JP2007246315A - Ito sintered compact, sputtering target material, sputtering target, and manufacturing method of sputtering target material - Google Patents

Ito sintered compact, sputtering target material, sputtering target, and manufacturing method of sputtering target material Download PDF

Info

Publication number
JP2007246315A
JP2007246315A JP2006069887A JP2006069887A JP2007246315A JP 2007246315 A JP2007246315 A JP 2007246315A JP 2006069887 A JP2006069887 A JP 2006069887A JP 2006069887 A JP2006069887 A JP 2006069887A JP 2007246315 A JP2007246315 A JP 2007246315A
Authority
JP
Japan
Prior art keywords
sputtering target
ito
target material
sintered body
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006069887A
Other languages
Japanese (ja)
Other versions
JP5091414B2 (en
Inventor
Seiichiro Takahashi
誠一郎 高橋
Junichi Kiyoto
純一 清遠
Hiromitsu Hayashi
博光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2006069887A priority Critical patent/JP5091414B2/en
Priority to KR1020070021991A priority patent/KR101099472B1/en
Publication of JP2007246315A publication Critical patent/JP2007246315A/en
Application granted granted Critical
Publication of JP5091414B2 publication Critical patent/JP5091414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ITO sputtering target material having high usage efficiency, a long life, and a small aging change of a sputtering condition, and to provide an ITO sputtering target and an ITO sintered compact that is suited for using to obtain them. <P>SOLUTION: The ITO sintered compact satisfies the relationship of formular -30≤100×(Av1-Av2)/Av1≤30, wherein Av1 expresses an average value (nm) of the maximum diameter of fine particles in the In<SB>2</SB>O<SB>3</SB>host phase particles that exist in the center part of the sintered compact and Av2 expresses an average value (nm) of the maximum diameter of fine particles in the In<SB>2</SB>O<SB>3</SB>host phase particles that exist in the end part of the sintered compact. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ITO焼結体およびこれを用いたスパッタリングターゲット材、スパッタリングターゲットに関する。より詳しくは、ITO焼結体各部位のIn23母相粒内に存在する微細粒子の形態のばらつきを低減したITO焼結体およびこれを用いたITOスパッタリングターゲット材およびITOスパッタリングターゲットに関する。 The present invention relates to an ITO sintered body, a sputtering target material using the same, and a sputtering target. More specifically, the present invention relates to an ITO sintered body in which variation in the form of fine particles existing in the In 2 O 3 parent phase grains of each part of the ITO sintered body is reduced, an ITO sputtering target material using the ITO sintered body, and an ITO sputtering target.

また、本発明は、スパッタリングターゲット材の製造方法に関する。より詳しくは、上記ITOスパッタリングターゲット材の製造に好適な製造方法に関する。   The present invention also relates to a method for producing a sputtering target material. In more detail, it is related with the manufacturing method suitable for manufacture of the said ITO sputtering target material.

一般に、ITOスパッタリングターゲットを用いたスパッタリングにおいては、スパッタリングを継続的にあるいは断続的に行なっていく間に、ITOターゲット材のスパッタ面(スパッタに供する面)のエロージョン部と呼ばれる部分が消費されて、えぐれていく。このエロージョン部の消費が進み、アーキングの多発、パーティクルやイエローパウダーの発生などにより好適なITO薄膜が成膜できなくなった時点でITOスパッタリングターゲットの寿命は終了する。   In general, in sputtering using an ITO sputtering target, a portion called an erosion portion of a sputtering surface (surface to be used for sputtering) of the ITO target material is consumed while performing sputtering continuously or intermittently. Go away. The life of the ITO sputtering target ends when consumption of this erosion part advances and a suitable ITO thin film cannot be formed due to frequent arcing, generation of particles and yellow powder, and the like.

従来、スパッタリング中のアーキングやパーティクルの発生を防止しようとする種々の試みがなされてきたが、単なる平板形状のITOターゲット材を用いた場合には、依然としてスパッタリングによるITOターゲット材の消費量は、該ターゲット材全重量の30%以下にとどまっており、使用効率が低く、寿命が短いという問題が残っていた。   Conventionally, various attempts have been made to prevent the occurrence of arcing and particles during sputtering. However, when a simple flat-plate-shaped ITO target material is used, the consumption of the ITO target material by sputtering is still It remains at 30% or less of the total weight of the target material, and there remains a problem that usage efficiency is low and life is short.

さらに、スパッタリングを継続的にあるいは断続的に行なっていく間に、ITOターゲット材のスパッタリング時における酸素分圧依存性や電圧依存性が経時的に変化してしまい、好適なITO薄膜を成膜するためにはスパッタリングの条件をその都度、調整しなければならず、条件出しの操作が煩雑で成膜の歩留まり向上を妨げるといった問題もあった。   Furthermore, the oxygen partial pressure dependency and the voltage dependency at the time of sputtering of the ITO target material change over time while the sputtering is continuously or intermittently performed, and a suitable ITO thin film is formed. For this purpose, the sputtering conditions must be adjusted each time, and there is also a problem that the condition setting operation is complicated and hinders the improvement of the film formation yield.

ところで、ITOスパッタリングターゲット材として用いられるITO焼結体をその厚み方向に水平に切断し、得られた切断面をエッチングして、その微細構造を観察すると、主結晶粒であるIn23とその粒界の他に、粒界に沿った状態で存在する化合物相や、In23母相内に存在する微細粒子が見られる場合がある。しかし、本発明者らの知る限り、従来、このようなITO焼結体の微細構造と、ITOターゲット材の使用効率、寿命、スパッタリング時の酸素分圧依存性の経時変化および電圧依存性の経時変化などとの間に関連があるかどうかについては、何ら検討されていなかった。 By the way, when an ITO sintered body used as an ITO sputtering target material is cut horizontally in the thickness direction, the obtained cut surface is etched, and the microstructure is observed, In 2 O 3 as main crystal grains and In addition to the grain boundary, a compound phase existing in a state along the grain boundary and fine particles present in the In 2 O 3 matrix may be seen. However, as far as the present inventors know, conventionally, the microstructure of such an ITO sintered body, the use efficiency of ITO target material, the lifetime, the oxygen partial pressure dependency over time during sputtering, and the voltage dependency over time Whether or not there is an association with changes has not been studied.

たとえば、従来、Alターゲット材およびAl合金ターゲット材については、圧延処理および再結晶化工程を施すことにより、結晶粒径のばらつきを少なくする技術が報告されている(特許文献1参照)。しかし、この報告では、ターゲット材の結晶粒内部、すなわち、母相粒中の微細粒子については、その存在も含めて何ら開示されていない。また、この技術は金属ターゲット材あるいは合金ターゲット材を対象としているが、ITOのようなセラミックス系ターゲット材は脆性材料であるため、圧延処理などの塑性加工はできず、この技術を適用することはできない。
特開平6−299342号公報
For example, conventionally, with respect to Al target materials and Al alloy target materials, a technique for reducing the variation in crystal grain size by performing a rolling process and a recrystallization process has been reported (see Patent Document 1). However, in this report, there is no disclosure of the fine particles inside the crystal grains of the target material, that is, the fine particles in the parent phase grains, including the presence thereof. In addition, this technology targets metal target materials or alloy target materials, but ceramic target materials such as ITO are brittle materials, so plastic processing such as rolling cannot be performed, and this technology cannot be applied. Can not.
JP-A-6-299342

本発明は、使用効率が高く、長寿命で、スパッタリング条件の経時変化の小さいITOスパッタリングターゲット材およびITOスパッタリングターゲット、ならびにこれらに用いるのに好適なITO焼結体を提供することを課題としている。   An object of the present invention is to provide an ITO sputtering target material and an ITO sputtering target that have high use efficiency, a long life, and a small change with time in sputtering conditions, and an ITO sintered body suitable for use in these materials.

また、本発明は、スパッタリングターゲット材の製造方法、とくに上記ITOスパッタリングターゲット材の製造に好適なスパッタリングターゲット材の製造方法を提供することをもその課題としている。   Moreover, this invention also makes it the subject to provide the manufacturing method of a sputtering target material, especially the manufacturing method of the sputtering target material suitable for manufacture of the said ITO sputtering target material.

本発明者らは、ITO焼結体の微細構造と、ターゲット材の使用効率、寿命、酸素分圧依存性の経時変化、電圧依存性の経時変化との間の関連性について検討したところ、ITO焼結体の主結晶粒であるIn23母相粒内に存在する微細粒子の形態に関して、ITO焼結体の部位の相異によるばらつきを制御したITO焼結体によれば、使用効率が高く、長寿命で、スパッタリング条件の経時変化の小さいITOスパッタリングターゲット材およびITOスパッタリングターゲットを提供できること、また、上記微細粒子の形態のばらつきは、ターゲット材(焼結体)を製造する際の焼成処理において、加熱後の被焼成体1つあたりについてその両端が温度勾配を有するように冷却することにより制御できることを見出して本発明を完成するに至った。 The present inventors examined the relationship between the microstructure of the ITO sintered body and the use efficiency of the target material, the lifetime, the oxygen partial pressure dependence change over time, and the voltage dependence change over time. According to the ITO sintered body in which the variation due to the difference in the part of the ITO sintered body is controlled with respect to the form of fine particles present in the In 2 O 3 parent phase grains which are the main crystal grains of the sintered body, the use efficiency It is possible to provide an ITO sputtering target material and an ITO sputtering target that are high in life, have a long life, and have little change over time in sputtering conditions, and that the variation in the form of the fine particles is due to firing during the production of the target material (sintered body). In the processing, the present invention is completed by finding that it can be controlled by cooling so that both ends thereof have a temperature gradient for each object to be fired after heating. It led to.

すなわち、本発明は以下の事項に関する。
本発明に係るITO焼結体は、下記式の関係を満たすことを特徴としている。
−30 ≦ 100×(Av1−Av2)/Av1 ≦ 30
式中、Av1は該焼結体中央部に存在するIn23母相粒内の微細粒子の最大径の平均値(nm)を、Av2は該焼結体端部に存在するIn23母相粒内の微細粒子の最大径の平均値(nm)を表す。なお、本明細書中、ITOとは、通常、酸化インジウム(In23)に1〜35重量%の酸化スズ(SnO2)を添加して得られた材料を意味する。
That is, the present invention relates to the following matters.
The ITO sintered body according to the present invention is characterized by satisfying the relationship of the following formula.
−30 ≦ 100 × (Av1−Av2) / Av1 ≦ 30
In the formula, Av1 is the average value (nm) of the maximum diameter of fine particles in the In 2 O 3 matrix phase grains present in the center of the sintered body, and Av2 is In 2 O present at the end of the sintered body. The average value (nm) of the maximum diameter of the fine particles in the three parent phase grains is represented. In the present specification, ITO usually means a material obtained by adding 1 to 35% by weight of tin oxide (SnO 2 ) to indium oxide (In 2 O 3 ).

