JP2007246998A - Aluminum alloy sheet for bottle can, and method for manufacturing the same - Google Patents

Aluminum alloy sheet for bottle can, and method for manufacturing the same Download PDF

Info

Publication number
JP2007246998A
JP2007246998A JP2006072833A JP2006072833A JP2007246998A JP 2007246998 A JP2007246998 A JP 2007246998A JP 2006072833 A JP2006072833 A JP 2006072833A JP 2006072833 A JP2006072833 A JP 2006072833A JP 2007246998 A JP2007246998 A JP 2007246998A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
bottle
alloy plate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006072833A
Other languages
Japanese (ja)
Other versions
JP5091415B2 (en
Inventor
Atsuto Tsuruta
淳人 鶴田
Shigeo Hirose
重男 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006072833A priority Critical patent/JP5091415B2/en
Publication of JP2007246998A publication Critical patent/JP2007246998A/en
Application granted granted Critical
Publication of JP5091415B2 publication Critical patent/JP5091415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a bottle can which is excellent in formability at the time of manufacturing the bottle can without increasing the present sheet thickness/weight and in which the manufactured bottle can has sufficient can body strength (buckling strength) and a method for manufacturing the same. <P>SOLUTION: The aluminum alloy sheet contains 0.10 to 0.40mass% Cu, 1.30 to 2.00mass% Mg, 0.50 to 1.00mass% Mn, 0.40 to 0.80mass% Fe, 0.10 to 0.40mass% Si, and is composed of the balance Al and inevitable impurities, in which the contents of Mn, Mg, and Fe satisfy the relations of 5.450<ä5.66×Mn(mass%)+0.667(mass%)×Mg(mass%)+2.17×Fe(mass%)} <7.550. The elongation of the aluminum alloy sheet is 5.0 to 8.0% and the average aspect ratio of crystal grains is ≥3.0%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、各種の飲料缶として使用されるボトル缶用素材としてのボトル缶用アルミニウム合金板およびその製造方法に関する。   The present invention relates to an aluminum alloy plate for bottle cans as a material for bottle cans used as various beverage cans and a method for producing the same.

従来、ボトル缶としては、図1に示すように、胴体部2と底部6とが連続して構成されている2ピースボトル缶1がある。この2ピースボトル缶1は、その胴体部2の所定部分にネック部3が形成され、このネック部3のエンド部には口部4が形成されている。さらに、この2ピースボトル缶1は、口部4の近傍の外周にキャップ取り付け用のネジ部5と、天面部8にカール部7とが形成されている。   Conventionally, as a bottle can, as shown in FIG. 1, there is a two-piece bottle can 1 in which a body portion 2 and a bottom portion 6 are continuously formed. In the two-piece bottle can 1, a neck portion 3 is formed at a predetermined portion of the body portion 2, and a mouth portion 4 is formed at an end portion of the neck portion 3. Further, the two-piece bottle can 1 has a screw portion 5 for attaching a cap on the outer periphery in the vicinity of the mouth portion 4 and a curled portion 7 on the top surface portion 8.

そして、特許文献1には、このような2ピースボトル缶に使用されるアルミニウム合金板として、Fe、Si、Mn、Mgの各含有量を調整したJISH4000に規定される3004合金、または3104合金などが用いられ、これを、鋳造処理、均質化熱処理、熱間圧延処理、冷間圧延処理、必要に応じて焼鈍処理を行った後に、冷間圧延を行うことによって、所定のアルミニウム合金板を製造することが提案されている。
特開2002−256366号公報(段落番号0013、0030、図1)
And in patent document 1, 3004 alloy prescribed | regulated to JISH4000 which adjusted each content of Fe, Si, Mn, and Mg as an aluminum alloy plate used for such a 2 piece bottle can, or 3104 alloy etc. This is used for casting, homogenization heat treatment, hot rolling treatment, cold rolling treatment, annealing as necessary, and then cold rolling to produce a predetermined aluminum alloy sheet It has been proposed to do.
JP 2002-256366 A (paragraph numbers 0013 and 0030, FIG. 1)

しかしながら、ボトル缶の内容物によっては、キャップ巻締め後の漏れ防止のために、キャッピング時の打栓荷重を従来よりも高くすることが要求されている。こうした内容物への適用拡大を図ろうとしたときには、ネック部、胴体部にかかる軸方向荷重に対する座屈強度を、従来の1500N以上から1960N以上に増大する必要がある。そして、高い打栓荷重に耐えうるボトル缶を製造するには、より強度の高い材料が求められるが、従来のアルミニウム合金板においては、高強度化するほど、ネック成形時のシワ、カール成形時におけるカール割れが発生するという問題があり、製缶自体が困難で実用化に至らなかった。また、高強度化のために、アルミニウム合金板の板厚を厚くすることも考えられるが、ボトル缶においては、1缶あたりのメタル使用量を減らすべく薄肉、軽量化の要望が高い。   However, depending on the contents of the bottle can, in order to prevent leakage after the cap is tightened, it is required to increase the capping load at the time of capping. When trying to expand the application to such contents, it is necessary to increase the buckling strength against the axial load applied to the neck portion and the body portion from 1500 N or more to 1960 N or more. In order to produce a bottle can that can withstand a high stoppering load, a material with higher strength is required. However, in the conventional aluminum alloy sheet, the higher the strength, the more the wrinkle during neck forming and the curl forming There is a problem that curl cracks occur in the cans, making the cans themselves difficult and not being put into practical use. In order to increase the strength, it is conceivable to increase the thickness of the aluminum alloy plate. However, in a bottle can, there is a high demand for reducing the thickness and weight in order to reduce the amount of metal used per can.

そこで、本発明はこのような問題を解決すべく創案されたもので、その課題は、現行の板厚/重量をアップさせることなく、ボトル缶を製造する際の成形性が優れると共に、製造されたボトル缶が十分な缶体強度(座屈強度)を有するボトル缶用アルミニウム合金板およびその製造方法を提供することにある。   Therefore, the present invention was devised to solve such a problem, and the problem is that the formability when manufacturing a bottle can is excellent and the current thickness / weight is not increased. Another object of the present invention is to provide an aluminum alloy plate for a bottle can having a sufficient can body strength (buckling strength) and a method for producing the same.

前記課題を解決するために、請求項1に係るボトル缶用アルミニウム合金板は、Cuを0.10〜0.40質量%、Mgを1.30〜2.00質量%、Mnを0.50〜1.00質量%、Feを0.40〜0.80質量%、Siを0.10〜0.40質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550の関係を満足するアルミニウム合金板であって、前記アルミニウム合金板の伸びが5.0〜8.0%、かつ、結晶粒の平均アスペクト比が3.0以上であることを特徴とする。   In order to solve the above problems, an aluminum alloy plate for a bottle can according to claim 1 is composed of Cu of 0.10 to 0.40 mass%, Mg of 1.30 to 2.00 mass%, and Mn of 0.50. -1.00 mass%, Fe is 0.40 to 0.80 mass%, Si is 0.10 to 0.40 mass%, the balance is composed of Al and inevitable impurities, and the Mn, Mg and Fe Alloy plate satisfying the relationship of 5.450 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.550 The elongation of the aluminum alloy plate is 5.0 to 8.0%, and the average aspect ratio of the crystal grains is 3.0 or more.

