JP2007245454A - Manufacturing method of laminated film and optical film - Google Patents

Manufacturing method of laminated film and optical film Download PDF

Info

Publication number
JP2007245454A
JP2007245454A JP2006070466A JP2006070466A JP2007245454A JP 2007245454 A JP2007245454 A JP 2007245454A JP 2006070466 A JP2006070466 A JP 2006070466A JP 2006070466 A JP2006070466 A JP 2006070466A JP 2007245454 A JP2007245454 A JP 2007245454A
Authority
JP
Japan
Prior art keywords
functional layer
laminated
film
atmospheric pressure
treatment under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006070466A
Other languages
Japanese (ja)
Inventor
Kunio Ishii
邦夫 石井
Yuki Watanabe
祐樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006070466A priority Critical patent/JP2007245454A/en
Publication of JP2007245454A publication Critical patent/JP2007245454A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a laminated film, which is enhanced in the adhesion between a transparent base material film and a functional layer or between functional layer and another functional layer laminated on the functional layer in a case that the continuously running long and wide transparent base material film is used as a support, using more simplified equipment. <P>SOLUTION: In the laminated film wherein the transparent base material film is used as the support, the functional layer is provided on the surface of the support and at least one kind of another functional layer different in composition from the functional layer is applied or laminated to the functional layer, plasma treatment and ultraviolet treatment are successively applied to the surface of the functional layer to be laminated under atmospheric pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、透明基材フィルムと機能層、又は機能層と組成の異なる他の機能層との間の密着性を向上させる積層フィルムの製造方法に関する。   The present invention relates to a method for producing a laminated film that improves adhesion between a transparent substrate film and a functional layer, or between a functional layer and another functional layer having a different composition.

透明基材フィルムを支持体とし、その表面に機能層を設けたり、該機能層の表面にさらに他の機能層を積層したりすることで作製される、いわゆる光学フィルムの製造において、該支持体に機能層を設ける際、または、機能層に他の機能層を積層する際、互いの組成が大きく異なると、得てして充分な密着性が得られないことが多い。   In the production of a so-called optical film produced by using a transparent substrate film as a support and providing a functional layer on the surface, or further laminating another functional layer on the surface of the functional layer, the support When a functional layer is provided on the substrate, or when another functional layer is laminated on the functional layer, if the compositions differ greatly, it is often impossible to obtain sufficient adhesion.

例えば、液晶ディスプレイに代表される各種ディスプレイの表面には、透明基材フィルム上に耐擦傷性機能を有するハードコート層が設けられ、外光の反射によるコントラスト低下や像の映り込みを防止するための反射防止層をハードコート層に積層する。この場合、ハードコート層と反射防止層で組成が大きく異なる場合、充分な密着性が得られない。   For example, the surface of various displays typified by liquid crystal displays is provided with a hard coat layer having a scratch resistance function on a transparent substrate film, in order to prevent contrast degradation and image reflection due to reflection of external light. The antireflection layer is laminated on the hard coat layer. In this case, when the composition differs greatly between the hard coat layer and the antireflection layer, sufficient adhesion cannot be obtained.

また、偏光板用の保護フィルムに、ヨウ素や染料を吸着配向させたポリビニルアルコールフィルムを貼り合わせた偏光板の場合、保護フィルムとポリビニルアルコールフィルムとの密着性の向上が問題となる。   In the case of a polarizing plate in which a protective film for polarizing plate is bonded with a polyvinyl alcohol film in which iodine or a dye is adsorbed and oriented, improvement in adhesion between the protective film and the polyvinyl alcohol film becomes a problem.

そのため、従来から積層又は密着させる面を強アルカリ液に浸漬させ、鹸化処理することで表面を親水化させ、密着性を向上させることが図られてきた。例えば、特許文献1のように、三酢酸セルロース上に光学異方性層を積層する際、密着性を改良するために、三酢酸セルロースを鹸化することが効果的であることが知られている。   For this reason, it has been conventionally attempted to improve the adhesion by soaking the surface to be laminated or intimately in a strong alkaline solution and saponifying the surface. For example, as in Patent Document 1, it is known that saponification of cellulose triacetate is effective for improving adhesion when laminating an optically anisotropic layer on cellulose triacetate. .

