JP2004047792A - Polymeric ptc device - Google Patents

Polymeric ptc device Download PDF

Info

Publication number
JP2004047792A
JP2004047792A JP2002204116A JP2002204116A JP2004047792A JP 2004047792 A JP2004047792 A JP 2004047792A JP 2002204116 A JP2002204116 A JP 2002204116A JP 2002204116 A JP2002204116 A JP 2002204116A JP 2004047792 A JP2004047792 A JP 2004047792A
Authority
JP
Japan
Prior art keywords
resin
polymer ptc
ptc element
ptc
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204116A
Other languages
Japanese (ja)
Inventor
Shinichi Sakamoto
坂本 晋一
Katsumi Sawada
澤田 勝実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002204116A priority Critical patent/JP2004047792A/en
Publication of JP2004047792A publication Critical patent/JP2004047792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymeric PTC device which is superior in quality and can be used repeatedly. <P>SOLUTION: The polymeric PTC device is used as an overcurrent protective device preventing an overcurrent. The polymeric PTC device is formed of a resin composition composed of a crystalline resin 4 and 1 to 100 wt% heat dissipating material 5 mixed into the resin 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、PTC(Positive Tempereture Coefficient : 正温度係数)を有する組成物に関するものであり、より詳しくは電池や電子機器の回路等に異常発生時に流れる過電流を防止する過電流保護素子を用途とする高分子PTC素子に関するものである。
【0002】
【従来の技術】
従来からPTC特性を有するものとして、Yを微量添加したBaTiO等のセラミックPTC組成物とポリエチレンを代表とする結晶性高分子に導電性を有する、一般的には粒状のカーボンブラック粉末等を混練して成形した高分子PTC組成物が知られている。しかしながら、セラミックPTC組成物は定常状態の抵抗率が〜約100Ω・cmと高いために、数A程度の比較的大きな電流を流すことができない。このことは、セラミックPTC組成物が前記過電流保護素子として用いることができないことを意味している。
【0003】
さらに、セラミックPTC組成物は、所望形状に成形、加工することが困難であり、耐衝撃性に劣る面がある。しかしながら、過電流保護素子の用途として本発明で論述する高分子PTC組成物においては、セラミック系に比べて室温抵抗が低いことや成形・加工が容易であること、さらに、耐衝撃性が優れていること等が特徴であるがゆえに適している。高分子PTC組成物の導電粒子として、一般的には、カーボンブラックのような比較的かさ密度が大きく、粒度の小さい安価な材料が用いられている。
【0004】
また、その原理は、前記導電粒子がポリマー樹脂中に所定の配合量で分散されている組成物中において、室温では導電粒子のネットワークにより低い抵抗率を示すが、ポリマー樹脂の結晶融点Tmを境にして相対的にポリマー樹脂の体積が増加して導電粒子相互間のネットワークが切断されていくことにより、抵抗率が急に上昇する。さらに、常温に戻ると、その導電粒子相互間のネットワークが復帰することにより、ほぼ元の低い抵抗値となる。
【0005】
図2は、従来の高分子PTC素子の断面図である。図2において、高分子PTC組成物2’は結晶性樹脂4’とフィラー3’で構成され、さらに、金属電極基材1’が、前記高分子PTC組成物2’の両面に形成されている。
【0006】
さらに、このような高分子PTC素子の一般的な製法としては、例えば、熱可塑性樹脂を代表とするポリオレフィン類等の樹脂、例えば高密度ポリエチレン等と良好な導電性を有するカーボンブラックや金属炭化物等のフィラーを混練して、分散処理を行う。
【0007】
その際に、2本ロールやニーダー等を用いる場合では、展延機やロール成形や押し出し成形等でPTC樹脂組成物を作製し熱プレス機等で金属箔等や各種金属でパターン化された基板2枚に挟んで成形する等の方法でシート状に加工して、電極端子を取り付けて素子を作製する方法が挙げられる(乾式方法)。
【0008】