本発明のITO焼結体の好ましい態様の1つにおいては、さらに前記Av1およびAv2は共に120nm以下であることが望ましい。
また、本発明のITO焼結体の好ましい態様の1つにおいては、さらに前記Av1およびAv2は共に120nmより大きいことが望ましい。
In one preferred embodiment of the ITO sintered body of the present invention, it is further desirable that both Av1 and Av2 are 120 nm or less.
In one preferred embodiment of the ITO sintered body of the present invention, it is further desirable that both Av1 and Av2 are larger than 120 nm.

本発明のITO焼結体はスパッタリングターゲット材として好適に使用することができる。
また、本発明に係るITOスパッタリングターゲットは、前記ITO焼結体と、バッキングプレートとを備えてなることを特徴としている。
The ITO sintered body of the present invention can be suitably used as a sputtering target material.
In addition, an ITO sputtering target according to the present invention includes the ITO sintered body and a backing plate.

また、本発明に係るスパッタリングターゲット材の製造方法は、粉末冶金法によりスパッタリングターゲット材を製造する方法であって、成形後の被焼成体を加熱する加熱工程と、加熱工程を経た後の被焼成体1つあたりについてその両端が温度勾配を有するように、50℃/hour以上あるいは50℃/hour未満の降温レートで冷却する冷却工程を含む焼成処理を行なうことを特徴としている。   Moreover, the manufacturing method of the sputtering target material which concerns on this invention is a method of manufacturing a sputtering target material by a powder metallurgy method, Comprising: The heating process which heats the to-be-fired body after shaping | molding, and to-be-fired after passing through a heating process It is characterized by performing a baking process including a cooling step of cooling at a temperature lowering rate of 50 ° C./hour or more or less than 50 ° C./hour so that both ends of each body have a temperature gradient.

さらに、該スパッタリングターゲット材の製造方法では、前記スパッタリングターゲット材は、セラミックスからなることが好ましく、酸化インジウムを含有してなることがより好ましく、ITOからなることがさらに好ましい。   Furthermore, in the manufacturing method of this sputtering target material, it is preferable that the said sputtering target material consists of ceramics, it is more preferable that it contains indium oxide, and it is further more preferable that it consists of ITO.

本発明のITO焼結体では、焼結体の部位の相異によらず、In23母相粒内に存在す
る微細粒子の形態のばらつきが制御され、微細構造を含めた組織全体の均一化がはかられているため、該ITO焼結体をスパッタリングターゲット材として用いることにより、使用効率が高く、長寿命で、スパッタリング条件の経時変化が小さいITOスパッタリングターゲット材およびITOスパッタリングターゲットを得ることができる。
In the ITO sintered body of the present invention, the variation in the form of fine particles existing in the In 2 O 3 matrix phase grains is controlled regardless of the difference in the parts of the sintered body, and the entire structure including the fine structure is controlled. Since the ITO sintered body is used as a sputtering target material, it is possible to obtain an ITO sputtering target material and an ITO sputtering target that have high use efficiency, long life, and little change over time in sputtering conditions. be able to.

本発明のITOスパッタリングターゲット材およびITOスパッタリングターゲットは、使用効率が高く、長寿命で、スパッタリング条件の経時変化が小さいため、物性の優れたITO薄膜を高い歩留まりで、容易かつ安定に成膜できる。   Since the ITO sputtering target material and the ITO sputtering target of the present invention have high use efficiency, long life, and small change with time in sputtering conditions, an ITO thin film having excellent physical properties can be easily and stably formed with a high yield.

また、本発明のスパッタリングターゲット材の製造方法によれば、微細構造を含めた組織全体の均一化がなされたスパッタリングターゲット材を得ることができる。該スパッタリングターゲット材の製造方法は、上記ITOスパッタリングターゲット材の製造に好適である。   Moreover, according to the manufacturing method of the sputtering target material of this invention, the sputtering target material in which the whole structure | tissue including a fine structure was made uniform can be obtained. The manufacturing method of this sputtering target material is suitable for manufacture of the said ITO sputtering target material.

以下、本発明について具体的に説明する。
<ITO焼結体、スパッタリングターゲット材、スパッタリングターゲット>
本発明のITO焼結体は、下記式の関係を満たしている。
Hereinafter, the present invention will be specifically described.
<ITO sintered body, sputtering target material, sputtering target>
The ITO sintered body of the present invention satisfies the relationship of the following formula.

−30 ≦ 100×(Av1−Av2)/Av1 ≦ 30
上記式中、Av1は該焼結体中央部に存在するIn23母相粒内の微細粒子の最大径の平均値(nm)を、Av2は該焼結体端部に存在するIn23母相粒内の微細粒子の最大径の平均値(nm)を表す。
−30 ≦ 100 × (Av1−Av2) / Av1 ≦ 30
In the above formula, Av1 is the average value (nm) of the maximum diameter of fine particles in the In 2 O 3 matrix phase grains present in the center of the sintered body, and Av2 is In 2 present at the end of the sintered body. The average value (nm) of the maximum diameter of the fine particles in the O 3 matrix phase is expressed.

ここで、In23母相粒内に存在する微細粒子の最大径の平均値とは、ダイヤモンドカッターを用いて、ITO焼結体をその厚み方向に水平に切断して得られた切断面をエメリー紙#170、#320、#800、#1500、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた後、40℃のエッチング液(硝酸(60〜61%水溶液、関東化学(株)製、硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0〜37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および水を体積比でHCl:H2O:HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングし、現れる面の任意の2μm×2μmの領域(ただし、粒界、粒界に沿った状態で存在する化合物相、後に定義するフリーゾーンのいずれをも含まない領域)において観察される、微細粒子の最大径の平均値をいう。 Here, the average value of the maximum diameter of the fine particles present in the In 2 O 3 matrix grains is a cut surface obtained by horizontally cutting the ITO sintered body in the thickness direction using a diamond cutter. Polishing step by step using emery paper # 170, # 320, # 800, # 1500, # 2000, and finally buffing to finish to a mirror surface, followed by 40 ° C etching solution (nitric acid (60-61% Aqueous solution, manufactured by Kanto Chemical Co., Ltd., nitric acid 1.38 deer first grade product number 28161-03), hydrochloric acid (35.0-37.0% aqueous solution, manufactured by Kanto Chemical Co., Ltd., deer hydrochloric acid first grade product number 18078-01) and water in volume Etching is carried out by dipping in HCl: H 2 O: HNO 3 = 1: 1: 0.08 in a ratio for 9 minutes and etching, and an arbitrary 2 μm × 2 μm region of the appearing surface (however, along grain boundaries and grain boundaries) Of the fine particles observed in the compound phase existing in the wet state and in the region not including any of the free zones defined later) The average value of the maximum diameter.

なお、微細粒子の最大径とは、観察される微細粒子断面の任意の2点を結ぶ直線(径)のうち最大のものをいうものとする。微細粒子の観察は、SEM(走査型電子顕微鏡)によって行なう(倍率30,000倍)。In23母相内に存在する微細粒子は、そのSEM像からIn23とは異種の化合物であると考えられ、おそらくはIn4Sn312であると推測される。また、微細粒子フリーゾーンとは、上記の観察方法において、倍率3,000倍でSEM観察したときに微細粒子が観察されないIn23母相内の領域(ただし、粒界に沿った状態で存在する化合物相の領域は含まない)を意味する。 The maximum diameter of the fine particles refers to the largest of the straight lines (diameters) connecting any two points on the observed cross section of the fine particles. Observation of fine particles is performed by SEM (scanning electron microscope) (magnification 30,000 times). The fine particles present in the In 2 O 3 matrix are considered to be a compound different from In 2 O 3 from the SEM image, and presumably to be In 4 Sn 3 O 12 . The fine particle free zone is a region in the In 2 O 3 matrix in which fine particles are not observed when SEM observation is performed at a magnification of 3,000 in the above observation method (however, in a state along the grain boundary). Does not include the region of the compound phase present).

通常、上述した観察方法によって、ITO焼結体の切断面の各部位(たとえば、ITO焼結体中央部および端部)から観察される複数のIn23母相粒の最大径が同じであっても、これらIn23母相粒内に存在する微細粒子の形態(大きさ、形状)や分散状態はITO焼結体の各部位によって異なり、ばらつきがある。 Usually, the maximum diameter of a plurality of In 2 O 3 parent phase grains observed from each part (for example, the central part and the end part of the ITO sintered body) of the cut surface of the ITO sintered body is the same by the observation method described above. Even so, the form (size, shape) and dispersion state of the fine particles present in these In 2 O 3 matrix grains vary depending on each part of the ITO sintered body and vary.

しかしながら、本発明者らの検討によれば、ITO焼結体の各部位におけるIn23母相粒内に存在する微細粒子の形態や分散状態が異なっていても、そのばらつきを特定の範囲内に収めれば、スパッタリングをするのに支障はなく、むしろITO焼結体全体にわた
って微細組織構造の均一化が図られていると言え、これをターゲット材として用いてスパッタリングした際には、そのスパッタ面全体が均一にスパッタリングされるため、使用効率が向上し、ターゲット寿命が延びる上、スパッタリング時の酸素分圧依存性の経時変化や電圧依存性の経時変化を抑制できることが明らかになった。
However, according to the study by the present inventors, even if the form and dispersion state of the fine particles present in the In 2 O 3 parent phase grains in each part of the ITO sintered body are different, the variation is within a specific range. If it fits within, there is no hindrance to sputtering, rather it can be said that the microstructure is made uniform throughout the entire ITO sintered body, and when this is used as a target material for sputtering, It has been clarified that since the entire sputtering surface is sputtered uniformly, the use efficiency is improved, the target life is extended, and the oxygen partial pressure dependency change over time and the voltage dependency change over time during sputtering can be suppressed.

すなわち、ITO焼結体が、上記式の関係を満たし、該焼結体の中央部および端部におけるIn23母相粒内の微細粒子の最大径の平均値(nm)のばらつきが±30%の範囲内であると、より好ましくは、次式 −10 ≦ 100×(Av1−Av2)/Av1 ≦ 10 (ここで、Av1およびAv2は上述したのと同義である)の関係を満たし、該焼結体の中央部および端部におけるIn23母相粒内の微細粒子の最大径の平均値(nm)のばらつきが±10%の範囲内であると、該焼結体の部位の相異によらず、焼結体全体にわたって、微細組織構造の均一化が図られており、該微細粒子の大きさのばらつきのみならずその分散状態も、スパッタリングに支障のない程度に均一化されている。このように均一化された微細組織構造を有するITO焼結体では、アーキングやパーティクルの発生も低減されることが期待される。 That is, the ITO sintered body satisfies the relationship of the above formula, and the variation in the average value (nm) of the maximum diameter of the fine particles in the In 2 O 3 parent phase grains at the center and the end of the sintered body is ± More preferably within the range of 30%, the relationship of the following formula −10 ≦ 100 × (Av1−Av2) / Av1 ≦ 10 (where Av1 and Av2 have the same meaning as described above) is satisfied, When the variation of the average value (nm) of the maximum diameter of the fine particles in the In 2 O 3 matrix particles at the center and the end of the sintered body is within a range of ± 10%, the portion of the sintered body Regardless of the difference in size, the microstructure is made uniform throughout the entire sintered body, and not only the dispersion of the size of the fine particles but also the dispersion state is made uniform to the extent that there is no problem with sputtering. Has been. In the ITO sintered body having the uniform microstructure as described above, it is expected that the generation of arcing and particles is also reduced.

