JP2007246625A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread Download PDF

Info

Publication number
JP2007246625A
JP2007246625A JP2006069782A JP2006069782A JP2007246625A JP 2007246625 A JP2007246625 A JP 2007246625A JP 2006069782 A JP2006069782 A JP 2006069782A JP 2006069782 A JP2006069782 A JP 2006069782A JP 2007246625 A JP2007246625 A JP 2007246625A
Authority
JP
Japan
Prior art keywords
weight
parts
carbon black
styrene
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006069782A
Other languages
Japanese (ja)
Inventor
Yoichi Takizawa
陽一 瀧澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2006069782A priority Critical patent/JP2007246625A/en
Publication of JP2007246625A publication Critical patent/JP2007246625A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber composition for a tire tread having excellent thermal drip resistance and excellent dry grip performance. <P>SOLUTION: This rubber composition for a tire tread comprises: (A) 100 parts by weight of a styrene-butadiene copolymer rubber having a glass transition temperature of more than -45°C; (B) 60 to 150 parts by weight of (1) carbon black having a nitrogen adsorption specific surface area (N<SB>2</SB>SA) of more than 250 m<SP>2</SP>/g or (2) a blend of (i) carbon black having N<SB>2</SB>SA of more than 250 m<SP>2</SP>/g and (ii) carbon black having N<SB>2</SB>SA of 100 to 150 m<SP>2</SP>/g, wherein the amount of the component (ii) is less than 50% by weight, based on the total amount of the components (i) and (ii); and (C) 5 to 150 parts by weight of a low molecular weight styrene-butadiene copolymer having a bonded styrene amount of 25% by weight or more and a weight average molecular weight of 2,000 to 50,000. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タイヤトレッド用ゴム組成物に関し、より詳細には、優れた耐熱ダレ性及びドライグリップ性能を有するタイヤトレッド用ゴム組成物に関する。   The present invention relates to a rubber composition for a tire tread, and more particularly to a rubber composition for a tire tread having excellent heat sag resistance and dry grip performance.

近年、空気入りタイヤの操縦安定性を向上させることが要求されるようになり、特にトレッド部のウェットグリップ性能、ドライグリップ性能等のグリップ性能を向上することが求められている。トレッド部のドライグリップ性能の向上には、高いヒステリシスロス性を実現すること若しくはヒステリシスロスの低下を抑制すること、あるいはトレッドを構成するゴムのガラス転移温度(Tg)を制御することが有効であることが知られている。例えば、特許文献1には、重量平均分子量1,000,000以上の高分子量スチレン−ブタジエン共重合体ゴム(SBR)と重量平均分子量2,000〜50,000の低分子量SBRとのブレンドに窒素吸着比表面積(N2SA)が90〜250m2/gであるカーボンブラックを配合することが提案されている。特許文献2には、ゴム成分に重量平均分子量が2,000〜100,000の低分子重合体であるジエン系単独重合体又はビニル芳香族炭化水素−ジエン系共重合体を含む軟化剤を添加することが提案されている。特許文献3には、ポリスチレン換算重量平均分子量30×104以上及び結合スチレン量30重量%以下の共役ジエン重合体及びビニル芳香族炭化水素−共役ジエン共重合体から選ばれる高分子量重合体成分とポリスチレン換算重量平均分子量0.2×104〜8×104及び結合スチレン量30重量%以下の低分子量重合体成分とのブレンドからゴム組成物を構成することが提案されている。特許文献4には、スチレン含有量40%以下、ビニル量20〜70%及び重量平均分子量6万〜300万のSBRからなるゴム成分(A)と、ガラス転移温度(Tg)が−45℃以下のジエン系ゴムからなるゴム成分(B)と、スチレン含有量1〜60%、ビニル量20〜80%及び重量平均分子量2,000〜50,000の低分子量SBRを組み合わせることが提案されている。特許文献5には、ゴム成分よりもガラス転移温度(Tg)が高く、ゴム成分に対して半相溶性又は非相溶性である高結合スチレン量の共役ジエンと芳香族ビニル化合物の共重合体をゴム成分に配合することが提案されている。 In recent years, it has been required to improve the handling stability of pneumatic tires, and in particular, it is required to improve grip performance such as wet grip performance and dry grip performance of a tread portion. In order to improve the dry grip performance of the tread, it is effective to achieve high hysteresis loss, to suppress the reduction of hysteresis loss, or to control the glass transition temperature (Tg) of the rubber constituting the tread. It is known. For example, Patent Document 1 discloses a blend of a high molecular weight styrene-butadiene copolymer rubber (SBR) having a weight average molecular weight of 1,000,000 or more and a low molecular weight SBR having a weight average molecular weight of 2,000 to 50,000. It has been proposed to blend carbon black having an adsorption specific surface area (N 2 SA) of 90 to 250 m 2 / g. In Patent Document 2, a softener containing a diene homopolymer or a vinyl aromatic hydrocarbon-diene copolymer, which is a low molecular weight polymer having a weight average molecular weight of 2,000 to 100,000, is added to the rubber component. It has been proposed to do. Patent Document 3 includes a high molecular weight polymer component selected from a conjugated diene polymer having a polystyrene-equivalent weight average molecular weight of 30 × 10 4 or more and a bound styrene content of 30% by weight or less, and a vinyl aromatic hydrocarbon-conjugated diene copolymer. It has been proposed to constitute a rubber composition from a blend with a low molecular weight polymer component having a polystyrene-reduced weight average molecular weight of 0.2 × 10 4 to 8 × 10 4 and a bound styrene content of 30% by weight or less. Patent Document 4 discloses a rubber component (A) composed of SBR having a styrene content of 40% or less, a vinyl content of 20 to 70%, and a weight average molecular weight of 60,000 to 3 million, and a glass transition temperature (Tg) of −45 ° C. or less. It has been proposed to combine a rubber component (B) comprising a diene rubber with a low molecular weight SBR having a styrene content of 1 to 60%, a vinyl content of 20 to 80% and a weight average molecular weight of 2,000 to 50,000. . Patent Document 5 discloses a copolymer of a conjugated diene having a high bonded styrene content and an aromatic vinyl compound, which has a glass transition temperature (Tg) higher than that of a rubber component and is semi-compatible or incompatible with the rubber component. It has been proposed to be blended with rubber components.