一方、3本ロール、遊星ミル、サンドミル等を用いて湿式混合、分散した後に塗布する方法においては、基本的に本発明で用いられる高密度ポリエチレン樹脂等のような100℃以上の高い樹脂融点を有する結晶性樹脂を用いる場合、常温で溶解可能な有機溶剤がほとんどなく、約100℃の熱をかけながら樹脂をシクロヘキサンやデカリン等の高沸点溶剤を用いて溶解することは困難である。仮に溶けても、その溶解量は微量であり、さらに樹脂の結晶化度や分子量に関して、その数値が大きければ大きいほど溶けなくなり、一般的に分子量が3万を超えるような高密度ポリエチレン樹脂であれば、溶ける有機溶剤がなく、従って、樹脂を溶解して導電粒子と混合させて塗料化して、金属箔上に塗工してPTCを有する基板を作製することは、ほぼ不可能である。また、前記樹脂を溶剤に膨潤させて同様に塗料化したものを塗工するという方法では量産性に乏しい。
【0009】
【発明が解決しようとする課題】
そこで、従来より塗工で用いられるPTC素子に適した樹脂においては、低い結晶化度すなわち低融点であり、汎用溶剤への良好な溶解性を示す樹脂、例えばポリアミド(PA)、ポリイミド(PI)、ポリプロピレン(PP)樹脂等が挙げられ、トルエン等の汎用溶剤に良溶解性であるが、これらの樹脂は結晶性が低いため熱膨張が小さく、本発明で用いられるPTC素子用の樹脂組成物としては不適であり、さらに、結晶性を高くすると、汎用溶剤に対して難溶解性を示すものが多い。
【0010】
これらの樹脂のうち結晶性が比較的高く、汎用溶剤に対して良好な溶解性を示すものとして、ポリフッ化ビニリデン樹脂が挙げられるが、単に、この樹脂を導電フィラーに分散させた従来のPTC樹脂組成物の系においては、トリップ後の抵抗値が大きく、またトリップ回数の増加に比例して抵抗値が増大していく問題があり、繰り返し使えることが利点であるPTC素子としては不適である。
【0011】
従って、本発明の目的は、繰り返し使用することのできる良好な高分子PTC素子を提供することにある。
【0012】
【課題を解決するための手段】
即ち、本発明は、過電流を防止する過電流保護素子を用途とする高分子PTC素子において、前記高分子PTC素子の樹脂組成物は、放熱材料を前記樹脂組成物中の樹脂に対して1から100wt%の範囲に混入された高分子PTC素子である。
【0013】
また、本発明は、前記放熱材料が、アルミナ、酸化亜鉛、炭化珪素、窒化アルミニウム、窒化ホウ素、炭化チタンの少なくとも1種以上が含まれた高分子PTC素子である。
【0014】
また、本発明は、前記高分子PTC素子において、樹脂組成物の少なくとも1種をポフッ化ビニリデン樹脂とする高分子PTC素子である。
【0015】
また、本発明は、前記高分子PTC素子において、樹脂組成物は、フィラー対結晶性樹脂の配合重量比を、60対40から98対2の範囲とする高分子PTC素子である。
【0016】
【発明の実施の形態】
本発明の実施の形態による高分子PTC素子について、以下に説明する。
【0017】
本発明の実施の形態による高分子PTC素子は、その樹脂組成物について、この樹脂組成物中の樹脂に対して放熱材料を1から100wt%の範囲混入し、また前記放熱材料がアルミナ、酸化亜鉛、炭化珪素、窒化アルミニウム、窒化ホウ素、炭化チタンの少なくとも1種以上から選択されて混入しており、また前記樹脂の少なくとも1種がポリフッ化ビニリデン樹脂を用いる高分子PTC素子を提供する。
【0018】
詳しくは、本発明のように、例えばNi箔等の金属電極の表面にPTC樹脂組成物を塗工してPTC素子を作製する場合は、溶媒(一般的なケトン類、トルエン等の有機溶剤または水)に溶けやすい樹脂、かつ融点が100〜200℃を有する樹脂を選定することが望ましく、本発明においてはポリフッ化ビニリデン樹脂を用いることが好ましい。
【0019】
また、放熱材料を入れる理由としては、比較的大きい電流が流れたときに、一般的に、素子にはIRの熱が発生して、樹脂融点以上で導電パスが絶たれてトリップ状態になるが、樹脂組成物に導電フィラーの凝集物が存在する等の局所的に熱負荷がかかる場所が存在する場合には、熱分布が偏在状態になり、トリップ前の抵抗値には戻らない、すなわち繰り返しトリップを行う毎に素子自身が劣化(抵抗値増大)していき、最悪の場合には素子の破損や破裂等といった問題が発生し、危険である。
【0020】
この問題を改善するために、すなわち熱分布を拡散させる効果を目的に放熱材料を混入して、その混入量は、樹脂に対して1〜100wt%として、具体的には、アルミナ、酸化亜鉛、炭化珪素、窒化アルミニウム、窒化ホウ素、炭化チタンの少なくとも1種以上が本発明では用いられる。混入量は、樹脂に対して1wt%未満だと前記効果が期待できず、100wt%を超えると樹脂が少なく、PTC効果が得られない。
【0021】
好ましくは、比較的安価な窒化アルミニウム等を樹脂重量に対して30wt%程度添加する。また、前記材料は、特に上述したものに限定される訳ではなく、ベリリア、酸化カルシウム、マグネシア、炭化ホウ素、炭化タンタル等を各種用いることもできる。
【0022】
さらに、本発明の高分子PTC組成物として、フィラーは、金属ニッケル等の金属粒子やカーボンブラック等の導電性炭素材料やTiC、WC、WC、ZrC、VC、NbC、TaC、MoC等の金属炭化物を1種以上を混合して用いる。好ましくは、材料固有抵抗の低い熱伝導率の良好なTiC等の金属炭化物を多く用いる。
【0023】
本発明のPTC樹脂組成物におけるフィラー/結晶性樹脂の配合重量比において、60対40から98対2の範囲で用いられる。60対40未満であれば、フィラー量が少ないために低抵抗な素子が得られず、また98対2を超えると樹脂量が少ないために電極への接着力が弱くなり、良好なPTC特性が得られない。
【0024】
【実施例】
以下、本発明の実施例による高分子PTC素子について説明する。
【0025】
図1は、本発明の実施例による高分子PTC素子の説明図である。図1にて、本発明の高分子PTC素子は、高分子PTC組成物2が結晶性樹脂4とフィラー3、および放熱材料5にて構成され、さらに、金属電極基材(金属箔)1が、前記高分子PTC組成物2の両面に形成されている。
【0026】
ここで、 以下の表1に示した混合重量比で実施例および比較例の各塗料を作製した。
【0027】
【表1】