このような構成によれば、Cu、Mg、Mn、Fe、Siの各含有量を所定範囲に規制することによって、熱処理後の0.2%耐力が適切な範囲となり、缶体強度が向上すると共に、ネック成形性、カール成形性が向上する。また、缶成形の際の耳率が適切な範囲となり、缶寸法が安定する。Mn、MgおよびFeの含有量が所定の関係を満足することによって、アルミニウム合金板に所定のサイズおよび個数密度の金属間化合物が形成され、ネック成形性、カール成形性が向上する。また、合金板の伸びを所定範囲に規制することによって、ネック成形性、カール成形性が向上する。さらに、合金板の結晶粒の平均アスペクト比を所定範囲に規制することによって、結晶粒が圧延方向に伸長した組織となり、合金板をDI成形した際の耳率が適切な範囲となる。   According to such a configuration, by restricting each content of Cu, Mg, Mn, Fe, and Si to a predetermined range, the 0.2% proof stress after the heat treatment becomes an appropriate range, and the can body strength is improved. At the same time, neck formability and curl formability are improved. Moreover, the ear | edge rate in the case of can shaping | molding becomes an appropriate range, and a can dimension is stabilized. When the contents of Mn, Mg, and Fe satisfy a predetermined relationship, an intermetallic compound having a predetermined size and number density is formed on the aluminum alloy plate, and neck formability and curl formability are improved. Further, by restricting the elongation of the alloy plate to a predetermined range, neck formability and curl formability are improved. Further, by regulating the average aspect ratio of the crystal grains of the alloy plate within a predetermined range, the crystal grains have a structure elongated in the rolling direction, and the ear ratio when the alloy plate is DI-molded is in an appropriate range.

また、請求項2に係るボトル缶用アルミニウム合金板の製造方法は、Cuを0.10〜0.40質量%、Mgを1.30〜2.00質量%、Mnを0.50〜1.00質量%、Feを0.40〜0.80質量%、Siを0.10〜0.40質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550の関係を満足するアルミニウム合金を溶解、鋳造して鋳塊を製造する第1工程と、前記鋳塊を均質化熱処理する第2工程と、前記第2工程で均質化熱処理された鋳塊を熱間圧延して圧延板を製造する第3工程と、前記圧延板を冷間圧延してアルミニウム合金板を製造する第4工程とを含み、前記第2工程の均質化熱処理を570〜620℃の温度条件で行うと共に、前記第3工程の熱間圧延を巻き取り温度300℃以上で行い、かつ、前記第4工程の冷間圧延を冷間加工率82〜90%、巻き取り温度130〜180℃で行うことを特徴とする。   Moreover, the manufacturing method of the aluminum alloy plate for bottle cans which concerns on Claim 2 is Cu 0.10-0.40 mass%, Mg 1.30-2.00 mass%, Mn 0.50-1. 00 mass%, Fe 0.40 to 0.80 mass%, Si 0.10 to 0.40 mass%, the balance is composed of Al and unavoidable impurities, the content of Mn, Mg and Fe Of aluminum alloy satisfying the relationship of 5.450 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.550 A first step of producing an ingot, a second step of homogenizing heat treatment of the ingot, and a third step of hot rolling the ingot homogenized and heat treated in the second step to produce a rolled plate And a fourth step of cold rolling the rolled plate to produce an aluminum alloy plate In addition, the homogenization heat treatment of the second step is performed at a temperature condition of 570 to 620 ° C., the hot rolling of the third step is performed at a coiling temperature of 300 ° C. or more, and the cold rolling of the fourth step is performed. Is performed at a cold working rate of 82 to 90% and a winding temperature of 130 to 180 ° C.

このような手順によれば、アルミニウム合金成分の各含有量、鋳塊の均質化熱処理の温度条件、熱間圧延の巻き取り温度、冷間圧延の冷間加工率および冷間圧延の巻き取り温度を規制することによって、アルミニウム合金板に所定のサイズおよび個数密度のAl−Mn−Fe−Si系金属間化合物が形成される。また、アルミニウム合金板の熱処理後の0.2%耐力、伸びおよび結晶粒の平均アスペクト比が適切な範囲となる。   According to such a procedure, each content of the aluminum alloy component, the temperature condition of the homogenization heat treatment of the ingot, the winding temperature of the hot rolling, the cold working rate of the cold rolling, and the winding temperature of the cold rolling By regulating the above, an Al—Mn—Fe—Si intermetallic compound having a predetermined size and number density is formed on the aluminum alloy plate. Further, the 0.2% proof stress, the elongation, and the average aspect ratio of the crystal grains after the heat treatment of the aluminum alloy plate are within an appropriate range.

本発明のボトル缶用アルミニウム合金板によれば、現行の板厚/重量をアップさせることなく、優れた成形性を達成できると共に、製造されたボトル缶が十分な缶寸法、缶体強度(座屈強度)を有する。   According to the aluminum alloy plate for a bottle can of the present invention, excellent formability can be achieved without increasing the current plate thickness / weight, and the manufactured bottle can has sufficient can dimensions, can body strength (seat Bend strength).

また、本発明のボトル缶用アルミニウム合金板の製造方法によれば、板厚/重量をアップさせることなく、優れた成形性を有すると共に、製造されたボトル缶が十分な缶寸法、座屈強度を有するボトル缶用アルミニウム合金板を製造できる。   Further, according to the method for producing an aluminum alloy plate for a bottle can of the present invention, the produced bottle can has an excellent formability without increasing the thickness / weight, and the produced bottle can has sufficient can dimensions and buckling strength. An aluminum alloy plate for a bottle can having the above can be produced.

以下、本発明の実施の形態について詳細に説明する。本発明者らは、現行の缶壁厚もしくは現行より薄い缶壁厚からなるボトル缶であっても、従来以上のキャップ打栓荷重に耐えうるボトル缶製造に適した材料の開発を進めてきた。その結果、従来採用されてきたJIS規定の3104合金、または3004合金の成分範囲を超える合金成分と、適正な均質化熱処理条件、熱間圧延条件、冷間圧延条件を組み合わせることで、必要な缶強度、缶寸法、成形性を同時に満足させるボトル缶用アルミニウム合金板(以下、アルミニウム合金板と称す)とその製造方法を見出し、本発明を成すに至った。   Hereinafter, embodiments of the present invention will be described in detail. The present inventors have advanced the development of a material suitable for manufacturing a bottle can that can withstand a cap-capping load more than the conventional one, even if the bottle can has a current can wall thickness or a thinner can wall thickness. . As a result, the required can can be obtained by combining the alloy components exceeding the component range of JIS stipulated 3104 alloy or 3004 alloy, which has been conventionally adopted, with appropriate homogenization heat treatment conditions, hot rolling conditions, and cold rolling conditions. The present inventors have found an aluminum alloy plate for a bottle can (hereinafter referred to as an aluminum alloy plate) that satisfies both strength, can size, and formability, and a method for producing the same.

[1.アルミニウム合金板]
本発明に係るアルミニウム合金板は、Cuを0.10〜0.40質量%、Mgを1.30〜2.00質量%、Mnを0.50〜1.00質量%、Feを0.40〜0.80質量%、Siを0.10〜0.40質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550の関係を満足するアルミニウム合金板であって、前記アルミニウム合金板の伸びが5.0〜8.0%以下、かつ、結晶粒の平均アスペクト比が3.0以上である。
[1. Aluminum alloy plate]
The aluminum alloy plate according to the present invention has Cu of 0.10 to 0.40 mass%, Mg of 1.30 to 2.00 mass%, Mn of 0.50 to 1.00 mass%, and Fe of 0.40. -0.80 mass%, Si is contained in 0.10-0.40 mass%, the remainder is composed of Al and inevitable impurities, and the contents of Mn, Mg and Fe are 5.450 <{5. 66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.550, wherein the aluminum alloy sheet has an elongation of 5 0.0 to 8.0% or less, and the average aspect ratio of the crystal grains is 3.0 or more.

