according to Comparative Example 5;

[自己調整型樹脂ペースト組成物]
本発明では、自己温度調整型樹脂抵抗体ペースト組成物を得るのに際し、エポキシ、ポリアミドイミド、ポリイミドの3種類樹脂の単一組成、或いは混合物の有機ポリマーに、カーボンブラックや金属粉等の導電性物質を分散させて導電性組成物を形成することを必要とし、その電気特性の改善物質として、さらに板状結晶や板状形態の無機フィラーを、導電性粉末の含有量と調整した所定量を添加して導電性組成物を形成することにより、自己温度調整型樹脂抵抗体ペースト組成物を作製するものである。
[Self-adjusting resin paste composition]
In the present invention, when obtaining a self-temperature-regulating resin resistor paste composition, a single composition of epoxy, polyamideimide, and polyimide, or a mixture of organic polymers, a conductive material such as carbon black or metal powder. It is necessary to form a conductive composition by dispersing a substance, and as a substance for improving its electrical characteristics, a predetermined amount adjusted with the content of the conductive powder is further added to the plate-like crystal or plate-like inorganic filler. A self-temperature-controlling resin resistor paste composition is prepared by adding to form a conductive composition.

この板状結晶や板状形態の無機フィラーの添加による電気特性の改善効果の発現機構に関しては、導電性物質の間に均一に板状の無機フィラーが存在することにより、導電性物質のトリップ状態における再凝集を抑制する効果が考えられる。   Regarding the mechanism of the effect of improving the electrical properties due to the addition of this plate-like crystal or plate-like inorganic filler, the presence of the plate-like inorganic filler uniformly between the conductive materials will result in the trip state of the conductive material. The effect of suppressing re-aggregation in can be considered.

[無機フィラー]
用いる無機フィラーとしては、板状結晶や板状形態のものであればよく、窒化ホウ素が特に望ましいが、層状粘土鉱物も好ましい。その層状粘土鉱物としては、ベントナイト、マイカ、カオリンが挙げられる。
また、有機修飾物を有する粘土鉱物の有機ベントナイトも有益である。
[Inorganic filler]
As an inorganic filler to be used, it may be a plate-like crystal or plate-like form, and boron nitride is particularly desirable, but a layered clay mineral is also preferred. Examples of the layered clay mineral include bentonite, mica, and kaolin.
Also useful are organic bentonites of clay minerals with organic modifications.

これらの無機フィラーも層状粘土鉱物も板状粉末であり、本発明に係る自己温度調整型樹脂抵抗体では、この板状粉末の無機フィラーが、抵抗体中に略一方向に配向して分散している。そのため、自己温度調整型樹脂抵抗体の発熱や、自己温度調整型樹脂抵抗体が熱に曝された際の熱膨張の仕方には、その配向方向が影響する。
そこで、板状の無機フィラーの配向方向の影響と、樹脂の選択により、自己調整温度を150℃以上とすることができる。
Both of these inorganic fillers and layered clay minerals are plate-like powders. In the self-temperature-regulating resin resistor according to the present invention, the inorganic fillers of this plate-like powder are oriented and dispersed in the resistor substantially in one direction. ing. Therefore, the orientation direction affects the heat generation of the self-temperature-controlling resin resistor and the manner of thermal expansion when the self-temperature-controlling resin resistor is exposed to heat.
Therefore, the self-adjusting temperature can be set to 150 ° C. or higher by the influence of the orientation direction of the plate-like inorganic filler and the selection of the resin.

使用する無機フィラーに窒化ホウ素粉末を用いる場合、その粒度分布はd50で0.01μm〜20μmが望ましい。一方、窒化ホウ素粉末の平均粒子径が20μmを上回ると、PTC特性の効果が得られにくくなる。ここで粒度分布d50とは、レーザー回折・散乱方式の粒度分布測定装置を用いて測定した粒度分布のメジアン値である。
また、層状粘土鉱物の粒径は、長軸方向で2μm以下である。
When boron nitride powder is used as the inorganic filler to be used, the particle size distribution is preferably 0.01 μm to 20 μm at d 50 . On the other hand, when the average particle diameter of the boron nitride powder exceeds 20 μm, it is difficult to obtain the effect of the PTC characteristics. Here, the particle size distribution d 50 is a median value of the particle size distribution measured using a laser diffraction / scattering type particle size distribution measuring apparatus.
The particle size of the layered clay mineral is 2 μm or less in the major axis direction.

本発明に係る自己温度調整型樹脂抵抗体は、無機フィラーの含有率により自己調整温度を調整している。
無機フィラーの含有率が多くなると自己調整温度は上昇する傾向があるが、自己温度調整型樹脂抵抗体ペースト組成物の硬化物である自己温度調整型樹脂抵抗体が無機フィラーを20体積%を超えて含有すると、自己温度調整型樹脂抵抗体の抵抗値が10Ωを越え、高すぎてPTC素子を形成することができない。一方、無機フィラーの含有率が3体積%未満では、自己調整温度は確認されるが、自己調整温度を越えた温度に抵抗値のピークをもち、ピーク温度より高温側では抵抗値が低下するのでPTC素子として機能しなくなる。
The self-temperature-regulating resin resistor according to the present invention adjusts the self-regulating temperature based on the content of the inorganic filler.
As the content of the inorganic filler increases, the self-adjusting temperature tends to increase. However, the self-temperature-adjusting resin resistor, which is a cured product of the self-temperature-adjusting resin resistor paste composition, exceeds 20% by volume of the inorganic filler. If it is contained, the resistance value of the self-temperature-controlling resin resistor exceeds 10 7 Ω and is too high to form a PTC element. On the other hand, when the content of the inorganic filler is less than 3% by volume, the self-adjusting temperature is confirmed, but the resistance value has a peak at a temperature exceeding the self-adjusting temperature, and the resistance value decreases at a temperature higher than the peak temperature. It will not function as a PTC element.

[導電性粉末]
導電性粉末は、金属粉末又は非金属粉末、或いはその両者から構成されていても良い。その導電性粉末の含有率は、自己温度調整型樹脂抵抗体に5〜20体積%含まれることが望ましい。
導電性粉末の含有率が5体積%未満では、150℃以上の温度に自己調整温度を生じるが、温度上昇に対する抵抗値上昇の割合が変化する温度から40℃の温度範囲で、抵抗値が4倍に上昇することはなく、PTC素子として機能しない。また、導電性粉末の含有率が5体積%未満では、得られる抵抗値が10Ωを越え、高すぎてPTC素子として機能しなくなる。
一方、導電性粉末を、20体積%を超えて含有する場合も150℃以上の温度に自己調整温度を生じるが、温度上昇に対する抵抗値上昇の割合が変化する温度から40℃の温度範囲で、抵抗値が4倍に上昇することはなく、PTC素子として機能しない。
[Conductive powder]
The conductive powder may be composed of metal powder, non-metal powder, or both. As for the content rate of the electroconductive powder, it is desirable that 5-20 volume% is contained in the self-temperature-controlling resin resistor.
When the content of the conductive powder is less than 5% by volume, a self-adjusting temperature is generated at a temperature of 150 ° C. or higher. However, the resistance value is 4 in a temperature range from 40 ° C. to 40 ° C. It does not rise twice and does not function as a PTC element. On the other hand, when the content of the conductive powder is less than 5% by volume, the obtained resistance value exceeds 10 7 Ω and is too high to function as a PTC element.
On the other hand, when the conductive powder is contained in an amount exceeding 20% by volume, a self-adjusting temperature is generated at a temperature of 150 ° C. or higher, but in a temperature range of 40 ° C. from the temperature at which the ratio of the resistance value increase to the temperature rise changes. The resistance value does not increase four times and does not function as a PTC element.

