JP2007250644A - Heating member and substrate heating device using the same - Google Patents

Heating member and substrate heating device using the same Download PDF

Info

Publication number
JP2007250644A
JP2007250644A JP2006069159A JP2006069159A JP2007250644A JP 2007250644 A JP2007250644 A JP 2007250644A JP 2006069159 A JP2006069159 A JP 2006069159A JP 2006069159 A JP2006069159 A JP 2006069159A JP 2007250644 A JP2007250644 A JP 2007250644A
Authority
JP
Japan
Prior art keywords
heating
thermal expansion
heating member
substrate
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006069159A
Other languages
Japanese (ja)
Other versions
JP4703442B2 (en
Inventor
Masao Nishioka
正雄 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006069159A priority Critical patent/JP4703442B2/en
Publication of JP2007250644A publication Critical patent/JP2007250644A/en
Application granted granted Critical
Publication of JP4703442B2 publication Critical patent/JP4703442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating member for eliminating the risk of breaking a heating member at high temperature heating even when the radial center part of the heating member formed of ceramics is set at heating temperature lower than the radial outer side part, and to provide a substrate heating device. <P>SOLUTION: The heating member includes a planar base body 3 which has a heating surface 7 for heating an object to be treated and is formed of the ceramics. Compression residual stress works on the radial center 11 of the base body 3 at normal temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体製造装置として用いられる基板加熱装置と加熱部材に関する。更に詳しくは、加熱面を高温状態に加熱したときに、変形や破損を好適に防止することができる加熱部材、及びこれを用いた基板加熱装置に関する。   The present invention relates to a substrate heating apparatus and a heating member used as a semiconductor manufacturing apparatus. More specifically, the present invention relates to a heating member that can suitably prevent deformation and breakage when a heating surface is heated to a high temperature state, and a substrate heating apparatus using the same.

従来の半導体製造装置においては、熱CVD処理等によって原料ガスから半導体薄膜を製造する場合、基板であるウエハを加熱するために加熱部材(セラミックスヒータ)が使用されることがある。該セラミックスヒータとして、例えばいわゆる2ゾーンヒータが知られている。   In a conventional semiconductor manufacturing apparatus, when a semiconductor thin film is manufactured from a raw material gas by a thermal CVD process or the like, a heating member (ceramic heater) may be used to heat a wafer as a substrate. As this ceramic heater, for example, a so-called two-zone heater is known.

この2ゾーンヒータでは、円盤状に形成された加熱部材の基体の径方向中央部に内周側抵抗発熱体を埋設し、径方向外側部に外周側抵抗発熱体を埋設し、それぞれの抵抗発熱体に電圧を付加している。これにより、加熱部材における径方向中央部と径方向外側部とで、加熱温度の設定値に差違を設けている(例えば、特許文献1参照)。   In this two-zone heater, an inner resistance heating element is embedded in the central portion of the base of the heating member formed in a disk shape, and an outer resistance heating element is embedded in the outer portion in the radial direction. A voltage is applied to the body. Thereby, the difference is provided in the setting value of heating temperature by the radial direction center part and radial direction outer part in a heating member (for example, refer patent document 1).

基体の径方向中央部における加熱温度を径方向外側部よりも低く設定する、いわゆるセンタークールにすると、基体を高温に加熱した場合に、径方向外側部の方が径方向中央部よりも熱膨張の度合いが大きくなる。すると、径方向外側部が膨張して外周方向に広がり、径方向中央部を径方向の外周方向に向けて引っ張るため、径方向中央部に引張応力が作用する。この径方向中央部には、接続端子等を取り付ける取付孔が複数穿設されているため、径方向外側部よりも強度が低くなっている。また、セラミックスからなる加熱部材は、引張応力に対して脆弱なため、引張応力が作用すると変形や破損を起こしやすくなるという性質を有する。   When the heating temperature at the central portion in the radial direction of the base is set lower than that at the outer portion in the radial direction, so-called center cool, when the base is heated to a high temperature, the radial outer portion expands more than the radial central portion. The degree of increases. Then, the radially outer portion expands and spreads in the outer circumferential direction, and the radial central portion is pulled toward the radially outer circumferential direction, so that tensile stress acts on the radial central portion. Since a plurality of attachment holes for attaching connection terminals and the like are formed in the central portion in the radial direction, the strength is lower than that in the radially outer portion. Moreover, since the heating member made of ceramics is fragile to tensile stress, it has the property of being easily deformed or damaged when the tensile stress is applied.

以上より、基体の径方向中央部における加熱温度を径方向外側部よりも高く設定する、いわゆるセンターホット等を採用することにより、前記加熱部材の変形や破損を防止していた。このセンターホットにするためには、加熱部材に管状部材(シャフト)を取り付け、該管状部材の途中部に熱チョークを配置して管状部材からの熱放出を防止したり、加熱部材の径方向中央部に補助用ヒータを設ける手段が用いられていた。
特開2005−243243公報
As described above, the heating member is prevented from being deformed or damaged by adopting so-called center hot or the like in which the heating temperature in the central portion in the radial direction of the base is set higher than that in the radially outer portion. In order to make this center hot, a tubular member (shaft) is attached to the heating member, and a thermal choke is disposed in the middle of the tubular member to prevent heat release from the tubular member, or the radial center of the heating member Means for providing an auxiliary heater in the section has been used.
JP-A-2005-243243

しかしながら、化学蒸着法(CVD)を用いた膜生成において、ガス中の反応種の濃度が径方向中心から外周方向に向かうにつれて徐々に低下する場合、ウエハの温度分布を前記センタークールに設定し、径方向中心部での成膜反応を抑制し、外周部での成膜反応を促進することにより、成膜されるウエハの厚さを全体で均一にすることができる。従って、この場合は、加熱部材の温度設定をいわゆるセンタークールにすることが望まれていたが、前述したように加熱部材の径方向中央部に変形や破損が発生するおそれがあるため、センタークールの採用が困難であった。   However, in film formation using chemical vapor deposition (CVD), when the concentration of reactive species in the gas gradually decreases from the radial center toward the outer circumferential direction, the wafer temperature distribution is set to the center cool, By suppressing the film formation reaction in the central portion in the radial direction and promoting the film formation reaction in the outer peripheral portion, the thickness of the wafer to be formed can be made uniform as a whole. Therefore, in this case, it has been desired to set the temperature of the heating member to a so-called center cool. However, as described above, there is a possibility that deformation or breakage may occur in the central portion in the radial direction of the heating member. It was difficult to adopt.

そこで、本発明の目的は、セラミックスからなる加熱部材の基体の径方向中央部を径方向外側部よりも低い加熱温度に設定しても、高温加熱時に加熱部材が変形や破損を起こすおそれのない加熱部材、及び基板加熱装置を提供することにある。   Accordingly, an object of the present invention is to prevent the heating member from being deformed or damaged during high-temperature heating, even if the radial center portion of the base of the heating member made of ceramics is set to a lower heating temperature than the radially outer portion. A heating member and a substrate heating apparatus are provided.

前記目的を達成するために、本発明に係る加熱部材は、被処理物を加熱する加熱面を有し、セラミックスから形成された板状の基体を備えた加熱部材において、前記基体の径方向中央部に、径方向中心に向けて常温状態で圧縮残留応力が作用していることを特徴とする。   In order to achieve the above object, a heating member according to the present invention has a heating surface for heating an object to be processed, and includes a plate-like substrate formed of ceramics. It is characterized in that compressive residual stress acts on the part in the normal temperature state toward the center in the radial direction.

また、本発明に係る基板加熱装置は、前記基体の径方向外側部の裏面に、セラミックスからなる管状部材を取り付けた基板加熱装置であって、前記管状部材の熱膨張係数を、前記基体の径方向中央部における熱膨張係数よりも大きく設定したことを特徴とする。   The substrate heating apparatus according to the present invention is a substrate heating apparatus in which a tubular member made of ceramics is attached to the back surface of the radially outer portion of the substrate, and the coefficient of thermal expansion of the tubular member is determined by the diameter of the substrate. It is characterized by being set to be larger than the thermal expansion coefficient in the central portion in the direction.

本発明に係る基板加熱装置によれば、前記加熱部材の基体の径方向中央部に、径方向中心に向けて圧縮残留応力が作用しているため、加熱部材における加熱面の径方向中央部が、外周部よりも低温の温度分布に設定された状態で使用される場合においても、径方向中央部に変形や破損が生じるおそれがない。   According to the substrate heating apparatus of the present invention, since the compressive residual stress is acting toward the radial center of the base of the heating member toward the radial center, the radial center of the heating surface of the heating member is Even when used in a state where the temperature distribution is set lower than that of the outer peripheral portion, there is no possibility that deformation or breakage occurs in the central portion in the radial direction.

即ち、基体の径方向中央部が外周部よりも低い温度の温度分布で加熱されると、外周部が熱膨張を起こし、径方向中央部を引っ張るように外周方向に広がろうとする。しかし、径方向中央部には、常温状態で圧縮残留応力が作用しているため、加熱されて外周方向に広がったときに生じる引張応力が、前記圧縮残留応力と相殺される。これによって、基体を加熱した場合でも、径方向中央部には引張応力が生じなくなるため、径方向中央部における変形や破損のおそれがなくなる。   That is, when the central portion in the radial direction of the substrate is heated with a temperature distribution having a temperature lower than that of the outer peripheral portion, the outer peripheral portion undergoes thermal expansion and tends to spread in the outer peripheral direction so as to pull the radial central portion. However, since the compressive residual stress acts on the radial central portion at room temperature, the tensile stress generated when heated and spread in the outer peripheral direction is offset with the compressive residual stress. As a result, even when the substrate is heated, no tensile stress is generated in the central portion in the radial direction, so there is no risk of deformation or breakage in the central portion in the radial direction.

また、本発明に係る別の基板加熱装置によれば、前記表面層及び裏面層に、加熱部材の径方向中心に向けて常温状態で圧縮残留応力が作用しているため、この圧縮残留応力が、加熱時のセンタークールによって中心近傍に発生する表面引張応力と相殺する。また、セラミックスの破壊起点は引張応力が発生する表面であり、本発明によれば、表面に引張応力が発生しないので、加熱部材に破損が生じるおそれがない。   Further, according to another substrate heating apparatus according to the present invention, the compressive residual stress is applied to the front surface layer and the back surface layer in the normal temperature state toward the radial center of the heating member. This cancels out the surface tensile stress generated in the vicinity of the center due to the center cool during heating. Further, the starting point of fracture of ceramics is the surface where tensile stress is generated. According to the present invention, since no tensile stress is generated on the surface, there is no possibility that the heating member is damaged.

即ち、基体が加熱されてセンタークールになると、外周部に対して径方向中心部における膨張の度合いが小さくなるので、相対的に径方向中心部に引張応力が作用する。しかし、破損が生じる場合に破壊の開始起点となる裏面層には、常温状態で圧縮残留応力が作用しているため、センタークールになったときに生じる引張応力が、前記圧縮残留応力と相殺される。これによって、加熱部材の基体をセンタークール状態に加熱した場合でも、基体表面には引張応力が生じなくなるため、加熱部材の変形や破損のおそれがなくなる。   That is, when the base body is heated to become a center cool, the degree of expansion at the radial center portion becomes small with respect to the outer peripheral portion, so that tensile stress acts relatively on the radial center portion. However, since the compressive residual stress acts on the back surface layer, which is the starting point of the fracture when it breaks, at room temperature, the tensile stress that occurs when the center cools is offset with the compressive residual stress. The As a result, even when the base of the heating member is heated to the center cool state, no tensile stress is generated on the surface of the base, so that there is no risk of deformation or breakage of the heating member.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

[第1実施形態]
本実施形態による加熱部材は、基板加熱装置の構成部品であり、被処理物を加熱する加熱面を有し、セラミックスからなる板状に形成されている。そして、前記基体の径方向中央部に、径方向中心に向けて常温状態で圧縮残留応力が作用しており、前記加熱部材の径方向中央部における熱膨張係数を、径方向外側部(外周部)における熱膨張係数よりも小さく設定している。また、この基体は、径方向中央部が外周部よりも低い温度状態で加熱される、いわゆるセンタークールにて使用される。
[First Embodiment]
The heating member according to the present embodiment is a component of the substrate heating apparatus, has a heating surface for heating the workpiece, and is formed in a plate shape made of ceramics. Then, a compressive residual stress is acting on the central portion in the radial direction of the base body in a normal temperature state toward the center in the radial direction, and the thermal expansion coefficient in the central portion in the radial direction of the heating member is expressed by ) Is set smaller than the thermal expansion coefficient. Further, this base is used in a so-called center cool in which the central portion in the radial direction is heated at a lower temperature than the outer peripheral portion.