その一方、各In23母相粒内に存在する個々の微細粒子の形態のばらつきが大きく、上記式の関係を満たさない場合には、ターゲット材の部位の相異によって、微細組織構造が大きく異なっているため、該ITO焼結体をスパッタリングターゲット材として用いて、これをスパッタリングした際には、スパッタ速度がターゲット材の部位の組織に応じて変化し、エロージョン部が均一にスパッタリングされないため、ターゲット材の使用効率が悪く、寿命も短くなる。さらに、アーキングやパーティクルの発生も多いことが予想される。また、この場合には、該微細粒子の大きさのばらつきのみならず、その分散状態のばらつきも大きくなり、スパッタリングによるターゲット材の消費が進むにつれて露出してくる組織の微細構造が大きく変化するため、スパッタリングの酸素分圧依存性や電圧依存性の経時変化も大きいと考えられる。 On the other hand, if the variation of the morphology of individual fine particles present in each In 2 O 3 matrix phase is large and does not satisfy the relationship of the above formula, the microstructure structure is different due to the difference in the part of the target material. Since the ITO sintered body is used as a sputtering target material and is sputtered because it is greatly different, the sputtering rate changes according to the structure of the site of the target material, and the erosion part is not sputtered uniformly. In addition, the use efficiency of the target material is poor and the life is shortened. In addition, arcing and particles are expected to occur frequently. In this case, not only the variation in the size of the fine particles, but also the variation in the dispersion state becomes large, and the microstructure of the exposed structure greatly changes as the consumption of the target material by sputtering proceeds. It is considered that the time-dependent change in the oxygen partial pressure dependency and voltage dependency of sputtering is large.

上記式の関係を満たす本発明のITO焼結体は、好ましい2つの態様を包含している。具体的には、(1)上記式の関係を満たすことに加え、さらに前記Av1およびAv2が共に120nm以下である態様と、(2)上記式の関係を満たすことに加え、さらに前記Av1およびAv2が共に120nmより大きい態様である。   The ITO sintered body of the present invention that satisfies the relationship of the above formula includes two preferred embodiments. Specifically, (1) in addition to satisfying the relationship of the above formula, and further, an aspect in which both Av1 and Av2 are 120 nm or less, and (2) in addition to satisfying the relationship of the above formula, further, the Av1 and Av2 Are both larger than 120 nm.

以下に、上記(1)(2)のITO焼結体について詳細に説明する。
本発明の好ましい態様の1つであるITO焼結体(1)は、上記式の関係を満たすことに加え、さらに前記Av1およびAv2が共に120nm以下、より好ましくは10〜100nmの範囲にあるITO焼結体である。前記Av1およびAv2が上記式の関係を満たす上に、両者共に120nm以下の場合、さらに好ましくは上記特定範囲以内の場合には、ITO焼結体の部位の相異によらず、In23母相粒内に存在する微細粒子が小さく、その分散状態も均一であるため、スパッタ面全体が均一にスパッタされ、ターゲット材としての使用効率の向上が期待できる。
Hereinafter, the ITO sintered bodies (1) and (2) will be described in detail.
The ITO sintered body (1) which is one of the preferred embodiments of the present invention, in addition to satisfying the relationship of the above formula, ITO further has both Av1 and Av2 of 120 nm or less, more preferably in the range of 10 to 100 nm. It is a sintered body. In the case where both Av1 and Av2 satisfy the relationship of the above formula and both are 120 nm or less, more preferably within the specified range, In 2 O 3 Since the fine particles present in the mother phase grains are small and the dispersion state is uniform, the entire sputtering surface is sputtered uniformly, and the use efficiency as a target material can be expected to be improved.

このITO焼結体(1)の組織の一部を模式化したものを図1に示す(ただし、図1は、説明のために、ITO焼結体の組織を誇張して模式的に表したものであり、各構成要素の寸法、比率などは実物とは異なる)。図1中、10は全体でITO焼結体(1)を示し、該ITO焼結体(1)の主結晶であるIn23母相粒11内には微細粒子12が存在しており、さらに粒界13に沿った状態で化合物相14が存在している。また、微細粒子12が観察されないIn23母相11内の領域である微細粒子フリーゾーン15も存在している。 1 schematically shows a part of the structure of the ITO sintered body (1) (however, FIG. 1 schematically shows the structure of the ITO sintered body in an exaggerated manner for the sake of explanation). The dimensions and ratios of each component are different from the actual product). In FIG. 1, 10 indicates the ITO sintered body (1) as a whole, and fine particles 12 are present in the In 2 O 3 parent phase grains 11 which are the main crystals of the ITO sintered body (1). Furthermore, the compound phase 14 exists along the grain boundary 13. There is also a fine particle free zone 15 which is a region in the In 2 O 3 matrix 11 where the fine particles 12 are not observed.

また、本発明の好ましい態様の1つであるITO焼結体(2)は、上記式の関係を満た
すことに加え、さらに前記Av1およびAv2が共に120nmより大きく、好ましくは150〜1000nmの範囲にあるITO焼結体である。前記Av1およびAv2が上記式の関係を満たす上に、両者共に120nmより大きい場合、さらに好ましくは上記特定範囲以内である場合には、上記条件を満たさないものと比較してIn23母相粒内に存在する微細粒子が大きくなる分、その個数が少なくなり、イエローパウダーおよびパーティクルの発生の起点となりにくくなることから、これらの発生の抑制が期待できる。
In addition, the ITO sintered body (2), which is one of the preferred embodiments of the present invention, satisfies the relationship of the above formula, and further, both Av1 and Av2 are larger than 120 nm, preferably in the range of 150 to 1000 nm. It is a certain ITO sintered body. In the case where both Av1 and Av2 satisfy the relationship of the above formula and both are larger than 120 nm, and more preferably within the specific range, the In 2 O 3 matrix is compared with those not satisfying the above condition. Since the number of fine particles present in the grains increases, the number thereof decreases, and it becomes difficult to become the starting point of the generation of yellow powder and particles, so that the generation of these can be expected.

このITO焼結体(2)の組織の一部を模式化したものを図2に示す(ただし、図2は、説明のために、ITO焼結体の組織を誇張して模式的に表したものであり、各構成要素の寸法、比率などは実物とは異なる)。図2中、10は全体でITO焼結体(2)を示し、該ITO焼結体(2)の主結晶であるIn23母相粒11内には微細粒子12が存在しており、さらに粒界13に沿った状態で化合物相14が存在している。また、微細粒子12が観察されないIn23母相1内の領域である微細粒子フリーゾーン15も存在している。 FIG. 2 schematically shows a part of the structure of the ITO sintered body (2) (however, FIG. 2 schematically shows the structure of the ITO sintered body in an exaggerated manner for the sake of explanation). The dimensions and ratios of each component are different from the actual product). In FIG. 2, 10 indicates the ITO sintered body (2) as a whole, and fine particles 12 are present in the In 2 O 3 parent phase grains 11 which are the main crystals of the ITO sintered body (2). Furthermore, the compound phase 14 exists along the grain boundary 13. There is also a fine particle free zone 15 which is a region in the In 2 O 3 matrix 1 where the fine particles 12 are not observed.

これらITO焼結体は、原料粉末に必要によりバインダーを加えて圧縮成形し、得られた成形体を必要に応じて脱脂した後、該成形体を焼成処理し、焼結体を得る、いわゆる粉末冶金法に従い、焼成処理を特定の条件下で行なうことにより製造することができる。より具体的には、後述するスパッタリングターゲット材の製造方法を好適に適用することができ、その詳細は下記のスパッタリングターゲット材の製造方法の説明で述べる。   These ITO sintered bodies are so-called powders that are compression-molded by adding a binder to the raw material powder as necessary, and after the obtained molded body is degreased as necessary, the molded body is fired to obtain a sintered body. According to the metallurgical method, it can manufacture by performing a baking process on specific conditions. More specifically, the sputtering target material manufacturing method described later can be suitably applied, and details thereof will be described in the description of the sputtering target material manufacturing method below.

上記ITO焼結体は、必要に応じて、公知の手段で所望の形状に切り出し、研削等した後、ITOスパッタリングターゲット材として好ましく用いることができる。さらに、上記ITO焼結体を必要に応じて所望の形状に切り出し、研削等した後、冷却板であるバッキングプレートと接合することで、ITOスパッタリングターゲットを得ることができる。   The ITO sintered body can be preferably used as an ITO sputtering target material after being cut into a desired shape by known means, ground, etc., if necessary. Furthermore, an ITO sputtering target can be obtained by cutting the ITO sintered body into a desired shape as necessary, grinding, etc., and then joining with a backing plate that is a cooling plate.

上記バッキングプレートは、通常、スパッタリングターゲットのバッキングプレートとして用いられるものであればよく、とくに限定されないが、熱伝導性の良さから銅製や銅合金製のバッキングプレートが好ましく挙げられる。また、その形状も公知のものでよく、とくに限定されない。   The backing plate is not particularly limited as long as it is normally used as a backing plate for a sputtering target, but a copper or copper alloy backing plate is preferable because of its good thermal conductivity. Moreover, the shape may be a known one and is not particularly limited.

なお、ITO焼結体とバッキングプレートとの接合も、公知の方法で適宜行なうことができ、とくに限定されないが、コストや生産性の点からは、In半田などのボンディング剤を介して接合する方法が好ましく挙げられる。具体的には、ITO焼結体を必要に応じて所望の形状に切り出し、必要に応じて研削等した後、Inの融点以上の温度に加熱し、該温度を保持した状態で、該ITO焼結体のバッキングプレートと接合する面に溶融したIn半田を塗布し、バッキングプレートと貼り合せ、加圧しながら放冷して室温まで冷却するなどの方法により接合できる。   It should be noted that the ITO sintered body and the backing plate can be appropriately joined by a known method and is not particularly limited, but from the viewpoint of cost and productivity, a method of joining via a bonding agent such as In solder. Is preferred. Specifically, the ITO sintered body is cut into a desired shape as necessary, ground as necessary, and then heated to a temperature equal to or higher than the melting point of In. The bonded In solder can be bonded by a method such as applying molten In solder to the surface to be bonded to the backing plate, bonding it to the backing plate, allowing to cool while being pressurized, and cooling to room temperature.

<スパッタリングターゲット材の製造方法>
本発明のスパッタリングターゲット材の製造方法は、粉末冶金法によりスパッタリングターゲット材を製造する方法であって、成形後の被焼成体を加熱する加熱工程と、加熱工程を経た後の被焼成体1つあたりについてその両端が温度勾配を有するように、50℃/hour以上あるいは50℃/hour未満の降温レートで冷却する冷却工程を含む焼成処理を行なうことを特徴としている。
<Method for producing sputtering target material>
The method for producing a sputtering target material according to the present invention is a method for producing a sputtering target material by powder metallurgy, and includes a heating process for heating a fired body after molding, and a fired body after passing through the heating process. A firing process including a cooling step of cooling at a temperature lowering rate of 50 ° C./hour or less or less than 50 ° C./hour is performed so that both ends have a temperature gradient.