<金属粉末>
この導電性粉末に金属粉末を用いる場合、ニッケル粉末、銅粉末、白金粉末、銀粉末、コバルト粉末、ニッケル系合金粉末、銀系合金粉末、或いはニッケル系コート粉末を用いることができる。特に、ニッケル粉末、ニッケル系合金粉末、ニッケル系コート粉末が望ましい。
ニッケル系合金粉末としては、ニッケル−クロム合金、ニッケル−銅合金を用いることができる。銀合金としては銀−パラジウム合金を用いることができる。
<Metal powder>
When metal powder is used for the conductive powder, nickel powder, copper powder, platinum powder, silver powder, cobalt powder, nickel alloy powder, silver alloy powder, or nickel coat powder can be used. In particular, nickel powder, nickel alloy powder, and nickel coat powder are desirable.
A nickel-chromium alloy or a nickel-copper alloy can be used as the nickel-based alloy powder. A silver-palladium alloy can be used as the silver alloy.

用いる金属粉末の粒径は、一次粒子で0.1μm〜10μmであり、特に一次粒子の粒径が0.1μm〜3μmが好ましい。さらには、金属粉末は一次粒子が凝集した二次粒子を形成していることが望ましい。
このような一次粒子が凝集した二次粒子の金属粉末を用いる場合、二次粒子の粒度分布d50は5μm〜60μmが望ましく、その二次粒子の粒径が60μmを超えると、抵抗体中での金属粉末の分散が不十分となり、抵抗値が高くなりすぎる場合や自己調整温度を発現しないことがある。一方、二次粒子の粒径が5μm未満では、金属粉末の凝集が少ないために絡み合う箇所が減少し、樹脂との混練後の抵抗値が高くなることがある。
The particle size of the metal powder used is 0.1 μm to 10 μm as primary particles, and the particle size of the primary particles is particularly preferably 0.1 μm to 3 μm. Furthermore, it is desirable that the metal powder forms secondary particles in which primary particles are aggregated.
When using a metal powder of secondary particles in which such primary particles are aggregated, the particle size distribution d50 of the secondary particles is desirably 5 μm to 60 μm, and when the particle size of the secondary particles exceeds 60 μm, When the metal powder is not sufficiently dispersed, the resistance value becomes too high or the self-adjusting temperature may not be exhibited. On the other hand, if the particle size of the secondary particles is less than 5 μm, the metal powder is less aggregated, so that the number of intertwined portions is reduced, and the resistance value after kneading with the resin may be increased.

一次粒子の粒径は、凝集している個々の粒子の粒径のことであり、SEM観察によって測定する。またSEM像を画像解析して平均値の粒径を算出して粒径としてもよい。さらに、レーザー回折・散乱方式の粒度分布測定装置を用いて測定した粒度分布から求めても良い。   The particle size of primary particles is the particle size of individual particles that are aggregated, and is measured by SEM observation. Alternatively, the SEM image may be image-analyzed to calculate the average particle size to obtain the particle size. Further, it may be obtained from a particle size distribution measured using a laser diffraction / scattering particle size distribution measuring apparatus.

<非金属粉末>
導電性粉末としては、これまで述べた金属粉末の他に、カーボンブラック、窒化チタン、窒化ジルコニウムなどの導電性の有る非金属粉末も好適に使用することができる。
<Non-metallic powder>
As the conductive powder, in addition to the metal powders described so far, conductive non-metal powders such as carbon black, titanium nitride, and zirconium nitride can also be suitably used.

非金属粉末は、粒度分布d50が0.005〜100μmのものを用いることが好ましく、特に粒度分布d50で0.01μm〜60μmのものを用いることが特に好ましい。
その粒度分布d50が0.005μm未満では混合が困難となり、100μmを上回るとかえって抵抗が高くなることがある。
Metal powder is preferably the particle size distribution d 50 of used ones 0.005~100Myuemu, it is particularly preferable to particularly use those 0.01μm~60μm with a particle size distribution d 50.
If the particle size distribution d 50 is less than 0.005 μm, mixing becomes difficult, and if it exceeds 100 μm, the resistance may be increased.

[樹脂]
自己温度調整型樹脂抵抗体に用いられる樹脂は、熱硬化型樹脂又はガラス転移点が250℃以上の熱可塑性樹脂、或いはその両者で構成される混合物を用いる。
熱硬化型樹脂は、ガラス転移点を超える温度に曝されても、熱分解等するまでは軟化することなく、形状を維持できる。そのような熱硬化型樹脂には、耐熱性等の観点からエポキシ樹脂が好ましい。また、エポキシ樹脂のガラス転移点は、自己調整温度より高温での抵抗値変化から適宜選択できる。
[resin]
As the resin used for the self-temperature-controlling resin resistor, a thermosetting resin, a thermoplastic resin having a glass transition point of 250 ° C. or higher, or a mixture composed of both is used.
Even when the thermosetting resin is exposed to a temperature exceeding the glass transition point, it can maintain its shape without being softened until it is thermally decomposed. For such a thermosetting resin, an epoxy resin is preferable from the viewpoint of heat resistance and the like. Moreover, the glass transition point of an epoxy resin can be suitably selected from a resistance value change at a temperature higher than the self-adjusting temperature.

<エポキシ樹脂>
そのエポキシ樹脂として、例えば各種ビスフェノール型エポキシ、各種フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンと各種フェノール類とを反応させて得られる各種ジシクロペンタジエン変性フェノール樹脂のエポキシ化物、ノボラック変性等ナフタレン骨格から誘導された変性エポキシ、フルオレン骨格のフェノール樹脂をエポキシ化して得られるエポキシ樹脂等の公知の芳香族エポキシ樹脂等が挙げられる。また、脂環式エポキシ樹脂、ヘテロ環含有の公知のエポキシ樹脂の使用が可能である。
<Epoxy resin>
Examples of the epoxy resin include various bisphenol-type epoxies, various phenol novolak-type epoxy resins, cresol novolac-type epoxy resins, epoxidized products of various dicyclopentadiene-modified phenol resins obtained by reacting dicyclopentadiene with various phenols, and novolaks. Examples thereof include known aromatic epoxy resins such as modified epoxy derived from a naphthalene skeleton such as modification, and an epoxy resin obtained by epoxidizing a phenol resin having a fluorene skeleton. Moreover, it is possible to use an alicyclic epoxy resin or a known epoxy resin containing a heterocyclic ring.