図1は、第1実施形態による加熱部材を示す断面図である。   FIG. 1 is a cross-sectional view showing a heating member according to the first embodiment.

図1に示すように、この加熱部材1は、円盤状の基体3と、該基体3の裏面側に取り付けられた円筒状の給電部材5とから構成され、これらの基体3及び給電部材5は共に、窒化アルミニウムから形成されている。   As shown in FIG. 1, the heating member 1 includes a disk-shaped base 3 and a cylindrical power supply member 5 attached to the back side of the base 3, and the base 3 and the power supply member 5 are Both are made of aluminum nitride.

前記基体3は、円盤状に形成されており、表面はウエハが載置される基板加熱面7に設定されている。また、厚さ方向の中間部分に抵抗発熱体9が埋設されている。   The substrate 3 is formed in a disc shape, and the surface is set to a substrate heating surface 7 on which a wafer is placed. A resistance heating element 9 is embedded in an intermediate portion in the thickness direction.

この抵抗発熱体9は、モリブデン(Mo)からなる平面視略同心円状のコイルであり、1本のコイルを途中部分で複数回折り返すことにより、交差することなく全体が1本に連続して繋がっている。コイルの径又は隣り合うコイル部分の間隔を変化させることにより、径方向中央部11と径方向外側部13とで発熱密度を変えている。これにより、加熱部材9の径方向で異なった加熱温度分布を形成することができる。また、コイルの径、ピッチ又は隣り合うコイル部分の間隔を、径方向中心から外周側に向かって徐々に変えることにより、加熱温度分布をなだらかに可変させることができる。   The resistance heating element 9 is a substantially concentric coil in a plan view made of molybdenum (Mo), and the whole is continuously connected to one without crossing by bending a single coil a plurality of times in the middle. ing. The heat generation density is changed between the radial center portion 11 and the radial outer portion 13 by changing the coil diameter or the interval between adjacent coil portions. Thereby, different heating temperature distributions in the radial direction of the heating member 9 can be formed. In addition, the heating temperature distribution can be varied gently by gradually changing the coil diameter, pitch, or spacing between adjacent coil portions from the radial center toward the outer peripheral side.

なお、抵抗発熱体9は、前述したコイルに限定されず、メッシュ状(網状)に形成しても良い。このメッシュの場合は、幅を部位によって変えることで、発熱密度を適宜変化させることができる。   The resistance heating element 9 is not limited to the coil described above, and may be formed in a mesh shape (net shape). In the case of this mesh, the heat generation density can be appropriately changed by changing the width depending on the part.

そして、基体3の裏面の中央部に、平面視略円形状で、断面略矩形状の給電部材用取付溝15が形成されている。この取付溝15の内面には、接合層17が形成され、該接合層17を介して給電部材5が固定されている。   A power supply member mounting groove 15 having a substantially circular shape in plan view and a substantially rectangular cross section is formed in the center of the back surface of the base 3. A bonding layer 17 is formed on the inner surface of the mounting groove 15, and the power supply member 5 is fixed via the bonding layer 17.

また、基体3は、径方向中央部11と径方向外側部13とから一体に形成されているが、常温状態において径方向中央部11に径方向中心に向けて圧縮残留応力が作用しており、径方向中央部11と径方向外側部13とでそれぞれの熱膨張係数が異なっている。具体的には、径方向中央部11の熱膨張係数は、径方向外側部13の熱膨張係数よりも小さく設定されている。   Further, the base 3 is integrally formed from the radial central portion 11 and the radial outer portion 13, but compressive residual stress acts on the radial central portion 11 toward the radial center in a normal temperature state. The thermal expansion coefficient is different between the radial central portion 11 and the radial outer portion 13. Specifically, the thermal expansion coefficient of the radial center portion 11 is set smaller than the thermal expansion coefficient of the radial outer portion 13.

このように、熱膨張係数を径方向中央部11と径方向外側部13とで変えるには、基体3を焼結によって製造する際に添加する焼結助材の量を適宜変える方法を好適に採用することができる。   Thus, in order to change the thermal expansion coefficient between the radial central portion 11 and the radial outer portion 13, a method of appropriately changing the amount of the sintering aid added when the base 3 is manufactured by sintering is suitably used. Can be adopted.

例えば、窒化アルミニウム(AlN)では、前記焼結助材は、Y、MgO、CaO、Sm等のうちの少なくともいずれかの焼結助材の添加量を変化させることで、熱膨張係数を変えることができる。また、窒化アルミニウムの抵抗率を大きく下げない範囲で、TiO、ZrO、SiO等の熱膨張係数を変えることができる焼結助剤や二次成分を添加しても良い。抵抗率が大きく下がると、埋設された抵抗発熱体から窒化アルミニウム材料を通じて電流の一部が漏れ始め、均熱性に影響が生じるため好ましくない。また、酸化物だけでなく、炭化物、窒化物でも二次成分として添加しても良い。 For example, in aluminum nitride (AlN), the sintering aid is changed by changing the addition amount of at least one of the sintering aids of Y 2 O 3 , MgO, CaO, Sm 2 O 3, etc. The thermal expansion coefficient can be changed. In addition, a sintering aid or a secondary component such as TiO 2 , ZrO 2 , or SiO 2 that can change the thermal expansion coefficient may be added as long as the resistivity of the aluminum nitride is not greatly reduced. If the resistivity is greatly lowered, part of the current starts to leak from the embedded resistance heating element through the aluminum nitride material, which affects the heat uniformity. Further, not only oxides but also carbides and nitrides may be added as secondary components.

焼結助材酸化物の熱膨張係数が窒化アルミニウムよりも大きい場合は、焼結助材の含有量を多くすることで、窒化アルミニウム焼結体の熱膨張係数を大きくすることができる。炭化物、窒化物は窒化アルミニウムよりも熱膨張係数が小さいものが多いため、これらを含有させることにより、窒化アルミニウム焼結体の熱膨張係数を小さくすることができる。アルミナではSiOを含有させることにより、熱膨張係数を小さくすることができる。 When the thermal expansion coefficient of the sintering aid oxide is larger than that of aluminum nitride, the thermal expansion coefficient of the aluminum nitride sintered body can be increased by increasing the content of the sintering aid. Since many carbides and nitrides have a smaller thermal expansion coefficient than aluminum nitride, the thermal expansion coefficient of the aluminum nitride sintered body can be reduced by containing them. In alumina, the thermal expansion coefficient can be reduced by containing SiO 2 .

なお、前記基体3のセラミックスは、窒化アルミニウム、アルミナ、炭化ケイ素、及び窒化ホウ素のうち、少なくともいずれかであることが好ましい。   The ceramic of the substrate 3 is preferably at least one of aluminum nitride, alumina, silicon carbide, and boron nitride.

本実施形態による加熱部材1は、いわゆるセンタークールの温度分布にて使用されることが好ましい。このセンタークールとは、円盤状の加熱部材1における径方向中央部11が、径方向外側部13よりも低い温度分布に設定された状態をいう。   The heating member 1 according to this embodiment is preferably used in a so-called center cool temperature distribution. The center cool refers to a state in which the radial central portion 11 of the disc-shaped heating member 1 is set to a temperature distribution lower than the radial outer portion 13.

径方向中央部11に残留応力がない加熱部材1の場合は、加熱部材1をセンタークールにて加熱したときに、径方向外側部13が熱膨張して径方向中央部11を外周方向に引っ張る。このため、径方向中央部11に引張応力が発生して、径方向中央部11が変形や破損を起こしやすくなる。   In the case of the heating member 1 having no residual stress in the radial central portion 11, when the heating member 1 is heated by the center cool, the radial outer portion 13 is thermally expanded and pulls the radial central portion 11 in the outer peripheral direction. . For this reason, tensile stress is generated in the radial central portion 11, and the radial central portion 11 is likely to be deformed or damaged.

以下、本発明の実施の形態に係る加熱部材の製造方法について具体的に説明する。   Hereinafter, the manufacturing method of the heating member which concerns on embodiment of this invention is demonstrated concretely.

まず、基体3の作製工程では、抵抗発熱体9を埋設した、セラミックスからなる基体3の成形体を作製する。   First, in the manufacturing process of the substrate 3, a molded body of the substrate 3 made of ceramics, in which the resistance heating element 9 is embedded, is manufactured.

具体的には、同心円状に形成された大小2つの円筒状の型枠を成形型上に設置し、小さい方の型枠中、及び、小さい型枠と大きい型枠との間にそれぞれ原料粉を投入する。これらの原料粉は、AlN、SiC、SiNx、サイアロン等の主原料にY等の希土類酸化物を焼結助材として添加したものである。そして、小さい型枠内に投入する原料粉における焼結助材の量は、小さい型枠と大きい型枠との間に収容する原料粉中の助材量よりも少ない。 Specifically, two large and small cylindrical molds formed concentrically are placed on the mold, and the raw material powder is placed in the smaller mold and between the smaller and larger molds. . These raw material powders are obtained by adding a rare earth oxide such as Y 2 O 3 as a sintering aid to main raw materials such as AlN, SiC, SiNx, and sialon. And the quantity of the sintering aid in the raw material powder | flour thrown in in a small mold is smaller than the amount of auxiliary in the raw material powder accommodated between a small mold and a big mold.

次いで、前記型枠を取り外し、一軸プレスを行うことによって予備成形体を作製する。そして、この予備成形体上に抵抗発熱体を載置したのち、再び、型枠を設置し、前記原料粉をそれぞれの型枠中に投入する。こののち、一軸プレスを行い、基体用成形体を作製したのち、1700℃以上の高温でホットプレスを行い焼結体を作製し、研削加工して基体3を作製する。   Next, the mold is removed and a uniaxial press is performed to prepare a preform. And after mounting a resistance heating element on this preforming body, a formwork is installed again and the said raw material powder is thrown into each formwork. Thereafter, uniaxial pressing is performed to produce a molded body for the substrate, and then hot pressing is performed at a high temperature of 1700 ° C. or higher to produce a sintered body, which is then ground to produce the substrate 3.

なお、抵抗発熱体9の材質としては、モリブデン、タングステン、タングステン/モリブデン化合物等を使用できる。使用する抵抗発熱体9は、線状のものに限らず、メッシュ状、コイルスプリング状、シート状、膜状等種々の形態を採用することができる。   As the material of the resistance heating element 9, molybdenum, tungsten, tungsten / molybdenum compound, or the like can be used. The resistance heating element 9 to be used is not limited to a linear one, and various forms such as a mesh, a coil spring, a sheet, and a film can be employed.

次に、基体3の焼成工程では、前記基体3の作製工程で得られた基体用成形体を、例えばホットプレス法又は常圧焼結法を用いて焼成する。   Next, in the firing process of the substrate 3, the molded body for the substrate obtained in the production process of the substrate 3 is fired using, for example, a hot press method or a normal pressure sintering method.

原料粉として窒化アルミニウム粉を使用した場合は、窒素中で1700℃〜2000℃の温度で約1時間〜10時間焼成する。   When aluminum nitride powder is used as the raw material powder, it is fired at a temperature of 1700 ° C. to 2000 ° C. for about 1 hour to 10 hours in nitrogen.