Figure 2004047792
【0028】
表1に示したように、各塗料をダイノーミルで混合・分散して塗料化した高分子PTC組成物を厚さ50μmのNi箔上に塗布し、150℃×5分間の乾燥処理を行い、所定の大きさにシートカットした。このときの膜厚は、何れの例とも200μmとした。前記のカットされたシート2枚を塗布面を対向させて200℃−200kgf/cm×15分間の条件下で熱プレスを行い、4mm角の大きさに加工して、高分子PTC素子とした(素子厚みは何れの例とも300μmであった)。
【0029】
また、比較例1では、樹脂に対して放熱材料(本実施例では窒化アルミニウム)を200wt%混入したために、PTC素子がトリップせずに抵抗値が変化しなかったことを示している。また、比較例2では、従来のように前記放熱材料を混入しなかったため、抵抗値がトリップのサイクル回数が増えるにつれ上昇していく傾向となり、このようなPTC素子は、繰り返し使用できるとはいえない。
【0030】
実施例、比較例で作製した高分子PTC素子について、室温(25℃、40RH%)の抵抗値R1、素子に10A定電流を10秒流して素子をトリップさせた1時間後の抵抗値R2、さらに、これを10回繰り返したサイクル10回後の抵抗値R3を表2に示した。
【0031】
【表2】
Figure 2004047792
【0032】
表2より、本発明で述べた樹脂組成物に所定量を混合した実施例1においては、抵抗値R1、R2、R3間で、ほとんど変化がなく、良好なPTC素子が得られた。
【0033】
【発明の効果】
以上のように、本発明のPTC素子の樹脂組成物においては、この樹脂組成物中の樹脂に対して放熱材料を1〜100wt%混入し、またこの放熱材料がアルミナ、酸化亜鉛、炭化珪素、窒化アルミニウム、窒化ホウ素、炭化チタンの少なくとも1種以上から選択されて混入しており、また前記樹脂の少なくとも1種がポリフッ化ビニリデン樹脂を用いることにより、繰り返し使用することのできる良好な高分子PTC素子を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例による高分子PTC素子の断面図。
【図2】従来の高分子PTC素子の断面図。
【符号の説明】
1,1’  金属電極基材(金属箔)
2,2’  高分子PTC組成物
3,3’  フィラー
4,4’  結晶性樹脂
5  放熱材料[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composition having PTC (Positive Temperature Coefficient: positive temperature coefficient). More specifically, the present invention relates to an overcurrent protection element that prevents an overcurrent that flows when an abnormality occurs in a battery or a circuit of an electronic device. And a polymer PTC element.
[0002]
[Prior art]
Conventionally, as a material having PTC characteristics, a ceramic PTC composition such as BaTiO 3 to which a trace amount of Y 2 O 3 is added, and generally a granular carbon black powder having conductivity to a crystalline polymer represented by polyethylene There is known a polymer PTC composition formed by kneading the mixture. However, since the ceramic PTC composition has a high steady-state resistivity of about 100 Ω · cm, a relatively large current of about several A cannot flow. This means that the ceramic PTC composition cannot be used as the overcurrent protection device.
[0003]
Further, the ceramic PTC composition is difficult to form and process into a desired shape, and has a poor impact resistance. However, the polymer PTC composition discussed in the present invention as an application of the overcurrent protection element has low room temperature resistance, is easy to mold and process, and has excellent impact resistance as compared with ceramics. It is suitable because of its features. As the conductive particles of the polymer PTC composition, generally, an inexpensive material having a relatively large bulk density and a small particle size, such as carbon black, is used.
[0004]
The principle is that, in a composition in which the conductive particles are dispersed in a predetermined amount in a polymer resin, a low resistivity is exhibited by a network of the conductive particles at room temperature. Then, the volume of the polymer resin relatively increases and the network between the conductive particles is cut, whereby the resistivity sharply increases. Further, when the temperature returns to normal temperature, the network between the conductive particles is restored, and the resistance value becomes almost the original low value.
[0005]
FIG. 2 is a cross-sectional view of a conventional polymer PTC element. In FIG. 2, a polymer PTC composition 2 ′ is composed of a crystalline resin 4 ′ and a filler 3 ′, and a metal electrode substrate 1 ′ is formed on both sides of the polymer PTC composition 2 ′. .
[0006]
Further, a general method for producing such a polymer PTC element includes, for example, resins such as polyolefins represented by thermoplastic resins, such as carbon black and metal carbide having good conductivity with high-density polyethylene and the like. Is kneaded and dispersed.
[0007]
In this case, when using a two-roll or kneader, a PTC resin composition is prepared by a spreader, roll forming, extrusion molding, or the like, and a metal foil or a substrate patterned with various metals is formed by a hot press or the like. There is a method in which the device is processed into a sheet by a method such as molding by sandwiching two sheets, and an electrode terminal is attached to produce an element (dry method).
[0008]