しかしながら、グリップ性能をより向上させるためにより小さい粒径のカーボンブラックを選択するか又はカーボンブラックの配合量をより増加させるほど、走行時の発熱がより大きくなるために、耐熱ダレ性の低下(すなわち、走行中に剛性が低下)がより大きくなり、安定した走行ができなくなってしまい、また、剛性低下に伴い耐摩耗性も低下する。一方、耐熱ダレ性をより高めるために、より大きい粒径のカーボンブラックを配合するか又はカーボンブラックの配合量をより少なくするほど、グリップ性能がより低下してしまう。さらに、特許文献4に記載されているように、グリップ性能を向上させるためにゴム組成物に低分子量SBRを配合した場合には、通常、ゴム組成物全体のTgが上がり、その結果、剛性の温度依存性が大きくなってしまうという問題がある。また、Tgの低い低分子量SBRを配合したり、あるいは耐熱ダレ性をより向上させるために軟化剤の配合量をより少なくしたとしても、それに伴って、グリップ性能が低下するという問題がある。   However, as the carbon black having a smaller particle size is selected in order to further improve the grip performance or the blending amount of the carbon black is further increased, the heat generation during running becomes larger, so that the heat resistance sag decreases (that is, , The rigidity decreases during traveling), and stable traveling becomes impossible, and wear resistance also decreases as the rigidity decreases. On the other hand, in order to further improve the heat resistance drooping property, the grip performance is further lowered as the carbon black having a larger particle diameter is blended or the blending amount of the carbon black is decreased. Furthermore, as described in Patent Document 4, when the low molecular weight SBR is blended with the rubber composition in order to improve the grip performance, the Tg of the entire rubber composition usually increases. There is a problem that the temperature dependency becomes large. Further, even if a low molecular weight SBR having a low Tg is blended, or even if the blending amount of the softening agent is decreased in order to further improve the heat sag resistance, there is a problem that the grip performance is lowered accordingly.

このように、従来のタイヤトレッド用ゴム組成物では、グリップ性能と耐熱ダレ性は、一方を向上させると他方が低下してしまうという二律背反の関係にあった。特に、高いドライグリップ性能を得るために、比較的小さい粒径のカーボンブラックや軟化剤をより多量に配合したゴム組成物を、例えば高速での安定したグリップ性能が求められるレーシング用タイヤのトレッド部に使用した場合には、走行中の発熱が大きいために、走行中の剛性の低下の程度がより大きく、安定したラップタイムでの走行ができなくなってしまうという問題があった。   Thus, in the conventional rubber composition for a tire tread, the grip performance and the heat sag resistance are in a trade-off relationship that when one is improved, the other is reduced. In particular, in order to obtain a high dry grip performance, a rubber composition containing a larger amount of carbon black having a relatively small particle size and a softening agent is used. For example, a tread portion of a racing tire that requires stable grip performance at high speed In the case of use, the heat generation during traveling is large, so the degree of decrease in rigidity during traveling is larger, and there is a problem that traveling with a stable lap time becomes impossible.