本発明の製造方法で製造できるスパッタリングターゲット材の材質は、粉末冶金法を適用できるものであればよく、とくに限定されず、焼結合金やセラミックスなどが挙げられる。本発明の効果をより有効に発揮できる点からは、圧延処理などの塑性加工ができない
もの、たとえば、セラミックスなどが好ましく挙げられる。なかでも酸化インジウムを含有してなるものが好ましく、ITOであることがより好ましい。ITO焼結体のIn23母相粒内に存在する微細粒子の大きさや分散状態は、ITO焼結体の製造方法、とくに焼成条件に影響されると考えられるためである。たとえば、従来公知のバッチ式の炉(以下、バッチ炉ともいう)で成形後の被焼成体を焼成した場合には、炉内に熱分布の偏りが発生するため、たとえ炉内をある温度に設定したとしても、被焼成体全体をその温度で均一に加熱、冷却することができず、得られたITO焼結体の中央部と端部とでは、最終的な熱履歴が異なる状態となる。この熱履歴の差異が、得られたITO焼結体のIn23母相粒内に存在する微細粒子の成長に影響を与え、ITO焼結体の各部位間における、微細粒子の形態や分散状態のばらつきを大きくするものと考えられる。
The material of the sputtering target material that can be produced by the production method of the present invention is not particularly limited as long as the powder metallurgy method can be applied, and examples thereof include sintered alloys and ceramics. From the viewpoint that the effects of the present invention can be more effectively exhibited, those that cannot be subjected to plastic working such as rolling treatment, for example, ceramics are preferably mentioned. Among them, those containing indium oxide are preferable, and ITO is more preferable. This is because the size and dispersion state of the fine particles present in the In 2 O 3 matrix particles of the ITO sintered body are considered to be influenced by the manufacturing method of the ITO sintered body, particularly the firing conditions. For example, when the fired body after being molded in a conventionally known batch-type furnace (hereinafter also referred to as a batch furnace), uneven distribution of heat is generated in the furnace. Even if it is set, the entire body to be fired cannot be uniformly heated or cooled at that temperature, and the final heat history is different between the center and the end of the obtained ITO sintered body. . This difference in thermal history affects the growth of fine particles existing in the In 2 O 3 matrix phase grains of the obtained ITO sintered body. This is thought to increase the dispersion of the dispersion state.

本発明の製造方法の上記焼成処理以外の操作は、粉末冶金法において通常行われている公知の手段および条件に従い行なうことができる。たとえば、原料粉末(たとえば、ITOの場合であれば、酸化インジウム(In23)と酸化錫(SnO2))を所望の割合で混合し、必要に応じてバインダーを加えて、圧縮成形して成形体(以下、被焼成体ともいう。)を得て、得られた成形体を必要に応じて脱脂するまでの操作は、通常行われている公知の手段および条件によって行なうことができる。 Operations other than the above-mentioned firing treatment of the production method of the present invention can be performed according to known means and conditions usually performed in powder metallurgy. For example, raw material powder (for example, in the case of ITO, indium oxide (In 2 O 3 ) and tin oxide (SnO 2 )) are mixed in a desired ratio, and a binder is added if necessary, followed by compression molding. Thus, an operation from obtaining a molded body (hereinafter also referred to as a fired body) to degreasing the obtained molded body as necessary can be performed by commonly known means and conditions.

具体的に例示すると、原料粉末は必要に応じて、仮焼、分級処理を施してもよく、その後の原料粉末の混合は、たとえば、ボールミルなどで行なうことができる。その後、混合した原料粉末を成形型に充填して圧縮成形し、成形体を作製し、大気雰囲気下または酸素雰囲気下で脱脂してもよく、あるいは、特開平11−228220号公報に記載のスラリー鋳込み法のように、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型に、混合した原料粉末、イオン交換水、有機添加剤とからなるスラリーを注入し、スラリー中の水分を減圧で排水して成形体を作製し、この成形体を乾燥脱脂してもよい。なお、成形体の脱脂は、後述する連続炉内で行ってもよい。   Specifically, the raw material powder may be subjected to calcination and classification as required, and the subsequent mixing of the raw material powder can be performed by, for example, a ball mill. Thereafter, the mixed raw material powder is filled into a mold and compression-molded to produce a molded body, which may be degreased in an air atmosphere or an oxygen atmosphere, or a slurry described in JP-A-11-228220 Slurry consisting of mixed raw material powder, ion-exchanged water, and organic additives in a filtration mold made of a water-insoluble material for draining water from a ceramic raw material slurry under reduced pressure as in the casting method The molded body may be produced by draining water in the slurry under reduced pressure, and the molded body may be dried and degreased. In addition, you may perform degreasing | defatting of a molded object in the continuous furnace mentioned later.

次いで、このようにして得られた成形体(被焼成体)に上記特定の冷却工程を含む焼成処理を施す。該焼成処理は、加熱工程と冷却工程と必要に応じて保温工程を有する。以下、この順に各工程を説明する。   Next, the thus obtained molded body (sintered body) is subjected to a firing treatment including the specific cooling step. This baking process has a heating process, a cooling process, and a heat retention process as needed. Hereinafter, each step will be described in this order.

まず、成形後の被焼成体(成形体)は、該被焼成体1つあたりについて、その両端が温度勾配を有するように炉内で加熱する工程によって加熱される。より具体的には、該被焼成体が、炉内に設けられた、互いに異なる温度に設定された隣接する2つ以上の領域内を通過するように、該被焼成体を搬送させながら加熱する工程が好ましく挙げられる。このようにして加熱すると、該被焼成体1つあたりについて、該被焼成体をその搬送方向側の端から順次加熱し焼結させていくことができ、焼結による収縮が端から順次行われるため、割れなどの問題が生じにくい。さらに、バッチ炉と比較して熱分布の偏りが極めて少ないことから、被焼成体の部位の相異にかかわらず、加熱工程における各部位の熱履歴を同程度に揃えることができる。搬送手段は公知の手段でよく、とくに限定されないが、使用する炉の種類に応じて、該被焼成体を複数のローラー上に載置し、これらのローラーを一方向に回転させて搬送する手段や、該被焼成体をベルト上に載置し、このベルトを移動させて搬送する手段などが挙げられる。   First, the to-be-fired body (molded body) after the molding is heated by a process of heating in the furnace so that both ends have a temperature gradient for each to-be-fired body. More specifically, the object to be fired is heated while being conveyed so that the object to be fired passes through two or more adjacent regions set at different temperatures provided in the furnace. A process is mentioned preferably. When heated in this way, the sintered body can be heated and sintered sequentially from the end on the conveyance direction side, and shrinkage due to sintering is sequentially performed from the end. Therefore, problems such as cracking are unlikely to occur. Furthermore, since the unevenness of the heat distribution is extremely small as compared with the batch furnace, the thermal history of each part in the heating process can be made to the same degree regardless of the difference in the parts of the body to be fired. The conveying means may be a known means, and is not particularly limited. However, depending on the type of furnace to be used, the object to be fired is placed on a plurality of rollers, and these rollers are rotated in one direction and conveyed. And a means for placing the object to be fired on a belt and moving and transporting the belt.

なお、被焼成体の上方から見た表面形状が長方形などのアスペクト比が異なるものである場合には、被焼成体の表面形状の長い方の辺が搬送方向と平行になるように載置して搬送するとよい。また、熱履歴をより均一にする点からは、被焼成体を公知の焼成板に載置した状態で、加熱工程、後述する冷却工程、保温工程のすべて、あるいはいずれかに供してもよい。   In addition, when the surface shape viewed from above of the object to be fired has a different aspect ratio such as a rectangle, it is placed so that the longer side of the surface shape of the object to be fired is parallel to the transport direction. To transport. Moreover, from the point which makes a heat history more uniform, you may use for a heating process, the cooling process mentioned later, or all of a heat retention process in the state which mounted the to-be-fired body on the well-known baking board.

炉内の各領域の搬送方向側の長さ(長手方向の長さ)は、各領域毎に他の領域と同じでも異なってもよく、被焼成体の大きさ、使用する炉の大きさ、配設する領域数などによって適宜決定できる。配設する領域数は、被焼成体の大きさ、焼成プログラムに応じて適宜決定できる。   The length in the conveying direction of each region in the furnace (length in the longitudinal direction) may be the same as or different from other regions for each region, and the size of the body to be fired, the size of the furnace to be used, It can be determined appropriately depending on the number of regions to be arranged. The number of regions to be arranged can be appropriately determined according to the size of the body to be fired and the firing program.

また、前記加熱工程における隣接する2つ以上の領域の各領域の温度は、これらのなかで互いに隣接する領域の温度と比較して、通常10〜500℃の範囲内で搬送方向に向うに従って順次高くなるようにそれぞれ設定されており、かつ、これら2つ以上の領域内を通過する被焼成体の搬送速度は、通常1〜50mm/minの範囲である。また、前記加熱工程において、最も温度の低い領域の温度は、通常、室温〜800℃であり、最も温度の高い領域の温度は通常1400〜1600℃である。   In addition, the temperature of each of the two or more adjacent regions in the heating step is sequentially in the range of 10 to 500 ° C. as compared with the temperature of the regions adjacent to each other in the heating direction. The conveyance speed of the object to be fired that is set to be high and passes through these two or more regions is usually in the range of 1 to 50 mm / min. In the heating step, the temperature in the lowest temperature region is usually room temperature to 800 ° C, and the temperature in the highest temperature region is usually 1400 to 1600 ° C.

前記加熱工程における各領域の設定温度は、各領域毎にその長手方向の長さに対する略中間点に設置された熱電対などの温度検出装置によって決定付けられる。この際、互いに隣接する領域内に設置された各温度検出装置間の温度は、通常0.02〜1.11℃/mmの割合で上昇するように調整されていることが望ましい。   The set temperature of each region in the heating step is determined by a temperature detection device such as a thermocouple installed at a substantially middle point with respect to the length in the longitudinal direction for each region. At this time, it is desirable that the temperature between the temperature detecting devices installed in the regions adjacent to each other is normally adjusted to increase at a rate of 0.02 to 1.11 ° C./mm.

なお、得ようとするスパッタリングターゲット材が、ITO焼結体からなる場合には、得られるITO焼結体の密度向上の観点から、炉内に酸素を導入して酸素雰囲気内で前記加熱工程を行なうことが望ましい。炉内に導入する酸素の流量は、炉内1m3あたり通常0.1〜500m3/hourの範囲内の量である。なお、加熱工程で酸素を導入した場合には、後述する冷却工程や保温工程においても、酸素を上記範囲内の量で導入しつづけてもよいし、酸素の導入をやめて炉内の雰囲気を大気や窒素に置換してもよい。 In addition, when the sputtering target material to be obtained is made of an ITO sintered body, from the viewpoint of improving the density of the obtained ITO sintered body, oxygen is introduced into the furnace and the heating step is performed in an oxygen atmosphere. It is desirable to do so. The flow rate of oxygen introduced into the furnace is usually in the range of 0.1 to 500 m 3 / hour per 1 m 3 in the furnace. When oxygen is introduced in the heating step, oxygen may be continuously introduced in an amount within the above range in the cooling step and the heat retention step described later, or the introduction of oxygen is stopped and the atmosphere in the furnace is kept in the atmosphere. Or nitrogen.