また、併用する硬化剤にはアミン系化合物、アミド系化合物、二塩基性酸系化合物、酸無水物系化合物、フェノール系化合物などの公知の硬化剤が挙げられる。
アミン系化合物では、アミン系化合物としては、例えばジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル等が挙げられる。アミド系化合物としては、ジシアンジアミド等が挙げられる。
酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
フェノール系化合物には、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノール樹脂等の多価フェノール性水酸基含有化合物が挙げられる。
Examples of the curing agent used in combination include known curing agents such as amine compounds, amide compounds, dibasic acid compounds, acid anhydride compounds, and phenol compounds.
In the amine compound, examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole and the like. Examples of amide compounds include dicyandiamide.
Acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexahydro And phthalic anhydride.
Examples of phenolic compounds include polyhydric phenolic hydroxyl group-containing compounds such as phenol novolac resins, cresol novolac resins, and phenol resins.

エポキシ樹脂には、公知の硬化促進剤を併用してもよい。
さらに、本発明に係る自己温度調整型樹脂抵抗体ペースト組成物には、未硬化のエポキシ樹脂を溶解する有機溶剤や、エポキシ基を備えた反応性有機溶剤を用いてもよい。例えば、有機溶剤としてはジエチレングリコールモノエチルエーテルアセテート等のエステル類を用いることができる。
A known curing accelerator may be used in combination with the epoxy resin.
Furthermore, in the self-temperature-controlling resin resistor paste composition according to the present invention, an organic solvent that dissolves an uncured epoxy resin or a reactive organic solvent having an epoxy group may be used. For example, esters such as diethylene glycol monoethyl ether acetate can be used as the organic solvent.

未硬化のこれらのエポキシ樹脂の状態は、液状である場合や、固体のペレット状がある。未硬化のエポキシ樹脂は固体のペレット状であっても有機溶剤等に溶解する。そのため、未硬化のこれらのエポキシ樹脂は、場合によっては有機溶剤に溶解することで、本発明に係る自己温度調整型樹脂抵抗体ペースト組成物に用いる粘着性液体の未硬化液状物を構成し、本発明に係る自己温度調整型樹脂抵抗体ペースト組成物に用いることができる。
自己温度調整型樹脂抵抗体ペースト組成物で用いるエポキシ樹脂は、硬化剤を選択し、加熱により硬化が行えることが望ましい。
The state of these uncured epoxy resins may be liquid or solid pellets. The uncured epoxy resin is dissolved in an organic solvent or the like even in a solid pellet form. Therefore, these uncured epoxy resins may be dissolved in an organic solvent in some cases to constitute an uncured liquid material of an adhesive liquid used in the self-temperature-regulating resin resistor paste composition according to the present invention, It can be used for the self-temperature-controlling resin resistor paste composition according to the present invention.
It is desirable that the epoxy resin used in the self-temperature-regulating resin resistor paste composition can be cured by selecting a curing agent and heating.

<ガラス転移点が250℃以上の熱可塑性樹脂>
ガラス転移点が250℃以上の熱可塑性樹脂には、ポリイミド樹脂、ポリアミドイミド樹脂が望ましい。ポリイミド樹脂やポリアミドイミド樹脂は、150℃〜300℃の温度で変質することはなので、本発明に係る自己温度調整型樹脂抵抗体の樹脂に用いることができる。
<Thermoplastic resin having a glass transition point of 250 ° C. or higher>
For thermoplastic resins having a glass transition point of 250 ° C. or higher, polyimide resins and polyamideimide resins are desirable. Since the polyimide resin and the polyamideimide resin do not deteriorate at a temperature of 150 ° C. to 300 ° C., they can be used for the resin of the self-temperature-controlling resin resistor according to the present invention.

自己温度調整型樹脂抵抗体ペースト組成物に熱可塑性樹脂を用いる場合は、未硬化液状物として、ポリイミド樹脂やポリアミド樹脂をジエチレングリコールモノエチルエーテルアセテート等の公知のエーテル類に溶解した粘着性液体のワニスを用いることができる。   When a thermoplastic resin is used for the self-temperature-regulating resin resistor paste composition, an adhesive liquid varnish in which polyimide resin or polyamide resin is dissolved in a known ether such as diethylene glycol monoethyl ether acetate as an uncured liquid material Can be used.

また、未硬化液状物には、ポリイミド前駆体のポリアミック酸を析出せせることなく溶解する公知のジエチルエーテル、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール−n−プロピルエーテル、エチレングリコール−i−プロピルエーテル、エチレングリコール−n−ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のエーテル類やエステル類に溶解したワニス状の未硬化液状物も用いることができる。   Moreover, in the uncured liquid material, known diethyl ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-, which dissolves without precipitating the polyamic acid of the polyimide precursor. Ethers such as propyl ether, ethylene glycol-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate And dissolved in esters Varnish uncured liquid was also can be used.

ポリアミック酸を有機溶剤に溶解した粘着性液体のワニスを未硬化液状物に用いても、自己温度調整型樹脂抵抗体ペースト組成物を塗布後に加熱して脱水閉環するイミド化で、ポリイミド樹脂とすることができる。
なお、ポリイミド樹脂は、加熱により脱水閉環させられることで、硬化することが知られているので、熱硬化型樹脂と認定されている場合もあるが、本発明では、ポリイミド樹脂を熱可塑性樹脂の一例として取り上げる。
また、本発明に係る自己温度調整型樹脂抵抗体に用いる樹脂は、エポキシ樹脂とポリイミド樹脂の混合物であってもよい。
Even if an adhesive liquid varnish in which polyamic acid is dissolved in an organic solvent is used for the uncured liquid, it is converted into a polyimide resin by imidation by heating and dehydrating and ring-closing after applying the self-temperature-regulating resin resistor paste composition. be able to.
In addition, since polyimide resin is known to be cured by being dehydrated and closed by heating, it may be recognized as a thermosetting resin, but in the present invention, polyimide resin is used as a thermoplastic resin. Take as an example.
Moreover, the resin used for the self-temperature-controlling resin resistor according to the present invention may be a mixture of an epoxy resin and a polyimide resin.

[自己温度調整型樹脂抵抗体ペーストの製造方法]
自己温度調整型樹脂抵抗体ペーストは、無機フィラー、導電性粉末、未硬化液状物を公知の混合方法、例えば、自公転ミキサー、ビーズミル、ボールミル、ロールミル等で混合することで製造することができる。
[Method for producing self-temperature-adjustable resin resistor paste]
The self-temperature-controlling resin resistor paste can be produced by mixing an inorganic filler, conductive powder, and an uncured liquid with a known mixing method such as a self-revolving mixer, a bead mill, a ball mill, a roll mill, or the like.