以下に、アルミニウム合金板に含まれる各成分と材料特性(伸び、結晶粒の平均アスペクト比)とを数値限定した理由について説明する。
(Cuの含有量:0.10〜0.40質量%)
Cuは、アルミニウム合金板の材料強度に寄与する元素である。また、ボトル缶の座屈強度は、アルミニウム合金板の材料強度に依存する。そして、後記するボトル缶の製造工程において、ネック成形前の熱処理後の0.2%耐力、すなわち、DI缶に対して内面印刷・焼付処理を施す際の熱処理に相当する210℃で10分間の熱処理を、アルミニウム合金板に施した後のアルミニウム合金板の0.2%耐力が重要な指標となる。
The reason why the respective components contained in the aluminum alloy plate and the material properties (elongation, average aspect ratio of crystal grains) are numerically limited will be described below.
(Cu content: 0.10 to 0.40 mass%)
Cu is an element that contributes to the material strength of the aluminum alloy plate. Further, the buckling strength of the bottle can depends on the material strength of the aluminum alloy plate. And in the manufacturing process of the bottle can described later, 0.2% proof stress after the heat treatment before the neck forming, that is, 210 ° C. for 10 minutes corresponding to the heat treatment when the inner surface printing / baking treatment is performed on the DI can. An important indicator is the 0.2% yield strength of the aluminum alloy sheet after the heat treatment is applied to the aluminum alloy sheet.

Cuの含有量が0.10質量%未満では、充分な材料強度(熱処理後の0.2%耐力)が得られず、ボトル缶の缶強度が不足する(軸方向荷重に対するネック部、缶胴部の座屈強度が不足する)。Cuの含有量が0.40質量%を超えると、材料強度(熱処理後の0.2%耐力)が高くなり過ぎて、後記するボトル缶の製造工程において、ネック成形時のシワ発生およびカール成形時の割れ発生による不良缶の発生率が高くなり、実用に適さなくなる。   If the Cu content is less than 0.10% by mass, sufficient material strength (0.2% yield strength after heat treatment) cannot be obtained, and the can strength of the bottle can is insufficient (neck portion against the axial load, can body) The buckling strength of the part is insufficient). If the Cu content exceeds 0.40 mass%, the material strength (0.2% proof stress after heat treatment) becomes too high, and in the bottle can manufacturing process described later, wrinkles are generated during neck molding and curl molding. The occurrence rate of defective cans due to the occurrence of cracks at the time increases, making it unsuitable for practical use.

(Mgの含有量:1.30〜2.00質量%)
Mgは、アルミニウム合金板の材料強度に寄与する元素である。Mgの含有量が1.30質量%未満では、充分な材料強度(熱処理後の0.2%耐力)が得られず、ボトル缶の缶強度が不足する。Mgの含有量が2.00質量%を超えると、加工硬化が大きくなって材料強度(熱処理後の0.2%耐力)が高くなり過ぎて、後記するボトル缶の製造工程において、ネック成形時のシワ発生およびカール成形時の割れ発生による不良缶の発生率が高くなり、実用に適さなくなる。
(Mg content: 1.30 to 2.00% by mass)
Mg is an element that contributes to the material strength of the aluminum alloy plate. If the Mg content is less than 1.30% by mass, sufficient material strength (0.2% yield strength after heat treatment) cannot be obtained, and the can strength of the bottle can is insufficient. If the Mg content exceeds 2.00% by mass, the work hardening increases and the material strength (0.2% proof stress after heat treatment) becomes too high. The occurrence rate of defective cans due to the occurrence of wrinkles and cracks during curl molding increases, making it unsuitable for practical use.

(Mnの含有量:0.50〜1.00質量%)
Mnは、アルミニウム合金板の材料強度に寄与する元素である。Mnの含有量が0.50質量%未満では、充分な材料強度(熱処理後の0.2%耐力)が得られず、ボトル缶の缶強度が不足する。Mnの含有量が1.00質量%を超えると、材料強度(熱処理後の0.2%耐力)が高くなり過ぎて、後記するボトル缶の製造工程において、印刷・焼付処理後のネック部の延性が不足し、ネック成形時のシワ発生およびカール成形時の割れ発生による不良缶の発生率が高くなり、実用に適さなくなる。
(Mn content: 0.50 to 1.00% by mass)
Mn is an element that contributes to the material strength of the aluminum alloy plate. If the Mn content is less than 0.50% by mass, sufficient material strength (0.2% yield strength after heat treatment) cannot be obtained, and the can strength of the bottle can is insufficient. If the Mn content exceeds 1.00% by mass, the material strength (0.2% proof stress after heat treatment) becomes too high, and in the bottle can manufacturing process described later, the neck portion after printing / baking treatment Due to lack of ductility, the rate of occurrence of defective cans due to the occurrence of wrinkles during neck molding and cracks during curl molding increases, making it unsuitable for practical use.

(Feの含有量:0.40〜0.80質量%)
Feの含有量が0.40質量%未満では、後記するボトル缶の製造工程において、DI成形の際に0−180°耳が増大し、所定の缶寸法が得難くなる。Feの含有量が0.80質量%を超えると、Al−Mn−Fe−Si系金属間化合物のサイズおよび個数密度が増大し、後記するボトル缶の製造工程において、カール成形時の割れ発生による不良缶の発生率が高くなり、実用に適さなくなる。
(Fe content: 0.40 to 0.80 mass%)
When the Fe content is less than 0.40% by mass, in the bottle can manufacturing process described later, the 0-180 ° ear increases during DI molding, making it difficult to obtain a predetermined can size. When the Fe content exceeds 0.80% by mass, the size and number density of the Al—Mn—Fe—Si intermetallic compound increase, and in the bottle can manufacturing process described later, cracks are generated during curl molding. The incidence of defective cans increases, making them unsuitable for practical use.

(Siの含有量:0.10〜0.40質量%)
Siの含有量が0.10質量%未満では、後記するボトル缶の製造工程において、DI成形の際に45°耳が増大する。Siの含有量が0.40質量%を超えると、後記するアルミニウム合金板の製造工程において、熱間圧延時の集合組織のばらつきを招く。このようなアルミニウム合金板でボトル缶を製造すると、DI成形の際に耳率のばらつきが増大する。いずれの場合も所定の缶寸法が得難くなる。
(Si content: 0.10 to 0.40 mass%)
When the Si content is less than 0.10% by mass, 45 ° ears increase during DI molding in the bottle can manufacturing process described later. If the Si content exceeds 0.40% by mass, the texture of the hot rolled alloy will vary in the manufacturing process of the aluminum alloy sheet described later. When a bottle can is manufactured with such an aluminum alloy plate, the variation in the ear rate increases during DI molding. In either case, it is difficult to obtain a predetermined can size.

(不可避的不純物)
本発明にあっては、不可避的不純物として、Crが0.1質量%以下、Znが0.5質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下含有されても、本発明の効果が妨げられるものではなく、このような不可避的不純物の含有は許容される。
(Inevitable impurities)
In the present invention, as unavoidable impurities, Cr is 0.1 mass% or less, Zn is 0.5 mass% or less, Ti is 0.1 mass% or less, Zr is 0.1 mass% or less, B is Even if contained in an amount of 0.1% by mass or less, the effect of the present invention is not hindered, and the inclusion of such inevitable impurities is allowed.

(5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550)
ボトル缶の製造工程において、ネック部のスジ状欠陥の発生は、Al−Mn−Fe−Si系金属間化合物のサイズおよび個数密度に影響される。そして、金属間化合物のサイズおよび個数密度は、Mn、Mg、Feの含有量に左右され、その影響度はMn、Fe、Mgの順に高くなる。Mn、Mg、Feが前記の関係を満足するときに、金属間化合物のサイズおよび個数密度が好適な範囲となり、ネック部のスジ状欠陥の発生が抑制され、カール割れも防止される。
(5.450 <{5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.550)
In the bottle can manufacturing process, the occurrence of streak defects at the neck is affected by the size and number density of the Al—Mn—Fe—Si intermetallic compound. The size and number density of the intermetallic compound depend on the contents of Mn, Mg, and Fe, and the degree of influence increases in the order of Mn, Fe, and Mg. When Mn, Mg, and Fe satisfy the above relationship, the size and number density of the intermetallic compound are in a suitable range, generation of streak-like defects in the neck portion is suppressed, and curl cracking is also prevented.