特開平4−277537号公報JP-A-4-277537 特開2000−289407号公報JP 2000-289407 A 特開平10−053671号公報JP-A-10-056771 特開2002−322317号公報JP 2002-322317 A 特開2005−325311号公報JP 2005-325311 A

従って、本発明は、走行時の発熱による剛性低下を抑制することにより安定したドライグリップ性能を発揮するタイヤトレッド用ゴム組成物を提供することを目的とする。   Therefore, an object of the present invention is to provide a rubber composition for a tire tread that exhibits stable dry grip performance by suppressing a decrease in rigidity due to heat generation during traveling.

本発明者は、上記目的を達成すべく鋭意検討した結果、意外にも、ガラス転移温度が−45℃を超えるSBRに、(1)N2SAが250m2/gを超えるカーボンブラック;又は(2)(i)N2SAが250m2/gを超えるカーボンブラックと(ii)N2SAが100〜150m2/gであるカーボンブラックのブレンドであって、成分(ii)の量が成分(i)と成分(ii)の合計量の50重量%未満であるブレンドと、結合スチレン量25重量%以上及び重量平均分子量2,000〜50,000の低分子量スチレン−ブタジエン共重合体とを配合することにより得られるゴム組成物をタイヤトレッドとして使用すると、走行時の発熱による剛性低下が抑制され、ドライグリップ性能が向上することを見出した。 As a result of intensive studies to achieve the above object, the present inventor has unexpectedly found that SBR having a glass transition temperature exceeding −45 ° C., (1) carbon black having N 2 SA exceeding 250 m 2 / g; or ( 2) (i) with N 2 SA is 250 meters 2 / g greater than carbon black and (ii) N 2 SA is a blend of carbon black is 100-150 2 / g, the amount of component (ii) is component ( A blend comprising less than 50% by weight of the total amount of i) and component (ii) and a low molecular weight styrene-butadiene copolymer having a bound styrene content of 25% by weight or more and a weight average molecular weight of 2,000 to 50,000 When the rubber composition obtained by doing so is used as a tire tread, it has been found that a decrease in rigidity due to heat generation during running is suppressed and dry grip performance is improved.

すなわち、本発明のタイヤトレッド用ゴム組成物は、
(A)ガラス転移温度が−45℃を超えるスチレン−ブタジエン共重合体ゴムと、
(B)100重量部の前記スチレン−ブタジエン共重合体ゴム(A)に対して60〜150重量部の、
(1)N2SAが250m2/gを超えるカーボンブラック、又は
(2)(i)N2SAが250m2/gを超えるカーボンブラックと(ii)N2SAが100〜150m2/gであるカーボンブラックのブレンドであって、成分(ii)の量が成分(i)と成分(ii)の合計量の50重量%未満であるブレンドと、
(C)100重量部の成分(A)に対して5〜150重量部の、結合スチレン量25重量%以上及び重量平均分子量2,000〜50,000の低分子量スチレン−ブタジエン共重合体、
を含んで成る。
That is, the rubber composition for a tire tread of the present invention is
(A) a styrene-butadiene copolymer rubber having a glass transition temperature exceeding -45 ° C;
(B) 60 to 150 parts by weight of 100 parts by weight of the styrene-butadiene copolymer rubber (A)
(1) Carbon black N 2 SA is more than 250m 2 / g, or (2) (i) N 2 SA is a carbon black of more than 250 meters 2 / g (ii) N 2 SA is at 100-150 2 / g A blend of carbon blacks, wherein the amount of component (ii) is less than 50% by weight of the total amount of components (i) and (ii);
(C) 5 to 150 parts by weight of a low molecular weight styrene-butadiene copolymer having a bound styrene amount of 25% by weight or more and a weight average molecular weight of 2,000 to 50,000, based on 100 parts by weight of the component (A),
Comprising.

上記のタイヤトレッド用ゴム組成物に、さらに、100重量部のSBR(A)に対して5〜50重量部の粘着付与樹脂を配合すると、走行時の発熱に依存しないドライグリップ性能をより一層向上させることができる。   When the tire tread rubber composition is further blended with 5 to 50 parts by weight of a tackifying resin with respect to 100 parts by weight of SBR (A), the dry grip performance that does not depend on heat generation during running is further improved. Can be made.