On the other hand, in the method of wet-mixing and dispersing using a three-roll, planetary mill, sand mill, or the like, the application is performed by applying a high resin melting point of 100 ° C. or more, basically, such as the high-density polyethylene resin used in the present invention. When a crystalline resin is used, there is almost no organic solvent that can be dissolved at room temperature, and it is difficult to dissolve the resin using a high boiling point solvent such as cyclohexane or decalin while applying heat at about 100 ° C. Even if it is melted, the amount of its dissolution is very small, and as for the crystallinity and molecular weight of the resin, the higher the value, the more insoluble it becomes. In general, the high-density polyethylene resin whose molecular weight exceeds 30,000 For example, there is no soluble organic solvent. Therefore, it is almost impossible to prepare a substrate having PTC by dissolving a resin, mixing it with conductive particles, forming a coating, and applying the coating on a metal foil. Also, the method of swelling the resin in a solvent and applying a coating material in the same manner is poor in mass productivity.
[0009]
[Problems to be solved by the invention]
Therefore, resins suitable for PTC elements conventionally used in coating have low crystallinity, that is, low melting point, and exhibit good solubility in general-purpose solvents, such as polyamide (PA) and polyimide (PI). , Polypropylene (PP) resin and the like, which are well soluble in general-purpose solvents such as toluene. However, since these resins have low crystallinity, the thermal expansion is small, and the resin composition for the PTC element used in the present invention is used. However, many of them are hardly soluble in general-purpose solvents when the crystallinity is increased.
[0010]
Among these resins, those having relatively high crystallinity and exhibiting good solubility in general-purpose solvents include polyvinylidene fluoride resin, but a conventional PTC resin in which this resin is simply dispersed in a conductive filler is used. The composition system has a problem that the resistance value after a trip is large and the resistance value increases in proportion to an increase in the number of trips, which is unsuitable as a PTC element which is advantageous in that it can be used repeatedly.
[0011]
Accordingly, an object of the present invention is to provide a good polymer PTC element that can be used repeatedly.
[0012]
[Means for Solving the Problems]
That is, the present invention relates to a polymer PTC element for use as an overcurrent protection element for preventing an overcurrent, wherein the resin composition of the polymer PTC element is such that the heat radiation material is one to the resin in the resin composition. To 100 wt% of the polymer PTC element.
[0013]
Further, the present invention is the polymer PTC element, wherein the heat dissipation material contains at least one of alumina, zinc oxide, silicon carbide, aluminum nitride, boron nitride, and titanium carbide.
[0014]
Further, the present invention is the polymer PTC element, wherein at least one of the resin compositions is a vinylidene polyfluoride resin.
[0015]
The present invention also provides the polymer PTC element, wherein the resin composition has a compounding weight ratio of the filler to the crystalline resin in the range of 60:40 to 98: 2.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
A polymer PTC element according to an embodiment of the present invention will be described below.
[0017]
In the polymer PTC element according to the embodiment of the present invention, the heat dissipation material is mixed with the resin in the resin composition in the range of 1 to 100% by weight, and the heat dissipation material is alumina, zinc oxide. And at least one selected from the group consisting of silicon carbide, aluminum nitride, boron nitride, and titanium carbide, and at least one of the resins uses a polyvinylidene fluoride resin.
[0018]
Specifically, as in the present invention, when a PTC resin composition is applied to the surface of a metal electrode such as a Ni foil to produce a PTC element, a solvent (an organic solvent such as a general ketone, toluene, or the like) It is desirable to select a resin that is easily soluble in water) and a resin having a melting point of 100 to 200 ° C. In the present invention, it is preferable to use a polyvinylidene fluoride resin.
[0019]
The reason for adding a heat dissipation material is that, when a relatively large current flows, generally, I 2 R heat is generated in the element, and a conductive path is cut off at a temperature higher than the melting point of the resin, causing a trip state. However, if there is a place where a local thermal load is applied, such as the presence of an aggregate of conductive filler in the resin composition, the heat distribution becomes unevenly distributed and does not return to the resistance value before the trip. That is, each time the element is repeatedly tripped, the element itself deteriorates (increases in resistance value), and in the worst case, a problem such as breakage or rupture of the element occurs, which is dangerous.
[0020]