また、密着性を向上させる手法として、コロナ処理面あるいはUVオゾン処理がある。例えば、特許文献2のように、偏光子保護フィルムと偏光子フィルムとの密着性を向上させるために、コロナ処理あるいはUVオゾン処理を施すことが知られている。   Further, as a technique for improving the adhesion, there is a corona-treated surface or UV ozone treatment. For example, as in Patent Document 2, it is known to perform corona treatment or UV ozone treatment in order to improve the adhesion between the polarizer protective film and the polarizer film.

さらに、特許文献3のように、フッ素樹脂表面を低温プラズマ処理した後、エキシマレーザー光又はArFエキシマレーザー光照射処理に付すことを特徴とする表面改質法が知られている。   Further, as in Patent Document 3, a surface modification method characterized by subjecting a fluororesin surface to a low-temperature plasma treatment and then subjecting it to excimer laser light or ArF excimer laser light irradiation treatment is known.

特開平8−94838号公報JP-A-8-94838 特開2002−328224号公報JP 2002-328224 A 特開平6−220228号公報Japanese Patent Laid-Open No. 6-220228

しかしながら、アルカリ処理に関しては、廃液等の環境負荷や高濃度のアルカリ溶液を使用することによる安全面での問題がある。また、独立した大型の設備が必要となるため、工程が複雑化するという欠点がある。   However, with regard to the alkali treatment, there are safety problems due to the environmental load such as waste liquid and the use of a high concentration alkaline solution. Moreover, since an independent large-sized installation is needed, there exists a fault that a process becomes complicated.

また、UVオゾン処理あるいはコロナ処理による表面処理は、アルカリ処理のような環境・安全面での問題や工程の複雑化といった問題は比較的少ない。しかしながら、UVオゾン処理に関しては処理時間が遅く、コロナ処理に関しては、高速走行処理は可能だが、効果が弱いという欠点がある。   In addition, surface treatment by UV ozone treatment or corona treatment has relatively few problems such as alkali treatment, such as environmental and safety problems and complicated processes. However, with respect to UV ozone treatment, the treatment time is slow, and with respect to corona treatment, high-speed running treatment is possible, but there is a drawback that the effect is weak.

また、低温プラズマ処理した後エキシマレーザー光、又は、ArFエキシマレーザー光照射処理減圧下での処理をする場合、低温プラズマ処理については真空雰囲気下で行うため大きい装置が必要となり、レーザー光による処理は、均一処理が難しい。また、どちらも連続して走行する長尺かつ幅広なフィルムを均一に処理するには不向きである。   In addition, when excimer laser light or ArF excimer laser light irradiation treatment is performed under reduced pressure after low-temperature plasma treatment, a large apparatus is required because low-temperature plasma treatment is performed in a vacuum atmosphere. Uniform processing is difficult. Both are unsuitable for uniformly processing a long and wide film that runs continuously.

従って、本発明は、連続で走行する長尺かつ幅広な透明基材フィルムと機能層、又は機能層と該機能層に積層する他の機能層との間の密着性の向上を図ることを課題とした。   Therefore, the present invention has an object to improve the adhesion between a long and wide transparent substrate film that runs continuously and a functional layer, or between the functional layer and another functional layer laminated on the functional layer. It was.

本発明は、前記課題を鑑みてなされたものであって、走行する長尺かつ幅広な透明基材フィルムと機能層、又は機能層と組成の異なる他の機能層との間の密着性を向上させるために、より簡略化された設備で、かつ連続して均一な表面改質を高速で行うことを目的とするものである。   The present invention has been made in view of the above problems, and improves adhesion between a long and wide transparent substrate film that travels and a functional layer, or another functional layer having a composition different from that of the functional layer. Therefore, it is an object to perform uniform surface modification at a high speed with a simplified equipment and continuously.

請求項1記載の発明は、透明基材フィルムを支持体とし、該支持体表面に機能層を設ける積層フィルムの製造方法において、
該支持体表面に大気圧下でのプラズマ処理、次いで大気圧下での紫外線処理を施した後、該支持体表面に機能層を塗布又は貼り合せることを特徴とする積層フィルムの製造方法である。
The invention according to claim 1 is a method for producing a laminated film in which a transparent substrate film is used as a support, and a functional layer is provided on the support surface.
A method for producing a laminated film comprising applying a functional layer to a surface of the support after applying a plasma treatment to the surface of the support under an atmospheric pressure and then an ultraviolet treatment under an atmospheric pressure. .