{5.66×Mn+0.667×Mg+2.17×Fe}が5.450以下であると、金属間化合物の形成が十分でなく、後記するボトル缶の製造工程において、DI成形時の焼付きが顕著となり、胴体部のみならずネック部も、これに起因するスジ状欠陥が顕著となる。{5.66×Mn+0.667×Mg+2.17×Fe}が7.550以上であると、金属間化合物が粗大化し、DI成形時において、この粗大な金属間化合物が脱落することにより、ネック部にスジ状の欠陥が生じる。このスジ状の欠陥により、カール成形時に割れが生じる。   If {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} is 5.450 or less, the formation of intermetallic compounds is not sufficient, and in the bottle can manufacturing process described later, seizure during DI molding occurs. As a result, not only the trunk part but also the neck part has noticeable streak-like defects. When {5.66 × Mn + 0.667 × Mg + 2.17 × Fe} is 7.550 or more, the intermetallic compound is coarsened, and this coarse intermetallic compound is dropped at the time of DI molding. This causes streak-like defects. This streak-like defect causes a crack during curl molding.

(伸び:5.0〜8.0%)
伸びが5.0%未満では、後記するボトル缶の製造工程において、カップ成形時のシワがネック成形後もシワとして残存し、カール成形時の割れ発生増大による不良缶の発生率が高くなり、実用に適さなくなる。伸びが8.0%を超えると、後記するボトル缶の製造工程において、ネック成形時の加工硬化が大きく、ネック部強度が過大となって、カール成形時の割れ発生増大による不良缶の発生率が高くなり、実用に適さなくなる。なお、後記するアルミニウム合金板の製造工程において、冷間圧延の際の巻き取り温度を所定範囲に制御することによって、前記範囲の伸びを得ることが可能となる。
(Elongation: 5.0-8.0%)
If the elongation is less than 5.0%, wrinkles at the time of cup molding remain as wrinkles after neck molding in the bottle can manufacturing process described later, and the incidence of defective cans due to increased cracking at the time of curl molding increases. Not suitable for practical use. If the elongation exceeds 8.0%, in the bottle can manufacturing process described later, the work hardening at the time of neck molding is large, the neck portion strength becomes excessive, and the rate of occurrence of defective cans due to increased cracking at the time of curl molding Becomes higher and is not suitable for practical use. In addition, in the manufacturing process of the aluminum alloy plate described later, it is possible to obtain the elongation in the above range by controlling the coiling temperature in the cold rolling to a predetermined range.

(結晶粒の平均アスペクト比:3.0以上)
結晶粒のアスペクト比は、アルミニウム合金板の圧延方向の結晶粒径(L)と板幅方向の結晶粒径(ST)との比(L/ST)で定義され、その平均値である平均アスペクト比が3.0未満のとき、後記するボトル缶の製造工程において、DI成形の際に0−180°耳が増大し、所定の缶寸法が得難くなる。なお、後記するアルミニウム合金板の製造工程において、冷間加工率を所定範囲に制御することによって、前記範囲の平均アスペクト比を得ることが可能となる。
(Average aspect ratio of crystal grains: 3.0 or more)
The aspect ratio of the crystal grains is defined by the ratio (L / ST) of the crystal grain size (L) in the rolling direction and the crystal grain size (ST) in the plate width direction of the aluminum alloy plate, and the average aspect ratio is the average value. When the ratio is less than 3.0, in the bottle can manufacturing process described later, 0-180 ° ears increase during DI molding, making it difficult to obtain a predetermined can size. In addition, in the manufacturing process of the aluminum alloy plate described later, the average aspect ratio in the above range can be obtained by controlling the cold working rate within a predetermined range.

(熱処理後の0.2%耐力)
210℃で10分の熱処理を施した後のアルミニウム合金板の0.2%耐力は、ボトル缶の缶強度(座屈強度)に影響を与える。熱処理後の0.2%耐力が270N/mm以下では、缶強度(座屈強度)が不足する。熱処理後の0.2%耐力が290N/mmを超えると、ネック成形時のシワ発生およびカール成形時の割れ発生により不良缶の発生率が高くなり、実用に適さなくなる。したがって、本発明では、210℃で10分間の熱処理を施した後の、アルミニウム合金板の0.2%耐力は270N/mm2を超え290N/mm以下とすることが必要である。なお、アルミニウム合金に含まれるCu、Mn、Mgの含有量を所定範囲に制御することによって、前記範囲の0.2%耐力(熱処理後)を得ることが可能となる。
(0.2% yield strength after heat treatment)
The 0.2% yield strength of the aluminum alloy plate after heat treatment at 210 ° C. for 10 minutes affects the can strength (buckling strength) of the bottle can. If the 0.2% yield strength after heat treatment is 270 N / mm 2 or less, the can strength (buckling strength) is insufficient. If the 0.2% proof stress after heat treatment exceeds 290 N / mm 2 , the rate of occurrence of defective cans increases due to the occurrence of wrinkles during neck molding and cracks during curl molding, making it unsuitable for practical use. Therefore, in the present invention, the 0.2% proof stress of the aluminum alloy sheet after heat treatment at 210 ° C. for 10 minutes is required to be more than 270 N / mm 2 and 290 N / mm 2 or less. In addition, by controlling the contents of Cu, Mn, and Mg contained in the aluminum alloy within a predetermined range, it is possible to obtain 0.2% proof stress (after heat treatment) in the above range.

[2.アルミニウム合金板の製造方法]
本発明に係るアルミニウム合金板の製造方法は、以下の第1工程ないし第4工程を含むものである。第1工程は、Cuを0.10〜0.40質量%、Mgを1.30〜2.00質量%、Mnを0.50〜1.00質量%、Feを0.40〜0.80質量%、Siを0.10〜0.40質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550の関係を満足するアルミニウム合金を溶解、鋳造して鋳塊を製造する。第2工程は、前記鋳塊を均質化熱処理する。そして、前記均質化熱処理を570〜620℃の温度条件で行う。第3工程は、前記第2工程で均質化熱処理された鋳塊を熱間圧延して圧延板を製造する。そして、前記熱間圧延を巻き取り温度300℃以上で行う。第4工程は、前記圧延板を冷間圧延してアルミニウム合金板を製造する。そして、前記冷間圧延を冷間加工率82〜90%、巻き取り温度130〜180℃で行う。
[2. Manufacturing method of aluminum alloy plate]
The method for producing an aluminum alloy plate according to the present invention includes the following first to fourth steps. In the first step, Cu is 0.10 to 0.40 mass%, Mg is 1.30 to 2.00 mass%, Mn is 0.50 to 1.00 mass%, and Fe is 0.40 to 0.80. Mass%, Si is contained in an amount of 0.10 to 0.40 mass%, the balance is composed of Al and inevitable impurities, and the contents of Mn, Mg and Fe are 5.450 <{5.66 × Mn ( (Mass%) + 0.667 × Mg (Mass%) + 2.17 × Fe (Mass%)} <7.550 An aluminum alloy satisfying the relationship is melted and cast to produce an ingot. In the second step, the ingot is subjected to homogenization heat treatment. And the said homogenization heat processing is performed on the temperature conditions of 570-620 degreeC. In the third step, the ingot homogenized by the second step is hot-rolled to produce a rolled plate. And the said hot rolling is performed by coiling temperature 300 degreeC or more. In the fourth step, the rolled plate is cold-rolled to produce an aluminum alloy plate. The cold rolling is performed at a cold working rate of 82 to 90% and a winding temperature of 130 to 180 ° C.