次いで、前記加熱工程を経た後の被焼成体は、その1つあたりについてその両端が温度勾配を有するように冷却する冷却工程で冷却される。より具体的には、該被焼成体が、炉内に設けられた、互いに異なる温度に設定された隣接する2つ以上の領域内を通過するように、該被焼成体を搬送させながら冷却する工程が好ましく挙げられる。搬送手段は上述した加熱工程と同様である。   Subsequently, the to-be-baked body after passing through the said heating process is cooled by the cooling process cooled so that the both ends may have a temperature gradient about the one. More specifically, the fired body is cooled while being transported so that the fired body passes through two or more adjacent regions set in the furnace and set at different temperatures. A process is mentioned preferably. The conveying means is the same as the heating process described above.

このように冷却すると、該被焼成体1つあたりについて、該被焼成体をその搬送方向側の端から順次冷却していくことができる上、バッチ炉と比較して熱分布の偏りが極めて少ないことから、被焼成体の部位の相異にかかわらず、各部位の最終的な熱履歴を同程度に揃えることができる。したがって、得られた焼結体の結晶粒(母相粒)内に存在する微細粒子の成長も同程度となり、各部位におけるその形態や分散状態のばらつきを上記特定の範囲内に収めることができるものと考えられる。   When cooled in this way, the sintered body can be sequentially cooled from the end on the conveyance direction side per one sintered body, and the deviation in heat distribution is extremely small as compared with a batch furnace. For this reason, the final thermal history of each part can be made to the same degree regardless of the difference in the part of the body to be fired. Therefore, the growth of fine particles existing in the crystal grains (parent phase grains) of the obtained sintered body becomes the same level, and variations in the form and dispersion state in each part can be kept within the specific range. It is considered a thing.

前記冷却工程における各領域の搬送方向側の長さ(長手方向の長さ)は、領域毎に他の領域と同じでも異なってもよく、被焼成体の大きさ、使用する炉の大きさ、配設する領域数などによって適宜決定することができる。配設する領域数は、被焼成体の大きさ、焼成プログラムに応じて適宜決定できる。   The length of the transport direction side of each region in the cooling step (length in the longitudinal direction) may be the same as or different from other regions for each region, the size of the body to be fired, the size of the furnace to be used, It can be determined appropriately depending on the number of regions to be arranged. The number of regions to be arranged can be appropriately determined according to the size of the body to be fired and the firing program.

前記冷却工程において、隣接する2つ以上の領域の、各領域の温度は、これらのなかで互いに隣接する領域の温度と比較して、通常10〜500℃の範囲内で搬送方向に向うに従って順次低くなるようにそれぞれ設定されており、かつ、これら2つ以上の領域内を通過する成形体の搬送速度は通常1〜50mm/minの範囲である。さらに、前記冷却工程において、最も温度の高い領域の温度は、通常1400〜1600℃であり、最も温度の低い領域の温度は通常、室温〜400℃である。   In the cooling step, the temperature of each of the two or more adjacent regions is usually in the range of 10 to 500 ° C. as compared to the temperature of the adjacent region among them, and sequentially. It is set so that it may become low, respectively, and the conveyance speed of the molded object which passes through these two or more area | regions is the range of 1-50 mm / min normally. Furthermore, in the cooling step, the temperature in the highest temperature region is usually 1400 to 1600 ° C., and the temperature in the lowest temperature region is usually room temperature to 400 ° C.

前記冷却工程における各領域の設定温度は、領域毎に各領域の長手方向の長さに対する略中間点に設置された熱電対などの温度検出装置によって決定付けられる。この際、互いに隣接する領域内に設置された各温度検出装置間の温度は、通常0.02〜1.11℃/mmの割合で降下するように設定されていることが望ましい。   The set temperature of each region in the cooling step is determined for each region by a temperature detection device such as a thermocouple installed at a substantially middle point with respect to the length in the longitudinal direction of each region. At this time, it is desirable that the temperature between the temperature detecting devices installed in the mutually adjacent regions is normally set to drop at a rate of 0.02 to 1.11 ° C./mm.

なお、得ようとするスパッタリングターゲット材が、ITO焼結体からなる場合には、その主結晶粒であるIn23母相粒内に存在する微細粒子の最大径の平均値を制御する観点から、上記冷却工程のうち、最高温度から400℃までの温度に設定された領域を通過する際の被焼成体の搬送速度を調整することによって、冷却工程の降温レートを調整することが望ましい。 In addition, when the sputtering target material to be obtained is made of an ITO sintered body, the viewpoint of controlling the average value of the maximum diameters of the fine particles existing in the main crystal grains of In 2 O 3 mother phase grains From the above cooling process, it is desirable to adjust the rate of temperature decrease in the cooling process by adjusting the conveyance speed of the object to be fired when passing through the region set to the temperature from the maximum temperature to 400 ° C.

具体的には、冷却工程のうち、最高温度から400℃までの温度領域における降温レートを、50℃/hour以上、好ましくは100〜300℃/hour、より好ましくは150〜300℃/hourに調整すると、加熱工程を経た後の被焼成体が急速に冷却され、In23母相粒内の微細粒子の成長が妨げられるため、該焼結体中央部に存在するIn23母相粒内の微細粒子の最大径の平均値Av1(nm)および該焼結体端部に存在するIn23母相粒内の微細粒子の最大径の平均値Av2(nm)を共に120nm以下に制御できる上に、これらの値が次式 −30 ≦ 100×(Av1−Av2)/Av1 ≦ 30 の関係を満たすITO焼結体を得ることができる。なお、上記降温レートが300℃/hourを超えると、焼結体の割れが発生する確率が高くなり、生産効率上好ましくない。 Specifically, the cooling rate in the temperature range from the maximum temperature to 400 ° C. in the cooling process is adjusted to 50 ° C./hour or more, preferably 100 to 300 ° C./hour, more preferably 150 to 300 ° C./hour. then, the object to be fired rapidly cooling after a heating step, the growth of the in 2 O 3 matrix grains of the fine particles is prevented, in 2 O 3 matrix phase present in the sintered body central portion The average value Av1 (nm) of the maximum diameter of the fine particles in the grain and the average value Av2 (nm) of the maximum diameter of the fine particles in the In 2 O 3 parent phase grains existing at the end of the sintered body are both 120 nm or less. In addition, it is possible to obtain an ITO sintered body in which these values satisfy the following relationship: −30 ≦ 100 × (Av1−Av2) / Av1 ≦ 30. In addition, when the said temperature fall rate exceeds 300 degreeC / hour, the probability that the sintered compact will generate | occur | produce will become high and it is unpreferable on production efficiency.

その一方、上記冷却工程のうち、最高温度から400℃までの温度領域における降温レートを、50℃/hour未満、好ましくは20〜40℃/hour、より好ましくは25〜35℃/hourに調整すると、加熱工程を経た後の被焼成体がゆっくり冷却されるため、In23母相粒内の微細粒子の成長が促進されて粗大化し、Av1(nm)およびAv2(nm)を共に120nmより大きく制御できる上に、これらの値が次式 −30 ≦ 100×(Av1−Av2)/Av1 ≦ 30 の関係を満たすITO焼結体を得ることができる。 On the other hand, when the cooling rate in the temperature range from the maximum temperature to 400 ° C in the cooling step is adjusted to less than 50 ° C / hour, preferably 20 to 40 ° C / hour, more preferably 25 to 35 ° C / hour. The sintered body after the heating process is slowly cooled, so that the growth of fine particles in the In 2 O 3 matrix phase is promoted and coarsened, and both Av1 (nm) and Av2 (nm) from 120 nm In addition to being largely controllable, it is possible to obtain an ITO sintered body in which these values satisfy the relationship of the following formula −30 ≦ 100 × (Av1−Av2) / Av1 ≦ 30.

なお、上記冷却工程のうち、400℃未満から室温までの温度に設定された領域の降温レートはとくに限定されない。このような温度領域では、実質的にIn23母相粒内の微細粒子は成長しないためである。具体的には、これらの領域の降温レートを適宜設定してもよく、とくに降温レートを調整せずに放冷し、室温まで自然冷却してもよい。 In the cooling step, the temperature drop rate in the region set to a temperature from less than 400 ° C. to room temperature is not particularly limited. This is because in such a temperature region, the fine particles within the In 2 O 3 matrix phase do not substantially grow. Specifically, the temperature lowering rate in these regions may be set as appropriate, and in particular, the temperature may be allowed to cool without adjusting the temperature lowering rate and may be naturally cooled to room temperature.

さらに、本発明では、必要に応じて、前記加熱工程と冷却工程との間、加熱工程が段階的に複数回行われる場合には各加熱工程の間、冷却工程が段階的に複数回行なわれる場合には各冷却工程の間に、保温工程を設けることもできる。保温工程では直前の加熱工程の領域あるいは冷却工程の領域の温度を保持する。保温工程における領域の長さ、数などは、被焼成体の大きさ、使用する炉の大きさ、配設する総領域数などによって適宜決定することができる。   Further, in the present invention, if necessary, between the heating step and the cooling step, when the heating step is performed a plurality of times stepwise, the cooling step is performed a plurality of steps stepwise during each heating step. In some cases, a heat retaining step can be provided between the cooling steps. In the heat retaining process, the temperature of the immediately preceding heating process area or cooling process area is maintained. The length and number of regions in the heat retaining step can be appropriately determined depending on the size of the object to be fired, the size of the furnace to be used, the total number of regions to be disposed, and the like.

なお、昇温および降温条件の制御のしやすさから、前記加熱工程および冷却工程は(保温工程を含む場合は保温工程も)、連続炉内で行われることが好ましい。ここで、連続炉とは、被焼成体を連続的に加熱、冷却できる炉、あるいは被焼成体を連続的に加熱、冷却、保温することのできる炉を意味し、具体的には、たとえば、ローラーハースキルン、プッシャー炉、メッシュベルト炉などが挙げられる。   In addition, it is preferable that the heating process and the cooling process (including a heat retaining process when a heat retaining process is included) are performed in a continuous furnace in order to easily control the temperature rising and temperature lowering conditions. Here, the continuous furnace means a furnace that can continuously heat and cool the object to be fired, or a furnace that can continuously heat, cool, and keep the object to be fired. Examples include roller hearth kiln, pusher furnace, and mesh belt furnace.