ホットプレス時の圧力は、20Kg/cm〜1000Kg/cm以上、より好ましく100Kg/cm〜400Kg/cmとする。ホットプレス法を用いた場合は焼結時に一軸方向に圧力がかかるため、抵抗発熱体9と周囲のセラミックス基体3との密着性を良好にできる。また、抵抗発熱体9として金属バルク体電極を使用した場合は、ホットプレス焼成時にかかる圧力で変形することがない。 The pressure during hot pressing, 20Kg / cm 2 ~1000Kg / cm 2 or more, more and preferably 100Kg / cm 2 ~400Kg / cm 2 . When the hot press method is used, pressure is applied in a uniaxial direction during sintering, so that the adhesion between the resistance heating element 9 and the surrounding ceramic substrate 3 can be improved. In addition, when a metal bulk electrode is used as the resistance heating element 9, it is not deformed by the pressure applied during hot press firing.

基体3の加工工程では、X線撮影等を用いて抵抗発熱体9の中心を割り出した後、角部の面取り加工や焼成後の基体3に電極端子引き出し用の孔を開口する加工を行う。   In the processing step of the base 3, the center of the resistance heating element 9 is determined using X-ray imaging or the like, and then the corner 3 is chamfered or the base 3 is subjected to processing for opening holes for extracting electrode terminals.

また、基体3の表面に、サンドブラスト法等を用いてエンボスを形成したり、基板3を載置するための溝を形成したり、基板加熱面7へ流すパージガス用の孔や溝、又はリフトピン等の孔を必要に応じて形成する。   Further, an emboss is formed on the surface of the base 3 using a sandblast method or the like, a groove for placing the substrate 3 is formed, holes or grooves for purge gas flowing to the substrate heating surface 7, lift pins, etc. These holes are formed as necessary.

なお、この基体加工工程は、完全に焼成した後に行うのでなく、最終的な焼成温度よりやや低い温度で焼成するか、短時間焼成することにより得た仮焼成体を用いて行ってもよい。完全に焼成が終了する前に加工を行うことで、加工をより容易にすることができる。仮焼成体に加工を施した場合は、加工後再び焼成を行う。   Note that this substrate processing step is not performed after complete firing, but may be performed using a temporary fired body obtained by firing at a temperature slightly lower than the final firing temperature or by firing for a short time. Processing can be made easier by performing processing before the completion of firing. When the temporary fired body is processed, it is fired again after the processing.

さらに、給電部材5を取付溝15に挿入し、抵抗発熱体9の電極端子に挿入した給電部材5とを接合し、端子の接合を行う。   Further, the power supply member 5 is inserted into the mounting groove 15, the power supply member 5 inserted into the electrode terminal of the resistance heating element 9 is joined, and the terminals are joined.

なお、給電部材5としては、Ni等の導電材料をロッド形状、ワイヤ形状等に加工したものを使用できる。   As the power supply member 5, a material obtained by processing a conductive material such as Ni into a rod shape, a wire shape, or the like can be used.

給電部材5と抵抗発熱体9との接合は、ろう付けのほか、給電ロッド外周にネジ溝を切り、セラミックス基体にもネジ溝を切り、給電棒をネジ込みにより電極端子との接合を行ってもよく、さらに、かしめ、嵌合、溶接、共晶等を利用した固相接合を採用してもよい。   In addition to brazing, the power supply member 5 and the resistance heating element 9 are joined by cutting a screw groove on the outer periphery of the power supply rod, cutting a screw groove on the ceramic base, and screwing the power supply rod into the electrode terminal. In addition, solid phase bonding using caulking, fitting, welding, eutectic, or the like may be employed.

こうして、抵抗発熱体9の端子と給電部材5との接合を行うことにより、予備完成体が得られたら、抵抗発熱体9に給電を行い抵抗発熱体9を加熱する。   In this way, by joining the terminal of the resistance heating element 9 and the power supply member 5, when the preliminary completed body is obtained, the resistance heating element 9 is supplied with power to heat the resistance heating element 9.

実際の作動条件のもと、セラミックス基体3の基板加熱面7の温度分布を赤外放射温度計を用いて測定する。   Under the actual operating conditions, the temperature distribution of the substrate heating surface 7 of the ceramic substrate 3 is measured using an infrared radiation thermometer.

また、前記第1の領域11における熱膨張係数は、隣接する第2の円環領域13における熱膨張係数よりも小さく設定されており、その差違は0.2ppm/K以上かつ1.0ppm/K未満となっている。   The thermal expansion coefficient in the first region 11 is set to be smaller than the thermal expansion coefficient in the adjacent second annular region 13, and the difference is 0.2 ppm / K or more and 1.0 ppm / K. Is less than

以下に、本実施形態による作用効果を説明する。   Below, the effect by this embodiment is demonstrated.

(1)焼結時の高温状態において、異なる熱膨張係数を有する部分(第1の領域11及び第2の円環領域13)から構成される基体3は十分なる可塑性を有しているため、径方向に沿って作用する内部応力がほぼゼロになる。この状態から温度を下げてゆくと、次第に可塑性が失われ、基体3の各部分がその部分固有の熱膨張係数に応じて収縮していく。その際に、熱膨張係数が大きい部分はより大きく収縮しようとするが、熱膨張係数の小さい部分に固着しているため、熱膨張係数通りに収縮できない。一方、熱膨張係数が小さい部分はより少なく収縮しようとするが、熱膨張係数の大きい部分に固着しているので、本来の収縮量よりも収縮が大きくなる。すなわち、温度低下に伴う収縮の際に熱膨張係数の大きな部分は熱膨張係数の小さな部分に引っ張られるので、残留引張応力が発生する。一方、熱膨張係数の小さな部分は熱膨張係数の大きな部分に押されるので残留圧縮応力が発生する。本発明では、径方向中央部11に熱膨張係数が小さい材料が用いられているので、径方向中央部11に残留圧縮応力が常温で発生している。   (1) In the high temperature state at the time of sintering, since the substrate 3 composed of portions having different thermal expansion coefficients (the first region 11 and the second annular region 13) has sufficient plasticity, The internal stress acting along the radial direction becomes almost zero. When the temperature is lowered from this state, the plasticity is gradually lost, and each portion of the substrate 3 contracts according to the thermal expansion coefficient specific to that portion. At that time, the portion having a large thermal expansion coefficient tends to shrink more, but since it is fixed to the portion having a small thermal expansion coefficient, it cannot shrink according to the thermal expansion coefficient. On the other hand, the portion having a small thermal expansion coefficient tends to shrink less, but since the portion is fixed to the portion having a large thermal expansion coefficient, the shrinkage becomes larger than the original shrinkage amount. That is, a portion having a large coefficient of thermal expansion is pulled by a portion having a small coefficient of thermal expansion at the time of shrinkage due to a decrease in temperature, thereby generating a residual tensile stress. On the other hand, since the portion having a small thermal expansion coefficient is pushed by the portion having a large thermal expansion coefficient, residual compressive stress is generated. In the present invention, since a material having a small thermal expansion coefficient is used for the radial central portion 11, residual compressive stress is generated in the radial central portion 11 at room temperature.

このように、前記加熱部材1の基体3の径方向中央部11に、径方向中心に向けて常温状態で圧縮残留応力が作用しているため、基体3における基板加熱面7の径方向中央部11が、外周部13よりも低温の温度分布に設定された状態で使用される場合においても、径方向中央部11に変形や破損が生じるおそれがない。   Thus, since the compressive residual stress is acting on the radial center part 11 of the base member 3 of the heating member 1 in the normal temperature state toward the radial center, the radial center part of the substrate heating surface 7 in the base body 3. Even when 11 is used in a state in which the temperature distribution is set lower than that of the outer peripheral portion 13, there is no possibility that the radial central portion 11 is deformed or damaged.

即ち、基体3の径方向中央部11が外周部13よりも低い温度の温度分布で加熱されると、外周部13が熱膨張を起こし、径方向中央部11を引っ張るように外周方向に広がろうとする。しかし、径方向中央部11には、常温状態で圧縮残留応力が作用しているため、加熱されて外周方向に広がったときに生じる引張応力が、前記圧縮残留応力と相殺される。これによって、加熱部材1を加熱した場合でも、径方向中央部11には引張応力が生じなくなるため、径方向中央部11における変形や破損のおそれがなくなる。   That is, when the radial central portion 11 of the substrate 3 is heated at a temperature distribution lower than that of the outer peripheral portion 13, the outer peripheral portion 13 undergoes thermal expansion and widens in the outer peripheral direction so as to pull the radial central portion 11. I will try. However, since the compressive residual stress is acting on the radial central portion 11 at room temperature, the tensile stress generated when heated and spread in the outer peripheral direction is offset with the compressive residual stress. As a result, even when the heating member 1 is heated, no tensile stress is generated in the radial central portion 11, so there is no risk of deformation or breakage in the radial central portion 11.

(2)また、隣接する部分同士(第1の領域11及び第2の円環領域13)の熱膨張係数の差は0.2ppm/K以上かつ1.0ppm/K未満が好ましい。この熱膨張係数の差が0.2ppm/K未満の場合は、前述した(1)の効果が十分に発生しない。また、1.0ppm/K以上になると、常温で発生する残留応力が過度に大きくなり、十分な強度を有する加熱部材を得ることができなくなる。   (2) The difference in thermal expansion coefficient between adjacent portions (the first region 11 and the second annular region 13) is preferably 0.2 ppm / K or more and less than 1.0 ppm / K. When the difference in coefficient of thermal expansion is less than 0.2 ppm / K, the effect (1) described above is not sufficiently generated. Moreover, when it becomes 1.0 ppm / K or more, the residual stress which generate | occur | produces at normal temperature will become large too much, and it will become impossible to obtain the heating member which has sufficient intensity | strength.

[第2実施形態]
次いで、第2の実施形態について説明する。ただし、前述した第1の実施形態と同一内容については、同一符号を付してその説明を省略する。
[Second Embodiment]
Next, a second embodiment will be described. However, the same contents as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

本実施形態においては、基体の径方向外側から径方向中心に向かうにつれて、熱膨張係数を徐々に低減させている。この熱膨張係数を変えるため、原料粉に添加する焼結助材の量を変えている。また、前記第1の領域23における熱膨張係数は、隣接する第2の円環領域25における熱膨張係数よりも小さく設定されており、その差違は0.2ppm/K以上かつ1.0ppm/K未満となっている。   In this embodiment, the thermal expansion coefficient is gradually reduced from the radially outer side of the base toward the radial center. In order to change this thermal expansion coefficient, the amount of the sintering aid added to the raw material powder is changed. The thermal expansion coefficient in the first region 23 is set to be smaller than the thermal expansion coefficient in the adjacent second annular region 25, and the difference is 0.2 ppm / K or more and 1.0 ppm / K. Is less than

図2は、第2の実施形態による加熱部材を示す断面図である。この加熱部材21の外形は、円盤状に形成されており、加熱部材21は、径方向に沿って、複数の同心円状の円環領域に分かれている。最も径方向内側には、第1の領域23が配置され、該第1の領域23の外周側には、第2の円環領域25が配置され、最も外周側には、第3の円環領域27が配置されている。そして、第1の領域23と第2の円環領域25には、径方向内側に向かう圧縮残留応力が作用し、第1の領域23における圧縮残留応力は、第2の円環領域25における圧縮残留応力よりも大きくなっている。   FIG. 2 is a cross-sectional view showing a heating member according to the second embodiment. The outer shape of the heating member 21 is formed in a disc shape, and the heating member 21 is divided into a plurality of concentric annular regions along the radial direction. The first region 23 is disposed on the innermost radial direction, the second annular region 25 is disposed on the outer peripheral side of the first region 23, and the third annular ring is disposed on the outermost peripheral side. A region 27 is arranged. The first region 23 and the second annular region 25 are subjected to a compressive residual stress radially inward, and the compressive residual stress in the first region 23 is compressed in the second annular region 25. It is larger than the residual stress.