以下に、前記製造方法において規定した各条件について説明する。なお、アルミニウム合金の成分の数値限定理由については、前記したボトル缶用アルミニウム合金板と同一であるので省略する。   Below, each condition prescribed | regulated in the said manufacturing method is demonstrated. In addition, about the numerical limitation reason of the component of an aluminum alloy, since it is the same as the above-mentioned aluminum alloy plate for bottle cans, it abbreviate | omits.

(均質化熱処理の温度条件:570〜620℃)
均質化熱処理温度が570℃未満では、次工程の熱間圧延時の集合組織のばらつきを招き、後記するボトル缶の製造工程において、DI成形の際の耳率のばらつきが増大し、所定の缶寸法が得難くなる。また、未再結晶組織の残存により、ネック成形時のシワ発生、更にはカール割れ発生を招く。均質化熱処理温度が620℃を超えると、鋳塊表面がバーニングを起こし、合金板の製造そのものができなくなる。
(Temperature conditions for homogenization heat treatment: 570-620 ° C.)
If the homogenization heat treatment temperature is less than 570 ° C., it causes variations in texture during hot rolling in the next step, and in the bottle can manufacturing process described later, variations in the ear rate during DI molding increase, and the predetermined can It becomes difficult to obtain the dimensions. In addition, the remaining of the non-recrystallized structure causes wrinkles at the time of neck forming, and further curl cracks. When the homogenization heat treatment temperature exceeds 620 ° C., the ingot surface is burned, and the alloy plate itself cannot be manufactured.

(熱間圧延の巻き取り温度:300℃以上)
熱間圧延の巻き取り温度が300℃未満では、次工程の熱間圧延時の集合組織のばらつきを招き、後記するボトル缶の製造工程において、DI成形の際の耳率のばらつきが増大し、所定の缶寸法が得難くなる。また、未再結晶組織の残存により、ネック成形時のシワ発生、更にはカール割れ発生を招く。
(Hot rolling coiling temperature: 300 ° C or higher)
If the coiling temperature for hot rolling is less than 300 ° C., it causes variation in texture during hot rolling in the next step, and in the manufacturing process of a bottle can described later, variation in ear ratio during DI molding increases. It becomes difficult to obtain a predetermined can size. In addition, the remaining of the non-recrystallized structure causes wrinkles at the time of neck forming, and further curl cracks.

(冷間圧延の冷間加工率:82〜90%)
冷間加工率が82%未満では、後記するボトル缶の製造工程において、0−180°耳が増大し、所定の缶寸法が得難くなる。冷間加工率が90%を超えると、45°耳が増大し、やはり所定の缶寸法を得難くなる。なお、冷間加工率を前記範囲に制御することによって、アルミニウム合金板の結晶粒の平均アスペクト比を所定範囲にすることが可能となる。
(Cold rolling cold working rate: 82-90%)
If the cold working rate is less than 82%, in the bottle can manufacturing process described later, 0-180 ° ears increase and it becomes difficult to obtain a predetermined can size. When the cold working rate exceeds 90%, the 45 ° ear increases, and it becomes difficult to obtain a predetermined can size. By controlling the cold working rate within the above range, the average aspect ratio of the crystal grains of the aluminum alloy plate can be set within a predetermined range.

(冷間圧延の巻き取り温度:130〜180℃)
冷間圧延の巻き取り温度が130℃未満では、アルミニウム合金板に十分な延性が得られず、後記するボトル缶の製造工程において、カップ成形時のシワがネック成形後もシワとして残存し、カール成形時の割れ発生増大による不良缶の発生率が高くなり、実用に適さなくなる。巻き取り温度が180℃を超えると、後記するボトル缶の製造工程において、ネック成形時の加工硬化が大きく、ネック部の強度が過大となって、カール成形時の割れ発生増大による不良缶の発生率が高くなり、実用に適さなくなる。なお、巻き取り温度を前記範囲に制御することによって、アルミニウム合金板の伸びを所定範囲にすることが可能となる。
(Cold rolling coiling temperature: 130-180 ° C.)
When the coiling temperature for cold rolling is less than 130 ° C., sufficient ductility cannot be obtained in the aluminum alloy sheet, and in the bottle can manufacturing process described later, wrinkles at the time of cup molding remain as wrinkles after neck molding, The incidence of defective cans due to increased cracking during molding increases, making it unsuitable for practical use. When the winding temperature exceeds 180 ° C., in the bottle can manufacturing process described later, work hardening at the time of neck molding is large, the strength of the neck is excessive, and defective cans are generated due to increased cracking at the time of curl molding. The rate will be high and not suitable for practical use. In addition, it becomes possible to make elongation of an aluminum alloy plate into a predetermined range by controlling winding temperature in the said range.

ここで、第1工程の鋳造は、DC鋳造処理(Direct−chill Casting:直接チル鋳造処理)が好ましく、また、第3工程の熱間圧延と第4工程の冷間圧延との間に、必要に応じて焼鈍を施す荒焼鈍工程を加えてもよい。さらに、第4工程の冷間圧延は、複数回の冷間圧延を行い、冷間圧延の間に必要に応じて焼鈍を施す中間焼鈍工程を加えてもよい。したがって、前記冷間加工率は、トータルの冷間加工率を意味する。   Here, the casting of the first step is preferably DC-cast casting (direct chill casting), and is necessary between the hot rolling of the third step and the cold rolling of the fourth step. Depending on, a rough annealing step of annealing may be added. Further, the cold rolling of the fourth step may be performed by performing an intermediate annealing step of performing cold rolling a plurality of times and performing annealing as necessary during the cold rolling. Therefore, the cold work rate means the total cold work rate.

以上説明した本発明に係るアルミニウム合金板は、図1に示すような胴体部2と底部6とが一体に形成された2ピースボトル缶1や、図示しないが、胴体部と底部とが各々異なる部材で形成された3ピースボトル缶に好適に使用される素材である。   The aluminum alloy plate according to the present invention described above has a two-piece bottle can 1 in which a body portion 2 and a bottom portion 6 are integrally formed as shown in FIG. 1 and a body portion and a bottom portion which are not shown, but are different from each other. It is a material suitably used for a three-piece bottle can formed of a member.

[3.ボトル缶の製造方法(製造工程)]
本発明に係るアルミニウム合金板を、図1に示すような2ピースボトル缶1に適用する場合には、図2に示すように、本発明に係るアルミニウム合金板からなるアルミニウム合金板Aに対してカッピングとDI成形とを施して、胴体部2と底部6とを備えるDI缶を製造する。次に、DI缶(胴体部2)の胴体部端部2aをトリミングにより整え、図示しない洗浄、印刷・焼付け(210℃で10分間の熱処理)を施した後に、DI缶(胴体部2)にダイネック加工等によりネッキングを施してネック部3を形成し、その開口部を口部4とする。その後、この口部4の近傍の外周にネジ成形を施してスクリューキャップ取り付け用のネジ部5を形成し、天面部8にカール成形を施してカール部7を形成することで、2ピースボトル缶1を製造することができる。
[3. Manufacturing method of bottle can (manufacturing process)]
When the aluminum alloy plate according to the present invention is applied to a two-piece bottle can 1 as shown in FIG. 1, as shown in FIG. 2, the aluminum alloy plate A made of the aluminum alloy plate according to the present invention is used. Cupping and DI molding are performed to manufacture a DI can having a body portion 2 and a bottom portion 6. Next, the body part end 2a of the DI can (body part 2) is trimmed, cleaned (not shown), printed and baked (heat treatment at 210 ° C. for 10 minutes), and then applied to the DI can (body part 2). Necking is performed by die neck processing or the like to form the neck portion 3, and the opening portion is used as the mouth portion 4. Thereafter, the outer periphery in the vicinity of the mouth portion 4 is formed with a screw to form a screw portion 5 for attaching a screw cap, and the top surface portion 8 is subjected to curl forming to form a curled portion 7, whereby a two-piece bottle can 1 can be manufactured.