さらに、炉内の幅方向の温度分布の偏りを小さくし、被焼成体の幅方向部分の均一加熱を達成しようとする観点から、前記連続炉は、被焼成体の搬送路を境に、上下方向に加熱手段を備えていることが好ましく、ローラーハースキルンであることがより好ましい。ローラーハースキルンとは、その設定温度によって、予熱域、加熱域、保温域、冷却域など
を設けることができ、特定の温度プロファイルを実行できる連続炉の1種である。なお、被焼成体の搬送路を境に、上下方向に加熱手段を設けたときには、熱電対も同様に上下に設け、上下で温度検出及び温度制御をするとよい。
Further, from the viewpoint of reducing the uneven temperature distribution in the width direction in the furnace and achieving uniform heating of the width direction portion of the body to be fired, the continuous furnace is vertically moved with the conveyance path of the body to be fired as a boundary. A heating means is preferably provided in the direction, and a roller hearth kiln is more preferable. A roller hearth kiln is a kind of continuous furnace that can provide a preheating region, a heating region, a heat retaining region, a cooling region, and the like depending on the set temperature, and can execute a specific temperature profile. In addition, when a heating means is provided in the vertical direction with the conveyance path of the body to be fired as the boundary, thermocouples may be similarly provided in the vertical direction and temperature detection and temperature control may be performed in the vertical direction.

上述の焼成処理を経て得られた焼結体は、必要に応じて、公知の手段で所望の形状に切り出し、研削等した後、スパッタリングターゲット材として好ましく用いることができる。   The sintered body obtained through the above-described firing treatment can be preferably used as a sputtering target material after being cut into a desired shape and ground by a known means, if necessary.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to these Examples.

[実施例1]
<ITOスパッタリングターゲットの製造>
比表面積8.07m2/gの酸化インジウム粉900gと比表面積2.2m2/gの酸化錫粉100g、イオン交換水30gおよび直径5mmのジルコニアボールを樹脂製ポットに入れ20時間ボールミル混合を行った。次にイオン交換水178.3gとポリカルボン酸系分散剤7.9gを入れ、1時間ボールミル混合した。1時間後にワックス系バインダー9.9gを添加し、19時間ボールミル混合を行ない、スラリーを得た。
[Example 1]
<Manufacture of ITO sputtering target>
A specific surface area of 8.07m 2 / g tin oxide powder 100g of the indium oxide powder 900g and specific surface area of 2.2 m 2 / g of zirconia balls of deionized water 30g and a diameter of 5mm for 20 hours ball milling put in a resin pot It was. Next, 178.3 g of ion-exchanged water and 7.9 g of a polycarboxylic acid dispersant were added and ball mill mixed for 1 hour. One hour later, 9.9 g of a wax-based binder was added, and ball mill mixing was performed for 19 hours to obtain a slurry.

次に、得られたスラリーにアミド系消泡剤0.2gを添加し減圧脱気を行った。このスラリーの固形分濃度は83重量%であった。このスラリーを図3に示す構造の成形用型、具体的には、水抜き孔6を備えた成形用下型3上に、フィルター4およびシール材5を介して成形用型枠2が積載された構造を有する成形用型の凹部にスラリー1を鋳込み、減圧〜760mmHgで水抜き孔6から排水し、350mm×400mm×12mmの成形体を得た。   Next, 0.2 g of an amide-based antifoaming agent was added to the resulting slurry and vacuum deaeration was performed. The solid content concentration of this slurry was 83% by weight. The molding mold 2 is loaded on the molding mold having the structure shown in FIG. 3, specifically, on the lower molding mold 3 having the drainage hole 6 through the filter 4 and the seal material 5. Slurry 1 was cast into a concave part of a molding die having the above structure and drained from the drain hole 6 under reduced pressure to 760 mmHg to obtain a molded body of 350 mm × 400 mm × 12 mm.

得られた成形体を25℃で乾燥した後、ローラーハースキルン(領域数24個、全長10,800mm)内に導入し、炉内に酸素濃度100%の酸素ガスを炉内1m3あたり流量0.2m3/hourで流しながら、表1に示した条件で焼成処理を行なった。焼成処理後は、ローラーハースキルンの取り出し口から、焼成後の成形体を取り出し、室温まで冷却し、ITO焼結体を得た。得られたITO焼結体のサイズは、約300mm×348mm×10mmであった。 After drying the obtained molded body at 25 ° C., it was introduced into a roller hearth kiln (24 regions, total length 10,800 mm), and oxygen gas with an oxygen concentration of 100% was introduced into the furnace at a flow rate of 0 per 1 m 3 in the furnace. The baking treatment was performed under the conditions shown in Table 1 while flowing at 2 m 3 / hour. After the firing treatment, the fired molded body was taken out from the roller hearth kiln outlet and cooled to room temperature to obtain an ITO sintered body. The size of the obtained ITO sintered body was about 300 mm × 348 mm × 10 mm.

なお、ローラーハースキルン内に成形体を導入する際には、被焼成体である成形体の温度が急激に上昇しないように、該成形体をローラーハースキルンの入口に徐々に近づけ、また、ローラーハースキルンから取り出す際には、焼成後の成形体の温度が急激に下降しないよう、該成形体をローラーハースキルンの取り出し口から徐々に遠ざけた。   When introducing the molded body into the roller hearth kiln, the molded body is gradually brought closer to the entrance of the roller hearth kiln so that the temperature of the green body to be fired does not rise rapidly. When taking out from the hearth kiln, the green body was gradually moved away from the take-out port of the roller hearth kiln so that the temperature of the fired green body did not drop rapidly.

また、上記焼成処理の冷却工程のうち、最高温度から400℃までの温度領域の平均降温レートは200℃/hourであった。この際の温度プロファイルを図4に示す。
得られたITO焼結体の比抵抗を四探針法に基づき、定電流電圧測定装置(ケースレー製;SMU236)と測定架台(共和理研製;K-504RS)および四探針プローブ(共和理研製;K89PS150μ)を使用して測定したところ、1.7×10-4(Ω・cm)であった。
Moreover, the average temperature-fall rate of the temperature range from the highest temperature to 400 degreeC among the cooling processes of the said baking processing was 200 degreeC / hour. The temperature profile at this time is shown in FIG.
Based on the four-probe method, the specific resistance of the obtained ITO sintered body was measured using a constant-current voltage measuring device (Caseley; SMU236), a measurement stand (Kyowa Riken; K-504RS), and a four-probe probe (Kyowa Riken). Measured using K89PS150μ), it was 1.7 × 10 −4 (Ω · cm).

次いで、得られたITO焼結体をその焼結時の上面から5mmの位置で厚み方向に水平に、ダイヤモンドカッターにより、切断して得られた切断面を、エメリー紙#170、#320、#800、#1500、#2000を用いてそれぞれ90度ずつ回転させながら段階的に研磨し、最後にバフ研磨して鏡面に仕上げた後、40℃のエッチング液(硝酸(60〜61%水溶液、関東化学(株)製、硝酸1.38 鹿1級 製品番号28161-03)、塩酸(35.0〜37.0%水溶液、関東化学(株)製、塩酸 鹿1級 製品番号18078-01)および水を体積比でHCl:H2O:
HNO3=1:1:0.08の割合で混合)に9分間浸漬してエッチングし、(i)現れた面の中央の位置、(ii)角部から長手方向30mm+幅方向30mmの位置を、それぞれ倍率3,000倍および30,000倍でSEM観察(JSM-6380A;JEOL製)し、それぞれの部位のIn23母相内に存在する微細粒子の最大径の平均値を求めた。
Subsequently, the cut surface obtained by cutting the obtained ITO sintered body horizontally with a diamond cutter at a position 5 mm from the upper surface at the time of sintering with a diamond cutter is used as an emery paper # 170, # 320, # Using 800, # 1500, and # 2000, each of them is polished stepwise by rotating 90 degrees, and finally buffed to give a mirror finish. Then, an etching solution of 40 ° C. (nitric acid (60-61% aqueous solution, Kanto) Chemical Co., Nitric acid 1.38 Deer grade 1, product number 28161-03), HCl (35.0-37.0% aqueous solution, Kanto Chemical Co., Ltd., Deer grade 1, product number 18078-01) and water in HCl by volume : H 2 O:
HNO 3 = 1: 1: 0.08) and dipped for 9 minutes to etch, (i) the center position of the appearing surface, (ii) the position 30 mm in the longitudinal direction + 30 mm in the width direction from the corner, respectively SEM observation (JSM-6380A; manufactured by JEOL) was performed at magnifications of 3,000 and 30,000, and the average value of the maximum diameters of the fine particles present in the In 2 O 3 matrix at each site was determined.

その結果、(i)ITO焼結体中央部に存在するIn23母相粒内の微細粒子の最大径の平均値(Av1)は70nm、(ii)該焼結体端部に存在するIn23母相粒内の微細粒子の最大径の平均値(Av2)は65nmであり、(iii)微細粒子のばらつきは7.1%(=100×(Av1−Av2)/Av1)であった。なお、該ITO焼結体中央部および端部のIn23母相粒径はいずれも±1μmの範囲で均一であった。 As a result, (i) the average value (Av1) of the maximum diameter of the fine particles in the In 2 O 3 matrix phase particles present in the central portion of the ITO sintered body is 70 nm, and (ii) is present at the end of the sintered body. The average value (Av2) of the maximum diameter of the fine particles in the In 2 O 3 matrix phase is 65 nm, and (iii) the variation of the fine particles is 7.1% (= 100 × (Av1−Av2) / Av1) there were. The In 2 O 3 matrix particle size at the center and end of the ITO sintered body was uniform within a range of ± 1 μm.

次いで、上記ITO焼結体を適当な大きさに切り出して、平面研削盤で両面を研削し、直径152.4mm×厚さ6mmのITOスパッタリングターゲット材を得た。得られたITOスパッタリングターゲット材を、In半田を介して銅製バッキングプレートと接合し、ITOスパッタリングターゲットを作製した。
<ITOスパッタリングターゲットの性能評価>
得られたITOスパッタリングターゲットを用いて、ターゲット材の使用効率および寿命、スパッタリング時の酸素分圧依存性の経時変化および電圧依存性の経時変化について以下の方法で評価した。
Next, the ITO sintered body was cut out to an appropriate size, and both surfaces were ground with a surface grinder to obtain an ITO sputtering target material having a diameter of 152.4 mm and a thickness of 6 mm. The obtained ITO sputtering target material was joined to a copper backing plate via In solder to produce an ITO sputtering target.
<Performance evaluation of ITO sputtering target>
Using the obtained ITO sputtering target, the usage efficiency and lifetime of the target material, the change with time in oxygen partial pressure dependency during sputtering and the change with time in voltage dependency were evaluated by the following methods.

これらの結果をまとめて表3に示す。
((ターゲット材の使用効率および寿命の評価))
得られたITOスパッタリングターゲットの重量を測定した後、該ITOスパッタリングターゲットを下記の条件でスパッタリングし、μアーキングモニター(ランドマークテクノロジー社製)を使用して、アーク検出電圧100V、大中アークエネルギー境界50mJ、中小アークエネルギー境界10mJの条件で、スパッタリング開始からの累積アーク回数を測定し、累積アーク回数が50回に達したとき(ただし、スパッタリング開始から5分間に発生するアーキングの回数(以下、初期アークという。)を除く。)の投入電力量(Wh/cm2)を求め、これをITOスパッタリングターゲット材の寿命として評価した。
These results are summarized in Table 3.
((Evaluation of target material usage efficiency and life))
After the weight of the obtained ITO sputtering target was measured, the ITO sputtering target was sputtered under the following conditions, and an arc detection voltage of 100 V and an on / off arc energy boundary using a μ arcing monitor (manufactured by Landmark Technology). The cumulative number of arcs from the start of sputtering was measured under the conditions of 50 mJ and medium and small arc energy boundaries of 10 mJ. The input electric energy (Wh / cm 2 ) except for the arc) was determined, and this was evaluated as the lifetime of the ITO sputtering target material.