本実施形態による加熱部材の製造方法を、前記第1の実施形態と異なる点を中心に説明する。   The manufacturing method of the heating member according to the present embodiment will be described focusing on differences from the first embodiment.

まず、円盤状の基体29を作製する。   First, the disk-shaped substrate 29 is produced.

同心円状に形成された径の異なる3つの円筒状型枠を成形型上に配置する。そして、それぞれの型枠の中に原料粉と焼結助材との混合粉を収容する。そして、混合粉中の焼結助材量を、径方向中心から外周に向かうにつれて徐々に増やしている。例えば、最も径の小さい型枠内の混合粉中の焼結助材量を0.1wt%、最も小さい型枠と2番目に小さい型枠との間に収容する混合粉中の焼結助材量を2.0wt%、最も外側に収容する混合粉中の焼結助材量を5.0wt%とする。   Three cylindrical molds having different diameters formed concentrically are arranged on the mold. And the mixed powder of raw material powder and a sintering aid is accommodated in each formwork. And the amount of the sintering aid in the mixed powder is gradually increased from the center in the radial direction toward the outer periphery. For example, the amount of sintering aid in the mixed powder in the mold with the smallest diameter is 0.1 wt%, and the sintering aid in the mixed powder accommodated between the smallest mold and the second smallest mold The amount is 2.0 wt%, and the amount of the sintering aid in the mixed powder accommodated on the outermost side is 5.0 wt%.

この工程以降は、前記第1の実施形態と同様の手順で成形を進めることによって、本実施形態による加熱部材21を作製することができる。   From this step onward, the heating member 21 according to the present embodiment can be produced by proceeding with molding in the same procedure as in the first embodiment.

以下に、本実施形態による作用効果を説明する。   Below, the effect by this embodiment is demonstrated.

(1)前記加熱部材21の基体3の熱膨張係数を、径方向外側から径方向中心に向かうにつれて徐々に低減させているため、常温で発生している残留応力が径方向に沿ってなだらかに(徐々に)分布させることができると同時に、径方向中心部と外周部の最も周縁とにおける熱膨張係数の差異を大きくすることができるので、より径方向中心部の残留圧縮応力を高めることができる。このような加熱部材21がセンタークール状態で高温に加熱されることによって外周方向に膨張する場合、径方向中央部となる第1の領域23が外周方向に引っ張られる際の引張応力が径方向に沿ってなだらかに変化する。従って、加熱部材21の基体29が加熱される際に、常温状態で基体29に生じている残留圧縮応力が前記引張応力によってなだらかに相殺されると共に、より大きなセンタークールにも耐えることが可能となる。   (1) Since the thermal expansion coefficient of the base 3 of the heating member 21 is gradually reduced from the radially outer side toward the radial center, the residual stress generated at room temperature is gently increased along the radial direction. (Gradually) can be distributed, and at the same time, the difference in thermal expansion coefficient between the radially central portion and the outermost peripheral portion can be increased, so that the residual compressive stress in the radially central portion can be further increased. it can. When such a heating member 21 expands in the outer peripheral direction by being heated to a high temperature in the center cool state, the tensile stress when the first region 23 serving as the central portion in the radial direction is pulled in the outer peripheral direction is increased in the radial direction. It changes gently along. Therefore, when the base member 29 of the heating member 21 is heated, the residual compressive stress generated in the base member 29 at room temperature is gently offset by the tensile stress and can withstand a larger center cool. Become.

(2)前記基体29を円盤状に形成し、この基体29に複数の同心円状の円環領域23,25,27を設定し、所定の円環領域とこれに隣接する円環領域との熱膨張係数の差違を0.2ppm/K以上かつ1.0ppm/K未満としたため、径方向中心部と最外周部の熱膨張係数の差異を0.4ppm/K以上2.0ppm/Kとすることができる。この場合は、径方向中心部にさらに大きな残留圧縮応力を発生させることが可能となる。   (2) The base body 29 is formed in a disk shape, and a plurality of concentric ring regions 23, 25, 27 are set on the base body 29, and heat is generated between a predetermined ring region and an annular region adjacent thereto. Since the difference in expansion coefficient is 0.2 ppm / K or more and less than 1.0 ppm / K, the difference in thermal expansion coefficient between the radial center and the outermost peripheral part is 0.4 ppm / K or more and 2.0 ppm / K. Can do. In this case, a larger residual compressive stress can be generated in the central portion in the radial direction.

[第3実施形態]
次いで、本発明の第3の実施形態を説明する。ただし、前述した第1の実施形態及び第2の実施形態と同一内容については、同一符号を付してその説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. However, the same contents as those of the first embodiment and the second embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態においては、加熱部材31を構成する基体33を、表面層35、裏面層37、及び中間層39から構成し、表面層35及び裏面層37の表面に常温状態で圧縮残留応力が作用している。   In the present embodiment, the base 33 constituting the heating member 31 is composed of a front surface layer 35, a back surface layer 37, and an intermediate layer 39, and compressive residual stress acts on the surfaces of the front surface layer 35 and the back surface layer 37 at room temperature. is doing.

図3は、本実施形態による加熱部材を示す断面図である。   FIG. 3 is a sectional view showing the heating member according to the present embodiment.

基体33は、外形が円盤状に形成されており、表面側に配置した表面層35と、裏面側に配置した裏面層37と、これらの表面層35及び裏面層37の間に挟持した中間層39とから構成している。   The base body 33 is formed in a disc shape, and has a surface layer 35 disposed on the front surface side, a back surface layer 37 disposed on the back surface side, and an intermediate layer sandwiched between the surface layer 35 and the back surface layer 37. 39.

そして、中間層39における熱膨張係数を、表面層35及び裏面層37の熱膨張係数よりも小さく設定しているので、表面層35の表面(上面)、及び裏面層37の裏面(下面)に、常温状態で圧縮残留応力が作用している。   And since the thermal expansion coefficient in the intermediate layer 39 is set smaller than the thermal expansion coefficients of the surface layer 35 and the back surface layer 37, the surface layer 35 has a surface (upper surface) and a back surface (lower surface) of the back surface layer 37. Compressive residual stress is acting at room temperature.

本実施形態による加熱部材の製造方法を、前記第1実施形態及び第2実施形態と異なる点を中心に説明する。   The heating member manufacturing method according to this embodiment will be described focusing on differences from the first embodiment and the second embodiment.

まず、基体33の作製工程では、抵抗発熱体9を埋設した、セラミックスからなる基体33の成形体を作製する。   First, in the manufacturing process of the base body 33, a molded body of the base body 33 made of ceramics in which the resistance heating element 9 is embedded is manufactured.

具体的には、円筒状の型枠を成形型上に設置し、該型枠の中に裏面側用の原料粉を投入する。次に、この裏面側用の原料粉よりも焼結助材の添加量の少ない中間側用の原料粉を投入する。さらに、中間側用の原料粉の上に表面側用の原料粉を投入する。前記裏面側用の原料粉と表面側用の原料粉とは、添加する焼結助材の量を同等にすると共に、中間側用の原料粉中の焼結助剤の量を、裏面側用の原料粉と表面側用の原料粉よりも多くしている。   Specifically, a cylindrical mold is placed on the mold, and the raw material powder for the back side is put into the mold. Next, the intermediate side raw material powder having a smaller amount of sintering aid added than the back side raw material powder is charged. Furthermore, the raw material powder for the surface side is put on the raw material powder for the intermediate side. The raw material powder for the back side and the raw material powder for the front side have the same amount of sintering aid to be added, and the amount of the sintering aid in the raw material powder for the intermediate side is More than the raw material powder and the raw material powder for the surface side.

この工程以降は、前記第1及び第2の実施形態と同様の手順で成形を進めることによって、本実施形態による加熱部材を作製することができる。   From this step onward, the heating member according to the present embodiment can be produced by proceeding with molding in the same procedure as in the first and second embodiments.

以下に、本実施形態による作用効果を説明する。   Below, the effect by this embodiment is demonstrated.

(1)前記表面層35の表面及び裏面層37の裏面に、基体33の径方向中心に向けて常温状態で圧縮残留応力が作用しているため、基体33を加熱した場合に、基体33に変形や破損が生じることがなくなる。   (1) Since compressive residual stress is acting on the front surface of the surface layer 35 and the back surface of the back surface layer 37 toward the center in the radial direction of the base material 33 at room temperature, when the base material 33 is heated, No deformation or breakage occurs.

即ち、基体33がセンタークールとなるように加熱されると、径方向中心部に引張応力が発生しようとする。しかし、基体33の表面には、常温状態で圧縮残留応力が作用しているため、前記圧縮残留応力と相殺される。これによって、基体33が破損する場合に破壊起点となる表面や裏面には引張応力が生じなくなるため、基体33における変形や破損のおそれがなくなる。   That is, when the base body 33 is heated so as to be center-cooled, tensile stress tends to be generated in the central portion in the radial direction. However, since the compressive residual stress acts on the surface of the base body 33 at room temperature, it is offset by the compressive residual stress. As a result, when the base body 33 is damaged, no tensile stress is generated on the front and back surfaces, which are the starting points of the failure, so that there is no risk of deformation or damage in the base body 33.

(2)前記中間層39における熱膨張係数を、表面層35及び裏面層37における熱膨張係数よりも大きく設定しているため、焼結後の基体33の表面及び裏面に圧縮残留応力が発生する。すなわち、焼結時の高温状態では基体33に可塑性があるため、内部には応力はほとんど発生していない。焼結時の高温状態から常温まで温度を下げる際に、可塑性は失われ、中間層は表面層及び裏面層よりも大きく収縮しようとする。中間層に径中心方向に引っ張られることで、表面層および裏面層には圧縮残留応力が発生する。このようにして、前述した(1)の作用効果を有することとなり、基体33をセンタークールに加熱した場合に、基体33の表面及び裏面に引張応力が発生しないため、基体33における変形や破損のおそれが少なくなる。   (2) Since the thermal expansion coefficient of the intermediate layer 39 is set larger than the thermal expansion coefficients of the front surface layer 35 and the back surface layer 37, compressive residual stress is generated on the front surface and the back surface of the base 33 after sintering. . That is, since the substrate 33 is plastic in a high temperature state during sintering, almost no stress is generated inside. When the temperature is lowered from the high temperature state during sintering to room temperature, the plasticity is lost, and the intermediate layer tends to shrink more than the front surface layer and the back surface layer. When the intermediate layer is pulled in the radial center direction, compressive residual stress is generated in the front surface layer and the back surface layer. In this way, the above-described effect (1) is obtained, and when the base body 33 is heated to the center cool, no tensile stress is generated on the front and back surfaces of the base body 33. The fear is reduced.

[第4実施形態]
次いで、本発明の第4の実施形態を説明する。ただし、前述した第1〜第3の実施形態と同一内容については、同一符号を付してその説明を省略する。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. However, the same contents as those in the first to third embodiments described above are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態に係る基板加熱装置は、前記第1実施形態に係る加熱部材に略円筒状の管状部材(シャフト)を接合したものである。   The substrate heating apparatus according to the present embodiment is obtained by joining a substantially cylindrical tubular member (shaft) to the heating member according to the first embodiment.

図4は、本発明の第4実施形態による基板加熱装置の断面図である。   FIG. 4 is a cross-sectional view of a substrate heating apparatus according to a fourth embodiment of the present invention.

この基板加熱装置41は、円盤状に形成された基体3と、該基体3の裏面側に接合した円筒状の給電部材5と、該給電部材5の外周側に配置されて、前記基体3の裏面側に接合された管状部材(シャフト)43とから構成され、前記基体3及び管状部材43は共に、セラミックスの焼結体から形成されている。   This substrate heating device 41 is arranged on a base 3 formed in a disk shape, a cylindrical power supply member 5 bonded to the back side of the base 3, and an outer peripheral side of the power supply member 5. The base 3 and the tubular member 43 are both formed of a ceramic sintered body. The tubular member (shaft) 43 is joined to the back side.