また、アルミニウム合金板Aは、製造される2ピースボトル缶1の内表面からのアルミニウム等の溶出を防止するために、本発明に係るボトル缶用アルミニウム合金板の表面にPET等の樹脂フィルムをラミネートしたものを使用してもよい。   In addition, the aluminum alloy plate A has a resin film such as PET on the surface of the aluminum alloy plate for bottle can according to the present invention in order to prevent elution of aluminum and the like from the inner surface of the two-piece bottle can 1 to be manufactured. A laminate may be used.

以下、本発明に係る実施例について具体的に説明する。
なお、本発明の必要条件を満足するものを実施例1〜6とし、本発明の必要条件を満たさないものを比較例1〜18とした。
Examples according to the present invention will be specifically described below.
In addition, what satisfy | filled the required condition of this invention was set as Examples 1-6, and the thing which does not satisfy the required condition of this invention was set as Comparative Examples 1-18.

まず、表1に示すような化学成分を備えたアルミニウム合金を溶解・鋳造し、この鋳塊に、表1に示す均質化熱処理温度で4時間の均質化熱処理を施した。続いて、熱間粗圧延、熱間仕上げ圧延を順次行って熱間圧延板を作製した後、表1に示すような巻き取り温度で巻き取って、ホットコイルとした。そして、このホットコイルに表1に示す冷間加工率で冷間圧延を施し、表1に示す巻き取り温度で巻き取り、板厚0.360mmのアルミニウム合金板(実施例1〜6、比較例1〜18)を製造した。なお、板厚0.360mmは、従来の板厚が0.400mmであるので、薄肉化された板厚といえる。   First, an aluminum alloy having chemical components as shown in Table 1 was melted and cast, and this ingot was subjected to a homogenization heat treatment at a homogenization heat treatment temperature shown in Table 1 for 4 hours. Subsequently, hot rough rolling and hot finish rolling were sequentially performed to produce a hot rolled sheet, and then wound at a winding temperature as shown in Table 1 to obtain a hot coil. The hot coil was cold-rolled at the cold working rate shown in Table 1 and wound up at the winding temperature shown in Table 1, and an aluminum alloy plate having a plate thickness of 0.360 mm (Examples 1 to 6, Comparative Example) 1-18) were produced. Note that the plate thickness of 0.360 mm is a thin plate thickness because the conventional plate thickness is 0.400 mm.

そして、前記の実施例1〜6、比較例1〜18のアルミニウム合金板について、結晶粒の平均アスペクト比、伸び、熱処理後の0.2%耐力を以下の測定方法により求めた。その結果を表1に示す。なお、表1中の下線は本発明の必要条件を満たしていないことを示す。   And about the aluminum alloy plate of said Examples 1-6 and Comparative Examples 1-18, the average aspect-ratio of crystal grain, elongation, and 0.2% yield strength after heat processing were calculated | required with the following measuring methods. The results are shown in Table 1. The underline in Table 1 indicates that the necessary conditions of the present invention are not satisfied.

(平均アスペクト比)
前記のアルミニウム合金板の表面において、結晶粒の圧延方向の結晶粒径(L)と板幅方向の結晶粒径(ST)を求め、アスペクト比=(L/ST)を計算した。測定場所を変えて同様の測定を繰り返し行い(5箇所)、その平均値を平均アスペクト比とした。
(Average aspect ratio)
On the surface of the aluminum alloy plate, the crystal grain size (L) in the rolling direction and the crystal grain size (ST) in the plate width direction were determined, and the aspect ratio = (L / ST) was calculated. The same measurement was repeated by changing the measurement location (5 locations), and the average value was defined as the average aspect ratio.

(伸び、熱処理後の0.2%耐力)
前記のアルミニウム合金板からJIS5号試験片を圧延方向に採取し、この試験片を用いてJISZ2241に準拠して引張試験を行い、伸びを測定した。また、210℃で10分の熱処理(ベーキング処理)を施したアルミニウム合金板からJIS5号試験片を採取し、この試験片を用いて同様にして引張試験を行い、熱処理後の0.2%耐力を測定した。
(Elongation, 0.2% proof stress after heat treatment)
A JIS No. 5 test piece was collected from the aluminum alloy plate in the rolling direction, and a tensile test was performed using this test piece in accordance with JIS Z2241, and the elongation was measured. In addition, a JIS No. 5 test piece was collected from an aluminum alloy plate subjected to heat treatment (baking treatment) at 210 ° C. for 10 minutes, and a tensile test was similarly performed using this test piece, and 0.2% yield strength after heat treatment was obtained. Was measured.

Figure 2007246998
Figure 2007246998

次に、前記のアルミニウム合金板から製造されるボトル缶の缶寸法精度の指標として耳率を採用し、この耳率を以下の方法で算出した。
(耳率)
前記のアルミニウム合金板から外径66mmのブランクを打ち抜き、このブランクに対してカッピングを施してカップ径40mmの絞りカップを作製した。この絞りカップのカップ高さを測定し、下式(1)に基づき耳率を測定した。下式(1)において、hXは絞りカップの高さを表す。そして、hの添数字Xはカップ高さの測定位置を示し、アルミニウム合金板の圧延方向に対してX°の角度をなす位置を意味する。そして、耳率の大小は、ボトル缶の缶寸法精度(口部寸法精度)とよく対応し、所定の缶寸法を得るには、耳率が−2〜+3.5%の範囲にあることが求められる。耳率が前記範囲内であるものを缶寸法精度が良好「○」とし、耳率が前記範囲外であるものを缶寸法精度が不良「×」とした。その結果を表2に示す。
Next, the ear rate was adopted as an index of the can size accuracy of the bottle can manufactured from the aluminum alloy plate, and the ear rate was calculated by the following method.
(Ear rate)
A blank having an outer diameter of 66 mm was punched from the aluminum alloy plate, and cupping was performed on the blank to produce a drawn cup having a cup diameter of 40 mm. The cup height of this squeezed cup was measured, and the ear rate was measured based on the following formula (1). In the following formula (1), hX represents the height of the squeezing cup. The suffix “X” of h indicates the measurement position of the cup height, and means the position that forms an angle of X ° with the rolling direction of the aluminum alloy sheet. The size of the ear rate corresponds well with the can size accuracy (mouth size accuracy) of the bottle can, and in order to obtain a predetermined can size, the ear rate may be in the range of -2 to + 3.5%. Desired. When the ear rate was within the above range, the can dimension accuracy was good “◯”, and when the ear rate was outside the range, the can size accuracy was poor “×”. The results are shown in Table 2.

耳率(%)=[{(h45+h135+h225+h315)−(h0+h90+h180+h270)}/{1/2(h45+h135+h225+h315+h0+h90+h180+h270)}]×100・・・(1)   Ear rate (%) = [{(h45 + h135 + h225 + h315) − (h0 + h90 + h180 + h270)} / {1/2 (h45 + h135 + h225 + h315 + h0 + h90 + h180 + h270)}] × 100 (1)

また、前記のアルミニウム合金板を使用して、図2に示すように、以下の手順で2ピースボトル缶1を製造した。まず、アルミニウム合金板Aから外径160mmのブランクを打ち抜き、このブランクに対してカッピングを施して、カップ径94mmの絞りカップを得た。この絞りカップに対してDI成形を施して、胴体部2の内径が66mmのDI缶を得た。このDI缶の胴体部端部2aをトリミングし、210℃で10分のベーキング処理(熱処理)を行った後、さらに口部4の内径が40mmになるまでダイネック方式でネッキングを施して、ネッキング品を得た。このネッキング品のネック部3にネジ・カール成形によりネジ部5、カール部7を形成して2ピースボトル缶1とした。   Moreover, as shown in FIG. 2, the 2 piece bottle can 1 was manufactured in the following procedures using the said aluminum alloy plate. First, a blank having an outer diameter of 160 mm was punched from the aluminum alloy plate A, and cupping was performed on the blank to obtain a drawn cup having a cup diameter of 94 mm. DI molding was performed on the drawn cup to obtain a DI can having an inner diameter of the body portion 2 of 66 mm. After trimming the body end 2a of this DI can and performing a baking process (heat treatment) at 210 ° C. for 10 minutes, the neck 4 is further necked until the inner diameter of the mouth 4 becomes 40 mm. Got. A screw part 5 and a curl part 7 are formed on the neck part 3 of this necking product by screw / curl molding to obtain a two-piece bottle can 1.

