JP2007244014A - Noncontact gear by magnetism - Google Patents

Noncontact gear by magnetism Download PDF

Info

Publication number
JP2007244014A
JP2007244014A JP2006058911A JP2006058911A JP2007244014A JP 2007244014 A JP2007244014 A JP 2007244014A JP 2006058911 A JP2006058911 A JP 2006058911A JP 2006058911 A JP2006058911 A JP 2006058911A JP 2007244014 A JP2007244014 A JP 2007244014A
Authority
JP
Japan
Prior art keywords
gear
teeth
contact
driven
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006058911A
Other languages
Japanese (ja)
Inventor
Tomoya Harano
智哉 原野
Yasuto Okabe
泰斗 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2006058911A priority Critical patent/JP2007244014A/en
Publication of JP2007244014A publication Critical patent/JP2007244014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/005Magnetic gearings with physical contact between gears

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanism for transmitting power under completely noncontact state in which the reduction ratio can be increased. <P>SOLUTION: In the noncontact gear where gears having teeth magnetized with the same polarity by a magnetic body or an electromagnet located in the vicinity thereof are arranged on the drive side and the driven side, a gap is provided between the teeth of drive side gear and the teeth of driven side gear, and rotational movement is transmitted by magnetic repulsion under noncontact state, the number of teeth is different between the driven side gear and the drive side gear. A means for putting the gear made of steel material between ring magnets can be employed for magnetizing the gear. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、対の歯車が磁力により非接触にてトルクを伝達する非接触歯車に関し、さらに詳しくは、対の歯車の歯数が異なり、加減速可能にトルクを伝達することができる非接触歯車に関する。   The present invention relates to a non-contact gear in which a pair of gears transmits torque in a non-contact manner by magnetic force, and more specifically, a non-contact gear in which the number of teeth of the pair of gears is different and torque can be transmitted in an accelerating / decelerating manner. About.

トルクを伝達する歯車対において、多くの歯車は、磨耗防止等のための潤滑油を必要とする。しかしながら、食品加工機や精密機器、真空状態で運転する機器などは、潤滑油の飛散の心配のない無潤滑の歯車を求めていた。
また、通常の歯車は、潤滑油を介したりまたは介さなかったりの状態で、歯車対の歯の部分の接触によりトルクを伝達している。このため、摩擦抵抗による伝達効率の低下、磨耗による寿命の低下、接触音の発生が問題となっている。このため、非接触にて歯車対を駆動する試みがなされており、特に、非接触手段に磁力を用いるものが多く報告されている。
In a gear pair that transmits torque, many gears require lubricating oil to prevent wear and the like. However, food processing machines, precision equipment, equipment operating in a vacuum state, and the like have been demanding non-lubricated gears that do not have to worry about scattering of lubricating oil.
Further, a normal gear transmits torque by contact of the tooth portion of the gear pair with or without lubricating oil. For this reason, there are problems such as a decrease in transmission efficiency due to frictional resistance, a decrease in life due to wear, and generation of contact noise. For this reason, attempts have been made to drive the gear pair in a non-contact manner, and in particular, many reports have been made that use magnetic force for the non-contact means.

特開2002−218735号公報JP 2002-218735 A 特開2005−233326号公報JP 2005-233326 A 特開2005−253292号公報JP 2005-253292 A