基体3は、第1実施形態と同様に、径方向中央部11と径方向外側部13とから一体に形成されているが、常温状態において径方向中央部11に径方向中心に向けて圧縮残留応力が作用しており、径方向中央部11と径方向外側部13とでそれぞれの熱膨張係数が異なっている。具体的には、径方向中央部11の熱膨張係数は、径方向外側部13の熱膨張係数よりも小さく設定されている。   As in the first embodiment, the base 3 is integrally formed from the radial central portion 11 and the radial outer portion 13, but remains compressed at the radial central portion 11 toward the radial center in the normal temperature state. Stress is acting, and the thermal expansion coefficient is different between the radial central portion 11 and the radial outer portion 13. Specifically, the thermal expansion coefficient of the radial center portion 11 is set smaller than the thermal expansion coefficient of the radial outer portion 13.

このように、熱膨張係数を径方向中央部11と径方向外側部13とで変えるには、基体3を焼結によって製造する際に添加する焼結助材の量を適宜変える方法を好適に採用することができる。   Thus, in order to change the thermal expansion coefficient between the radial central portion 11 and the radial outer portion 13, a method of appropriately changing the amount of the sintering aid added when the base 3 is manufactured by sintering is suitably used. Can be adopted.

また、管状部材43は、上部が大径部45に形成され、下部は、大径部45よりも径の小さい小径部47に形成されている。そして、大径部45の上端が基体3の径方向外側部13の裏面に接合されている。この管状部材43の熱膨張係数は、前記基体3の径方向中央部11における熱膨張係数よりも大きく設定することが好ましい。   The tubular member 43 has an upper portion formed in the large diameter portion 45 and a lower portion formed in the small diameter portion 47 having a smaller diameter than the large diameter portion 45. The upper end of the large diameter portion 45 is bonded to the back surface of the radially outer portion 13 of the base 3. The thermal expansion coefficient of the tubular member 43 is preferably set to be larger than the thermal expansion coefficient at the radial center portion 11 of the base 3.

更に好ましくは、管状部材43の熱膨張係数は、前記基体3の径方向外側部13の熱膨張係数と同一か又はほぼ同一の値に設定することが好ましい。具体的には、管状部材43の熱膨張係数と前記基体3の径方向外側部13の熱膨張係数との差を0.1ppm/K以下に設定することが好ましい。   More preferably, the thermal expansion coefficient of the tubular member 43 is preferably set to the same or substantially the same value as the thermal expansion coefficient of the radially outer portion 13 of the base 3. Specifically, it is preferable to set the difference between the thermal expansion coefficient of the tubular member 43 and the thermal expansion coefficient of the radially outer portion 13 of the base 3 to 0.1 ppm / K or less.

以下に、本実施形態による基板加熱装置の製造方法について簡単に説明する。   Hereinafter, a method for manufacturing the substrate heating apparatus according to the present embodiment will be briefly described.

まず、前記第1実施形態で説明した方法によって、加熱部材を製造する。   First, a heating member is manufactured by the method described in the first embodiment.

一方、管状部材43の作製工程では、まず原料粉を用いて管状部材43の成形体を作製する。   On the other hand, in the production process of the tubular member 43, first, a molded body of the tubular member 43 is produced using raw material powder.

次いで、得られた成形体を焼結し、この焼結により得られた焼結体を加工する。管状部材作製工程では、基体と良好な接合を得るため、原料粉として、前記基体3の径方向外側部13と同質の原料粉を使用することが望ましい。   Next, the obtained molded body is sintered, and the sintered body obtained by the sintering is processed. In the tubular member manufacturing step, it is desirable to use a raw material powder having the same quality as the radially outer portion 13 of the base body 3 as a raw material powder in order to obtain good bonding with the base body.

成形方法としては、種々の方法を使用できるが、比較的複雑な形状の成形に適した、CIP(Cold Isostatic Pressing)法やスリップキャスト等を使用することが好ましい。   Although various methods can be used as the molding method, it is preferable to use a CIP (Cold Isostatic Pressing) method, slip casting, or the like suitable for molding a relatively complicated shape.

管状部材焼成工程では、前述の管状部材作製工程で得られた焼結体を焼成するが、焼結体の形状が複雑なため、常圧焼成法を用いて焼成することが望ましい。   In the tubular member firing step, the sintered body obtained in the above-described tubular member manufacturing step is fired. However, since the shape of the sintered body is complicated, it is desirable to fire using a normal pressure firing method.

セラミックス原料としてAlNを使用する場合は、窒素中で1700℃〜2000℃の温度で、約1時間〜10時間焼成する。   When AlN is used as a ceramic raw material, it is fired in nitrogen at a temperature of 1700 ° C. to 2000 ° C. for about 1 hour to 10 hours.

管状部材加工工程では、焼結体表面及び接合面のラッピング加工等を行う。   In the tubular member processing step, lapping processing of the sintered body surface and the joint surface is performed.

次に、管状部材接合工程では、前述した基体と管状部材との接合を行う。   Next, in the tubular member joining step, the aforementioned base and tubular member are joined.

この管状部材接合工程では、接合面のいずれか一方もしくは両方に、接合剤として希土類化合物を塗布した後、互いに接合面を貼り合わせ、窒素雰囲気中で1700℃〜1900℃の温度で熱処理を行う。   In this tubular member joining step, after applying a rare earth compound as a joining agent to one or both of the joining surfaces, the joining surfaces are bonded together, and heat treatment is performed at a temperature of 1700 ° C. to 1900 ° C. in a nitrogen atmosphere.

必要に応じて接合面と垂直な方向から一軸加圧し、所定の圧力を加えてもよい。こうして、基体及び管状部材との固相接合を行う。   If necessary, uniaxial pressure may be applied from a direction perpendicular to the joint surface, and a predetermined pressure may be applied. In this way, solid phase bonding between the substrate and the tubular member is performed.

なお、基体と管状部材の接合は、前述した固相接合以外にもろう付けやOリング、メタルパッキング等を用いたシール材を挟んだ機械的接合を行ってもよい。   In addition to the solid-phase bonding described above, the base member and the tubular member may be joined together by mechanical joining with a sealing material using brazing, O-ring, metal packing, or the like.

さらに、管状部材43内に給電部材5を挿入し、抵抗発熱体9の電極端子とシャフト内に挿入した給電部材5とを接合し、端子の接合を行う。   Further, the power feeding member 5 is inserted into the tubular member 43, the electrode terminal of the resistance heating element 9 and the power feeding member 5 inserted into the shaft are joined, and the terminals are joined.

なお、給電部材5としては、Ni等の導電材料をロッド形状、ワイヤ形状等に加工したものを使用できる。   As the power supply member 5, a material obtained by processing a conductive material such as Ni into a rod shape, a wire shape, or the like can be used.

給電部材5と抵抗発熱体9との接合は、ろう付けのほか、給電ロッド外周にネジ溝を切り、セラミックス基体にもネジ溝を切り、給電棒をネジ込みにより電極端子との接合を行ってもよく、さらに、かしめ、嵌合、溶接、共晶等を利用した固相接合を採用してもよい。   In addition to brazing, the power supply member 5 and the resistance heating element 9 are joined by cutting a screw groove on the outer periphery of the power supply rod, cutting a screw groove on the ceramic base, and screwing the power supply rod into the electrode terminal. In addition, solid phase bonding using caulking, fitting, welding, eutectic, or the like may be employed.

本実施形態による作用効果を説明する。   The effect by this embodiment is demonstrated.

本実施形態においては、管状部材43の熱膨張係数と前記基体3の径方向外側部13の熱膨張係数との差を0.1ppm/K以下に設定しているため、基板加熱装置41における加熱部材1を加熱した場合、基体3の径方向外側部13における膨張度合いと管状部材43の膨張度合いがほぼ一致する。従って、加熱時において、管状部材43の基体3に対する接合強度を高く保持することができる。さらに、基体3の径方向中央部の熱膨張係数よりも管状部材43の熱膨張係数の方が大きいため、高温で接合した後の冷却中に管状部材43が基体3の中央部よりもより大きく収縮しようとして、基体3の径方向外側部とともに基体3の径方向中央部を圧縮する。このことで、管状部材43を接合しない場合に比較して、より大きな圧縮残留応力を基体3の径方向中央部に発生させることが可能になる。従って、管状部材43を取り付けることで、より大きいセンタークール加熱を行っても、加熱部材が破損するおそれがなくなる。   In this embodiment, since the difference between the thermal expansion coefficient of the tubular member 43 and the thermal expansion coefficient of the radially outer portion 13 of the base 3 is set to 0.1 ppm / K or less, the heating in the substrate heating device 41 is performed. When the member 1 is heated, the degree of expansion in the radially outer portion 13 of the base 3 and the degree of expansion of the tubular member 43 substantially coincide. Accordingly, the bonding strength of the tubular member 43 to the base body 3 can be kept high during heating. Furthermore, since the thermal expansion coefficient of the tubular member 43 is larger than the thermal expansion coefficient of the central portion in the radial direction of the base 3, the tubular member 43 is larger than the central portion of the base 3 during cooling after being joined at a high temperature. In an attempt to shrink, the radially central portion of the substrate 3 is compressed together with the radially outer portion of the substrate 3. Accordingly, it is possible to generate a larger compressive residual stress in the central portion in the radial direction of the base body 3 than when the tubular member 43 is not joined. Therefore, by attaching the tubular member 43, there is no possibility that the heating member is damaged even if larger center cool heating is performed.

以下に、本発明を実施例によって更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

本実施例においては、窒化アルミニウムからなる基体と該基体に接合した管状部材(シャフト)とからなる加熱部材を作製し、該加熱部材をセンタークールに加熱した場合の破損状態を調べた。   In this example, a heating member composed of a base body made of aluminum nitride and a tubular member (shaft) joined to the base body was produced, and the damage state when the heating member was heated to the center cool was examined.

まず、前述した実施形態における製造方法に沿って基板を作製した。   First, a substrate was produced according to the manufacturing method in the embodiment described above.

[実施例1]
最初に、大小2つの円筒状の型枠を成形型上に設置し、焼結助材を含む原料粉を前記型枠内に投入した。その後、型枠を取り除き、一軸プレスを行うことによって、成形体を作製した。
[Example 1]
First, two large and small cylindrical molds were placed on a mold, and raw material powder containing a sintering aid was put into the mold. Thereafter, the mold was removed and uniaxial pressing was performed to produce a molded body.

成形体上にヒーターエレメントを載せた後、再び、円筒状の型枠を設置して、各々の原料粉を所定の位置に流し込み、再び一軸プレスを行い、基体用成形体を作製した。この基体用成形体を1700℃以上の温度でホットプレスして焼結体を作製し、研削加工することにより、基体を作製した。   After placing the heater element on the molded body, a cylindrical formwork was again installed, each raw material powder was poured into a predetermined position, and uniaxial pressing was performed again to produce a molded body for a substrate. The molded body for the substrate was hot pressed at a temperature of 1700 ° C. or higher to produce a sintered body, which was then ground to produce a substrate.

なお、基体の外周の径は325mm、径方向中央部の径は62mm、及び厚さは15mmとした。また、前記原料粉は、AlNからなる主原料にYを焼結助材として添加したものであり、径方向中央部の助剤量は0.1wt%、径方向外側部の助剤量は5.0wt%とした。 The diameter of the outer periphery of the base was 325 mm, the diameter of the central portion in the radial direction was 62 mm, and the thickness was 15 mm. Further, the raw material powder is obtained by adding Y 2 O 3 as a sintering aid to a main raw material made of AlN, the amount of the auxiliary agent in the radial central portion is 0.1 wt%, and the auxiliary agent in the radial outer portion. The amount was 5.0 wt%.