前記のネッキング品、2ピースボトル缶を使用して、ネック成形性、カール成形性、および座屈強度の評価を以下の方法で行った。その結果を表2に示す。
(ネック成形性)
前記のネッキング品(サンプル数=20)において、シワまたはスジ状の欠陥の発生状況を確認することによって、ネック成形性を評価した。シワまたはスジ状の欠陥が見られなかったものを良好「○」、シワまたはスジ状の欠陥が見られたものを不良「×」とした。
The neck moldability, curl moldability, and buckling strength were evaluated by the following methods using the necking product and the two-piece bottle can. The results are shown in Table 2.
(Neck formability)
In the necking product (number of samples = 20), the neck formability was evaluated by confirming the occurrence of wrinkle or streak defects. A case where no wrinkle or streak-like defects were found was rated as “good”, and a case where wrinkle-like or streak-like defects were found was rated as “poor”.

(カール成形性)
前記の2ピースボトル缶(サンプル数=20)において、カール部の割れの有無を確認することによって、カール成形性を評価した。割れの発生が見られなかったものを良好「○」、1缶でも割れの発生が見られたものを不良「×」とした。
(Curl formability)
In the two-piece bottle can (number of samples = 20), the curl formability was evaluated by checking the presence or absence of cracks in the curled part. Those where no cracks were observed were evaluated as “good”, and those where cracks were observed even in one can were evaluated as “bad”.

(座屈強度)
前記の2ピースボトル缶(サンプル数=10)に軸方向の圧縮荷重を負荷し、ネック部または胴体部が座屈したときの荷重を測定して、その平均値を座屈強度とした。この座屈強度は、1960N以上であるものを良好「○」、1960N未満であるものを不良「×」とした。
(Buckling strength)
A compressive load in the axial direction was applied to the two-piece bottle can (number of samples = 10), the load when the neck portion or the body portion buckled was measured, and the average value was defined as the buckling strength. As for this buckling strength, those with 1960 N or more were judged as “good”, and those with less than 1960 N were judged as “poor”.

Figure 2007246998
Figure 2007246998

表1、2に示すように、本発明の必要条件を満たす実施例1〜6においては、板厚が薄肉化されても、耳率(ボトル缶の缶寸法精度の指標)、ネック成形性、カール成形性および座屈強度のいずれの評価項目も良好なものであった。   As shown in Tables 1 and 2, in Examples 1 to 6 that satisfy the requirements of the present invention, even when the plate thickness is reduced, the ear ratio (an index of the can dimension accuracy of the bottle can), neck formability, Both evaluation items of curl formability and buckling strength were good.

しかし、本発明の必要条件を満たさない比較例1〜18においては、板厚が薄肉化されると、耳率、ネック成形性、カール成形性および座屈強度のうち少なくとも1項目以上が実施例と比較して劣る結果となった。   However, in Comparative Examples 1 to 18 that do not satisfy the requirements of the present invention, when the plate thickness is reduced, at least one item is selected from the ear ratio, neck formability, curl formability, and buckling strength. Compared with the results.

すなわち、比較例1は、Cuが本発明の下限値未満であるため、熱処理後の0.2%耐力が270N/mm2未満となり、座屈強度が劣るものであった。比較例2は、Cuが本発明の上限値を超えるため、熱処理後の0.2%耐力が290N/mm2を超え、ネック成形性、カール成形性が劣るものであった。 That is, in Comparative Example 1, since Cu is less than the lower limit of the present invention, the 0.2% yield strength after heat treatment is less than 270 N / mm 2 , and the buckling strength is inferior. In Comparative Example 2, since Cu exceeds the upper limit of the present invention, the 0.2% proof stress after heat treatment exceeds 290 N / mm 2 , and the neck formability and curl formability are inferior.

比較例3は、Mgが本発明の下限値未満であるため、熱処理後の0.2%耐力が270N/mm2未満となり、座屈強度が劣るものであった。比較例4は、Mgが本発明の上限値を超えるため、熱処理後の0.2%耐力が290N/mm2を超え、かつ、{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}も本発明の上限値を超えるため、ネック成形性、カール成形性が劣るものであった。 In Comparative Example 3, since Mg was less than the lower limit of the present invention, the 0.2% yield strength after heat treatment was less than 270 N / mm 2 and the buckling strength was poor. In Comparative Example 4, since Mg exceeds the upper limit of the present invention, the 0.2% proof stress after heat treatment exceeds 290 N / mm 2 and {5.66 × Mn (mass%) + 0.667 × Mg ( (Mass%) + 2.17 × Fe (mass%)} also exceeds the upper limit of the present invention, so the neck moldability and curl moldability were poor.

比較例5は、Mnが本発明の下限値未満であるため、熱処理後の0.2%耐力が270N/mm2未満となり、かつ、{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}も本発明の下限値未満であるため、ネック成形性、カール成形性および座屈強度が劣るものであった。比較例6は、Mn、{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}が本発明の上限値を超えるため、ネック成形性、カール成形性が劣るものであった。 In Comparative Example 5, since Mn is less than the lower limit of the present invention, the 0.2% proof stress after heat treatment is less than 270 N / mm 2 and {5.66 × Mn (mass%) + 0.667 × Mg Since (mass%) + 2.17 × Fe (mass%)} is also less than the lower limit of the present invention, the neck moldability, curl moldability, and buckling strength were poor. In Comparative Example 6, Mn, {5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} exceeds the upper limit of the present invention. The curl formability was poor.

比較例7は、Feが本発明の下限値未満であるため、耳率が劣るものであった。比較例8は、Fe、{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}が本発明の上限値を超えるため、ネック成形性、カール成形性が劣るものであった。   Since the comparative example 7 had Fe less than the lower limit of this invention, the ear rate was inferior. In Comparative Example 8, since Fe, {5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} exceeds the upper limit of the present invention, neck moldability, The curl formability was poor.

比較例9は、Siが本発明の下限値未満であるため、耳率が劣るものであった。比較例10は、Siが本発明の上限値を超えるため、耳率が劣るものであった。   Since the comparative example 9 had Si less than the lower limit of the present invention, the ear rate was inferior. In Comparative Example 10, the ear rate was inferior because Si exceeded the upper limit of the present invention.

比較例11は、{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}が本発明の下限値未満であるため、ネック成形性、カール成形性が劣るものであった。比較例12は、{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}が本発明の上限値を超えるため、ネック成形性、カール成形性が劣るものであった。   In Comparative Example 11, {5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} is less than the lower limit of the present invention. The moldability was inferior. In Comparative Example 12, {5.66 × Mn (mass%) + 0.667 × Mg (mass%) + 2.17 × Fe (mass%)} exceeds the upper limit of the present invention. The property was inferior.

比較例13〜比較例18は、化学成分については本発明で規制した範囲を満足する。
しかしながら、比較例13は、冷間圧延時の巻き取り温度が本発明の下限値未満であるため、伸びが本発明の下限値未満となり、ネック成形性およびカール成形性が劣るものであった。比較例14は、冷間圧延時の巻き取り温度が本発明の上限値を超えるため、伸びが本発明の上限値を超え、カール成形性が劣るものであった。
In Comparative Examples 13 to 18, the chemical components satisfy the range regulated in the present invention.
However, since the winding temperature at the time of cold rolling was less than the lower limit value of the present invention in Comparative Example 13, the elongation was less than the lower limit value of the present invention, and the neck formability and curl formability were inferior. In Comparative Example 14, the coiling temperature during cold rolling exceeded the upper limit of the present invention, so the elongation exceeded the upper limit of the present invention and the curl formability was poor.