In order to improve this problem, that is, a heat radiation material is mixed for the purpose of diffusing the heat distribution, and the mixing amount is set to 1 to 100 wt% with respect to the resin, specifically, alumina, zinc oxide, At least one of silicon carbide, aluminum nitride, boron nitride, and titanium carbide is used in the present invention. If the mixing amount is less than 1 wt% with respect to the resin, the above effect cannot be expected. If the mixing amount exceeds 100 wt%, the resin is small and the PTC effect cannot be obtained.
[0021]
Preferably, relatively inexpensive aluminum nitride or the like is added in an amount of about 30% by weight based on the weight of the resin. The material is not particularly limited to those described above, and various materials such as beryllia, calcium oxide, magnesia, boron carbide, and tantalum carbide can be used.
[0022]
Further, as the polymer PTC composition of the present invention, fillers include metal particles such as metal nickel, conductive carbon materials such as carbon black, and TiC, WC, W 2 C, ZrC, VC, NbC, TaC, MoC, and the like. A mixture of one or more metal carbides is used. Preferably, many metal carbides such as TiC having a low material specific resistance and a good thermal conductivity are used.
[0023]
The filler / crystalline resin in the PTC resin composition of the present invention is used in a blending weight ratio of 60:40 to 98: 2. If the ratio is less than 60:40, a low-resistance element cannot be obtained because the amount of filler is small, and if the ratio exceeds 98: 2, the adhesion to the electrode becomes weak because the amount of resin is small, and good PTC characteristics are obtained. I can't get it.
[0024]
【Example】
Hereinafter, a polymer PTC device according to an embodiment of the present invention will be described.
[0025]
FIG. 1 is an explanatory diagram of a polymer PTC device according to an embodiment of the present invention. In FIG. 1, in the polymer PTC element of the present invention, a polymer PTC composition 2 is composed of a crystalline resin 4, a filler 3, and a heat dissipation material 5, and a metal electrode base material (metal foil) 1 is formed. , Formed on both surfaces of the polymer PTC composition 2.
[0026]
Here, paints of Examples and Comparative Examples were prepared at mixing weight ratios shown in Table 1 below.
[0027]
[Table 1]
Figure 2004047792
[0028]
As shown in Table 1, each of the paints was mixed and dispersed by a dyno mill, and a polymerized PTC composition was applied to a 50 μm-thick Ni foil, dried at 150 ° C. for 5 minutes, and dried. The sheet was cut to size. The film thickness at this time was 200 μm in each case. The two cut sheets were hot-pressed under the condition of 200 ° C.-200 kgf / cm 2 × 15 minutes with the coated surfaces facing each other, and processed into a 4 mm square size to obtain a polymer PTC element. (The element thickness was 300 μm in each case).
[0029]
Further, Comparative Example 1 shows that the resistance value did not change without tripping of the PTC element because the heat dissipation material (aluminum nitride in this example) was mixed at 200 wt% with the resin. Further, in Comparative Example 2, since the heat radiation material was not mixed as in the conventional case, the resistance value tended to increase as the number of trip cycles increased, and such a PTC element can be used repeatedly. Absent.
[0030]
For the polymer PTC devices manufactured in Examples and Comparative Examples, the resistance value R1 at room temperature (25 ° C., 40 RH%), the resistance value R2 one hour after the device was tripped by applying a constant current of 10 A to the device for 10 seconds, Further, Table 2 shows the resistance value R3 after 10 cycles in which this was repeated 10 times.
[0031]
[Table 2]
Figure 2004047792
[0032]
From Table 2, in Example 1 in which a predetermined amount was mixed with the resin composition described in the present invention, there was almost no change between the resistance values R1, R2, and R3, and a good PTC element was obtained.
[0033]
【The invention's effect】
As described above, in the resin composition of the PTC element of the present invention, the heat radiation material is mixed with the resin in the resin composition in an amount of 1 to 100% by weight, and the heat radiation material is made of alumina, zinc oxide, silicon carbide, A good polymer PTC which can be repeatedly used by mixing at least one selected from at least one of aluminum nitride, boron nitride, and titanium carbide, and using at least one of the above resins by using a polyvinylidene fluoride resin. An element can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a polymer PTC device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a conventional polymer PTC element.
[Explanation of symbols]
1,1 'metal electrode substrate (metal foil)
2,2 'polymer PTC composition 3,3' filler 4,4 'crystalline resin 5 heat dissipation material