本発明において使用されるスチレン−ブタジエン共重合体ゴム(A)は、−45℃を超えるガラス転移温度を有する。スチレン−ブタジエン共重合体ゴム(A)は、結合スチレン量が好ましくは5重量%以上、より好ましくは10〜45重量%であり、ビニル量が好ましくは10〜80%、より好ましくは20〜70%であり、ガラス転移温度が−45℃を超え、好ましくは−40〜−5℃である。ガラス転移温度が−45℃以下であると充分なドライグリップ性能が得られず、高すぎると温度依存性が大きくなり走行初期のグリップ性能が低くなってしまう。本発明において使用されるスチレン−ブタジエン共重合体ゴム(A)は、一般的に入手可能なもののいずれであってもよい。   The styrene-butadiene copolymer rubber (A) used in the present invention has a glass transition temperature exceeding -45 ° C. The styrene-butadiene copolymer rubber (A) preferably has a bound styrene content of 5% by weight or more, more preferably 10 to 45% by weight, and a vinyl content of preferably 10 to 80%, more preferably 20 to 70%. %, And the glass transition temperature exceeds −45 ° C., preferably −40 to −5 ° C. If the glass transition temperature is −45 ° C. or lower, sufficient dry grip performance cannot be obtained, and if it is too high, the temperature dependence becomes large and the grip performance in the initial stage of travel becomes low. The styrene-butadiene copolymer rubber (A) used in the present invention may be any generally available.

本発明において使用されるカーボンブラック(B)は、(1)N2SAが250m2/gを超えるカーボンブラックのみであるか、又は(2)(i)N2SAが250m2/gを超えるカーボンブラックと(ii)N2SAが100〜150m2/gであるカーボンブラックのブレンドであって、成分(ii)の量が成分(i)と成分(ii)の合計量の50重量%未満であるブレンドである。前記カーボンブラック(B)は、好ましくは100〜150ml/100gのジブチルフタレート吸油量を有する。(B)(1)のN2SAが250m2/gを超えるカーボンブラックのみを配合する場合、及び、(B)(2)の(i)N2SAが250m2/gを超えるカーボンブラックと(ii)N2SAが100〜150m2/gであるカーボンブラックとのブレンドを配合する場合には、走行時の発熱に依存しない安定した高いドライグリップ性能が達成される。100重量部のスチレン−ブタジエン共重合体ゴム(A)に対して、カーボンブラック(B)は60〜150重量部の量で配合される。カーボンブラック(B)がスチレン−ブタジエン共重合体ゴム(A)に対して60重量部未満であると、十分なドライグリップ性能の向上を達成することができない。一方、カーボンブラック(B)が150重量部を超えると、得られるゴム組成物の発熱性が増大し、その結果、走行中に発熱により剛性が次第に低下し、ドライグリップ性能の低下をもたらす。(B)(1)及び(B)(2)(i)のカーボンブラックのN2SAが250m2/g以下であると、走行初期から十分なドライグリップ性能の向上を達成することができない。カーボンブラック(B)(2)(ii)のカーボンブラックの例としては、SAF及びISAF等が挙げられる。 The carbon black (B) used in the present invention is either (1) carbon black with N 2 SA exceeding 250 m 2 / g or (2) (i) N 2 SA exceeding 250 m 2 / g. A blend of carbon black and (ii) carbon black having N 2 SA of 100 to 150 m 2 / g, wherein the amount of component (ii) is less than 50% by weight of the total amount of component (i) and component (ii) Is a blend. The carbon black (B) preferably has a dibutyl phthalate oil absorption of 100 to 150 ml / 100 g. (B) When blending only carbon black with N 2 SA of (1) exceeding 250 m 2 / g, and (B) (2) (i) Carbon black with N 2 SA exceeding 250 m 2 / g (Ii) When blending with carbon black having N 2 SA of 100 to 150 m 2 / g, stable high dry grip performance independent of heat generation during running is achieved. Carbon black (B) is blended in an amount of 60 to 150 parts by weight with respect to 100 parts by weight of the styrene-butadiene copolymer rubber (A). If the carbon black (B) is less than 60 parts by weight relative to the styrene-butadiene copolymer rubber (A), sufficient improvement in dry grip performance cannot be achieved. On the other hand, when the carbon black (B) exceeds 150 parts by weight, the exothermic property of the resulting rubber composition increases, and as a result, the rigidity gradually decreases due to heat generation during running, resulting in a decrease in dry grip performance. When the N 2 SA of the carbon black of (B) (1) and (B) (2) (i) is 250 m 2 / g or less, sufficient improvement in dry grip performance cannot be achieved from the beginning of running. Examples of carbon black of carbon black (B) (2) (ii) include SAF and ISAF.