[自己温度調整型樹脂抵抗体]
本発明に係る自己温度調整型樹脂抵抗体は、本発明に係る自己温度調整型樹脂抵抗体ペースト組成物を基板等に塗布し、加熱して硬化させて得ることができる。
<加熱乾燥>
自己温度調整型樹脂抵抗体ペースト組成物は加熱されることで、有機溶剤が揮発し、自己温度調整型樹脂抵抗体ペースト組成物の乾燥膜が被塗布物の表面に形成される。この乾燥膜が形成される過程を加熱乾燥という。
[Self-temperature-regulating resin resistor]
The self-temperature-controlling resin resistor according to the present invention can be obtained by applying the self-temperature-controlling resin resistor paste composition according to the present invention to a substrate or the like and curing it by heating.
<Heat drying>
When the self-temperature adjusting resin resistor paste composition is heated, the organic solvent is volatilized, and a dry film of the self-temperature adjusting resin resistor paste composition is formed on the surface of the object to be coated. The process of forming this dry film is called heat drying.

<加熱硬化>
この加熱乾燥よりも高温に曝されると、自己温度調整型樹脂抵抗体ペースト組成物に熱硬化型樹脂を用いると樹脂の硬化反応が進行する。
自己温度調整型樹脂抵抗体ペースト組成物にポリアミック酸を用いるとイミド化が進み、自己温度調整型樹脂抵抗体ペースト組成物が硬化する。
また、自己温度調整型樹脂抵抗体形成用組成物の未硬化樹脂粘着物に有機溶剤に溶解したポリイミドなどの熱可塑性樹脂を用いれば、有機溶剤がより除去されて自己温度調整型樹脂抵抗体ペースト組成物が硬化する。
以上のような自己温度調整型樹脂抵抗体ペースト組成物が硬化する過程を加熱硬化という。
<Heat curing>
When exposed to a temperature higher than this heat drying, if a thermosetting resin is used for the self-temperature-controlling resin resistor paste composition, the curing reaction of the resin proceeds.
When polyamic acid is used for the self-temperature-controlling resin resistor paste composition, imidization proceeds and the self-temperature-controlling resin resistor paste composition is cured.
If a thermoplastic resin such as polyimide dissolved in an organic solvent is used for the uncured resin adhesive of the self-temperature-adjustable resin resistor-forming composition, the organic solvent is further removed and the self-temperature-adjustable resin resistor paste The composition is cured.
The process of curing the self-temperature-controlling resin resistor paste composition as described above is called heat curing.

この自己温度調整型樹脂抵抗体ペースト組成物の加熱硬化の温度は、自己調整温度よりも50℃以上高い温度で硬化させる必要がある。動作温度(使用温度)より低い温度での硬化させた場合には、長期使用の間に樹脂が変化する恐れがあり、十分な信頼性が得られないからである。実用上は、自己調整温度+20℃程度範囲で温度変化を繰返すため、+20℃以上の温度で硬化させれば良いが、温度変動リスクを考慮して+50℃とした。
この硬化後に端子を形成してPTC素子を作製することができる。
The heat curing temperature of the self-temperature-regulating resin resistor paste composition needs to be cured at a temperature that is 50 ° C. or higher than the self-regulating temperature. This is because if the resin is cured at a temperature lower than the operating temperature (use temperature), the resin may change during long-term use, and sufficient reliability cannot be obtained. In practice, the temperature change is repeated in a range of about + 20 ° C., so that the temperature may be cured at a temperature of + 20 ° C. or higher.
A terminal can be formed after this hardening and a PTC element can be produced.

自己温度調整型樹脂抵抗体は、自己温度調整型樹脂抵抗体ペースト組成物を塗布される際に、無機フィラーの板状粉末が塗布される方向に配向、分散して形成される。
塗布された自己温度調整型樹脂抵抗体ペースト組成を硬化させると、無機フィラーの板状粉末の分散状態を維持したままで硬化する。
そして、本発明に係る自己温度調整型樹脂抵抗体では熱硬化型樹脂やガラス転移点250℃以上の熱可塑性樹脂と無機フィラーの板状粉末を3〜20体積%含まれることと、導電性粉末を5〜20体積%含むので、150℃を越えた温度域に自己調整温度を発揮し、自己調整温度から自己調整温度に40℃を加えた温度範囲で自己温度調整型樹脂抵抗体の抵抗値が4倍以上に上昇させ、かつ、より高温にさらされても上昇した抵抗値が低下することがない自己温度調整型樹脂抵抗体を実現できるのである。
The self-temperature-controlling resin resistor is formed by being oriented and dispersed in the direction in which the inorganic filler plate powder is applied when the self-temperature-controlling resin resistor paste composition is applied.
When the applied self-temperature adjusting resin resistor paste composition is cured, it is cured while maintaining the dispersion state of the plate-like powder of the inorganic filler.
In the self-temperature-regulating resin resistor according to the present invention, 3-20% by volume of a thermosetting resin, a plate-like powder of a thermoplastic resin having a glass transition point of 250 ° C. or higher and an inorganic filler is contained, and a conductive powder. 5 to 20% by volume, the self-adjusting temperature is exhibited in a temperature range exceeding 150 ° C., and the resistance value of the self-temperature adjusting resin resistor is within a temperature range obtained by adding 40 ° C. to the self-adjusting temperature. It is possible to realize a self-temperature-regulating resin resistor in which the resistance value is not lowered even when exposed to a higher temperature.

なお、自己調整温度とは、抵抗値と温度の関係を示すRT曲線で、自己温度調整型樹脂抵抗体の温度を上昇させた場合の温度に対する抵抗値の上昇の割合の変化が変化し始める温度のことである。図1にRT曲線と自己調整温度について示す。   The self-adjusting temperature is an RT curve indicating the relationship between the resistance value and the temperature, and the temperature at which the change in the rate of increase in the resistance value relative to the temperature when the temperature of the self-temperature adjusting resin resistor is increased starts to change. That is. FIG. 1 shows the RT curve and the self-adjusting temperature.

以下に、実施例を上げて効果の説明をする。   Hereinafter, the effects will be described with examples.

自己温度調整型樹脂抵抗体ペースト組成物としては、エポキシ樹脂と硬化剤のフェノール樹脂を有機溶剤のジエチレングリコールモノエチルエーテルアセテートに溶解して、未硬化液状物を作製した。その際に、エポキシ樹脂のエポキシ当量の数値とフェノール樹脂のフェノール当量数値が合致するように混合した。
導電性粉末として一次粒子の粒子径が1μmで2次粒子の粒度分布d50が10μmのNi粉末を用い、板状結晶の無機フィラーに粒度分布d50が2μmの窒化ホウ素を添加し、自公転式の混錬機にて脱泡しながら混練し自己温度調整型樹脂抵抗体ペースト組成物を作製した。
As the self-temperature adjusting resin resistor paste composition, an epoxy resin and a curing agent phenol resin were dissolved in an organic solvent diethylene glycol monoethyl ether acetate to prepare an uncured liquid material. In that case, it mixed so that the numerical value of the epoxy equivalent of an epoxy resin and the phenol equivalent numerical value of a phenol resin might correspond.
As the conductive powder, Ni powder having a primary particle size of 1 μm and a secondary particle size distribution d 50 of 10 μm was used, and boron nitride having a particle size distribution d 50 of 2 μm was added to the inorganic filler of the plate-like crystal. A self-regulating resin resistor paste composition was prepared by kneading while defoaming with a kneading machine of the type.