また、スパッタリング終了後のITOスパッタリングターゲットの重量(M2)を測定し、予め測定したスパッタリング開始前のITOスパッタリングターゲットの重量(M1)とともに以下の式に当てはめ、ITOスパッタリングターゲット材の使用効率(%)を求めて評価した。   Moreover, the weight (M2) of the ITO sputtering target after sputtering is measured, and applied to the following formula together with the weight (M1) of the ITO sputtering target before starting sputtering measured in advance, and the usage efficiency (%) of the ITO sputtering target material Was evaluated.

ターゲット材の使用効率(%)=100×(M1−M2)/M1
((スパッタリング時の酸素分圧依存性経時変化の評価))
得られたITOスパッタリングターゲットを用いて、下記の条件でプレスパッタおよびスパッタリングし、スパッタリング開始直後に成膜されたITO膜の比抵抗(a)(Ω・cm)と、積算投入電力40Wh/cm2時に成膜されたITO膜の比抵抗(b)(Ω・cm)とをそれぞれvan der Pauw法に基づき、ResiTest8308(東陽テクニカ製)にて測定した(ただし、初期アークの影響を除くため、15分間のプレスパッタ後にスパッタリングを開始した)。
Use efficiency of target material (%) = 100 × (M1-M2) / M1
((Evaluation of oxygen partial pressure dependence time-dependent change during sputtering))
Using the obtained ITO sputtering target, pre-sputtering and sputtering were performed under the following conditions, and the specific resistance (a) (Ω · cm) of the ITO film formed immediately after the start of sputtering and the cumulative input power 40 Wh / cm 2 The specific resistance (b) (Ω · cm) of the ITO film sometimes formed was measured with ResiTest 8308 (manufactured by Toyo Technica) based on the van der Pauw method (however, in order to eliminate the influence of the initial arc, 15 Sputtering was started after a minute pre-sputtering).

得られた比抵抗測定値を以下の式に当てはめ、スパッタリング時の酸素分圧依存性変化を膜比抵抗変化率(%)として求め、下記の基準で評価した。
膜比抵抗変化率(%)=100×|(a−b)/a|
評価基準; 大 :膜比抵抗変化率が20%超
中 :膜比抵抗変化率が15%超〜20%以下
小 :膜比抵抗変化率が15%以下
((スパッタリング時の電圧依存性経時変化の評価))
また、同様にして、15分間のプレスパッタ後にスパッタリングを行ない、膜厚1200ÅのITO膜を基板上に成膜するのに要する時間を、スパッタリング開始直後(c)と、積算投入電力40Wh/cm2時(d)の条件でそれぞれ測定し、得られた測定値を以下の式に当てはめ、スパッタリング時の電圧依存性変化を、スパッタレート低下率(%)として求め、下記の基準で評価した。
The obtained specific resistance measurement value was applied to the following formula, and the oxygen partial pressure dependency change during sputtering was determined as a film specific resistance change rate (%), and evaluated according to the following criteria.
Film resistivity change rate (%) = 100 × | (a−b) / a |
Evaluation Criteria; Large: Membrane resistivity change rate exceeds 20%
Middle: Film resistivity change rate is over 15% to 20%
Small: Rate of change in film resistivity is 15% or less ((Evaluation of voltage-dependent temporal change during sputtering))
Similarly, sputtering is performed after pre-sputtering for 15 minutes, and the time required to form an ITO film having a thickness of 1200 mm on the substrate is set immediately after the start of sputtering (c), and the cumulative input power is 40 Wh / cm 2. Each measurement was performed under the conditions of time (d), and the obtained measurement values were applied to the following formulas, and the voltage dependency change during sputtering was determined as the rate of decrease in sputtering rate (%) and evaluated according to the following criteria.

スパッタレート低下率(%)=100×|(c−d)/c|
評価基準; 大 :スパッタレート低下率が20%超
中 :スパッタレート低下率が10%超〜20%以下
小 :スパッタレート低下率が10%以下
<スパッタリング条件>
成膜条件:
装置;DCマグネトロンスパッタ装置、排気系;クライオポンプ、ロータリーポンプ
到達真空度;3.0×10-6Pa
スパッタ圧力;0.4Pa(窒素換算値、Ar圧力)、
酸素分圧;5×10-3Pa
投入電力;600W(1.85W/cm2
基板温度;250℃
基板;ガラス基板(コーニング#1737)板厚0.8mm
膜厚;1200Å
Sputter rate reduction rate (%) = 100 × | (cd) / c |
Evaluation criteria: Large: Sputter rate reduction rate exceeds 20%
Medium: Sputter rate reduction rate is over 10% to 20%
Small: Sputter rate reduction rate is 10% or less <Sputtering conditions>
Deposition conditions:
Equipment: DC magnetron sputtering equipment, exhaust system; cryopump, rotary pump Ultimate vacuum: 3.0 × 10 −6 Pa
Sputtering pressure: 0.4 Pa (nitrogen conversion value, Ar pressure),
Oxygen partial pressure: 5 × 10 −3 Pa
Input power: 600 W (1.85 W / cm 2 )
Substrate temperature: 250 ° C
Substrate: Glass substrate (Corning # 1737) Thickness 0.8mm
Film thickness: 1200mm

Figure 2007246315
Figure 2007246315

[実施例2]
表2に示した条件および図5に示した温度プロファイルに従い、焼成処理の冷却工程のうち、最高温度から400℃までの温度領域の平均降温レートを30℃/hourとした他は、実施例1と同様にしてITO焼結体を得た。
[Example 2]
Example 1 according to the conditions shown in Table 2 and the temperature profile shown in FIG. 5 except that the average temperature drop rate in the temperature range from the highest temperature to 400 ° C. was 30 ° C./hour in the cooling process of the firing process. In the same manner, an ITO sintered body was obtained.

得られたITO焼結体の比抵抗を実施例1と同様にして測定したところ、2.0×10-4(Ω・cm)であった。また、得られたITO焼結体の微細組織構造を実施例1と同様にして観察したところ、(i)Av1は300nm、(ii)Av2は280nmであり、(iii)微細粒子のばらつきは6.7%であった。なお、該ITO焼結体中央部および端部のIn23母相粒径はいずれも±1μmの範囲で均一であった。 When the specific resistance of the obtained ITO sintered body was measured in the same manner as in Example 1, it was 2.0 × 10 −4 (Ω · cm). Further, the microstructure of the obtained ITO sintered body was observed in the same manner as in Example 1. As a result, (i) Av1 was 300 nm, (ii) Av2 was 280 nm, and (iii) the variation in fine particles was 6 0.7%. The In 2 O 3 matrix particle size at the center and end of the ITO sintered body was uniform within a range of ± 1 μm.

次いで、実施例1と同様にして、ITOスパッタリングターゲットを作製し、ターゲット材の使用効率および寿命、スパッタリング時の酸素分圧依存性の経時変化および電圧依存性の経時変化について評価した。   Next, an ITO sputtering target was prepared in the same manner as in Example 1, and the usage efficiency and life of the target material, the oxygen partial pressure dependency with time and the voltage dependency with time during sputtering were evaluated.

結果を表3に示す。   The results are shown in Table 3.

Figure 2007246315
Figure 2007246315

[比較例1]
ローラーハースキルンを用いずに、以下の温度条件に設定したバッチ炉内で焼成処理を行った他は実施例1と同様にして、ITO焼結体を得た。
[Comparative Example 1]
An ITO sintered body was obtained in the same manner as in Example 1 except that the firing process was performed in a batch furnace set to the following temperature conditions without using a roller hearth kiln.

200℃→(100℃/hr)→800℃×2hr→(200℃/hr)→1600℃×8hr→(-200℃/hr)→400

得られたITO焼結体の比抵抗を実施例1と同様にして測定したところ、1.8×10-4(Ω・cm)であった。また、得られたITO焼結体の微細組織構造を実施例1と同様にして観察したところ、(i)Av1は70nm、(ii)Av2は30nmであり、(iii)微細粒子のばらつきは57.1%であった。なお、該ITO焼結体中央部および端部のIn23母相粒径はいずれも±1μmの範囲で均一であった。
200 ℃ → (100 ℃ / hr) → 800 ℃ × 2hr → (200 ℃ / hr) → 1600 ℃ × 8hr → (-200 ℃ / hr) → 400

When the specific resistance of the obtained ITO sintered body was measured in the same manner as in Example 1, it was 1.8 × 10 −4 (Ω · cm). Further, when the microstructure of the obtained ITO sintered body was observed in the same manner as in Example 1, it was found that (i) Av1 was 70 nm, (ii) Av2 was 30 nm, and (iii) dispersion of fine particles was 57. It was 1%. The In 2 O 3 matrix particle size at the center and end of the ITO sintered body was uniform within a range of ± 1 μm.

次いで、実施例1と同様にして、ITOスパッタリングターゲットを作製し、ターゲット材の使用効率および寿命、スパッタリング時の酸素分圧依存性の経時変化および電圧依存性の経時変化について評価した。   Next, an ITO sputtering target was prepared in the same manner as in Example 1, and the usage efficiency and life of the target material, the oxygen partial pressure dependency with time and the voltage dependency with time during sputtering were evaluated.

結果を表3に示す。
[比較例2]
ローラーハースキルンを用いずに、以下の温度条件に設定したバッチ炉内で焼成処理を行った他は実施例1と同様にして、ITO焼結体を得た。
The results are shown in Table 3.
[Comparative Example 2]
An ITO sintered body was obtained in the same manner as in Example 1 except that the firing process was performed in a batch furnace set to the following temperature conditions without using a roller hearth kiln.

200℃→(100℃/hr)→800℃×2hr→(200℃/hr)→1600℃×8hr→(-30℃/hr)→400℃
得られたITO焼結体の比抵抗を実施例1と同様にして測定したところ、2.2×10-4(Ω・cm)であった。また、得られたITO焼結体の微細組織構造を実施例1と同様にして観察したところ、(i)Av1は300nm、(ii)Av2は200nmであり、(iii)微細粒子のばらつきは33.3%であった。なお、該ITO焼結体中央部および端部のIn23母相粒径はいずれも±1μmの範囲で均一であった
次いで、実施例1と同様にして、ITOスパッタリングターゲットを作製し、ターゲット材の使用効率および寿命、スパッタリング時の酸素分圧依存性の経時変化および電圧依存性の経時変化について評価した。
200 ℃ → (100 ℃ / hr) → 800 ℃ × 2hr → (200 ℃ / hr) → 1600 ℃ × 8hr → (-30 ℃ / hr) → 400 ℃
When the specific resistance of the obtained ITO sintered body was measured in the same manner as in Example 1, it was 2.2 × 10 −4 (Ω · cm). Further, when the microstructure of the obtained ITO sintered body was observed in the same manner as in Example 1, it was found that (i) Av1 was 300 nm, (ii) Av2 was 200 nm, and (iii) dispersion of fine particles was 33. 3%. In addition, the In 2 O 3 matrix particle size of the ITO sintered body central portion and the end portion was both uniform within a range of ± 1 μm. Next, in the same manner as in Example 1, an ITO sputtering target was prepared, The use efficiency and life of the target material, the time-dependent change in oxygen partial pressure during sputtering and the time-dependent change in voltage dependence were evaluated.