Claims (4)

過電流を防止する過電流保護素子を用途とする樹脂組成物にて形成される高分子PTC素子において、前記高分子PTC素子の樹脂組成物は、放熱材料が前記樹脂組成物中の樹脂に対して1から100wt%の範囲に混入されたことを特徴とする高分子PTC素子。In a polymer PTC element formed of a resin composition used for an overcurrent protection element for preventing an overcurrent, the resin composition of the polymer PTC element is such that a heat radiating material is based on a resin in the resin composition. A polymer PTC element mixed in a range of 1 to 100 wt%. 前記放熱材料として、アルミナ、酸化亜鉛、炭化珪素、窒化アルミニウム、窒化ホウ素、炭化チタンの少なくとも1種以上が含まれたことを特徴とする請求項1に記載の高分子PTC素子。The polymer PTC element according to claim 1, wherein the heat dissipation material includes at least one of alumina, zinc oxide, silicon carbide, aluminum nitride, boron nitride, and titanium carbide. 前記樹脂組成物の少なくとも1種がポリフッ化ビニリデン樹脂であることを特徴とする請求項1または2に記載の高分子PTC素子。The polymer PTC element according to claim 1 or 2, wherein at least one of the resin compositions is a polyvinylidene fluoride resin. 前記樹脂組成物は、フィラー対結晶性樹脂の配合重量比が、60対40から98対2の範囲であることを特徴とする請求項1ないし3のいずれかに記載の高分子PTC素子。The polymer PTC element according to any one of claims 1 to 3, wherein the resin composition has a compounding weight ratio of filler to crystalline resin in a range of 60:40 to 98: 2.
JP2002204116A 2002-07-12 2002-07-12 Polymeric ptc device Pending JP2004047792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204116A JP2004047792A (en) 2002-07-12 2002-07-12 Polymeric ptc device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204116A JP2004047792A (en) 2002-07-12 2002-07-12 Polymeric ptc device