特許文献1〜2に記載の歯車は、図4または図5に示すように、歯車の外周に磁石をN極S極交互に配置し、N極とS極の磁気引力により歯車を駆動するものである。このため、磁石の設置が複雑であり、製作コストが大きい問題点があった。また、特許文献3に記載の歯車は、図6に示すように、透磁率の高い鋼材からなる歯車を両サイドから磁石で挟み込むことにより歯車を磁化する。このため、磁石の設置は比較的安価に行なえる利点がある。また、磁気引力を用いるのではなく、磁気斥力(いわゆる反発力)を用いることにより、歯車対を非接触に駆動することを特徴とするが、さらに高トルクの伝達が望まれるものであった。   As shown in FIG. 4 or 5, the gears described in Patent Documents 1 and 2 are configured such that magnets are alternately arranged on the outer periphery of the gears in N poles and S poles, and the gears are driven by magnetic attraction between the N poles and the S poles. It is. For this reason, there is a problem that the installation of the magnet is complicated and the manufacturing cost is high. Further, as shown in FIG. 6, the gear described in Patent Document 3 magnetizes the gear by sandwiching a gear made of a steel material having a high magnetic permeability with magnets from both sides. For this reason, there is an advantage that the magnet can be installed at a relatively low cost. Further, the present invention is characterized in that the gear pair is driven in a non-contact manner by using a magnetic repulsive force (so-called repulsive force) instead of using a magnetic attractive force. However, transmission of higher torque is desired.

したがって、本発明の目的は、高トルクの伝達を実現する減速機構を付加した歯車を提供することにある。   Therefore, an object of the present invention is to provide a gear to which a speed reduction mechanism that realizes transmission of high torque is added.

請求項1に係わる発明は、近傍に配置した磁性体または電磁石により同極性に磁化された歯を有する歯車を駆動側と従動側に配置し、駆動側歯車の歯と従動側の歯の間に隙間をもたせ、磁気斥力により非接触で回転運動を伝達する非接触歯車において、従動側の歯車と駆動側の歯車の歯数が異なることを特徴とする非接触歯車である。   In the invention according to claim 1, a gear having teeth magnetized with the same polarity by a magnetic body or an electromagnet arranged in the vicinity is arranged on the driving side and the driven side, and between the teeth of the driving side gear and the driven side teeth. In a non-contact gear having a clearance and transmitting a rotational motion in a non-contact manner by magnetic repulsion, the number of teeth of the driven gear and the drive gear is different.

請求項2に係わる発明は、従動側の歯車の歯数が、駆動側の歯車の歯数よりも多い請求項1に記載の非接触歯車である。   The invention according to claim 2 is the non-contact gear according to claim 1, wherein the number of teeth of the driven gear is larger than the number of teeth of the driving gear.

請求項3に係わる発明は、従動側の歯車の歯数が、駆動側の歯車の歯数よりも少ない請求項1に記載の非接触歯車である。   The invention according to claim 3 is the non-contact gear according to claim 1, wherein the number of teeth of the driven side gear is smaller than the number of teeth of the driving side gear.

請求項4に係わる発明は、従動側および/または駆動側の歯車が、磁性体または電磁石で挟み込まれている請求項1〜3のいずれかに記載の非接触歯車である。   The invention according to claim 4 is the non-contact gear according to any one of claims 1 to 3, wherein the driven-side and / or driving-side gears are sandwiched between magnetic bodies or electromagnets.

請求項5に係わる発明は、従動側および/または駆動側の歯車の歯末の側面視形状が、円弧状である請求項1〜4のいずれかに記載の非接触歯車である。   The invention according to claim 5 is the non-contact gear according to any one of claims 1 to 4, wherein a side view shape of a tooth end of the driven side and / or driving side gear is an arc shape.

請求項6に係わる発明は、従動側および/または駆動側の歯と歯の間の歯底の側面視形状が、円弧形状である請求項1〜5のいずれかに記載の非接触歯車である。   The invention according to claim 6 is the non-contact gear according to any one of claims 1 to 5, wherein the shape of the side view of the tooth bottom between the teeth on the driven side and / or the drive side is an arc shape. .

請求項7に係わる発明は、非接触歯車が、歯車の回転軸方向に複数設置されてなる請求項1〜6のいずれかに記載の非接触歯車である。   The invention according to claim 7 is the non-contact gear according to any one of claims 1 to 6, wherein a plurality of non-contact gears are installed in the direction of the rotation axis of the gear.

請求項8に係わる発明は、請求項1〜7のいずれかに記載の非接触歯車を構成に含むことを特徴とする遊星歯車機構である。   The invention according to claim 8 is a planetary gear mechanism characterized in that the non-contact gear according to any one of claims 1 to 7 is included in its configuration.