請求項2記載の発明は、透明基材フィルムを支持体とし、該支持体表面に機能層2を設け、さらに該機能層2表面に組成の異なる他の機能層3を、1種又は2種以上積層する積層フィルムの製造方法において、
該機能層2表面に大気圧下でのプラズマ処理、次いで大気圧下での紫外線処理を施した後、該機能層2表面に組成の異なる他の機能層3を、塗布又は貼り合せによって1種又は2種以上積層することを特徴とする積層フィルムの製造方法である。
The invention according to claim 2 uses a transparent base film as a support, the functional layer 2 is provided on the surface of the support, and one or two other functional layers 3 having different compositions are provided on the surface of the functional layer 2. In the manufacturing method of the laminated film laminated above,
After subjecting the surface of the functional layer 2 to plasma treatment under atmospheric pressure and then ultraviolet treatment under atmospheric pressure, another functional layer 3 having a different composition is applied to the surface of the functional layer 2 by coating or bonding. Or it is a manufacturing method of the laminated | multilayer film characterized by laminating | stacking 2 or more types.

請求項3記載の発明は、前記プラズマ処理において、プラズマ放電によって生じる活性種が持つエネルギーが紫外線の照射エネルギーより大きいことを特徴とする請求項1または2に記載の積層フィルムの製造方法である。   The invention according to claim 3 is the method for producing a laminated film according to claim 1 or 2, wherein, in the plasma treatment, the energy of the active species generated by the plasma discharge is larger than the irradiation energy of ultraviolet rays.

請求項4記載の発明は、前記大気圧下でのプラズマ処理として、グロー放電、コロナ放電を施すことを特徴とする請求項1〜3のいずれかに記載の積層フィルムの製造方法である。   Invention of Claim 4 is a manufacturing method of the laminated | multilayer film in any one of Claims 1-3 which performs glow discharge and corona discharge as said plasma processing under the atmospheric pressure.

請求項5記載の発明は、前記大気圧下でのプラズマ処理において、窒素又は不活性ガスのうち1種又は2種以上のガスに、酸素、空気、オゾン、二酸化炭素、一酸化炭素、水蒸気、過酸化水素のうち1種又は2種以上を添加することを特徴とする請求項1〜4のいずれかに記載の積層フィルムの製造方法である。   The invention according to claim 5 is characterized in that, in the plasma treatment under atmospheric pressure, oxygen, air, ozone, carbon dioxide, carbon monoxide, water vapor, one or more of nitrogen or an inert gas, One type or two or more types of hydrogen peroxide are added, It is a manufacturing method of the laminated film in any one of Claims 1-4 characterized by the above-mentioned.

請求項6記載の発明は、前記大気圧下での紫外線処理として、波長172nmのエキシマ紫外線を照射させることを特徴とする請求項1〜5のいずれかに記載の積層フィルムの製造方法である。   The invention according to claim 6 is the method for producing a laminated film according to any one of claims 1 to 5, wherein an excimer ultraviolet ray having a wavelength of 172 nm is irradiated as the ultraviolet ray treatment under the atmospheric pressure.

請求項7記載の発明は、前記大気圧下での紫外線処理において、窒素、不活性ガス、酸素、オゾン、二酸化炭素、一酸化炭素、水蒸気、過酸化水素のうち1種又は2種以上のガスを添加することを特徴とする請求項1〜6のいずれかに記載の積層フィルムの製造方法である。   The invention according to claim 7 is one or two or more of nitrogen, inert gas, oxygen, ozone, carbon dioxide, carbon monoxide, water vapor, and hydrogen peroxide in the ultraviolet treatment under atmospheric pressure. It is a manufacturing method of the laminated | multilayer film in any one of Claims 1-6 characterized by the above-mentioned.

請求項8記載の発明は、請求項1〜7のいずれかに記載された積層フィルムの製造方法により製造された光学フィルムである。   Invention of Claim 8 is the optical film manufactured by the manufacturing method of the laminated | multilayer film in any one of Claims 1-7.

本発明の方法を用いることにより、走行する長尺かつ幅広な透明基材フィルムと機能層、又は機能層と組成の異なる他の機能層との間の密着性を、より簡略化された設備で、かつ連続して均一な表面改質を高速で行うことで向上させるという効果を発現する。   By using the method of the present invention, the adhesion between a long and wide transparent substrate film that travels and the functional layer, or the functional layer and another functional layer having a different composition, can be further simplified. Moreover, the effect of improving by performing uniform surface modification at a high speed continuously is exhibited.