本発明において使用される低分子量スチレン−ブタジエン共重合体ゴム(C)は、25重量%以上の結合スチレン量及び2,000〜50,000の重量平均分子量を有する。本発明において使用される低分子量SBR(C)は、結合スチレン量及び重量平均分子量が上記の範囲内にある限り、一般的に入手可能なもののいずれであってもよい。低分子量スチレン−ブタジエン共重合体ゴム(C)の配合量は、100重量部の前記スチレン−ブタジエン共重合体ゴム(A)に対して5〜150重量部である。低分子量SBR(C)の結合スチレン量が25重量%未満であると、グリップ性能改良の効果が小さくなってしまう。低分子量SBR(C)の重量平均分子量が2,000未満であると、グリップ性能改良の効果が小さくなってしまい、50,000を超えると、グリップ性能が劣ってしまう。低分子量SBR(C)の配合量が、100重量部の前記スチレン−ブタジエン共重合体ゴム(A)に対して5重量部未満であると、グリップ性能改良の効果が小さくなってしまい、150重量部を超えるとグリップ性能が劣り、また密着により加工性が著しく悪化してしまう。   The low molecular weight styrene-butadiene copolymer rubber (C) used in the present invention has a bound styrene content of 25% by weight or more and a weight average molecular weight of 2,000 to 50,000. The low molecular weight SBR (C) used in the present invention may be any generally available as long as the amount of bound styrene and the weight average molecular weight are within the above ranges. The amount of the low molecular weight styrene-butadiene copolymer rubber (C) is 5 to 150 parts by weight based on 100 parts by weight of the styrene-butadiene copolymer rubber (A). When the amount of bound styrene of the low molecular weight SBR (C) is less than 25% by weight, the effect of improving the grip performance is reduced. If the weight average molecular weight of the low molecular weight SBR (C) is less than 2,000, the effect of improving the grip performance is reduced, and if it exceeds 50,000, the grip performance is inferior. When the blending amount of the low molecular weight SBR (C) is less than 5 parts by weight with respect to 100 parts by weight of the styrene-butadiene copolymer rubber (A), the effect of improving the grip performance is reduced to 150 weights. If it exceeds the area, the grip performance is inferior, and the workability is remarkably deteriorated due to adhesion.

本発明のタイヤトレッド用ゴム組成物に配合できる上記粘着付与樹脂(D)としては、60〜150℃の軟化点を有するものが好ましい。かかる粘着付与樹脂の具体例としては、例えば、テルペン樹脂、例えばヤスハラケミカル社製のYSレジンPX800など;芳香族変性テルペン樹脂、例えばヤスハラケミカル社製のYS TO 85など;芳香族樹脂、例えばアリゾナケミカル社製のSylvares SA85などのアルファ−メチルスチレン樹脂など;脂肪族/芳香族樹脂、例えば新日鉄化学社製のエスクロンG−90などのクマロン−インデン樹脂などが挙げられる。粘着付与樹脂は、100重量部のスチレン−ブタジエン共重合体ゴム(A)に対して5〜50重量部の量で配合することが好ましい。   As said tackifier resin (D) which can be mix | blended with the rubber composition for tire treads of this invention, what has a softening point of 60-150 degreeC is preferable. Specific examples of such tackifier resins include, for example, terpene resins such as YS resin PX800 manufactured by Yasuhara Chemical; aromatic modified terpene resins such as YS TO 85 manufactured by Yasuhara Chemical; aromatic resins such as Arizona Chemical And alpha-methylstyrene resins such as Sylvares SA85; aliphatic / aromatic resins such as coumarone-indene resins such as Escron G-90 manufactured by Nippon Steel Chemical Co., Ltd. The tackifying resin is preferably blended in an amount of 5 to 50 parts by weight with respect to 100 parts by weight of the styrene-butadiene copolymer rubber (A).

本発明のタイヤトレッド用ゴム組成物には、上記ゴム成分及びカーボンブラック以外の加硫剤及び加硫促進剤や、ゴム組成物に通常配合されるステアリン酸などの加硫促進助剤、各種オイル、充填剤、軟化剤、可塑剤、界面活性剤、老化防止剤等の各種配合剤及び添加剤を、各種用途に応じて一般的に使用される量で一般的な配合方法によって配合することができる。   The rubber composition for a tire tread of the present invention includes a vulcanizing agent and a vulcanization accelerator other than the rubber component and carbon black, a vulcanization accelerating aid such as stearic acid that is usually blended in the rubber composition, and various oils. Various compounding agents and additives such as fillers, softeners, plasticizers, surfactants, anti-aging agents, and the like can be compounded by general compounding methods in amounts generally used according to various applications. it can.

以下に実施例及び比較例により本発明を更に説明するが。本発明の範囲をこれら実施例に限定するものでないことは言うまでもない。   The present invention will be further described below with reference to examples and comparative examples. Needless to say, the scope of the present invention is not limited to these examples.

比較例1〜6及び実施例1〜3
比較例1〜6及び実施例1〜3のゴム組成物の調製に用いた配合は、下記表1に示すとおりである。
Comparative Examples 1-6 and Examples 1-3
The formulations used for the preparation of the rubber compositions of Comparative Examples 1 to 6 and Examples 1 to 3 are as shown in Table 1 below.