作製した自己温度調整型樹脂抵抗体ペースト組成物の特性を測るために、ガラス基板に硬化後に10mm×20mm×(厚み)100μmの硬化体が得られるような塗布をアプリケータを用いて行い、室温(以下、RTと称す)から100℃までを1時間の昇温時間で昇温し、次いで350℃の温度で硬化させた後、長手方向の両端に銀電極を形成して自己温度調整型樹脂抵抗体の抵抗器を形成した。
各実施例および比較例に係る抵抗器を、恒温槽内にてRT(室温)〜300℃までの「抵抗−温度特性」の評価を行った。
In order to measure the characteristics of the prepared self-temperature-controlling resin resistor paste composition, application was performed using an applicator so that a cured product of 10 mm × 20 mm × (thickness) 100 μm was obtained after curing on a glass substrate. (Hereinafter referred to as RT) to 100 ° C. with a heating time of 1 hour, then cured at a temperature of 350 ° C., and then silver electrodes are formed on both ends in the longitudinal direction to form a self-temperature-controlling resin Resistor resistors were formed.
The resistors according to the examples and the comparative examples were evaluated for “resistance-temperature characteristics” from RT (room temperature) to 300 ° C. in a thermostatic chamber.

「抵抗−温度特性(以降、RT曲線と記す)」評価における自己温度調整を行う温度は、以下のように抵抗値変化の温度を特定して評価を行った。
評価方法、及び実施例1に係る結果の一例を、図1に示す。
図1に示すようにRT曲線において、大きく抵抗値変化する前後の近似直線の交点温度を自己調整温度とする。
実施例1におけるペーストの自己調整温度は178℃であることが分かる。
The temperature at which self-temperature adjustment in the “resistance-temperature characteristics (hereinafter referred to as RT curve)” evaluation was performed by specifying the temperature of the resistance value change as follows.
An example of the evaluation method and the results according to Example 1 are shown in FIG.
As shown in FIG. 1, in the RT curve, the intersection temperature of the approximate straight line before and after the resistance value change greatly is set as the self-adjusting temperature.
It can be seen that the self-regulating temperature of the paste in Example 1 is 178 ° C.

また、抵抗値変化を開始する温度から+40℃の温度領域で、抵抗値変化が1桁以上生じるPTC特性を有していれば十分に自己温度調整が可能であり、実施例1では、抵抗値変化が150℃から開始し、150〜190℃の温度範囲で、その抵抗値が2桁以上変化しており、十分温度調整可能なPTC特性を有していると判断することが出来る。
表1に、実施例に係る自己温度調整型樹脂抵抗体ペースト組成物の成分組成、及びPTC特性の測定結果を纏めて示す。
In addition, self-temperature adjustment is sufficiently possible if the PTC characteristic has a resistance value change of one digit or more in the temperature range of + 40 ° C. from the temperature at which the resistance value change starts. The change starts from 150 ° C., and the resistance value changes by two or more digits in the temperature range of 150 to 190 ° C., so that it can be determined that the PTC characteristic has sufficient temperature adjustment.
Table 1 summarizes the component composition of the self-temperature-controlling resin resistor paste composition according to the example and the measurement results of the PTC characteristics.

無機フィラーの含有量を、14vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1及び図2に示す。
Except that the content of the inorganic filler was 14 vol%, a test material was prepared and evaluated for characteristics in the same manner as in Example 1.
The results are shown in Table 1 and FIG.

実施例3では、無機フィラーを窒化ホウ素(BN)に替えて有機ベントナイトを用いた以外は、実施例1と同様に供試材を作製して特性を評価した。
その結果を、表1及び図3に示す。
In Example 3, test materials were prepared and properties were evaluated in the same manner as in Example 1, except that organic bentonite was used instead of boron nitride (BN) as the inorganic filler.
The results are shown in Table 1 and FIG.

実施例4では、導電粉末Niの含有量を8vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 4, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of the conductive powder Ni was 8 vol%.
The results are shown in Table 1.

実施例5では、導電粉末Niの含有量を13vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 5, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of the conductive powder Ni was 13 vol%.
The results are shown in Table 1.

実施例6では、導電性粉末をNi粉に替えて粒度分布d50が0.04μmのカーボンブラックを用いた以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 6, the conductive powder in place of Ni powder particle size distribution d 50 except for using the carbon black of 0.04 .mu.m, the characteristics were evaluated to prepare a test material in the same manner as in Example 1.
The results are shown in Table 1.

実施例7では、導電性粉末をNiに替えて粒度分布d50が7μmの窒化チタンを用いた以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 7, except that the particle size distribution d 50 using a titanium nitride 7μm by changing the conductive powder to Ni is, the characteristics were evaluated to prepare a test material in the same manner as in Example 1.
The results are shown in Table 1.

実施例8では、エポキシ樹脂をTMAで測定したガラス転移点が280℃のポリアミドイミド樹脂に替え、硬化剤のフェノール樹脂を含んでいない以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 8, a test material was prepared in the same manner as in Example 1 except that the epoxy resin was replaced with a polyamideimide resin having a glass transition point measured by TMA of 280 ° C. and did not contain a phenol resin as a curing agent. The characteristics were evaluated.
The results are shown in Table 1.

実施例9では、エポキシ樹脂をTMAで測定したガラス転移点が300℃以上のポリイミド樹脂に替え、硬化剤のフェノール樹脂を含んでいない以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 9, a test material was prepared in the same manner as in Example 1 except that the epoxy resin was changed to a polyimide resin having a glass transition point measured by TMA of 300 ° C. or higher and did not contain a phenol resin as a curing agent. The characteristics were evaluated.
The results are shown in Table 1.

実施例10では、導電粉末Niの含有量を5vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 10, a test material was prepared in the same manner as in Example 1 except that the content of the conductive powder Ni was set to 5 vol%, and the characteristics were evaluated.
The results are shown in Table 1.

実施例11では、導電粉末Niの含有量を20vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 11, a test material was prepared in the same manner as in Example 1 except that the content of the conductive powder Ni was 20 vol%, and the characteristics were evaluated.
The results are shown in Table 1.

実施例12では、無機フィラーの窒化ホウ素(BN)の含有量を3vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 12, test materials were prepared and properties were evaluated in the same manner as in Example 1 except that the content of boron nitride (BN) in the inorganic filler was 3 vol%.
The results are shown in Table 1.