Publications (1)

Publication Number Publication Date
JP2004047792A true JP2004047792A (en) 2004-02-12

Family

ID=31709806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204116A Pending JP2004047792A (en) 2002-07-12 2002-07-12 Polymeric ptc device

Country Status (1)

Country Link
JP (1) JP2004047792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250911A (en) * 2006-03-16 2007-09-27 Sumitomo Metal Mining Co Ltd Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250911A (en) * 2006-03-16 2007-09-27 Sumitomo Metal Mining Co Ltd Conductive composition, conductive composition sheet and organic positive temperature coefficient thermistor element using them as well as method for manufacturing organic positive temperature coefficient thermistor element

Similar Documents

Publication Publication Date Title
US8653932B2 (en) Conductive composite material with positive temperature coefficient of resistance and overcurrent protection component
TWI281677B (en) Electrically conductive polymer composition
US8003016B2 (en) Thermoplastic composition with improved positive temperature coefficient behavior and method for making thereof
TWI310955B (en) Over-current protection device
JP5674947B2 (en) Conductive polymer composition for PTC device with reduced NTC characteristics using carbon nanotubes
JP2015506579A (en) Polymer conductive composite material and PTC element
TW200817462A (en) Improved thermal conductive polymeric PTC compositions
KR102044107B1 (en) Conductive Polymer Compositions, Conductive Polymer Sheets, Electrical Components, and Methods for Making the Same
CN102522173B (en) Resistance positive temperature degree effect conducing composite material and over-current protecting element
TW524820B (en) PTC conductive polymer composition
JP3794996B2 (en) Thermally conductive resin composition and phase change type heat radiation member
JP3564758B2 (en)   PTC composition
JPH11310739A (en) Conductive ink composition and flat heating element
JP2004047792A (en) Polymeric ptc device
JP2000331804A (en) Ptc composition
JP2000515448A (en) Method for producing laminate comprising conductive polymer composition
TW201518368A (en) Composite type polymer thermistor
JPH11214203A (en) Positive temperature coefficient element and manufacture thereof
JP2004047793A (en) Polymeric ptc device and its manufacturing method
JP2003332102A (en) Polymer ptc composition and polymer ptc element
JP2004193193A (en) High polymer ptc element
JP2001085203A (en) Ptc composition
TWI842778B (en) Pptc composition and device having low thermal derating and low process jump
JP2000080216A (en) Ptc composition, ptc element and overcurrent protecting element using the element
JPH11329675A (en) Ptc composition