この基体の中心部に、基体内部に埋設された抵抗発熱体の二つの端部が露出するように座繰り孔を設け、抵抗発熱体に給電部材をロウ付けによって接合した。なお、必要に応じて、基体内部にRF電極となる円盤型のメッシュ電極を埋設し、該メッシュ電極に給電部材を接合しても良い。さらには、温度を測定するための熱電対を挿入するための孔を設けても良い。   A countersink hole was provided at the center of the base so that the two ends of the resistance heating element embedded in the base were exposed, and the power supply member was joined to the resistance heating element by brazing. If necessary, a disk-shaped mesh electrode serving as an RF electrode may be embedded in the substrate, and a power feeding member may be joined to the mesh electrode. Furthermore, you may provide the hole for inserting the thermocouple for measuring temperature.

なお、加熱部材は、埋設するヒーターエレメントの形状等のデザインを適宜変えることで、後述するように加熱部材の温度分布を変えることができる。ここでは、センタークールの温度分布を目的としているので、中心部の発熱密度が外周部の発熱密度よりも小さくなるように種々のヒーターエレメントを作成し、それぞれのヒーターエレメントを埋設した、各々3個の加熱部材を作製した。   In addition, the heating member can change the temperature distribution of the heating member as will be described later by appropriately changing the design such as the shape of the heater element to be embedded. Since the purpose here is the temperature distribution of the center cool, various heater elements were created so that the heat density at the center was smaller than the heat density at the outer periphery, and each heater element was embedded in three pieces. A heating member was prepared.

次いで、この作製した基体を、水冷された真空容器中に設置した。   Next, the produced substrate was placed in a water-cooled vacuum vessel.

その後、圧力が50Torrの窒素雰囲気の真空容器内に加熱部材を収容し、給電部材に電圧を印加し、基体の孔に挿入された熱電対の温度をモニタリングしながら、印加電圧を制御し、基体を470℃に昇温して保持した。   Thereafter, the heating member is accommodated in a vacuum vessel of nitrogen atmosphere with a pressure of 50 Torr, the voltage is applied to the power supply member, the temperature of the thermocouple inserted into the hole of the substrate is monitored, and the applied voltage is controlled. The temperature was raised to 470 ° C. and held.

なお、ヒーターエレメントを変えて各基体は3個作製し、これら3個のうちいくつが昇温して破損するかどうかを確認した。   In addition, the heater element was changed to prepare three substrates, and it was confirmed how many of these three members were heated and damaged.

[実施例2]
次に、実施例2について説明するが、前記実施例1と同様の内容については、省略又は簡略化する。
[Example 2]
Next, the second embodiment will be described, but the same contents as those of the first embodiment will be omitted or simplified.

最初に、大小3つの円筒状の型枠を成形型上に設置し、焼結助材を含む原料粉を前記型枠内に投入した。その後、型枠を取り除き、一軸プレスを行うことによって、成形体を作製した。   First, three large and small cylindrical molds were placed on a mold, and raw material powder containing a sintering aid was put into the mold. Thereafter, the mold was removed and uniaxial pressing was performed to produce a molded body.

成形体上にヒーターエレメントを載せた後、再び、円筒状の型枠を設置して、各々の原料粉を所定の位置に流し込み、再び一軸プレスを行い、基体用成形体を作製した。この基体用成形体を1700℃以上の温度でホットプレスして焼結体を作製し、研削加工することにより、基体を作製した。   After placing the heater element on the molded body, a cylindrical formwork was again installed, each raw material powder was poured into a predetermined position, and uniaxial pressing was performed again to produce a molded body for a substrate. The molded body for the substrate was hot pressed at a temperature of 1700 ° C. or higher to produce a sintered body, which was then ground to produce a substrate.

なお、基体の外周の径は325mm、径方向中央部の径は62mm、径方向中央部の外周側の中間部の径は105mm、及び厚さは15mmとした。また、前記原料粉は、AlNからなる主原料にYを焼結助材として添加したものであり、径方向中央部の助剤量は0.1wt%、中間部の助剤量は2.0wt%、径方向外側部の助剤量は5.0wt%とした。 The diameter of the outer periphery of the substrate was 325 mm, the diameter of the central portion in the radial direction was 62 mm, the diameter of the intermediate portion on the outer peripheral side of the central portion in the radial direction was 105 mm, and the thickness was 15 mm. The raw material powder is obtained by adding Y 2 O 3 as a sintering aid to a main raw material made of AlN. The amount of auxiliary agent in the radial center is 0.1 wt%, and the amount of auxiliary agent in the intermediate portion is The amount of auxiliary at the outer side in the radial direction was 2.0 wt% and 5.0 wt%.

この基体の抵抗発熱体に給電部材をロウ付けによって接合した。   A power feeding member was joined to the resistance heating element of the base by brazing.

次いで、この作製した基体を、水冷された真空容器中に設置した。   Next, the produced substrate was placed in a water-cooled vacuum vessel.

その後、圧力が50Torrの窒素雰囲気の真空容器内に加熱部材を収容し、給電部材に電圧を印加し、基体の孔に挿入された熱電対の温度をモニタリングしながら、印加電圧を制御し、基体を470℃に昇温して保持した。   Thereafter, the heating member is accommodated in a vacuum vessel of nitrogen atmosphere with a pressure of 50 Torr, the voltage is applied to the power supply member, the temperature of the thermocouple inserted into the hole of the substrate is monitored, and the applied voltage is controlled. The temperature was raised to 470 ° C. and held.

なお、ヒーターエレメントを変えて各基体は3個作製し、これら3個のうちいくつが昇温して破損するかどうかを確認した。   In addition, the heater element was changed to prepare three substrates, and it was confirmed how many of these three members were heated and damaged.

[実施例3]
次に、実施例3について説明するが、前記実施例1,2と同様の内容については、省略又は簡略化する。
[Example 3]
Next, the third embodiment will be described, but the same contents as those of the first and second embodiments are omitted or simplified.

最初に、焼結助材を含む原料粉を前記成形型内に投入した。その後、一軸プレスを行うことによって、裏面層を作製した。   First, raw material powder containing a sintering aid was put into the mold. Then, the back surface layer was produced by performing uniaxial press.

この裏面層上にヒーターエレメントを載せた後、原料粉を流し込み、再び一軸プレスを行い、中間層を裏面層上に形成した。この中間層上に原料粉を流し込んだ後、再び一軸プレスを行い、表面層を形成した。成形した積層体を、1700℃以上の温度でホットプレスして焼結体を作製し、研削加工することにより、3層からなる基体を作製した。   After placing the heater element on this back layer, the raw material powder was poured and uniaxial pressing was performed again to form an intermediate layer on the back layer. After pouring raw material powder onto this intermediate layer, uniaxial pressing was performed again to form a surface layer. The molded laminate was hot pressed at a temperature of 1700 ° C. or higher to produce a sintered body, which was then ground to produce a three-layer substrate.

なお、基体の外周の径は325mm及び厚さは15mmとした。また、前記原料粉は、AlNからなる主原料にYを焼結助材として添加したものであり、表面層及び裏面層の助剤量は0.1wt%、中間層の助剤量は5.0wt%とした。 The outer diameter of the base was 325 mm and the thickness was 15 mm. The raw material powder is obtained by adding Y 2 O 3 as a sintering aid to a main raw material made of AlN. The amount of auxiliary agent for the front and back layers is 0.1 wt%, and the auxiliary agent amount for the intermediate layer Was 5.0 wt%.

この基体の抵抗発熱体に給電部材をロウ付けによって接合した。   A power feeding member was joined to the resistance heating element of the base by brazing.

作製した基体を、水冷された真空容器中に設置した。   The produced substrate was placed in a water-cooled vacuum vessel.

その後、圧力が50Torrの窒素雰囲気の真空容器内に加熱部材を収容し、給電部材に電圧を印加し、基体の孔に挿入された熱電対の温度をモニタリングしながら、印加電圧を制御し、基体を470℃に昇温して保持した。   Thereafter, the heating member is accommodated in a vacuum vessel of nitrogen atmosphere with a pressure of 50 Torr, the voltage is applied to the power supply member, the temperature of the thermocouple inserted into the hole of the substrate is monitored, and the applied voltage is controlled. The temperature was raised to 470 ° C. and held.

なお、各基体は3個作製し、これら3個のうちいくつが昇温して破損するかどうかを確認した。   In addition, three each base | substrate was produced and it was confirmed whether how many of these three were heated up and damaged.

[実施例4]
次に、実施例4について説明するが、前記実施例1〜3と同様の内容については、簡略化する。
[Example 4]
Next, although Example 4 is demonstrated, about the content similar to the said Examples 1-3, it simplifies.

最初に、加熱部材の基体を前述した実施例1と同一の方法で作製した。   First, the base of the heating member was produced by the same method as in Example 1 described above.

次いで、焼結助材を含む原料粉を用いて、略円筒状からなる管状部材(シャフト)をCIP成形、常圧焼結法にて作成し、所定の形状に研削加工した。前記原料粉は、AlNからなる主原料にYを焼結助材として添加したものであり、助剤量は、基体の径方向外側部と同じ5.0wt%とした。この管状部材を基体中心部の給電部材用取付部に1700℃で固相接合し、その後、前述のように給電部材を接合した。管状部材の形状は、図4に示すように、長さが150mmで下端にフランジを有し、該フランジの端面は、確実にシールできるように研磨してある。 Next, a substantially cylindrical tubular member (shaft) was prepared by CIP molding and atmospheric sintering using raw material powder containing a sintering aid, and ground into a predetermined shape. The raw material powder is obtained by adding Y 2 O 3 as a sintering aid to a main raw material made of AlN, and the amount of the auxiliary agent is set to 5.0 wt%, which is the same as that of the radially outer portion of the substrate. This tubular member was solid-phase bonded at 1700 ° C. to the power supply member mounting portion at the center of the base, and then the power supply member was bonded as described above. As shown in FIG. 4, the tubular member has a length of 150 mm and a flange at the lower end, and the end face of the flange is polished so as to be surely sealed.

[比較例1]
比較例1に係る加熱部材においては、基体全体が一様の窒化アルミニウム焼結体から形成した。原料粉は、AlNからなる主原料にYを焼結助材として添加したものであり、助剤量は5.0wt%とした。
[Comparative Example 1]
In the heating member according to Comparative Example 1, the entire base was formed from a uniform aluminum nitride sintered body. The raw material powder was obtained by adding Y 2 O 3 as a sintering aid to a main raw material made of AlN, and the amount of the auxiliary agent was 5.0 wt%.

[比較例2]
比較例2に係る基板加熱装置においては、前記比較例1の基体の裏面に、この基体と同一の熱膨張係数を有する管状部材を接合した。即ち、原料粉は、AlNからなる主原料にYを焼結助材として添加したものであり、助剤量は5.0wt%とした。
[Comparative Example 2]
In the substrate heating apparatus according to Comparative Example 2, a tubular member having the same thermal expansion coefficient as that of the base was bonded to the back surface of the base of Comparative Example 1. That is, the raw material powder is obtained by adding Y 2 O 3 as a sintering aid to a main raw material made of AlN, and the amount of the auxiliary agent is 5.0 wt%.

[評価]
前記実施例1〜比較例2で得られた加熱部材及び基板加熱装置について、基板表面の温度測定及び加熱による破損率を調べた。その結果を表1に示す。なお、表1において、「センタークール狙い」とは、基体の径方向中心と外周とにおける温度の差の目標値を示し、(外周温度−中心温度)で表される。Aはセンタークール狙いを0℃、Bはセンタークール狙いを50℃、Cはセンタークール狙いを80℃としている。そして、基体の径方向中心と外周とにおける温度の差を実際に計測した値をセンタークール度合いとして示している。

Figure 2007250644
[Evaluation]
About the heating member and substrate heating apparatus obtained in Example 1 and Comparative Example 2, the substrate surface temperature measurement and the damage rate due to heating were examined. The results are shown in Table 1. In Table 1, “center cool aim” indicates a target value of the difference in temperature between the center in the radial direction of the substrate and the outer periphery, and is expressed by (outer periphery temperature−center temperature). A sets the center cool target at 0 ° C, B sets the center cool target at 50 ° C, and C sets the center cool target at 80 ° C. And the value which actually measured the temperature difference in the radial direction center and outer periphery of a base | substrate is shown as a center cool degree.
Figure 2007250644

前記実施例1〜比較例2で得られた加熱部材及び基板加熱装置を、水冷された真空容器中に設置した。3本の点接触となるアルミナピンを200mm間隔の正三角形の頂点部分に配置し、これらのアルミナピンの上に、加熱部材及び基板加熱装置の基板を載置した。   The heating member and substrate heating apparatus obtained in Example 1 and Comparative Example 2 were placed in a water-cooled vacuum vessel. Three alumina pins to be in point contact were arranged at the apex portions of an equilateral triangle with an interval of 200 mm, and the heating member and the substrate of the substrate heating apparatus were placed on these alumina pins.