実施例13では、無機フィラーの窒化ホウ素(BN)の含有量を20vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
In Example 13, a test material was prepared in the same manner as in Example 1 except that the content of boron nitride (BN) in the inorganic filler was 20 vol%, and the characteristics were evaluated.
The results are shown in Table 1.

(比較例1)
比較例1では、無機フィラーの窒化ホウ素(BN)の含有量を2vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1及び図4に示す。
(Comparative Example 1)
In Comparative Example 1, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of boron nitride (BN) in the inorganic filler was 2 vol%.
The results are shown in Table 1 and FIG.

(比較例2)
比較例2では、無機フィラーの窒化ホウ素(BN)の含有量を25vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 2)
In Comparative Example 2, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of boron nitride (BN) in the inorganic filler was 25 vol%.
The results are shown in Table 1.

(比較例3)
比較例3では、無機フィラーの有機ベントナイトの含有量を2vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 3)
In Comparative Example 3, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of organic bentonite in the inorganic filler was 2 vol%.
The results are shown in Table 1.

(比較例4)
比較例4では、導電性粉末のNi粉の含有量を4vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 4)
In Comparative Example 4, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of the Ni powder in the conductive powder was 4 vol%.
The results are shown in Table 1.

(比較例5)
比較例5では、導電性粉末のNi粉の含有量を25vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1及び図5に示す。
(Comparative Example 5)
In Comparative Example 5, a test material was prepared and the characteristics were evaluated in the same manner as in Example 1 except that the content of the Ni powder of the conductive powder was 25 vol%.
The results are shown in Table 1 and FIG.

(比較例6)
比較例6では、導電性粉末にカーボンブラックを用い、その含有量を25vol%とした以外は、実施例6と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 6)
In Comparative Example 6, a test material was prepared and the characteristics were evaluated in the same manner as in Example 6 except that carbon black was used as the conductive powder and the content was 25 vol%.
The results are shown in Table 1.

(比較例7)
比較例7では、導電性粉末に窒化チタンを用い、その含有量を25vol%とした以外は、実施例7と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 7)
In Comparative Example 7, a test material was prepared and the characteristics were evaluated in the same manner as in Example 7 except that titanium nitride was used as the conductive powder and the content was 25 vol%.
The results are shown in Table 1.

(比較例8)
比較例8では、エポキシ樹脂をTMAで測定したガラス転移点が280℃のポリアミドイミド樹脂に替え、導電性粉末のNi粉の含有量を25vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 8)
In Comparative Example 8, the epoxy resin was replaced with a polyamideimide resin having a glass transition point measured by TMA of 280 ° C., and the content of Ni powder in the conductive powder was 25 vol%. Samples were prepared and their characteristics were evaluated.
The results are shown in Table 1.

(比較例9)
比較例9では、エポキシ樹脂をTMAで測定したガラス転移点が300℃以上のポリイミド樹脂に替え、導電性粉末のNi粉の含有量を25vol%とした以外は、実施例1と同様にして供試材を作製して特性を評価した。
その結果を、表1に示す。
(Comparative Example 9)
In Comparative Example 9, the epoxy resin was replaced with a polyimide resin having a glass transition point measured by TMA of 300 ° C. or higher, and the content of Ni powder in the conductive powder was 25 vol%. Samples were prepared and their characteristics were evaluated.
The results are shown in Table 1.

(比較例10)
比較例10では、樹脂に熱可塑性樹脂のポリエチレン(TMA測定のガラス転移点−20℃)を用いたので、自己温度調整型樹脂抵抗体ペースト組成物を作製することができなかった。
そこで、表1に示す樹脂と導電粉末と無機フィラーを樹脂混練機にて180℃の温度で混練を行い、厚さ0.5mmのシートに加工し、3mm×4mmの大きさに打ち抜いて銀電極を取り付けて自己温度調整型樹脂抵抗体の抵抗器を作製した。
得られた比較例10に係る自己温度調整型樹脂抵抗体の抵抗器のPTC特性を測定した。
自己調整温度は150℃未満であった。結果を表1に示す。
(Comparative Example 10)
In Comparative Example 10, a thermoplastic resin polyethylene (glass transition point of TMA measurement—20 ° C.) was used as the resin, and thus a self-temperature-controlling resin resistor paste composition could not be produced.
Therefore, the resin, conductive powder, and inorganic filler shown in Table 1 are kneaded at a temperature of 180 ° C. with a resin kneader, processed into a sheet having a thickness of 0.5 mm, and punched into a size of 3 mm × 4 mm. Was attached to produce a self-temperature-regulating resin resistor.
The PTC characteristic of the resistor of the obtained self-temperature-controlling resin resistor according to Comparative Example 10 was measured.
The self-adjusting temperature was less than 150 ° C. The results are shown in Table 1.

表1から明らかなように、本発明に係る実施例1〜13は、自己調整温度、抵抗値変化共に良好なPTC特性が得られているのが判る。
一方、無機フィラーの窒化ホウ素(比較例1)や有機ベントナイト(比較例3)が2vol%では添加効果が認められず、一方、25%含有(比較例2)すると、抵抗値が高かくなりすぎて、PTC特性を示さなくなってしまった。
また、導電性粉末(Ni粉)が4vol%と少ない(比較例4)では抵抗値が高くなり過ぎて、PTC特性を示さなくなってしまった。一方、導電性粉末が25vol%と多い比較例5、8〜10(Ni粉)、比較例6(カーボンブラック)、比較例7(窒化チタン)では「抵抗値変化」において十分な効果が得られなかった。
さらに、樹脂にポリエチレン樹脂を用いた比較例10では、「自己調整温度」、「抵抗値変化」共に十分な効果が得られなかった。
As is apparent from Table 1, in Examples 1 to 13 according to the present invention, it is understood that good PTC characteristics are obtained for both the self-adjusting temperature and the resistance value change.
On the other hand, when the inorganic filler boron nitride (Comparative Example 1) or organic bentonite (Comparative Example 3) is 2 vol%, the effect of addition is not observed. On the other hand, when 25% is contained (Comparative Example 2), the resistance value becomes too high. As a result, the PTC characteristics are not exhibited.
Further, when the amount of conductive powder (Ni powder) was as small as 4 vol% (Comparative Example 4), the resistance value was too high and PTC characteristics were not exhibited. On the other hand, in Comparative Examples 5, 8 to 10 (Ni powder), Comparative Example 6 (carbon black), and Comparative Example 7 (titanium nitride) with a high conductive powder of 25 vol%, a sufficient effect can be obtained in the “resistance value change”. There wasn't.
Furthermore, in Comparative Example 10 in which a polyethylene resin was used as the resin, sufficient effects were not obtained for both “self-adjusting temperature” and “resistance value change”.