Figure 2007246625
Figure 2007246625

註:
*1:乳化重合SBR(日本ゼオン社製NIPOL 9529)、50phr油展、Tg=−20℃;
*2:乳化重合SBR(日本ゼオン社製NIPOL 1712)、37.5phr油展、Tg=−54℃;
*3:コロンビヤンケミカルスカンパニー製のCD2019、N2SA=390m2/g;
*4:キャボットジャパン製のIP2000、N2SA=192m2/g;
*5:東海カーボン製のシースト9、N2SA=142m2/g;
*6:サートマー社製のRicon 100、重量平均分子量4,500、結合スチレン量25重量%;
*7:ヤスハラケミカル製の芳香族変性テルペン樹脂TO85;
*8:プロセスX−140(ジャパンエナジー(株)製);
*9:アンチゲン6C(住友化学(株)製);
*10:酸化亜鉛3種(正同化学工業(株)製);
*11:ビーズステアリン酸YR(日本油脂(株)製);
*12:サンセラーD−G(三新化学工業(株)製);
*13:ノクセラーCZ−G(大内新興化学工業(株)製);
*14:金華印油入微粉硫黄(鶴見化学工業(株)製);
註:
* 1: Emulsion polymerization SBR (NIPOL 9529 manufactured by Nippon Zeon Co., Ltd.), 50 phr oil extended, Tg = −20 ° C .;
* 2: Emulsion polymerization SBR (NIPOL 1712 manufactured by Nippon Zeon Co., Ltd.), 37.5 phr oil extended, Tg = −54 ° C .;
* 3: CD2019 manufactured by Colombian Chemicals Company, N 2 SA = 390 m 2 / g;
* 4: IP2000 manufactured by Cabot Japan, N 2 SA = 192 m 2 / g;
* 5: Tokai Carbon Seast 9, N 2 SA = 142 m 2 / g;
* 6: Ricon 100 manufactured by Sartomer, weight average molecular weight 4,500, amount of bound styrene 25% by weight;
* 7: Aromatic modified terpene resin TO85 manufactured by Yasuhara Chemical;
* 8: Process X-140 (manufactured by Japan Energy Co., Ltd.);
* 9: Antigen 6C (manufactured by Sumitomo Chemical Co., Ltd.);
* 10: 3 types of zinc oxide (manufactured by Shodo Chemical Industry Co., Ltd.);
* 11: Bead stearic acid YR (manufactured by NOF Corporation);
* 12: Sunseller DG (manufactured by Sanshin Chemical Industry Co., Ltd.);
* 13: Noxeller CZ-G (Ouchi Shinsei Chemical Co., Ltd.);
* 14: Fine powder sulfur with Jinhua seal oil (manufactured by Tsurumi Chemical Co., Ltd.);

上記表1の配合に従って、16リットルの密閉式バンバリーミキサーを用いて、加硫促進剤と硫黄以外の成分を10分間混合し、160℃でミキサーから放出後、オープンロールにて加硫促進剤及び硫黄を混合し、比較例及び実施例のゴム組成物を得た。   In accordance with the composition of Table 1 above, a vulcanization accelerator and components other than sulfur were mixed for 10 minutes using a 16 liter closed Banbury mixer, released from the mixer at 160 ° C., and vulcanization accelerator and Sulfur was mixed to obtain rubber compositions of comparative examples and examples.

次に、上記のように調製されたゴム組成物を用いて形成したトレッドを備えた195/55R15サイズの試験タイヤを製作し、ドライグリップ性能を下記試験方法に従って求めた。結果を表2に示す。   Next, a test tire of 195 / 55R15 size provided with a tread formed using the rubber composition prepared as described above was manufactured, and dry grip performance was determined according to the following test method. The results are shown in Table 2.