その後、圧力が50Torrの窒素雰囲気の真空容器内に加熱部材及び基板加熱装置を収容し、給電部材に電圧を印加し、基体の孔に挿入された熱電対の温度をモニタリングしながら、印加電圧を制御し、基体を470℃に昇温して保持した。   Thereafter, the heating member and the substrate heating device are accommodated in a vacuum vessel of nitrogen atmosphere with a pressure of 50 Torr, the voltage is applied to the power supply member, and the temperature of the thermocouple inserted in the hole of the base is monitored, and the applied voltage is set. The substrate was heated to 470 ° C. and held.

なお、各基体は、実施例1〜4については3個作製し、比較例1,2については2個作製し、これらのうちいくつが昇温して破損するかどうかを確認した。   Note that three substrates were prepared for Examples 1 to 4, and two were prepared for Comparative Examples 1 and 2, and it was confirmed how many of these substrates were damaged by heating.

真空容器の上部には石英製の窓があり、その外部にIRカメラが設置され、真空容器内の基体の表面における放射温度分布を測定した。この温度分布の測定結果より、基体の中心から直径300mmの円部分内における最大温度と最小温度を読み取った。センタークールとなる抵抗発熱体設計により、中心付近が最小温度となり、直径300mmの円部分における外周近傍が最大温度となった。最大温度と最小温度の差をセンタークール度合いとして算出した。   There was a quartz window at the top of the vacuum vessel, and an IR camera was installed outside the window, and the radiation temperature distribution on the surface of the substrate in the vacuum vessel was measured. From the measurement result of the temperature distribution, the maximum temperature and the minimum temperature in a circle portion having a diameter of 300 mm from the center of the substrate were read. By the resistance heating element design that becomes the center cool, the temperature near the center becomes the minimum temperature, and the vicinity of the outer periphery in the circle portion having a diameter of 300 mm becomes the maximum temperature. The difference between the maximum temperature and the minimum temperature was calculated as the center cool degree.

ホットプレス時に焼結した基体は、その高温状態では内部応力がほぼゼロの状態となっている。しかし、冷却に伴う基体の収縮時には、熱膨張係数の大きな部分が熱膨張係数の小さな部分よりもより大きく収縮しようとするので、室温まで温度が低下した状態で、熱膨張係数の小さな部分には圧縮応力が残留応力として発生する。即ち、実施例1,2においては、焼結した基体の中心部に圧縮応力が発生し、径方向外側部に引張応力が発生している。実施例3では、焼結した基体の中間層に引張応力が発生し、表面層及び裏面層には圧縮応力が発生している。   The base body sintered at the time of hot pressing has almost no internal stress at a high temperature. However, when the substrate shrinks due to cooling, the portion with a large thermal expansion coefficient tends to shrink more than the portion with a small thermal expansion coefficient. Compressive stress is generated as residual stress. That is, in Examples 1 and 2, a compressive stress is generated in the central portion of the sintered base, and a tensile stress is generated in the radially outer portion. In Example 3, tensile stress is generated in the intermediate layer of the sintered substrate, and compressive stress is generated in the front surface layer and the back surface layer.

ここで、本発明の実施例によれば、基板の外周近傍の最大温度と中心近傍の最低温度との差であるセンタークール度合いが、80℃近傍となっても、基板は破損せず、十分な信頼性があることが判明した。さらには、実施例4の基板加熱装置の場合は、センタークール度合いを100℃にしても破損しなかった。比較例1では、センタークール度合いが46℃の場合では、3個中2個が破損した。   Here, according to the embodiment of the present invention, even when the center cool degree, which is the difference between the maximum temperature near the outer periphery of the substrate and the minimum temperature near the center, is in the vicinity of 80 ° C., the substrate is not damaged. Turned out to be reliable. Furthermore, in the case of the substrate heating apparatus of Example 4, it was not damaged even when the center cool degree was 100 ° C. In Comparative Example 1, two of the three pieces were damaged when the center cool degree was 46 ° C.

本実施例1,2では、端子等の孔が形成されている径方向中央部に、常温状態において圧縮残留応力が発生しているため、加熱部材を高温状態に加熱させたときに径方向中央部に発生する引張応力を、前記圧縮残留応力が打ち消し、孔の近傍に圧縮応力が作用したままとなる。さらには、いわゆるセンタークール状態の温度分布においては、径方向外側部が径方向中央部より温度が高いため、径方向外側部に発生する圧縮残留応力は、加熱によって生じる引張応力と打ち消しあい、加熱部材全体の応力が均一になるため、加熱部材の信頼性が向上する。そのため、従来品では破損するおそれがあるセンタークールの温度分布でも、本発明品は破損することがない。   In the first and second embodiments, since compressive residual stress is generated in the central portion in the radial direction where the holes such as the terminals are formed in the normal temperature state, the central portion in the radial direction when the heating member is heated to the high temperature state. The compressive residual stress cancels out the tensile stress generated in the portion, and the compressive stress remains in the vicinity of the hole. Furthermore, in the so-called center-cooled temperature distribution, the radially outer portion is higher in temperature than the radially central portion, so that the compressive residual stress generated in the radially outer portion cancels out the tensile stress generated by heating and heats up. Since the stress of the entire member becomes uniform, the reliability of the heating member is improved. Therefore, the product of the present invention is not damaged even in the center cool temperature distribution, which may be damaged in the conventional product.

また、本発明の実施例3では、破損を起こす場合に破壊起点となるセラミックス表面に圧縮応力がかかっているので、実施例1,2と同様の理由で破損が生じることがない。   Further, in Example 3 of the present invention, since the compressive stress is applied to the ceramic surface that is the starting point of breakage when breakage occurs, the breakage does not occur for the same reason as in Examples 1 and 2.

実施例4では、管状部材が、基体の径方向外側部と同じ高い熱膨張係数に設定されており、この管状部材が基体の径方向外側部に接合されているため、基体の径方向中央部により大きな残留圧縮応力が発生し、より大きなセンタークールにしても破損しない。   In Example 4, the tubular member is set to have the same high thermal expansion coefficient as the radially outer portion of the base, and this tubular member is joined to the radially outer portion of the base. A larger residual compressive stress is generated, and even a larger center cool does not break.

本発明では、加熱部材や管状部材における熱膨張係数を、添加する焼結助材の量によって制御するので、熱膨張係数の異なる領域の間では、ホットプレス時に焼結助剤が短い範囲で拡散してバッファー領域となって一体化しており、領域の境界付近に発生する急峻な残留応力を低減し、境界でのはがれ等が起き難く、信頼性の高い構造となっている。   In the present invention, since the thermal expansion coefficient of the heating member or tubular member is controlled by the amount of the sintering aid to be added, the sintering aid diffuses in a short range during hot pressing between regions having different thermal expansion coefficients. As a result, the buffer region is integrated to reduce the steep residual stress generated in the vicinity of the boundary between the regions, so that peeling at the boundary is difficult to occur and the structure is highly reliable.

なお、実施例2のように熱膨張の異なる領域を3つ以上とすると、径方向中央部と最外周部との熱膨張係数の差が大きくなるので、径方向中央部に発生する圧縮残留応力はさらに大きくなるとともに、隣り合う領域の熱膨張係数の差は小さくできるので、これらの境界に発生する熱膨張差に起因する残留応力分布が急峻とならず、より信頼性が高くなる。即ち、このような構成とすることで、より大きなセンタークール温度分布を実現することが可能となる。さらには、中心から外周に向かってなだらかに熱膨張係数が徐々に変化させるようにしても良い。   If the number of regions having different thermal expansion is three or more as in the second embodiment, the difference in thermal expansion coefficient between the radially central portion and the outermost peripheral portion increases, so that the compressive residual stress generated in the radially central portion. Since the difference in thermal expansion coefficient between adjacent regions can be reduced, the residual stress distribution due to the difference in thermal expansion occurring at these boundaries does not become steep, and the reliability is further improved. That is, with such a configuration, a larger center cool temperature distribution can be realized. Furthermore, the thermal expansion coefficient may be gradually changed gradually from the center toward the outer periphery.

実施例1と同様にして、径方向中央部に0.1wt%のY,外周側に30wt%のYを添加した窒化アルミニウムを用いた時は、加熱部材の焼成後に、加熱部材が破損した。この破損片から切り出した30wt%の窒化アルミニウムの熱膨張係数を測定したところ、6.3ppm/Kであった。AlNの焼結助剤にYを用いた場合は、Y5wt%で熱膨張係数は5.7ppm/Kとなり、0.1wt%で5.3ppm/Kとなった。 In the same manner as in Example 1, 0.1 wt% of Y 2 O 3 in the radial center part, when using the added aluminum nitride 30 wt% of Y 2 O 3 on the outer peripheral side, after firing of the heating member, The heating member was damaged. The coefficient of thermal expansion of 30 wt% aluminum nitride cut out from the broken piece was measured and found to be 6.3 ppm / K. When Y 2 O 3 was used as the sintering aid for AlN, the thermal expansion coefficient was 5.7 ppm / K at 5 wt% Y 2 O 3 , and 5.3 ppm / K at 0.1 wt%.

一方、実施例4と同様にして径方向中央部に0.1wt%のY、径方向外側部及び管状部材に1wt%のYの窒化アルミを用いた場合は、センタークール度合いが76℃で1個/3個が破損した。1wt%のYの部分における窒化アルミニウムの熱膨張係数は5.4ppm/Kであった。このことから、隣り合う領域の熱膨張係数の差異が0.1ppm/Kと小さいときは、本発明の効果が少ないことがわかる。 On the other hand, in the same manner as in Example 4, when 0.1 wt% Y 2 O 3 was used in the radial central portion and 1 wt% Y 2 O 3 aluminum nitride was used in the radial outer portion and the tubular member, the center cool The damage was 1/3 at 76 ° C. The coefficient of thermal expansion of aluminum nitride in the 1 wt% Y 2 O 3 portion was 5.4 ppm / K. From this, it can be seen that the effect of the present invention is small when the difference in thermal expansion coefficient between adjacent regions is as small as 0.1 ppm / K.

これらから、基体における隣り合う領域の熱膨張係数の差異は、0.2ppm/K以上1.0ppm/K未満がより好ましいことがわかる。   From these, it can be seen that the difference in thermal expansion coefficient between adjacent regions in the substrate is more preferably 0.2 ppm / K or more and less than 1.0 ppm / K.

[他の実施例]
基体の材料として、窒化アルミニウムの代わりにアルミナを用い、焼結助剤としてSiOを用い、実施例1と同様にして加熱部材を作製した。すなわち、径方向中央部にSiOを7wt%添加し、径方向外側部をSiOを1wt%添加した。この場合、SiOはアルミナより熱膨張係数が小さいので中心部の熱膨張係数を小さく、外周部の熱膨張係数を大きくすることができる。別途、作成したテストピースで熱膨張係数を測定したところ、SiOを7wt%含有したアルミナは6.6ppm/K、SiOを1wt%含有したアルミナは7.2ppm/Kであった。
[Other examples]
A heating member was produced in the same manner as in Example 1 using alumina as the base material instead of aluminum nitride and using SiO 2 as the sintering aid. That is, 7 wt% of SiO 2 was added to the central portion in the radial direction, and 1 wt% of SiO 2 was added to the radially outer portion. In this case, since SiO 2 has a smaller thermal expansion coefficient than alumina, the thermal expansion coefficient in the central portion can be reduced and the thermal expansion coefficient in the outer peripheral portion can be increased. Separately, when the thermal expansion coefficient was measured with the prepared test piece, alumina containing 7 wt% of SiO 2 was 6.6 ppm / K, and alumina containing 1 wt% of SiO 2 was 7.2 ppm / K.