Figure 2017220517
Figure 2017220517

Claims (14)

自己温度調整型樹脂抵抗体ペースト組成物であって、
未硬化の液状の樹脂である未硬化液状物と導電性粉末と無機フィラーを含み、
前記未硬化液状物が、
未硬化の熱硬化型樹脂、前記熱硬化型樹脂を有機溶剤に溶かした液体、ガラス転移点が250℃以上の熱可塑性樹脂を有機溶剤に溶かした液体、前記熱硬化型樹脂と前記熱可塑性樹脂の混合物を有機溶剤に溶かした液体のいずれかであり、
前記無機フィラーが板状粉末で、
前記無機フィラーの含有率が、前記自己温度調整型樹脂抵抗体ペーストの硬化物である自己温度調整型樹脂抵抗体の体積の3〜20体積%となるように含まれていることを特徴とする自己温度調整型樹脂抵抗体ペースト組成物。
A self-temperature-regulating resin resistor paste composition,
Including an uncured liquid that is an uncured liquid resin, a conductive powder, and an inorganic filler,
The uncured liquid is
Uncured thermosetting resin, liquid in which the thermosetting resin is dissolved in an organic solvent, liquid in which a thermoplastic resin having a glass transition point of 250 ° C. or higher is dissolved in an organic solvent, the thermosetting resin and the thermoplastic resin Is a liquid obtained by dissolving a mixture of the above in an organic solvent,
The inorganic filler is a plate-like powder,
The content of the inorganic filler is included so as to be 3 to 20% by volume of the volume of the self-temperature-controlling resin resistor, which is a cured product of the self-temperature-controlling resin resistor paste. Self-regulating resin resistor paste composition.
前記導電性粉末が、前記自己温度調整型樹脂抵抗体の体積の5〜20体積%となるような含有率で、前記自己温度調整型樹脂抵抗体ペーストに含まれることを特徴とする請求項1に記載の自己温度調整型樹脂抵抗体ペースト組成物。   2. The self-temperature-adjusting resin resistor paste is contained in the self-temperature-adjusting resin resistor paste at a content rate such that the conductive powder is 5 to 20% by volume of the volume of the self-temperature-adjusting resin resistor. A self-temperature-controlling resin resistor paste composition as described in 1. 前記導電性粉末が、金属粉末、非金属粉末のいずれか或いは両者であることを特徴とする請求項1又は2に記載の自己温度調整型樹脂抵抗体ペースト組成物。   The self-temperature-controlling resin resistor paste composition according to claim 1 or 2, wherein the conductive powder is one of or both of a metal powder and a non-metal powder. 前記無機フィラーが、窒化ホウ素、又はベントナイト、マイカ、カオリンから選ばれる1種の層状粘土鉱物であることを特徴とする請求項1から3のいずれか1項に記載の自己温度調整型樹脂抵抗体ペースト組成物。   The self-temperature-regulating resin resistor according to any one of claims 1 to 3, wherein the inorganic filler is one type of layered clay mineral selected from boron nitride, bentonite, mica, and kaolin. Paste composition. 前記未硬化液状物に含まれる樹脂が熱硬化性樹脂であればエポキシ樹脂であり、熱可塑性樹脂であればポリイミド樹脂又はポリアミドイミド樹脂であることを特徴とする請求項1から4のいずれか1項に記載の自己温度調整型樹脂抵抗体ペースト組成物。   If the resin contained in the uncured liquid material is a thermosetting resin, it is an epoxy resin, and if it is a thermoplastic resin, it is a polyimide resin or a polyamide-imide resin. A self-temperature-controlling resin resistor paste composition as described in the item. 前記導電性粉末に金属粉末が含まれる場合、前記金属粉末が、ニッケル粉末、ニッケル系合金粉末、ニッケル系コート粉末のいずれかであることを特徴とする請求項3に記載の自己温度調整型樹脂抵抗体ペースト組成物。   The self-temperature-controlling resin according to claim 3, wherein when the conductive powder includes a metal powder, the metal powder is any one of a nickel powder, a nickel-based alloy powder, and a nickel-based coated powder. Resistor paste composition. 前記導電性粉末に非金属粉末が含まれる場合、前記非金属粉末が、カーボンブラック粉末、窒化チタン粉末、窒化ジルコニウム粉末からなる群から選択された少なくとも1種の粉末であることを特徴とする請求項3に記載の自己温度調整型樹脂抵抗体ペースト組成物。   When the conductive powder contains a nonmetallic powder, the nonmetallic powder is at least one powder selected from the group consisting of carbon black powder, titanium nitride powder, and zirconium nitride powder. Item 4. The self-temperature-controlling resin resistor paste composition according to Item 3. 樹脂に導電性物質が分散したPTC特性を有する自己温度調整型樹脂抵抗体であって、
前記樹脂が、熱硬化型樹脂、ガラス転移点が250℃以上の熱可塑性樹脂のいずれか或いは、両者であり、前記導電性物質を前記自己温度調整型樹脂抵抗体の体積の5〜20体積%含み、
前記自己温度調整型抵抗体の体積の3〜20体積%の板状粉末の無機フィラーを含むことを特徴とする自己温度調整型樹脂抵抗体。
A self-temperature-regulating resin resistor having PTC characteristics in which a conductive substance is dispersed in a resin,
The resin is either a thermosetting resin, a thermoplastic resin having a glass transition point of 250 ° C. or higher, or both, and the conductive material is 5 to 20% by volume of the self-temperature-regulating resin resistor. Including
A self-temperature-controlling resin resistor comprising a plate-like powder inorganic filler in an amount of 3 to 20% by volume of the self-temperature-controlling resistor.
前記導電性物質が導電性粉末であり、
前記導電性粉末が、金属粉末、非金属粉末、或いは両者であることを特徴とする請求項8に記載の自己温度調整型樹脂抵抗体。
The conductive substance is a conductive powder;
The self-temperature-controlling resin resistor according to claim 8, wherein the conductive powder is a metal powder, a non-metal powder, or both.
前記無機フィラーが、窒化ホウ素、或いはベントナイト、マイカ、カオリンから選ばれた少なくとも1種の層状粘土鉱物であることを特徴とする請求項8又は9に記載の自己温度調整型樹脂抵抗体。   The self-temperature-controlling resin resistor according to claim 8 or 9, wherein the inorganic filler is at least one layered clay mineral selected from boron nitride, bentonite, mica, and kaolin. 前記樹脂が、熱硬化性樹脂であればエポキシ樹脂であり、
熱可塑性樹脂であればポリイミド樹脂又はポリアミドイミド樹脂であることを特徴とする請求項8から10のいずれか1項に記載の自己温度調整型樹脂抵抗体。
If the resin is a thermosetting resin, it is an epoxy resin,
The self-temperature-controlling resin resistor according to any one of claims 8 to 10, wherein the resin resistor is a polyimide resin or a polyamide-imide resin if it is a thermoplastic resin.
前記導電性粉末が金属粉末を含む場合、前記金属粉末は、ニッケル粉末、ニッケル系合金粉末、ニッケル系コート粉末のいずれかであることを特徴とする請求項9に記載の自己温度調整型樹脂抵抗体。   The self-temperature-regulating resin resistor according to claim 9, wherein when the conductive powder includes a metal powder, the metal powder is any one of a nickel powder, a nickel-based alloy powder, and a nickel-based coated powder. body. 前記導電性粉末が非金属粉末を含む場合、前記非金属粉末は、カーボンブラック粉末、窒化チタン粉末、窒化ジルコニウム粉末からなる群から選択された少なくとも1種の粉末であることを特徴とする請求項9に記載の自己温度調整型樹脂抵抗体。   When the conductive powder includes a non-metallic powder, the non-metallic powder is at least one powder selected from the group consisting of carbon black powder, titanium nitride powder, and zirconium nitride powder. 9. The self-temperature-controlling resin resistor according to 9. 温度上昇による抵抗値上昇の割合が変化する自己調整温度が、150℃以上であることを特徴とする請求項8〜13のいずれか1項に記載の自己温度調整型樹脂抵抗体。   The self-temperature-regulating resin resistor according to any one of claims 8 to 13, wherein a self-regulating temperature at which a rate of increase in resistance value due to temperature rise changes is 150 ° C or higher.
JP2016112670A 2016-06-06 2016-06-06 Self temperature control type resin resistor paste composition and self temperature control type resin resistor Pending JP2017220517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016112670A JP2017220517A (en) 2016-06-06 2016-06-06 Self temperature control type resin resistor paste composition and self temperature control type resin resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016112670A JP2017220517A (en) 2016-06-06 2016-06-06 Self temperature control type resin resistor paste composition and self temperature control type resin resistor