走行する長尺かつ幅広な透明基材フィルムと機能層、又は機能層と該機能層に積層される他の機能層との間の密着性を向上させるために、次のような順序で表面処理を行うのがよい。   Surface treatment is performed in the following order in order to improve the adhesion between the long and wide transparent base film that travels and the functional layer, or between the functional layer and another functional layer laminated on the functional layer. It is good to do.

第一にグロー放電又はコロナ放電のようなプラズマ処理を施すのがよい。グロー放電又はコロナ放電により生じたラジカル、イオン、電子などの活性種により、処理面上の洗浄効果とともに、処理表面の主鎖の結合が切断されることで、表面に凹凸を形成することが可能である。   First, plasma treatment such as glow discharge or corona discharge is preferably performed. The active species such as radicals, ions, and electrons generated by glow discharge or corona discharge can cut the main chain bond on the treated surface along with the cleaning effect on the treated surface, thereby forming irregularities on the surface. It is.

より密着性を向上させるために、プラズマガスに酸素、オゾン、二酸化炭素、一酸化炭素、水蒸気、過酸化水素のうち1種又は2種以上を添加することが望ましい。これにより、結合が切断されると同時に、処理表面の酸素含有率を高め、より多くのヒドロキシル基、カルボニル基、カルボキシル基などの親水基を導入できる。   In order to further improve the adhesion, it is desirable to add one or more of oxygen, ozone, carbon dioxide, carbon monoxide, water vapor, and hydrogen peroxide to the plasma gas. Thereby, at the same time as the bond is broken, the oxygen content on the treated surface is increased, and more hydrophilic groups such as hydroxyl groups, carbonyl groups, and carboxyl groups can be introduced.

第二に紫外線処理を施すのがよい。紫外線を照射することにより、大気中の酸素からオゾンが生成し、そのオゾンから分離した酸素ラジカルが処理表面の主鎖に導入される。ここで、紫外線処理の前にプラズマ処理ないしはコロナ処理を施し、処理面の洗浄や処理表面の主鎖の結合が切断されているため、効率的に処理表面の酸素含有率を高めることが可能となる。   Second, it is better to perform ultraviolet treatment. By irradiating with ultraviolet rays, ozone is generated from oxygen in the atmosphere, and oxygen radicals separated from the ozone are introduced into the main chain of the treatment surface. Here, plasma treatment or corona treatment is performed before ultraviolet treatment, and the treatment surface is cleaned and the bond of the main chain of the treatment surface is broken, so that the oxygen content of the treatment surface can be increased efficiently. Become.

処理の順序に関しては、第一に高エネルギー処理であるプラズマ処理、第二に高効率で表面分子に酸素を導入できる紫外線処理を施すのがよい。逆に第一に紫外線処理、第二にプラズマ処理を行うと、充分な密着性が得られない場合がある。ここで、プラズマ放電によって生じる活性種の持つエネルギーが紫外線の照射エネルギーより大きい方がよい。表面改質スピードが高速化する効果がある。   Regarding the order of the treatment, it is preferable to firstly perform a plasma treatment which is a high-energy treatment, and secondly, an ultraviolet treatment which can introduce oxygen into surface molecules with high efficiency. On the other hand, if the ultraviolet treatment is first and the plasma treatment is second, sufficient adhesion may not be obtained. Here, it is preferable that the energy of the active species generated by the plasma discharge is larger than the irradiation energy of ultraviolet rays. This has the effect of increasing the surface modification speed.

より効率的に酸素原子を処理表面に導入するために、エキシマ紫外線を用いるとよい。エキシマ紫外線の波長は172nmであり、酸素から効率よく酸素ラジカルを生成するため、効率的に処理表面の酸素含有率を高めることが可能となる。   In order to introduce oxygen atoms into the treatment surface more efficiently, excimer ultraviolet light may be used. The wavelength of the excimer ultraviolet light is 172 nm, and oxygen radicals are efficiently generated from oxygen, so that the oxygen content on the treated surface can be increased efficiently.

さらに効率よく酸素ラジカルを生成させるために、窒素、不活性ガス、酸素、オゾン、二酸化炭素、一酸化炭素、水蒸気、過酸化水素のうち1種又は2種以上のガスを入れるとよい。好ましくは、紫外線吸収の少ない窒素と、改質効果の高い酸素を含んだ雰囲気がよい。   In order to generate oxygen radicals more efficiently, one or more gases among nitrogen, inert gas, oxygen, ozone, carbon dioxide, carbon monoxide, water vapor, and hydrogen peroxide may be added. An atmosphere containing nitrogen that absorbs less ultraviolet light and oxygen that has a high reforming effect is preferable.

プラズマ処理及び紫外線処理は大気圧下で行うため、減圧装置が不要であり、設備の簡素化に寄与できる。また、連続処理が可能であるため、長尺かつ幅広なフィルムを処理するのには適している。   Since the plasma treatment and the ultraviolet treatment are performed under atmospheric pressure, a decompression device is unnecessary, which can contribute to simplification of equipment. Moreover, since continuous processing is possible, it is suitable for processing a long and wide film.

図1は、光学フィルムの一例を示したものである。
透明基材フィルム1は、アセチルセルロース、トリアセチルセルロース等のセルロース系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系フィルム、ポリメチルメタクリレート等のアクリル系フィルム等が挙げられるが、これらに限定されるものではない。
FIG. 1 shows an example of an optical film.
Examples of the transparent substrate film 1 include cellulose films such as acetyl cellulose and triacetyl cellulose, polyester films such as polyethylene terephthalate and polyethylene naphthalate, and acrylic films such as polymethyl methacrylate, but are not limited thereto. It is not a thing.

積層される機能層(前記機能層2又は3も含む)は、例えば、高硬度、反射防止、防眩、偏光などの機能を有し、組成としては、ポリエステル系、アクリル系、ウレタン系、アミド系、ポリビニルアルコール系、エポキシ系、シリコーン系等が挙げられるが、これらに限定されるものではない。また、該機能層には、シリカ、二酸化チタン等の微粒子や、ヨウ素や二色性染料等の二色性物質、フッ素系材料が添加されているものを含んでいてもよい。   The functional layer to be laminated (including the functional layer 2 or 3) has, for example, functions such as high hardness, antireflection, anti-glare, and polarization, and the composition thereof is polyester, acrylic, urethane, amide. System, polyvinyl alcohol system, epoxy system, silicone system and the like, but are not limited thereto. The functional layer may contain fine particles such as silica and titanium dioxide, dichroic substances such as iodine and dichroic dyes, and those to which a fluorine-based material is added.

ここで、透明基材フィルム表面に機能層を積層する方法としては、塗布または貼り合せによる方法が挙げられる。同様に、透明基材フィルム表面に機能層2を設け、さらに該機能層2表面に組成の異なる他の機能層3を積層する方法として、塗布または貼り合せによる方法が挙げられる。
塗布方法は、カーテン塗布、グラビア塗布、スロット塗布、ロッド塗布などが挙げられるが、これらに限定されるものではない。また、貼り合せには、必要に応じて接着剤などを介してもよい。
Here, as a method of laminating a functional layer on the surface of the transparent substrate film, a method by coating or bonding may be mentioned. Similarly, as a method of providing the functional layer 2 on the surface of the transparent substrate film and further laminating another functional layer 3 having a different composition on the surface of the functional layer 2, a method by coating or bonding may be mentioned.
Examples of the coating method include curtain coating, gravure coating, slot coating, and rod coating, but are not limited thereto. In addition, an adhesive or the like may be used for bonding.

光学フィルム4とは、透明基材フィルム1に機能層を1種又は2種以上積層することで、例えば、高硬度、反射防止、防眩、偏光などの機能を発現するフィルムである。   The optical film 4 is a film that exhibits functions such as high hardness, antireflection, antiglare, and polarization by laminating one or more functional layers on the transparent base film 1.

透明基材フィルムに厚さ80μmのトリアセチルセルロースを用い、紫外線硬化型アクリル系樹脂が主成分のハードコート用塗布液を塗布し、70℃で1分間乾燥させた後、紫外線硬化させることで、ハードコート層を形成した。   By using triacetyl cellulose with a thickness of 80 μm for the transparent substrate film, applying a coating solution for hard coat whose main component is an ultraviolet curable acrylic resin, drying at 70 ° C. for 1 minute, and then curing with ultraviolet rays, A hard coat layer was formed.

フィルム上に形成したハードコート層表面に、はじめにグロー放電によるプラズマ処理を施し、次いでエキシマ紫外線を照射させた。   The surface of the hard coat layer formed on the film was first subjected to plasma treatment by glow discharge, and then irradiated with excimer ultraviolet rays.

上記処理を施した後ハードコート層表面に、テトラエトキシシランを主成分とし1.0N−HClを触媒とした低屈折率塗布液を塗布し、120℃で5分間乾燥させることで、反射防止層を形成した。   After applying the above-mentioned treatment, a low-refractive index coating solution containing tetraethoxysilane as a main component and 1.0N-HCl as a catalyst is applied to the surface of the hard coat layer and dried at 120 ° C. for 5 minutes. Formed.

グロー放電によるプラズマ処理は、ADMASTER−350b(株式会社イー・スクエア社製)を用い、大気圧下でプラズマガス(窒素とクリーンドライエア、比率4000:3)を流した。また、フィルムの搬送速度を1.5m/minとした。   For the plasma treatment by glow discharge, ADMASTER-350b (manufactured by E-Square Co., Ltd.) was used, and plasma gas (nitrogen and clean dry air, ratio 4000: 3) was allowed to flow under atmospheric pressure. Moreover, the conveyance speed of the film was 1.5 m / min.

エキシマ紫外線処理は、UEEX503(岩崎電気株式会社製)を用い、大気中でランプ照射面とフィルムとの距離を3mmに設定した。また、フィルムの搬送速度を1.5m/minとした。   Excimer ultraviolet treatment used UEEX503 (made by Iwasaki Electric Co., Ltd.), and set the distance between the lamp irradiation surface and the film to 3 mm in the atmosphere. Moreover, the conveyance speed of the film was 1.5 m / min.

<比較例1>
フィルム上に形成したハードコート層表面に、はじめにエキシマ紫外線を照射させ、次いでグロー放電によるプラズマ処理を施した他は、実施例1と同様である。
<Comparative Example 1>
Except that the surface of the hard coat layer formed on the film was first irradiated with excimer ultraviolet light and then subjected to plasma treatment by glow discharge, the same as in Example 1.

<比較例2>
フィルム上に形成したハードコート層表面に、グロー放電によるプラズマ処理のみを施した他は、実施例1と同様である。
<Comparative example 2>
The same as Example 1 except that the surface of the hard coat layer formed on the film was only subjected to plasma treatment by glow discharge.

<比較例3>
フィルム上に形成したハードコート層表面に、エキシマ紫外線を照射のみを施した他は、実施例1と同様である。
<Comparative Example 3>
The same as Example 1 except that the surface of the hard coat layer formed on the film was only irradiated with excimer ultraviolet rays.

<比較例4>
フィルム上に形成したハードコート層表面に、アルカリ処理を施した他は、実施例1と同様である。
<Comparative example 4>
Example 1 is the same as Example 1 except that the surface of the hard coat layer formed on the film is subjected to alkali treatment.

アルカリ処理は、40℃の1.5N−NaOH溶液にフィルムを5分間浸漬し、その後、水洗し乾燥させた。   In the alkali treatment, the film was immersed in a 1.5N NaOH solution at 40 ° C. for 5 minutes, then washed with water and dried.

実施例1、比較例1、比較例2、比較例3及び比較例4で作製した光学フィルムにおける、ハードコート層表面の物性と該ハードコート層と反射防止層との密着性の評価は、以下の方法を用いた。   In the optical films produced in Example 1, Comparative Example 1, Comparative Example 2, Comparative Example 3 and Comparative Example 4, the physical properties of the hard coat layer surface and the evaluation of the adhesion between the hard coat layer and the antireflection layer are as follows. The method of was used.

上記処理を施したハードコート層表面について、接触角計(協和界面科学株式会社製)で水滴接触角を測定し、ハードコート表面の親水性を評価した。   The surface of the hard coat layer subjected to the above treatment was measured for water droplet contact angle with a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.) to evaluate the hydrophilicity of the hard coat surface.

密着性に関しては、スチールウール(#0000)により、加重250gで10往復擦り、傷のつき方を目視評価した。傷のつき方は、以下の4段階で評価した。◎:傷を確認することが出来ない、○:数本の傷を確認できる、△:十数本の傷を確認できる、×:多数の傷を確認できる。   Regarding adhesion, steel wool (# 0000) was rubbed 10 reciprocally at a load of 250 g, and the scratching was visually evaluated. The method of scratching was evaluated according to the following four levels. :: Scratches cannot be confirmed, ○: Several scratches can be confirmed, △: Dozens of scratches can be confirmed, ×: Many scratches can be confirmed.

Figure 2007245454
Figure 2007245454

以上の結果から、機能層を積層する表面に、第一に大気圧下でのプラズマ処理、第二にエキシマ紫外線処理を行うことで、該機能層に積層する他の機能層との密着性が向上することを見出した。また、アルカリ処理と同程度の密着性を得られることから、アルカリ処理のもつ環境負荷や安全面での問題を解消でき、より簡略化された設備でかつ連続して均一な表面改質を行うことが可能となる。   From the above results, the surface to be laminated with the functional layer is first subjected to plasma treatment under atmospheric pressure and secondly excimer ultraviolet treatment, so that adhesion to other functional layers to be laminated on the functional layer is improved. I found it to improve. In addition, because it can achieve the same level of adhesion as alkali treatment, it can solve the environmental load and safety problems associated with alkali treatment, and it can perform uniform surface modification with more simplified equipment. It becomes possible.

光学フィルムの一例である。It is an example of an optical film.

符号の説明Explanation of symbols

1 透明基材フィルム
2 機能層
3 2と組成の異なる機能層
4 光学フィルム
DESCRIPTION OF SYMBOLS 1 Transparent base film 2 Functional layer 3 Functional layer whose composition is different from 2 4 Optical film

Claims (8)

透明基材フィルムを支持体とし、該支持体表面に機能層を設ける積層フィルムの製造方法において、
該支持体表面に大気圧下でのプラズマ処理、次いで大気圧下での紫外線処理を施した後、該支持体表面に機能層を塗布又は貼り合せることを特徴とする積層フィルムの製造方法。
In the method for producing a laminated film in which a transparent base film is used as a support and a functional layer is provided on the support surface
A method for producing a laminated film, wherein the support surface is subjected to plasma treatment under atmospheric pressure and then subjected to ultraviolet treatment under atmospheric pressure, and then a functional layer is applied or bonded to the surface of the support.
透明基材フィルムを支持体とし、該支持体表面に機能層2を設け、さらに該機能層2表面に組成の異なる他の機能層3を、1種又は2種以上積層する積層フィルムの製造方法において、
該機能層2表面に大気圧下でのプラズマ処理、次いで大気圧下での紫外線処理を施した後、該機能層2表面に組成の異なる他の機能層3を、塗布又は貼り合せによって1種又は2種以上積層することを特徴とする積層フィルムの製造方法。
A method for producing a laminated film in which a transparent base film is used as a support, the functional layer 2 is provided on the surface of the support, and one or more other functional layers 3 having different compositions are laminated on the surface of the functional layer 2 In
After subjecting the surface of the functional layer 2 to plasma treatment under atmospheric pressure and then ultraviolet treatment under atmospheric pressure, another functional layer 3 having a different composition is applied to the surface of the functional layer 2 by coating or bonding. Or the manufacturing method of the laminated | multilayer film characterized by laminating | stacking 2 or more types.
前記プラズマ処理において、プラズマ放電によって生じる活性種が持つエネルギーが紫外線の照射エネルギーより大きいことを特徴とする請求項1または2に記載の積層フィルムの製造方法。   The method for producing a laminated film according to claim 1 or 2, wherein in the plasma treatment, the energy of active species generated by plasma discharge is greater than the irradiation energy of ultraviolet rays. 前記大気圧下でのプラズマ処理として、グロー放電、コロナ放電を施すことを特徴とする請求項1〜3のいずれかに記載の積層フィルムの製造方法。   The method for producing a laminated film according to claim 1, wherein glow discharge or corona discharge is performed as the plasma treatment under atmospheric pressure. 前記大気圧下でのプラズマ処理において、窒素又は不活性ガスのうち1種又は2種以上のガスに、酸素、空気、オゾン、二酸化炭素、一酸化炭素、水蒸気、過酸化水素のうち1種又は2種以上を添加することを特徴とする請求項1〜4のいずれかに記載の積層フィルムの製造方法。   In the plasma treatment under atmospheric pressure, one or more of oxygen, air, ozone, carbon dioxide, carbon monoxide, water vapor, and hydrogen peroxide may be added to one or more of nitrogen or an inert gas. 2 or more types are added, The manufacturing method of the laminated | multilayer film in any one of Claims 1-4 characterized by the above-mentioned. 前記大気圧下での紫外線処理として、波長172nmのエキシマ紫外線を照射させることを特徴とする請求項1〜5のいずれかに記載の積層フィルムの製造方法。   The method for producing a laminated film according to claim 1, wherein excimer ultraviolet light having a wavelength of 172 nm is irradiated as the ultraviolet treatment under atmospheric pressure. 前記大気圧下での紫外線処理において、窒素、不活性ガス、酸素、オゾン、二酸化炭素、一酸化炭素、水蒸気、過酸化水素のうち1種又は2種以上のガスを添加することを特徴とする請求項1〜6のいずれかに記載の積層フィルムの製造方法。   In the ultraviolet treatment under the atmospheric pressure, one or more kinds of gases among nitrogen, inert gas, oxygen, ozone, carbon dioxide, carbon monoxide, water vapor, and hydrogen peroxide are added. The manufacturing method of the laminated | multilayer film in any one of Claims 1-6. 請求項1〜7のいずれかに記載された積層フィルムの製造方法により製造された光学フィルム。   The optical film manufactured by the manufacturing method of the laminated | multilayer film in any one of Claims 1-7.
JP2006070466A 2006-03-15 2006-03-15 Manufacturing method of laminated film and optical film Pending JP2007245454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070466A JP2007245454A (en) 2006-03-15 2006-03-15 Manufacturing method of laminated film and optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070466A JP2007245454A (en) 2006-03-15 2006-03-15 Manufacturing method of laminated film and optical film

Publications (1)

Publication Number Publication Date
JP2007245454A true JP2007245454A (en) 2007-09-27

Family

ID=38590244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070466A Pending JP2007245454A (en) 2006-03-15 2006-03-15 Manufacturing method of laminated film and optical film

Country Status (1)

Country Link
JP (1) JP2007245454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071133A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass and image display device, and production method of antireflection film
US10338276B2 (en) 2014-09-12 2019-07-02 Fujifilm Corporation Antireflective film, polarizing plate, cover glass, image display device, and method of manufacturing antireflective film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10338276B2 (en) 2014-09-12 2019-07-02 Fujifilm Corporation Antireflective film, polarizing plate, cover glass, image display device, and method of manufacturing antireflective film
JP2016071133A (en) * 2014-09-30 2016-05-09 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass and image display device, and production method of antireflection film

Similar Documents

Publication Publication Date Title
JP6935463B2 (en) Protective film for polarizing plate and polarizing plate using it
WO2009110152A1 (en) Transparent resin plate and method for producing the same
JP5331537B2 (en) Transparent support, optical film, polarizing plate, and image display device
JP5202819B2 (en) Method for producing antireflection film
JP5380025B2 (en) Antireflection film, polarizing plate, image display device, and method for producing transparent support for antireflection film
JP5135758B2 (en) Film surface treatment equipment
WO2013114979A1 (en) Polarizing plate, method for manufacturing polarizing plate and liquid crystal display device
WO2005093464A1 (en) Method for producing antireflective film, antireflective film, polarizing plate and image display
WO2007114364A1 (en) Optical laminated body and method for manufacturing optical laminated body
JP4135232B2 (en) Hard coat film or sheet
JP6873411B2 (en) Optical laminate and its manufacturing method and application
JP2015024511A (en) Multilayer film, polarizing plate protective film, and polarizing plate
JP5194381B2 (en) Surface treatment equipment
WO2022014569A1 (en) Optical film with anti-fouling layer
JP2016001305A (en) Optical polyester film and polarizing plate using the same, and transparent conductive film
CN107207753B (en) Hard coat film, polarizing plate, liquid crystal display device, and method for producing hard coat film
JP2007245454A (en) Manufacturing method of laminated film and optical film
JP6413289B2 (en) Optical laminate and method for producing the same
JP2002116323A (en) Protective film for polarizing plate, polarizing plate and liquid crystal display device
JP2008050428A (en) Film-winding type uv ray treatment device
WO2022014568A1 (en) Optical film with anti-fouling layer
JP2008050429A (en) Method for manufacturing cellulosic film
JP2007182503A (en) Method for producing surface-modified film
JP2009169335A (en) Optical film and method for manufacturing the same
JP2008175902A (en) Optical laminate