このようにして作成した加熱部材を前記と同様にして300℃で評価したところ、45℃のセンタークールでも破損することがなかった。   When the heating member thus prepared was evaluated at 300 ° C. in the same manner as described above, it was not damaged even at a center cool of 45 ° C.

一方、比較例としてSiOを1wt%含有したアルミナのみで基体全体を作製した加熱部材は12℃のセンタークール度合いで破壊した。このようにアルミナにおいても本発明によれば、センタークール加熱できる加熱部材を得ることが可能となることが判明した。 On the other hand, as a comparative example, a heating member in which the entire substrate was made of only alumina containing 1 wt% of SiO 2 was broken at a center cool degree of 12 ° C. Thus, it has been found that a heating member capable of center cool heating can also be obtained for alumina according to the present invention.

本発明の第1実施形態による加熱部材の断面図である。It is sectional drawing of the heating member by 1st Embodiment of this invention. 本発明の第2実施形態による加熱部材の断面図である。It is sectional drawing of the heating member by 2nd Embodiment of this invention. 本発明の第3実施形態による加熱部材の断面図である。It is sectional drawing of the heating member by 3rd Embodiment of this invention. 本発明の第4実施形態による基板加熱装置の断面図である。It is sectional drawing of the substrate heating apparatus by 4th Embodiment of this invention.

符号の説明Explanation of symbols

1,21,31 加熱部材
3,29,33 基体
7 加熱面(基板加熱面)
11 径方向中央部
13 径方向外側部
35 表面層
37 裏面層
39 中間層

1,21,31 Heating member 3,29,33 Base 7 Heating surface (substrate heating surface)
11 radially central portion 13 radially outer portion 35 surface layer 37 back surface layer 39 intermediate layer

Claims (12)

被処理物を加熱する加熱面を有し、セラミックスから形成された板状の基体を備えた加熱部材において、
前記基体の径方向中央部に、径方向中心に向けて常温状態で圧縮残留応力が作用していることを特徴とする加熱部材。
In a heating member having a heating surface for heating an object to be processed and including a plate-like substrate formed of ceramics,
A heating member, wherein a compressive residual stress is applied to a central portion in a radial direction of the base body in a normal temperature state toward a radial center.
前記基体における加熱面の径方向中央部が、径方向外側部よりも低温の温度分布に設定された状態で使用されることを特徴とする請求項1に記載の加熱部材。   2. The heating member according to claim 1, wherein the heating member of the base body is used in a state in which a radially central portion of the heating surface is set to a temperature distribution lower in temperature than a radially outer portion. 前記基体の径方向中央部における熱膨張係数を、径方向外側部における熱膨張係数よりも小さく設定したことを特徴とする請求項1又は2に記載の加熱部材。   The heating member according to claim 1 or 2, wherein a thermal expansion coefficient in a radially central portion of the base is set to be smaller than a thermal expansion coefficient in a radially outer portion. 前記基体の熱膨張係数を、径方向外側から径方向中心に向かうにつれて徐々に低減させたことを特徴とする請求項3に記載の加熱部材。   The heating member according to claim 3, wherein the thermal expansion coefficient of the base body is gradually reduced from the radially outer side toward the radial center. 前記基体を、所定の幅を有する複数の同心円状の円環部から一体形成し、所定の円環部とこれに隣接する円環部との熱膨張係数の差を0.2ppm/K以上かつ1.0ppm/K未満としたことを特徴とする請求項3又は4に記載の加熱部材。   The substrate is integrally formed from a plurality of concentric annular parts having a predetermined width, and a difference in thermal expansion coefficient between the predetermined annular part and the adjacent annular part is 0.2 ppm / K or more and The heating member according to claim 3 or 4, wherein the heating member is less than 1.0 ppm / K. 被処理物を加熱する加熱面を有し、セラミックスから形成された板状の基体を備えた加熱部材において、
前記基体を、表面側に配置した表面層と、裏面側に配置した裏面層と、表面層及び裏面層の間に挟持した中間層とから一体に形成し、前記表面層及び裏面層に、基体の径方向中心に向けて常温状態で圧縮残留応力が作用していることを特徴とする加熱部材。
In a heating member having a heating surface for heating an object to be processed and including a plate-like substrate formed of ceramics,
The substrate is integrally formed from a surface layer disposed on the front surface side, a back surface layer disposed on the back surface side, and an intermediate layer sandwiched between the surface layer and the back surface layer, and the substrate is formed on the surface layer and the back surface layer. A heating member, wherein a compressive residual stress is acting at normal temperature toward the center in the radial direction.
前記中間層における熱膨張係数を、表面層及び裏面層における熱膨張係数よりも大きく設定したことを特徴とする請求項6に記載の加熱部材。   The heating member according to claim 6, wherein a thermal expansion coefficient in the intermediate layer is set to be larger than thermal expansion coefficients in the front surface layer and the back surface layer. 前記基体のセラミックスは、窒化アルミニウム、アルミナ、炭化ケイ素、及び窒化ホウ素のうち、少なくともいずれかであることを特徴とする請求項1〜7のいずれか1項に記載の加熱部材。   The heating member according to any one of claims 1 to 7, wherein the ceramic of the base is at least one of aluminum nitride, alumina, silicon carbide, and boron nitride. 前記基体をセラミックス焼結体から形成し、焼結助材の含有量を基体の径方向又は厚さ方向に沿って変化させることにより、熱膨張係数に差を設けたことを特徴とする請求項8に記載の加熱部材。   The thermal expansion coefficient is provided by forming the base body from a ceramic sintered body and changing the content of the sintering aid along the radial direction or the thickness direction of the base body. 9. The heating member according to 8. 前記焼結助材は、Y、MgO、CaO、Sm、TiO、ZrO、SiOのうちの少なくともいずれかであることを特徴とする請求項9に記載の加熱部材。 Wherein the sintering Yuisukezai is, Y 2 O 3, MgO, CaO, Sm 2 O 3, TiO 2, ZrO 2, heating member according to claim 9, characterized in that at least one of SiO 2 . 前記請求項1〜5、及び8〜10のいずれか1項に記載された基体の径方向外側部の裏面に、セラミックスからなる管状部材を取り付けた基板加熱装置であって、
前記管状部材の熱膨張係数を、前記基体の径方向中央部における熱膨張係数よりも大きく設定したことを特徴とする基板加熱装置。
A substrate heating apparatus in which a tubular member made of ceramics is attached to the back surface of the radially outer portion of the base body according to any one of claims 1 to 5 and 8 to 10,
A substrate heating apparatus, wherein a thermal expansion coefficient of the tubular member is set to be larger than a thermal expansion coefficient in a central portion in a radial direction of the base body.
前記管状部材のセラミックスは、窒化アルミニウム、アルミナ、炭化ケイ素、及び窒化ホウ素のうち、少なくともいずれかであることを特徴とする請求項11に記載の基板加熱装置。

The substrate heating apparatus according to claim 11, wherein the ceramic of the tubular member is at least one of aluminum nitride, alumina, silicon carbide, and boron nitride.

JP2006069159A 2006-03-14 2006-03-14 Substrate heating device Active JP4703442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069159A JP4703442B2 (en) 2006-03-14 2006-03-14 Substrate heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069159A JP4703442B2 (en) 2006-03-14 2006-03-14 Substrate heating device

Publications (2)

Publication Number Publication Date
JP2007250644A true JP2007250644A (en) 2007-09-27
JP4703442B2 JP4703442B2 (en) 2011-06-15

Family

ID=38594650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069159A Active JP4703442B2 (en) 2006-03-14 2006-03-14 Substrate heating device

Country Status (1)

Country Link
JP (1) JP4703442B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073557A (en) * 2010-09-30 2012-04-12 Ushio Inc Optical device
JP2020194835A (en) * 2019-05-27 2020-12-03 住友金属鉱山株式会社 Forming method of silicon carbide polycrystalline film, susceptor, and film forming apparatus
WO2021065544A1 (en) * 2019-09-30 2021-04-08 京セラ株式会社 Structure and heating device
WO2023090862A1 (en) * 2021-11-19 2023-05-25 주식회사 케이에스엠컴포넌트 Ceramic heater for semiconductor manufacturing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718432A (en) * 1993-07-06 1995-01-20 Ulvac Japan Ltd Cathode for sputtering and its production
JP2005123582A (en) * 2003-08-18 2005-05-12 Tokyo Electron Ltd Substrate holding structure and substrate processing apparatus
JP2006049844A (en) * 2004-06-28 2006-02-16 Ngk Insulators Ltd Substrate heating device
JP2007059842A (en) * 2005-08-26 2007-03-08 Tokyo Electron Ltd Ceramic member, ceramic heater, wafer placing mechanism, wafer treatment apparatus, and method of manufacturing ceramic member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718432A (en) * 1993-07-06 1995-01-20 Ulvac Japan Ltd Cathode for sputtering and its production
JP2005123582A (en) * 2003-08-18 2005-05-12 Tokyo Electron Ltd Substrate holding structure and substrate processing apparatus
JP2006049844A (en) * 2004-06-28 2006-02-16 Ngk Insulators Ltd Substrate heating device
JP2007059842A (en) * 2005-08-26 2007-03-08 Tokyo Electron Ltd Ceramic member, ceramic heater, wafer placing mechanism, wafer treatment apparatus, and method of manufacturing ceramic member

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012073557A (en) * 2010-09-30 2012-04-12 Ushio Inc Optical device
JP2020194835A (en) * 2019-05-27 2020-12-03 住友金属鉱山株式会社 Forming method of silicon carbide polycrystalline film, susceptor, and film forming apparatus
JP7247749B2 (en) 2019-05-27 2023-03-29 住友金属鉱山株式会社 Silicon carbide polycrystalline film deposition method, susceptor, and deposition apparatus
WO2021065544A1 (en) * 2019-09-30 2021-04-08 京セラ株式会社 Structure and heating device
JPWO2021065544A1 (en) * 2019-09-30 2021-04-08
JP7242885B2 (en) 2019-09-30 2023-03-20 京セラ株式会社 Structure and heating device
WO2023090862A1 (en) * 2021-11-19 2023-05-25 주식회사 케이에스엠컴포넌트 Ceramic heater for semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP4703442B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP4467453B2 (en) Ceramic member and manufacturing method thereof
KR100672802B1 (en) Substrate heating apparatus and manufacturing method for the same
TWI321127B (en)
JP5807032B2 (en) Heating apparatus and semiconductor manufacturing apparatus
JP4542485B2 (en) Alumina member and manufacturing method thereof
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
KR101099891B1 (en) Body having a junction and method of manufacturing the same
KR101470046B1 (en) Ceramic heater and method for making the same
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
JP2007258608A (en) Heating apparatus
JP4703442B2 (en) Substrate heating device
JP3771686B2 (en) Wafer support member
JP2005109169A (en) Substrate-heating device and manufacturing method thereof
JP2003317906A (en) Ceramic heater
JP5466439B2 (en) Ceramic joined body, ceramic heater, electrostatic chuck and susceptor
JP2004253786A (en) Joint structure of ceramics
JP2005285355A (en) Heating apparatus
JP6650332B2 (en) Substrate holding device and method of manufacturing the same
JP2006228633A (en) Manufacturing method of substrate heater, and the substrate heater
JPH1053470A (en) Joined body of ceramic and its production
JP3545866B2 (en) Wafer holding device
US11869796B2 (en) Electrode-embedded member and method for manufacturing same, electrostatic chuck, and ceramic heater
JP6370062B2 (en) Aluminum nitride joined body and manufacturing method thereof
JP3941542B2 (en) Hermetic bonding structure of ceramics and metal and apparatus parts having the structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150