Publications (1)

Publication Number Publication Date
JP2017220517A true JP2017220517A (en) 2017-12-14

Family

ID=60657796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016112670A Pending JP2017220517A (en) 2016-06-06 2016-06-06 Self temperature control type resin resistor paste composition and self temperature control type resin resistor

Country Status (1)

Country Link
JP (1) JP2017220517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218488A (en) * 2016-06-06 2017-12-14 住友金属鉱山株式会社 Composition sheet for forming self temperature control type resin resistor and self temperature control type resin resistor sheet

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64680A (en) * 1986-06-06 1989-01-05 Awaji Sangyo Kk Conductive heat-generating paste
JPS6490261A (en) * 1987-09-30 1989-04-06 Kawatetsu Techno Res Kk Electroconductive composition
US5250228A (en) * 1991-11-06 1993-10-05 Raychem Corporation Conductive polymer composition
JP2003268245A (en) * 2002-03-18 2003-09-25 Osaka Gas Co Ltd Composite resin composition and method for producing the same
JP2006186272A (en) * 2004-12-28 2006-07-13 Tdk Corp Thermistor
JP2007250763A (en) * 2006-03-15 2007-09-27 Tdk Corp Ptc thermistor composition, manufacturing method thereof and ptc element
JP2007250911A (en) * 2006-03-16 2007-09-27 Sumitomo Metal Mining Co Ltd Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element
US20080061273A1 (en) * 2006-09-07 2008-03-13 Rogado Nyrissa S Low temperature coefficient of resistivity polymeric resistors based on metal carbides and nitrides
US20080116424A1 (en) * 2006-11-20 2008-05-22 Sabic Innovative Plastics Ip Bv Electrically conducting compositions
US20080186128A1 (en) * 2007-02-05 2008-08-07 Chi-Sheng Chang Polymeric positive temperature coefficient thermistor and process for preparing the same
JP2014534987A (en) * 2011-10-06 2014-12-25 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Polymer PTC thermistor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64680A (en) * 1986-06-06 1989-01-05 Awaji Sangyo Kk Conductive heat-generating paste
JPS6490261A (en) * 1987-09-30 1989-04-06 Kawatetsu Techno Res Kk Electroconductive composition
US5250228A (en) * 1991-11-06 1993-10-05 Raychem Corporation Conductive polymer composition
JP2003268245A (en) * 2002-03-18 2003-09-25 Osaka Gas Co Ltd Composite resin composition and method for producing the same
JP2006186272A (en) * 2004-12-28 2006-07-13 Tdk Corp Thermistor
JP2007250763A (en) * 2006-03-15 2007-09-27 Tdk Corp Ptc thermistor composition, manufacturing method thereof and ptc element
JP2007250911A (en) * 2006-03-16 2007-09-27 Sumitomo Metal Mining Co Ltd Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element
US20080061273A1 (en) * 2006-09-07 2008-03-13 Rogado Nyrissa S Low temperature coefficient of resistivity polymeric resistors based on metal carbides and nitrides
US20080116424A1 (en) * 2006-11-20 2008-05-22 Sabic Innovative Plastics Ip Bv Electrically conducting compositions
US20080186128A1 (en) * 2007-02-05 2008-08-07 Chi-Sheng Chang Polymeric positive temperature coefficient thermistor and process for preparing the same
JP2014534987A (en) * 2011-10-06 2014-12-25 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co.KGaA Polymer PTC thermistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218488A (en) * 2016-06-06 2017-12-14 住友金属鉱山株式会社 Composition sheet for forming self temperature control type resin resistor and self temperature control type resin resistor sheet

Similar Documents

Publication Publication Date Title
KR101870005B1 (en) Polymeric ptc thermistors
US7781706B2 (en) Conductive composition for producing carbon flexible heating structure, carbon flexible heating structure using the same, and manufacturing method thereof
CN105321640A (en) positive temperature coefficient element
TW200817462A (en) Improved thermal conductive polymeric PTC compositions
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
JP2011187194A (en) Conductive paste
JP2007531217A (en) Conductive composition for producing flexible carbon heating structure, flexible carbon heating structure using the same, and method for producing the same
JP2017220517A (en) Self temperature control type resin resistor paste composition and self temperature control type resin resistor
JP3564758B2 (en)   PTC composition
JP5383642B2 (en) Powder coating method and gas insulated switchgear
JP6607402B2 (en) Self-temperature-controllable resin resistor forming composition sheet and self-temperature-controllable resin resistor sheet
JP4926616B2 (en) Epoxy resin composition, method for producing electric / electronic element, and electric / electronic element
CN107001886B (en) Adhesive resin composition, bonding film and flexible metal lamilate
JP6270778B2 (en) Temperature sensor material, and temperature sensor and temperature strain sensor using the same
TW202043410A (en) Conductive adhesive and method of using conductive adhesive
JP2010013580A (en) High-thermal conductivity composite and method for producing the same
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
CN103554594A (en) Novel PTC (Positive Temperature Coefficient) conductive composite material and PTC thermosensitive element made from the same
JP6670490B2 (en) Planar resistance heating element, resistance heating seamless tubular article, and resin solution containing conductive particles
CN109563238B (en) Epoxy resin composition and conductive adhesive containing same
JP2005294550A (en) Organic positive characteristic thermistor
JP6540590B2 (en) Liquid conductive resin composition and electronic component
JP2005294552A (en) Composition for forming organic positive characteristic thermistor element and organic positive characteristic thermistor
JP4261407B2 (en) Organic positive temperature coefficient thermistor
JP2006019432A (en) Thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191016