試験方法
ドライグリップ性能
ドライグリップ性能の安定性を求めるために、走行初期及び走行末期のドライグリップ性能を求めた。
走行初期のドライグリップ性能は、1周5.8kmのサーキットを20周走行し、最初の1〜5周の周回タイムの平均値を求め、比較例1のゴム組成物をトレッド部に使用したタイヤで得られた最初の1〜5周の周回タイムの平均値を対照基準とした場合に、以下のように5段階で評価した:
5:対照基準に対して0.3秒以上速い場合、
4:対照基準に対して0.1秒以上0.3秒未満速い場合、
3:対照基準に対して±0.1秒未満である場合、
2:対照基準に対して0.1秒以上0.3秒未満遅い場合、
1:対照基準に対して0.3秒以上遅い場合。
走行末期のドライグリップ性能は、上記の20周の走行のうちの最後の15〜20周の周回タイムの平均値を求め、比較例1のゴム組成物をトレッド部に使用したタイヤで得られた最後の15〜20周の周回タイムの平均値を対照基準とした場合に、以下のように5段階で評価した:
5:対照基準に対して0.3秒以上速い場合、
4:対照基準に対して0.1秒以上0.3秒未満速い場合、
3:対照基準に対して±0.1秒未満である場合、
2:対照基準に対して0.1秒以上0.3秒未満遅い場合、
1:対照基準に対して0.3秒以上遅い場合。
上記の走行初期及び走行末期のドライグリップ性能について、対照基準(比較例1)と比較して周回タイムの平均値が短い(すなわち、速い)ほど、グリップ性能が優れることを表す。
Test method
Dry grip performance In order to determine the stability of dry grip performance, dry grip performance was determined at the beginning and end of travel.
The dry grip performance at the beginning of running is a tire using 20 rounds of a circuit of 5.8 km per lap, obtaining an average value of lap times of the first 1 to 5 laps, and using the rubber composition of Comparative Example 1 as a tread portion. When the average value of the first 1-5 lap times obtained in step 1 was used as a reference, the evaluation was made in five stages as follows:
5: When 0.3 seconds or more faster than the reference standard,
4: When faster than the reference standard by 0.1 second or more and less than 0.3 second,
3: When it is less than ± 0.1 seconds with respect to the reference standard,
2: When it is slower than the reference standard by 0.1 second or more and less than 0.3 second,
1: When it is slower than the reference standard by 0.3 seconds or more.
The dry grip performance at the end of traveling was obtained by a tire using the rubber composition of Comparative Example 1 as a tread portion by calculating the average value of the last 15 to 20 laps of the 20 laps. When the average value of the lap times of the last 15 to 20 laps was used as a reference standard, the evaluation was made in five stages as follows:
5: When 0.3 seconds or more faster than the reference standard,
4: When faster than the reference standard by 0.1 second or more and less than 0.3 second,
3: When it is less than ± 0.1 seconds with respect to the reference standard,
2: When it is slower than the reference standard by 0.1 second or more and less than 0.3 second,
1: When it is slower than the reference standard by 0.3 seconds or more.
As for the above-mentioned dry grip performance at the beginning and end of traveling, the grip performance is better as the average value of the lap time is shorter (that is, faster) than the reference (Comparative Example 1).

Figure 2007246625
Figure 2007246625

表2の結果から、本発明のゴム組成物では、走行時の発熱による剛性低下が抑制され、安定したドライグリップ性能を提供することが判る。   From the results of Table 2, it can be seen that in the rubber composition of the present invention, a decrease in rigidity due to heat generation during running is suppressed and a stable dry grip performance is provided.

Claims (2)

(A)ガラス転移温度が−45℃を超えるスチレン−ブタジエン共重合体ゴムと、
(B)100重量部の前記スチレン−ブタジエン共重合体ゴム(A)に対して60〜150重量部の、
(1)窒素吸着比表面積(N2SA)が250m2/gを超えるカーボンブラック、又は
(2)(i)N2SAが250m2/gを超えるカーボンブラックと(ii)N2SAが100〜150m2/gであるカーボンブラックのブレンドであって、成分(ii)の量が成分(i)と成分(ii)の合計量の50重量%未満であるブレンドと、
(C)100重量部の成分(A)に対して5〜150重量部の、結合スチレン量25重量%以上及び重量平均分子量2,000〜50,000の低分子量スチレン−ブタジエン共重合体、
を含んで成るタイヤトレッド用ゴム組成物。
(A) a styrene-butadiene copolymer rubber having a glass transition temperature exceeding -45 ° C;
(B) 60 to 150 parts by weight of 100 parts by weight of the styrene-butadiene copolymer rubber (A)
(1) a nitrogen adsorption specific surface area (N 2 SA) is more than 250 meters 2 / g carbon black, or (2) (i) N 2 SA is a carbon black of more than 250m 2 / g (ii) N 2 SA is 100 A blend of carbon black that is ˜150 m 2 / g, wherein the amount of component (ii) is less than 50% by weight of the total amount of component (i) and component (ii);
(C) 5 to 150 parts by weight of a low molecular weight styrene-butadiene copolymer having a bound styrene amount of 25% by weight or more and a weight average molecular weight of 2,000 to 50,000, based on 100 parts by weight of the component (A),
A rubber composition for tire treads comprising:
前記ゴム組成物が、100重量部の成分(A)に対して5〜50重量部の(D)粘着付与樹脂をさらに含んで成る、請求項1に記載のタイヤトレッド用ゴム組成物。   The rubber composition for a tire tread according to claim 1, wherein the rubber composition further comprises 5 to 50 parts by weight of (D) a tackifying resin with respect to 100 parts by weight of the component (A).
JP2006069782A 2006-03-14 2006-03-14 Rubber composition for tire tread Pending JP2007246625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069782A JP2007246625A (en) 2006-03-14 2006-03-14 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069782A JP2007246625A (en) 2006-03-14 2006-03-14 Rubber composition for tire tread