比較例15は、冷間圧延時の冷間加工率が本発明の下限値未満であるため、結晶粒の平均アスペクト比が本発明の下限値未満となり、耳率が劣るものであった。比較例16は、冷間圧延時の冷間加工率が本発明の上限値を超えるため、耳率が劣るものであった。   In Comparative Example 15, since the cold working rate during cold rolling was less than the lower limit of the present invention, the average aspect ratio of the crystal grains was less than the lower limit of the present invention, and the ear ratio was inferior. Since the cold working rate at the time of cold rolling exceeded the upper limit of this invention, the comparative example 16 was inferior in the ear rate.

比較例17は、均質化熱処理温度が本発明の下限値未満であるため、耳率、ネック成形性およびカール成形性が劣るものであった。比較例18は、熱間圧延時の巻き取り温度が本発明の下限値未満であるため、耳率、ネック成形性およびカール成形性が劣るものであった。   In Comparative Example 17, since the homogenization heat treatment temperature was less than the lower limit of the present invention, the ear rate, neck formability and curl formability were inferior. Since the winding temperature at the time of hot rolling was less than the lower limit value of the present invention, Comparative Example 18 had poor ear ratio, neck formability, and curl formability.

2ピースボトル缶を模式的に示す斜視図である。It is a perspective view which shows a 2 piece bottle can typically. 図1の2ピースボトル缶の製造方法を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing method of the 2 piece bottle can of FIG.

符号の説明Explanation of symbols

1 2ピースボトル缶
2 胴体部
3 ネック部
4 口部
5 ネジ部
6 底部
7 カール部
8 天面部
1 2 piece bottle can 2 body part 3 neck part 4 mouth part 5 screw part 6 bottom part 7 curl part 8 top surface part

Claims (2)

Cuを0.10〜0.40質量%、Mgを1.30〜2.00質量%、Mnを0.50〜1.00質量%、Feを0.40〜0.80質量%、Siを0.10〜0.40質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550の関係を満足するアルミニウム合金板であって、
前記アルミニウム合金板の伸びが5.0〜8.0%、かつ、結晶粒の平均アスペクト比が3.0以上であることを特徴とするボトル缶用アルミニウム合金板。
Cu is 0.10 to 0.40 mass%, Mg is 1.30 to 2.00 mass%, Mn is 0.50 to 1.00 mass%, Fe is 0.40 to 0.80 mass%, Si is 0.10 to 0.40% by mass, the balance is composed of Al and inevitable impurities, and the content of Mn, Mg and Fe is 5.450 <{5.66 × Mn (% by mass) +0. 667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.550 satisfying the relationship:
An aluminum alloy plate for a bottle can, wherein the aluminum alloy plate has an elongation of 5.0 to 8.0% and an average aspect ratio of crystal grains of 3.0 or more.
Cuを0.10〜0.40質量%、Mgを1.30〜2.00質量%、Mnを0.50〜1.00質量%、Feを0.40〜0.80質量%、Siを0.10〜0.40質量%含有し、残部がAlおよび不可避的不純物から構成され、前記Mn、MgおよびFeの含有量が、5.450<{5.66×Mn(質量%)+0.667×Mg(質量%)+2.17×Fe(質量%)}<7.550の関係を満足するアルミニウム合金を溶解、鋳造して鋳塊を製造する第1工程と、
前記鋳塊を均質化熱処理する第2工程と、
前記第2工程で均質化熱処理された鋳塊を熱間圧延して圧延板を製造する第3工程と、
前記圧延板を冷間圧延してアルミニウム合金板を製造する第4工程とを含み、
前記第2工程の均質化熱処理を570〜620℃の温度条件で行うと共に、
前記第3工程の熱間圧延を巻き取り温度300℃以上で行い、かつ、
前記第4工程の冷間圧延を冷間加工率82〜90%、巻き取り温度130〜180℃で行うことを特徴とするボトル缶用アルミニウム合金板の製造方法。
Cu is 0.10 to 0.40 mass%, Mg is 1.30 to 2.00 mass%, Mn is 0.50 to 1.00 mass%, Fe is 0.40 to 0.80 mass%, Si is 0.10 to 0.40% by mass, the balance is composed of Al and inevitable impurities, and the content of Mn, Mg and Fe is 5.450 <{5.66 × Mn (% by mass) +0. 667 × Mg (mass%) + 2.17 × Fe (mass%)} <7.550, a first step of producing an ingot by melting and casting an aluminum alloy satisfying the relationship:
A second step of homogenizing heat treatment of the ingot;
A third step of producing a rolled sheet by hot rolling the ingot subjected to the homogenization heat treatment in the second step;
A fourth step of cold rolling the rolled plate to produce an aluminum alloy plate,
The homogenization heat treatment of the second step is performed at a temperature condition of 570 to 620 ° C.,
Performing the hot rolling in the third step at a coiling temperature of 300 ° C. or higher; and
The method for producing an aluminum alloy plate for a bottle can, wherein the cold rolling of the fourth step is performed at a cold working rate of 82 to 90% and a winding temperature of 130 to 180 ° C.
JP2006072833A 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy plate for bottle can Expired - Fee Related JP5091415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006072833A JP5091415B2 (en) 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy plate for bottle can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006072833A JP5091415B2 (en) 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy plate for bottle can

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011119936A Division JP5250078B2 (en) 2011-05-30 2011-05-30 Aluminum alloy plate for bottle cans

Publications (2)

Publication Number Publication Date
JP2007246998A true JP2007246998A (en) 2007-09-27
JP5091415B2 JP5091415B2 (en) 2012-12-05

Family

ID=38591615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006072833A Expired - Fee Related JP5091415B2 (en) 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy plate for bottle can

Country Status (1)

Country Link
JP (1) JP5091415B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342657A (en) * 2002-03-20 2003-12-03 Kobe Steel Ltd Hot-rolled aluminum plate and plate material using the same and used for can shell
JP2004250790A (en) * 2003-01-31 2004-09-09 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004300537A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum alloy sheet for packaging container and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342657A (en) * 2002-03-20 2003-12-03 Kobe Steel Ltd Hot-rolled aluminum plate and plate material using the same and used for can shell
JP2004250790A (en) * 2003-01-31 2004-09-09 Kobe Steel Ltd Aluminum alloy sheet for bottle can
JP2004300537A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum alloy sheet for packaging container and its producing method

Also Published As

Publication number Publication date
JP5091415B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
WO2015140833A1 (en) Aluminum alloy sheet for dr can body and manufacturing method therefor
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6405014B1 (en) Aluminum alloy plate for bottle can body and manufacturing method thereof
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP2006257470A (en) Method for manufacturing aluminum alloy sheet for can lid
JP2009242830A (en) Aluminum alloy sheet for bottle can and method for producing the same
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP5250078B2 (en) Aluminum alloy plate for bottle cans
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP4088257B2 (en) Aluminum alloy plate for bottle cans
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP2006299330A (en) Aluminum alloy sheet for bottle can body
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2006265715A (en) Aluminum alloy sheet for resin coated packaging container and method for manufacturing the same
JP7426243B2 (en) Aluminum alloy plate for bottle body
JP5976023B2 (en) Aluminum alloy plate for resin-coated can body
JP6224413B2 (en) Aluminum alloy plate for cap and method for producing the same
JP2007254874A (en) Aluminum alloy sheet for packaging container and method of manufacturing the same
JP2005320577A (en) Aluminum alloy sheet for wide mouthed bottle can cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees