JP2007182503A - Method for producing surface-modified film - Google Patents

Method for producing surface-modified film Download PDF

Info

Publication number
JP2007182503A
JP2007182503A JP2006001655A JP2006001655A JP2007182503A JP 2007182503 A JP2007182503 A JP 2007182503A JP 2006001655 A JP2006001655 A JP 2006001655A JP 2006001655 A JP2006001655 A JP 2006001655A JP 2007182503 A JP2007182503 A JP 2007182503A
Authority
JP
Japan
Prior art keywords
film
ultraviolet light
main peak
wavelength
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006001655A
Other languages
Japanese (ja)
Inventor
Kazuko Murata
佳寿子 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2006001655A priority Critical patent/JP2007182503A/en
Publication of JP2007182503A publication Critical patent/JP2007182503A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a surface-modified film in which adhesion between film and coating film is enhanced in a short time and miniaturization and energy saving of apparatus, simplification of operation and securement of operation safety are made possible. <P>SOLUTION: The method for producing the surface-modified film comprises irradiating ultraviolet light having a main peak in the range of 120-260 nm wavelength of ultraviolet light to the film surface to be treated. In the production method, it is preferable to use an excimer lamp emitting ultraviolet light having a main peak when wavelength of the ultraviolet light is 172 nm or a low-pressure mercury lamp emitting ultraviolet light having a main peak when wavelength of the ultraviolet light is 185 nm and 254 nm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラスチックの接着などが容易に行うことが出来るようにするための、表面改質フィルムの製造方法に関する。   The present invention relates to a method for producing a surface-modified film so that plastic bonding and the like can be easily performed.

フィルム表面の活性化を行う表面改質方法として、特許文献1に述べられているように、アルカリ、酸、界面活性剤等の溶液および各種溶剤に浸漬する方法が用いられてきた。   As a surface modification method for activating the film surface, as described in Patent Document 1, a method of immersing in a solution such as an alkali, an acid, or a surfactant and various solvents has been used.

たとえば、液晶ディスプレイやプラズマディスプレイ等に用いられる偏光板は、ポリビニルアルコール(PVA)を両側からトリアセチルセルロースフィルムで挟みこむ構造となっているが、PVAに対して難接着であるトリアセチルセルロースフィルムの接着性を向上させるために、アルカリ溶液での鹸化処理を行っている。   For example, a polarizing plate used for a liquid crystal display or a plasma display has a structure in which polyvinyl alcohol (PVA) is sandwiched between triacetyl cellulose films from both sides. In order to improve adhesion, saponification treatment with an alkaline solution is performed.

以下に先行技術文献を示す。
特開2005−88578号公報
Prior art documents are shown below.
JP 2005-88578 A

まず、フィルムをアルカリ、酸、界面活性剤等の溶液および各種溶剤に浸漬する手法は、各々の浸漬時間が長く、枚葉処理には不向きなため、バッチ処理が一般的である。よって、透明プラスチック部材およびその固定部材の両方を浸漬できうる大型の浸漬槽が、乾燥工程を含め10〜15槽必要なため、必然的に装置は大型化し、コンパクト性が失われる。同時に、乾燥に関わる熱量やクリーン度を管理する多くの電力エネルギーも必要とする。また、揮発成分の補充等、繁雑な日常の液管理と、液の取り扱いに関する作業安全性の確保も必要となる。   First, the method of immersing the film in a solution such as an alkali, an acid, or a surfactant and various solvents has a long immersion time and is unsuitable for single wafer processing, and thus batch processing is common. Therefore, since a large-sized immersion tank capable of immersing both the transparent plastic member and its fixing member requires 10 to 15 tanks including the drying step, the apparatus is inevitably enlarged and the compactness is lost. At the same time, it requires a lot of power energy to manage the amount of heat and cleanliness associated with drying. In addition, it is also necessary to ensure complicated daily liquid management such as replenishment of volatile components and work safety related to liquid handling.

また、極性樹脂組成物に対して難接着であるフィルム、例えばトリアセチルセルロースでは、アルカリ溶液で鹸化処理している。そのため、廃液の問題や、膨潤等により材料に光学的な欠陥が生じるという問題があり、ドライ化が求められていた。   In addition, a film that is difficult to adhere to a polar resin composition, such as triacetyl cellulose, is saponified with an alkaline solution. Therefore, there is a problem of waste liquid and a problem that an optical defect is generated in the material due to swelling or the like, and there has been a demand for drying.

ドライ化として、プラズマ照射による表面改質方法が行われているが、プラズマ照射による方法では改質効果の持続が短いなどの欠陥があり、十分な処理ができていなかった。   A surface modification method by plasma irradiation has been performed as drying, but the method by plasma irradiation has defects such as a short duration of the modification effect and has not been sufficiently processed.

そこで本発明は、このような問題点を解決するもので、その目的とするところは、短時間でフィルムとコーティング膜の密着性を高め、かつ装置のコンパクト化、省エネルギー化、操作のシンプル化、および作業安全性の確保が可能な表面改質フィルムの製造方法を提供することにある。   Therefore, the present invention solves such problems, the purpose of which is to improve the adhesion between the film and the coating film in a short time, and to make the device compact, energy saving, simple operation, Another object of the present invention is to provide a method for producing a surface-modified film capable of ensuring work safety.

請求項1に係る発明は、被処理フィルム表面に波長120〜260nmの範囲内にメインピークを有する紫外線を照射することを特徴とする表面改質フィルムの製造方法である。   The invention according to claim 1 is a method for producing a surface-modified film, wherein the surface of the film to be treated is irradiated with ultraviolet rays having a main peak within a wavelength range of 120 to 260 nm.

請求項2に係る発明は、前記紫外線が、波長172nmにメインピークを有しかつエキシマランプを用いて発生されること、または、波長185nmおよび254nmにメインピークを有しかつ低圧水銀ランプを用いて発生されることを特徴とする請求項1に記載の表面改質フィルムの製造方法である。   The invention according to claim 2 is that the ultraviolet ray has a main peak at a wavelength of 172 nm and is generated using an excimer lamp, or has a main peak at wavelengths of 185 nm and 254 nm and uses a low-pressure mercury lamp. The method for producing a surface-modified film according to claim 1, wherein the surface-modified film is generated.

請求項3に係る発明は、前記紫外線により発生した活性酸素に曝されたフィルム表面の水に対する接触角が25度以下であることを特徴とする請求項1または2に記載の表面改質フィルムの製造方法である。   The invention according to claim 3 is characterized in that the contact angle with respect to water of the film surface exposed to the active oxygen generated by the ultraviolet rays is 25 degrees or less. It is a manufacturing method.

フィルム表面にエキシマ紫外線または低圧紫外線を照射処理することにより、均一な改質が可能であり、親水性基の導入によって、濡れ性が向上する。また、フィルム表面の改質効果が長く持続する。   Uniform modification is possible by irradiating the film surface with excimer ultraviolet rays or low-pressure ultraviolet rays, and wettability is improved by introducing hydrophilic groups. Moreover, the modification effect on the film surface lasts for a long time.

本発明においては、フィルム表面の少なくとも片面に、エキシマ紫外線または低圧紫外線を照射する。
このようなエキシマ紫外線または低圧紫外線を照射する方法には、バッチ式のほか、搬送系装置を用いる方法がある。
In the present invention, at least one surface of the film surface is irradiated with excimer ultraviolet light or low-pressure ultraviolet light.
As a method of irradiating such excimer ultraviolet rays or low-pressure ultraviolet rays, there is a method using a transfer system device in addition to a batch type.

以下、本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明は、紫外線、特にエキシマランプおよび低圧水銀ランプより放射される紫外線を照射することで、フィルム表面が改質されることを知見した。   The present invention has found that the film surface is modified by irradiating ultraviolet rays, particularly ultraviolet rays emitted from excimer lamps and low-pressure mercury lamps.

キセノンガスが封入されたエキシマランプは、172nm付近にメインピークを持つ紫外線を放射する。175nmより短波長の紫外線は、直接大気中の酸素に吸収され、活性酸素を生成する。   An excimer lamp in which xenon gas is sealed emits ultraviolet light having a main peak near 172 nm. Ultraviolet light having a wavelength shorter than 175 nm is directly absorbed by oxygen in the atmosphere to generate active oxygen.

また、低圧水銀ランプは、主に185nm付近と254nm付近にメインピークを持つ紫外線を放射する。185nm付近の短波長紫外線は、大気中の酸素Oに吸収されてオゾンOを発生する。さらに、このオゾンに254nm付近の紫外線が吸収されると、活性酸素Oが生成する。 The low-pressure mercury lamp emits ultraviolet rays having main peaks mainly around 185 nm and 254 nm. Short wavelength ultraviolet rays around 185 nm are absorbed by oxygen O 2 in the atmosphere to generate ozone O 3 . Furthermore, when the ultraviolet rays near 254 nm are absorbed by this ozone, active oxygen O is generated.

活性酸素の酸化作用は、透明プラスチック部材表面の有機物をHO、CO、CO、NO等の物質に分解して短時間で除去し、清浄化することが可能である。 The oxidizing action of the active oxygen can be cleaned by decomposing organic substances on the surface of the transparent plastic member into substances such as H 2 O, CO, CO 2 , NO 2 and removing them in a short time.

また、光の持つ化学的エネルギーは、その光の波長が短いほど強いことは知られている。これら短波長領域の紫外線は、大抵の有機物の結合を切断しうるエネルギーを有している。よって、フィルムに直接作用することで、結合の切断、フリーラジカルの生成を経て上記活性酸素と反応し、ヒドロキシル基、カルボキシル基、カルボニル基等の親水性基を持った表面が形成され、表面が活性化される。ここで短波長とは、260nm以下の波長を言っている。   It is known that the chemical energy of light is stronger as the wavelength of the light is shorter. These ultraviolet rays in the short wavelength region have energy that can break the bonds of most organic substances. Therefore, by directly acting on the film, it reacts with the active oxygen through bond breaking and free radical generation, and a surface having a hydrophilic group such as a hydroxyl group, a carboxyl group, or a carbonyl group is formed. Activated. Here, the short wavelength means a wavelength of 260 nm or less.

短波長領域の紫外線を短時間照射するだけで、フィルム表面の清浄化・活性化が可能なこの方法は、処理時間が非常に短く、処理による汚れの発生がなく、特別な洗浄工程も必要としないため、装置は非常にシンプルかつコンパクトであり、枚葉処理・インライン化に適した処理方法である。また、他の表面改質の方法に比べて電力エネルギーの使用量が少なく、有機溶剤や水も必要としないため、環境にやさしい処理方法であり、製造コストも削減できる。特に、エキシマ紫外線は172nm付近にのみメインピークを持つ単一波長であるため極めて効率がよい。   This method, which can clean and activate the film surface by simply irradiating ultraviolet rays in the short wavelength region for a short time, has a very short processing time, does not cause contamination by processing, and requires a special cleaning process. Therefore, the apparatus is very simple and compact, and is a processing method suitable for single wafer processing and in-line processing. In addition, since the amount of electric power energy used is small compared to other surface modification methods and no organic solvent or water is required, this is an environmentally friendly treatment method and the manufacturing cost can be reduced. In particular, excimer ultraviolet light is extremely efficient because it has a single wavelength having a main peak only in the vicinity of 172 nm.

コーティング膜とフィルム表面が、不均一層に阻害されず十分に密着、結合できるため、密着性を高めることが可能となる。さらに、フィルム表面全体に対しても、均一な改質が可能であり、親水性基の導入によって濡れ性も向上する。   Since the coating film and the film surface can be sufficiently adhered and bonded without being disturbed by the non-uniform layer, it is possible to improve the adhesion. Furthermore, uniform modification is possible over the entire film surface, and wettability is improved by the introduction of hydrophilic groups.

本発明におけるフィルムとしては、セルロース系高分子フィルム、ポリカーボネート系高分子フィルム、ポリエステル系高分子フィルム、アクリルエステル系高分子フィルム、紫外線硬化型のアクリル系樹脂等が挙げられる。特に好ましいフィルムとしては、ポリメチルメタクリレートフィルム、トリアセチルセルロースフィルムなどが挙げられる。   Examples of the film in the present invention include a cellulose polymer film, a polycarbonate polymer film, a polyester polymer film, an acrylic ester polymer film, and an ultraviolet curable acrylic resin. Particularly preferred films include polymethyl methacrylate film and triacetyl cellulose film.

表面開始後に行うコーティングに使用するコーティング材料の種類としては、PVA等の水溶系をはじめとする水系コーティング材の他、ゾルゲル法によるコーティング材、紫外線、電子ビーム硬化型のアクリル系、エポキシ系、エン−チオール系等が挙げられる。   The types of coating materials used for coating after the start of the surface include water-based coating materials such as PVA and other water-based coating materials, sol-gel coating materials, ultraviolet rays, electron beam curable acrylic materials, epoxy materials, -Thiol system etc. are mentioned.

エキシマ紫外線照射装置(岩崎電気社製 UEEX204)を用いて、トリアセチルセルロースフィルム(富士写真フィルム製 TDY80UL)に、照射距離3mmで90〜120秒エキシマ紫外線を照射し、実施例1のサンプルを得た。   Using an excimer ultraviolet irradiation device (UEEX204 manufactured by Iwasaki Electric Co., Ltd.), a triacetylcellulose film (TDY80UL manufactured by Fuji Photo Film) was irradiated with excimer ultraviolet light at an irradiation distance of 3 mm for 90 to 120 seconds to obtain a sample of Example 1. .

低圧水銀灯紫外線照射装置(岩崎電気社製 OC−2506)を用いて、トリアセチルセルロースフィルム(富士写真フィルム製 TDY80UL)に、照射距離25mmで25ワット×4灯の低圧水銀灯紫外線を420〜600秒照射し、実施例2のサンプルを得た。   Using a low-pressure mercury lamp ultraviolet irradiation device (OC-2506, manufactured by Iwasaki Electric Co., Ltd.), a triacetyl cellulose film (TDY80UL, manufactured by Fuji Photo Film) is irradiated with low-pressure mercury lamp ultraviolet rays of 25 watts x 4 for 420 to 600 seconds at an irradiation distance of 25 mm. Thus, a sample of Example 2 was obtained.

<比較例1>
リモート型プラズマ照射装置を用いて、トリアセチルセルロースフィルム(富士写真フィルム製 TDY80UL)に、照射距離2mmで1キロワット20KHzのプラズマを2.5〜8.33秒照射し、比較例1のサンプルを得た。
<Comparative Example 1>
Using a remote type plasma irradiation apparatus, a triacetyl cellulose film (TDY80UL manufactured by Fuji Photo Film) was irradiated with 1 kilowatt 20 KHz plasma for 2.5 to 8.33 seconds at an irradiation distance of 2 mm to obtain a sample of Comparative Example 1. It was.

(評価1:接触角)
実施例、比較例のサンプル及び未処理のフィルムの水との接触角を測定した。結果を表1に示す。
(Evaluation 1: Contact angle)
The contact angle with the water of the sample of an Example and a comparative example, and an untreated film was measured. The results are shown in Table 1.

Figure 2007182503
Figure 2007182503

表1よりプラズマを照射したフィルムに比べ、エキシマ紫外線を照射したフィルムと低圧水銀灯紫外線を照射したフィルムの接触角は小さい。プラズマ照射ではイオンをフィルム表面にぶつけるためフィルム表面に凹凸ができ、濡れ性が減少するためである。
また、エキシマ紫外線を照射したフィルムは、低圧水銀灯紫外線を照射したフィルムに比べ表面改質速度が速い。これは、短波長であるため光の持つ化学的エネルギーが強く、また172nm付近にのみメインピークを持つ単一波長であるため、化学反応に必要な紫外線エネルギーだけを効率よく照射できることによる。
According to Table 1, the contact angle between the film irradiated with excimer ultraviolet light and the film irradiated with low pressure mercury lamp ultraviolet light is smaller than that of the film irradiated with plasma. This is because plasma irradiation causes ions to strike the film surface, creating irregularities on the film surface and reducing wettability.
Also, the film irradiated with excimer ultraviolet light has a higher surface modification rate than the film irradiated with low pressure mercury lamp ultraviolet light. This is because the chemical energy of light is strong because of the short wavelength, and because it is a single wavelength having a main peak only in the vicinity of 172 nm, it is possible to efficiently irradiate only the ultraviolet energy necessary for the chemical reaction.

(評価2:密着性)
実施例のサンプル及び未処理のフィルムにPVAをスピンコーティング法で塗布し、その後密着性を測定した。
密着性はフィルムとPVAとの密着性はJISK5400に準じてクロスカットテープ試験によって評価した。すなわち、ナイフを用い基盤表面に1mm感覚に切れ目を入れ1mm2マス目を100個形成する。次にその上へセロハン粘着テープ(JIS Z1522に準ずる)を強く押しつけて、すばやく表面から90°方向へ引っ張り剥離した後、コーティング被膜の残ったマス目をもって密着性評価指標とした。
(Evaluation 2: Adhesion)
PVA was applied to the sample of the example and the untreated film by a spin coating method, and then the adhesion was measured.
The adhesion between the film and PVA was evaluated by a cross-cut tape test according to JISK5400. That is, 100 knives are formed on the surface of the base using a knife to make a 1 mm-like cut. Next, a cellophane adhesive tape (according to JIS Z1522) was strongly pressed onto it and quickly pulled away from the surface in the direction of 90 °, and then the remaining grid of the coating film was used as an adhesion evaluation index.

この密着性試験の結果、実施例1のサンプルは残った個数が100/100であり、十分な密着性が得られた。
また、実施例2のサンプルは残った個数が100/100であり、十分な密着性が得られた。
また、紫外線による照射を行わない未処理フィルムでは、密着性が全くみられず、塗布が不可能であった。
As a result of this adhesion test, the remaining number of samples of Example 1 was 100/100, and sufficient adhesion was obtained.
Further, the remaining number of samples of Example 2 was 100/100, and sufficient adhesion was obtained.
In addition, the untreated film that was not irradiated with ultraviolet rays did not show any adhesion and could not be applied.

(評価3:接触角の経時変化)
実施例1、比較例1の処理直後、1週間後、2週間後に水の接触角を測定し、図1の結果を得た。なお実施例1のサンプルは処理時間120秒のものを、比較例1のサンプルは処理時間8.33秒のものを用いた。
(Evaluation 3: Change in contact angle with time)
Immediately after the treatment of Example 1 and Comparative Example 1, the contact angle of water was measured after 1 week and 2 weeks, and the result of FIG. 1 was obtained. The sample of Example 1 was used with a processing time of 120 seconds, and the sample of Comparative Example 1 was used with a processing time of 8.33 seconds.

実施例1のサンプルの場合、フィルム表面に直接作用することで、結合の切断、フリーラジカルの生成を経て活性酸素と反応し、ヒドロキシル基、カルボキシル基、カルボニル基等の親水性基を持った表面が形成され、表面が活性化される。そのため、比較例1のサンプルと比べて改質効果の持続が長い。   In the case of the sample of Example 1, by directly acting on the film surface, it reacts with active oxygen through bond breaking and free radical generation, and has a hydrophilic group such as a hydroxyl group, a carboxyl group, or a carbonyl group. Is formed and the surface is activated. Therefore, the modification effect lasts longer than the sample of Comparative Example 1.

表面改質を行ったトリアセチルセルロースフィルムの水に対する接触角と時間との関係を表した図である。It is the figure showing the relationship between the contact angle with respect to water of the triacetyl cellulose film which surface-modified, and time.

Claims (3)

被処理フィルム表面に波長120〜260nmの範囲内にメインピークを有する紫外線を照射することを特徴とする表面改質フィルムの製造方法。   A method for producing a surface-modified film, comprising irradiating a surface of a film to be treated with ultraviolet rays having a main peak within a wavelength range of 120 to 260 nm. 前記紫外線が、波長172nmにメインピークを有しかつエキシマランプを用いて発生されること、または、波長185nmおよび254nmにメインピークを有しかつ低圧水銀ランプを用いて発生されることを特徴とする請求項1に記載の表面改質フィルムの製造方法。   The ultraviolet ray has a main peak at a wavelength of 172 nm and is generated using an excimer lamp, or has a main peak at wavelengths of 185 nm and 254 nm and is generated using a low-pressure mercury lamp. The method for producing a surface-modified film according to claim 1. 前記紫外線により発生した活性酸素に曝されたフィルム表面の水に対する接触角が25度以下であることを特徴とする請求項1または2に記載の表面改質フィルムの製造方法。   The method for producing a surface-modified film according to claim 1 or 2, wherein a contact angle of water on the film surface exposed to the active oxygen generated by the ultraviolet rays is 25 degrees or less.
JP2006001655A 2006-01-06 2006-01-06 Method for producing surface-modified film Pending JP2007182503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001655A JP2007182503A (en) 2006-01-06 2006-01-06 Method for producing surface-modified film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001655A JP2007182503A (en) 2006-01-06 2006-01-06 Method for producing surface-modified film

Publications (1)

Publication Number Publication Date
JP2007182503A true JP2007182503A (en) 2007-07-19

Family

ID=38338863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001655A Pending JP2007182503A (en) 2006-01-06 2006-01-06 Method for producing surface-modified film

Country Status (1)

Country Link
JP (1) JP2007182503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223910A (en) * 2011-04-15 2012-11-15 Mitsubishi Rayon Co Ltd Laminate and method for manufacturing the same
JP2014224213A (en) * 2013-05-17 2014-12-04 コニカミノルタ株式会社 Antifogging cellulose ester film, and antifogging glass using the antifogging cellulose ester film
WO2015002178A1 (en) * 2013-07-02 2015-01-08 コニカミノルタ株式会社 Anti-fogging film, light-permeable member and electronic device each manufactured using said anti-fogging film, and method for manufacturing said anti-fogging film
US11254110B2 (en) 2019-04-11 2022-02-22 Fujifilm Business Innovation Corp. Polyimide resin film, endless belt, and image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223910A (en) * 2011-04-15 2012-11-15 Mitsubishi Rayon Co Ltd Laminate and method for manufacturing the same
JP2014224213A (en) * 2013-05-17 2014-12-04 コニカミノルタ株式会社 Antifogging cellulose ester film, and antifogging glass using the antifogging cellulose ester film
WO2015002178A1 (en) * 2013-07-02 2015-01-08 コニカミノルタ株式会社 Anti-fogging film, light-permeable member and electronic device each manufactured using said anti-fogging film, and method for manufacturing said anti-fogging film
US11254110B2 (en) 2019-04-11 2022-02-22 Fujifilm Business Innovation Corp. Polyimide resin film, endless belt, and image forming apparatus

Similar Documents

Publication Publication Date Title
US7921859B2 (en) Method and apparatus for an in-situ ultraviolet cleaning tool
JP5135758B2 (en) Film surface treatment equipment
US20090258159A1 (en) Novel treatment for mask surface chemical reduction
JP2008122502A (en) Method of manufacturing polarizing plate
JP2007182503A (en) Method for producing surface-modified film
JP2017126416A (en) Method for manufacturing light guide device
JP4941472B2 (en) Method for removing foreign matter from substrate surface
CN1619780A (en) Teater
KR20150127763A (en) Light irradiation apparatus
TW201017762A (en) Method for patterning crystalline indium tim oxide
CN117226270A (en) Laser polishing device and method for substrate and manufacturing method for photomask base plate
JP2007182504A (en) Surface-modified film
JP2003201153A (en) Method of joining transparent substance and joined quartz glass sheet and apparatus using the same
JP2008042017A (en) Resist peeling and removing method capable of recovering resist and semiconductor manufacturing device using it
JP2013101783A (en) Manufacturing method of light guide plate, light guide plate, edge-light plane light source device and transmission type image display device
JP2007302806A (en) Surface treatment apparatus
Kane et al. Pulsed VUV sources and their application to surface cleaning of optical materials
JP2008050429A (en) Method for manufacturing cellulosic film
JP3468215B2 (en) Processing equipment using a dielectric barrier discharge lamp
JP5030572B2 (en) Triacetyl cellulose film surface treatment method and polarizing plate
JP2001293442A (en) Method for cleaning optical device
JP2007245454A (en) Manufacturing method of laminated film and optical film
KR101672735B1 (en) Uv cleaner of substrate for photomask blank and cleanning method
JP2007246807A (en) Method for producing laminated film
JP4000231B2 (en) Pellicle for lithography with improved light resistance