結果を表3に示す。   The results are shown in Table 3.

Figure 2007246315
Figure 2007246315

表3より、式 −30 ≦ 100×(Av1−Av2)/Av1 ≦ 30の関係を満たす実施例1,2のITO焼結体から得られるITOスパッタリングターゲット材およびITOスパッタリングターゲットは、使用効率が高く、長寿命で、スパッタリング条件の経時変化が小さいことがわかる。その一方、上記式の関係を満たさない比較例1,2のITO焼結体から得られるITOスパッタリングターゲット材およびITOスパッタリングターゲットは、使用効率が低く、寿命が短く、スパッタリング条件の経時変化が大きいことがわかる。これは比較例1,2では、実施例1,2と異なり、ITOスパッタリングターゲット材の両端部におけるIn23母相粒中の微細粒子の形態のばらつきが大きいためと考えられる。 From Table 3, the ITO sputtering target material and the ITO sputtering target obtained from the ITO sintered bodies of Examples 1 and 2 satisfying the relationship of the formula −30 ≦ 100 × (Av1−Av2) / Av1 ≦ 30 have high use efficiency. It can be seen that the change in the sputtering conditions over time is small with a long life. On the other hand, the ITO sputtering target material and the ITO sputtering target obtained from the ITO sintered bodies of Comparative Examples 1 and 2 that do not satisfy the relationship of the above formula have low usage efficiency, short life, and large change in sputtering conditions over time. I understand. This is presumably because, in Comparative Examples 1 and 2, unlike Examples 1 and 2 , there are large variations in the form of fine particles in the In 2 O 3 parent phase grains at both ends of the ITO sputtering target material.

図1は、ITO焼結体(1)の微細組織構造の模式図である。FIG. 1 is a schematic diagram of the microstructure of the ITO sintered body (1). 図2は、ITO焼結体(2)の微細組織構造の模式図である。FIG. 2 is a schematic diagram of the microstructure of the ITO sintered body (2). 図3は、実施例1の成形用型の構造を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the structure of the molding die of Example 1. 図4は、実施例1の焼成処理の温度プロファイル図である。FIG. 4 is a temperature profile diagram of the baking treatment of Example 1. 図5は、実施例2の焼成処理の温度プロファイル図である。FIG. 5 is a temperature profile diagram of the baking treatment of Example 2.

符号の説明Explanation of symbols

1: スラリー
2: 成形用型枠
3: 成形用下型
4: フィルター
5: シール材
6: 水抜き孔
10: ITO焼結体
11: In23母相粒
12: 微細粒子
13: 粒界
14: 化合物相
15: 微細粒子フリーゾーン
1: Slurry 2: Molding for molding 3: Lower mold for molding 4: Filter 5: Sealing material 6: Drainage hole 10: ITO sintered body 11: In 2 O 3 parent phase grain 12: Fine particle 13: Grain boundary 14: Compound phase 15: Fine particle free zone

Claims (10)

下記式の関係を満たすことを特徴とするITO(Indium-Tin-Oxide)焼結体;
−30 ≦ 100×(Av1−Av2)/Av1 ≦ 30
式中、Av1は該焼結体中央部に存在するIn23母相粒内の微細粒子の最大径の平均値(nm)を、Av2は該焼結体端部に存在するIn23母相粒内の微細粒子の最大径の平均値(nm)を表す。
ITO (Indium-Tin-Oxide) sintered body characterized by satisfying the relationship of the following formula;
−30 ≦ 100 × (Av1−Av2) / Av1 ≦ 30
In the formula, Av1 is the average value (nm) of the maximum diameter of fine particles in the In 2 O 3 matrix phase grains present in the center of the sintered body, and Av2 is In 2 O present at the end of the sintered body. The average value (nm) of the maximum diameter of the fine particles in the three parent phase grains is represented.
さらに、前記Av1およびAv2が共に120nm以下であることを特徴とする請求項1に記載のITO焼結体。   Furthermore, both said Av1 and Av2 are 120 nm or less, The ITO sintered compact of Claim 1 characterized by the above-mentioned. さらに、前記Av1およびAv2が共に120nmより大きいことを特徴とする請求項1に記載のITO焼結体。   Furthermore, both said Av1 and Av2 are larger than 120 nm, The ITO sintered compact of Claim 1 characterized by the above-mentioned. スパッタリングターゲット材であることを特徴とする請求項1〜3のいずれかに記載のITO焼結体。   It is a sputtering target material, The ITO sintered compact in any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜3のいずれかに記載のITO焼結体と、バッキングプレートとを備えてなることを特徴とするITOスパッタリングターゲット。   An ITO sputtering target comprising the ITO sintered body according to any one of claims 1 to 3 and a backing plate. 粉末冶金法によりスパッタリングターゲット材を製造する方法であって、成形後の被焼成体を加熱する加熱工程と、加熱工程を経た後の被焼成体1つあたりについてその両端が温度勾配を有するように、50℃/hour以上の降温レートで冷却する冷却工程を含む焼成処理を行なうことを特徴とするスパッタリングターゲット材の製造方法。   A method for producing a sputtering target material by a powder metallurgy method, wherein a heating step for heating a fired body after molding and a temperature gradient at both ends of each fired body after the heating step are performed. A method for producing a sputtering target material, comprising performing a firing process including a cooling step of cooling at a temperature lowering rate of 50 ° C./hour or more. 粉末冶金法によりスパッタリングターゲット材を製造する方法であって、成形後の被焼成体を加熱する加熱工程と、加熱工程を経た後の被焼成体1つあたりについてその両端が温度勾配を有するように、50℃/hour未満の降温レートで冷却する冷却工程を含む焼成処理を行なうことを特徴とするスパッタリングターゲット材の製造方法。   A method for producing a sputtering target material by a powder metallurgy method, wherein a heating step for heating a fired body after molding and a temperature gradient at both ends of each fired body after the heating step are performed. A method for producing a sputtering target material, comprising performing a baking treatment including a cooling step of cooling at a temperature lowering rate of less than 50 ° C./hour. 前記スパッタリングターゲット材が、セラミックスからなることを特徴とする請求項6または7に記載のスパッタリングターゲット材の製造方法。   The said sputtering target material consists of ceramics, The manufacturing method of the sputtering target material of Claim 6 or 7 characterized by the above-mentioned. 前記スパッタリングターゲット材が、酸化インジウムを含有してなることを特徴とする請求項6または7に記載のスパッタリングターゲット材の製造方法。   The said sputtering target material contains indium oxide, The manufacturing method of the sputtering target material of Claim 6 or 7 characterized by the above-mentioned. 前記スパッタリングターゲット材がITOからなることを特徴とする請求項6または7に記載のスパッタリングターゲット材の製造方法。   The said sputtering target material consists of ITO, The manufacturing method of the sputtering target material of Claim 6 or 7 characterized by the above-mentioned.
JP2006069887A 2006-03-14 2006-03-14 ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material Active JP5091414B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006069887A JP5091414B2 (en) 2006-03-14 2006-03-14 ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material
KR1020070021991A KR101099472B1 (en) 2006-03-14 2007-03-06 Ito sintered body, sputtering target, and method for manufacturing sputtering target material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069887A JP5091414B2 (en) 2006-03-14 2006-03-14 ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material

Publications (2)

Publication Number Publication Date
JP2007246315A true JP2007246315A (en) 2007-09-27
JP5091414B2 JP5091414B2 (en) 2012-12-05

Family

ID=38590998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069887A Active JP5091414B2 (en) 2006-03-14 2006-03-14 ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material

Country Status (2)

Country Link
JP (1) JP5091414B2 (en)
KR (1) KR101099472B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121170A (en) * 1997-07-03 1999-01-26 Mitsubishi Materials Corp Sintering device of ito sintered compact
JP2002302761A (en) * 2001-04-06 2002-10-18 Tosoh Corp Ito sputtering target and production method therefor
WO2005019492A1 (en) * 2003-08-20 2005-03-03 Nikko Materials Co., Ltd. Ito sputtering target
WO2006006522A1 (en) * 2004-07-09 2006-01-19 Mitsui Mining & Smelting Co., Ltd. Sputtering target material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330169A (en) * 1997-05-29 1998-12-15 Tosoh Corp Production of ceramic sintered compact
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121170A (en) * 1997-07-03 1999-01-26 Mitsubishi Materials Corp Sintering device of ito sintered compact
JP2002302761A (en) * 2001-04-06 2002-10-18 Tosoh Corp Ito sputtering target and production method therefor
WO2005019492A1 (en) * 2003-08-20 2005-03-03 Nikko Materials Co., Ltd. Ito sputtering target
WO2006006522A1 (en) * 2004-07-09 2006-01-19 Mitsui Mining & Smelting Co., Ltd. Sputtering target material

Also Published As

Publication number Publication date
KR20070093817A (en) 2007-09-19
JP5091414B2 (en) 2012-12-05
KR101099472B1 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP5472353B2 (en) Silver-based cylindrical target and manufacturing method thereof
KR101552028B1 (en) Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
JP5158355B2 (en) Sputtering target made of sintered oxide
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
TWI661069B (en) Manufacturing method of sputtering target
JP4885305B2 (en) Sintered body target and method for producing sintered body
CN111910160B (en) Preparation method of aluminum-scandium target material
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
JP2009040620A (en) Ito sintered body and ito sputtering target
WO2013103029A1 (en) Indium sputtering target, and method for producing same
JP5285149B2 (en) Sintered body for ZnO-Ga2O3-based sputtering target and method for producing the same
JP5299415B2 (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
JP5969493B2 (en) Sputtering target and manufacturing method thereof
JP2009040621A (en) Ito sintered body and ito sputtering target
JP5091414B2 (en) ITO sintered body, sputtering target material, sputtering target, and method for producing sputtering target material
JP4562664B2 (en) ITO sintered body and ITO sputtering target
JP6088768B2 (en) Method for producing Cu-Ga based alloy target
JP2007211265A (en) Ito sintered body and ito sputtering target
JP5497479B2 (en) Sputtering target
KR20160073216A (en) Manufacturing method of nickel alloy targetfor semiconductor and nickel alloy target for semiconductor manufactured thereby
CN111936660A (en) Cu-Ni alloy sputtering target
CN111448336B (en) Oxide sintered body, sputtering target, and oxide thin film
JP2000064034A (en) Alumina sputtering target, its production and high- frequency sputtering device
JP2013112833A (en) Sputtering target material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250