Publications (1)

Publication Number Publication Date
JP2007246625A true JP2007246625A (en) 2007-09-27

Family

ID=38591266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069782A Pending JP2007246625A (en) 2006-03-14 2006-03-14 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP2007246625A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169280A (en) * 2007-01-10 2008-07-24 Bridgestone Corp Rubber composition for tire tread and pneumatic tire using the same
JP2016033194A (en) * 2014-07-31 2016-03-10 横浜ゴム株式会社 Rubber composition for tire
US9309389B2 (en) 2012-03-08 2016-04-12 The Yokohama Rubber Co., Ltd. Rubber composition for use in tire treads
JP2017101199A (en) * 2015-12-04 2017-06-08 住友ゴム工業株式会社 Rubber composition and tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142838A (en) * 1988-11-25 1990-05-31 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2000344947A (en) * 1999-06-09 2000-12-12 Ohtsu Tire & Rubber Co Ltd :The Rubber composition
JP2003253051A (en) * 2001-12-28 2003-09-10 Bridgestone Corp Rubber composition and tire using the same
JP2005225946A (en) * 2004-02-12 2005-08-25 Sumitomo Rubber Ind Ltd Rubber composition and tire using the same
JP2005263998A (en) * 2004-03-18 2005-09-29 Toyo Tire & Rubber Co Ltd Rubber composition for pneumatic tire and pneumatic tire
JP2007137941A (en) * 2005-11-15 2007-06-07 Sumitomo Rubber Ind Ltd Rubber composition and high performance tire using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02142838A (en) * 1988-11-25 1990-05-31 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
JP2000344947A (en) * 1999-06-09 2000-12-12 Ohtsu Tire & Rubber Co Ltd :The Rubber composition
JP2003253051A (en) * 2001-12-28 2003-09-10 Bridgestone Corp Rubber composition and tire using the same
JP2005225946A (en) * 2004-02-12 2005-08-25 Sumitomo Rubber Ind Ltd Rubber composition and tire using the same
JP2005263998A (en) * 2004-03-18 2005-09-29 Toyo Tire & Rubber Co Ltd Rubber composition for pneumatic tire and pneumatic tire
JP2007137941A (en) * 2005-11-15 2007-06-07 Sumitomo Rubber Ind Ltd Rubber composition and high performance tire using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169280A (en) * 2007-01-10 2008-07-24 Bridgestone Corp Rubber composition for tire tread and pneumatic tire using the same
US9309389B2 (en) 2012-03-08 2016-04-12 The Yokohama Rubber Co., Ltd. Rubber composition for use in tire treads
JP2016033194A (en) * 2014-07-31 2016-03-10 横浜ゴム株式会社 Rubber composition for tire
JP2017101199A (en) * 2015-12-04 2017-06-08 住友ゴム工業株式会社 Rubber composition and tire

Similar Documents

Publication Publication Date Title
JP5376008B2 (en) Rubber composition for tire
JP4752957B2 (en) Rubber composition for tire tread
JP4421547B2 (en) Rubber composition and tire having tread using the same
JP5234203B2 (en) Rubber composition for tire
JP4294070B2 (en) Rubber composition for tire
JP2010126672A (en) Rubber composition for tire tread
JP2011094012A (en) Rubber composition for tread and pneumatic tire
JP2008297493A (en) Rubber composition for tire
JP2007321046A (en) Rubber composition and pneumatic tire
JP5269370B2 (en) Rubber composition for racing tire and racing tire having tread using the same
JP2008138086A (en) Rubber composition for tire tread
JP2013071938A (en) Rubber composition for tire and pneumatic tire
JP2007246625A (en) Rubber composition for tire tread
JP5211489B2 (en) Rubber composition for tire tread
JP2019137281A (en) Rubber composition for tire
JP6743339B2 (en) Rubber composition and pneumatic tire
JP2010168491A (en) Rubber composition for tire
JP6593250B2 (en) Rubber composition for tire
WO2017104776A1 (en) Rubber composition and pneumatic tire
JP6701713B2 (en) Rubber composition and pneumatic tire
JP6350508B2 (en) Rubber composition, method for producing the same, and pneumatic tire
JP2018016768A (en) Rubber composition and pneumatic tire
JP2017110163A (en) Rubber composition and pneumatic tire
JP2009051975A (en) Rubber composition for tire
JP7469589B2 (en) Rubber composition for tires and pneumatic tire using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120918