本発明によれば、磁気斥力を用いる非接触歯車において、駆動側と従動側の歯数を異とすることから減速比を大きくでき、駆動側と従動側の歯数が同じ歯車対の場合に比べて伝達トルクを大きくすることができる。また、本発明は、太陽歯車、遊星歯車、内歯車からなる遊星歯車機構に好適に適用できる利点がある。   According to the present invention, in a non-contact gear using magnetic repulsion, the number of teeth on the driving side and the driven side can be made different, so that the reduction ratio can be increased, and the number of teeth on the driving side and the driven side is the same. In comparison, the transmission torque can be increased. Further, the present invention has an advantage that can be suitably applied to a planetary gear mechanism including a sun gear, a planetary gear, and an internal gear.

以下、図面を参照して本発明の実施例を説明する。なお、これにより本発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. Note that the present invention is not limited thereby.

図1に設計した太陽歯車および遊星歯車の寸法形状を示す。太陽歯車1は歯数が9、遊星歯車2は歯数が13である。太陽歯車1と遊星歯車2と内歯車(図示しない)をそれぞれリングマグネットによりN極に磁化させたが、歯先同士で磁気引力が生ずる問題が発生した。同極にも関わらず磁気引力が生じた原因は磁気斥力を作用させる歯車対の歯面磁束密度の差が原因の一つと考えられる。
つまり、大小歯数の異なる歯車の場合、取り付けるリングマグネット外径が小歯車より大歯車で大きくなるため、大歯車歯先の磁極がS極に変化したと考えられる。したがって、大小歯車歯先から生ずる磁束密度が等しいなら、減速比を有する磁気斥力平歯車対でも磁極が変わらず歯車間に磁気斥力を生じ、非接触トルク伝達が可能になる。図2は歯車およびリングマグネットの取り付け状態を示す。鋼材3からなる歯車をリングマグネットにて挟み込む形となる。このとき、リングマグネットは、N極側4nが鋼材3側に、S極側4sが外側になるように配置した。
FIG. 1 shows dimensions and shapes of the designed sun gear and planetary gear. The sun gear 1 has 9 teeth and the planetary gear 2 has 13 teeth. The sun gear 1, the planetary gear 2, and the internal gear (not shown) were each magnetized to the north pole by a ring magnet, but there was a problem that magnetic attraction was generated between the tooth tips. The cause of the magnetic attractive force despite the same polarity is considered to be one of the causes of the difference in the tooth surface magnetic flux density of the gear pair that applies the magnetic repulsive force.
In other words, in the case of gears having different numbers of large and small teeth, the outer diameter of the ring magnet to be attached becomes larger with the large gear than with the small gear, so it is considered that the magnetic pole of the large gear tooth tip has changed to the S pole. Therefore, if the magnetic flux density generated from the gear teeth of the small and large gears is equal, the magnetic repulsion spur gear pair having a reduction gear ratio does not change the magnetic poles and generates a magnetic repulsion between the gears, thereby enabling non-contact torque transmission. FIG. 2 shows the attachment state of the gear and the ring magnet. A gear made of steel 3 is sandwiched between ring magnets. At this time, the ring magnet was arranged such that the N pole side 4n was on the steel material 3 side and the S pole side 4s was on the outside.

また、太陽歯車および遊星歯車の3次元静磁場解析を行った。表1は解析条件を示す。リングマグネットの外径を0.5mmごとに増加した場合の歯先磁束密度を計算した。解析はSolid worksにより作成した3次元ソリッドモデルを四面体要素に分割し、COMOS EMSにより行った。また、空気モデルは、図2に示すモデル全体を覆うモデルを作成した。空気モデルは太陽歯車側で60mm×60mm×40mm、遊星歯車側で80mm×80mm×40mmであった。解析モデルにより異なるが要素数は80570〜334365、節点数は14191〜57520であった。要素基準サイズは計算機のメモリの制限により、太陽歯車で1mm、太陽歯車用リングマグネットおよび空気モデルで2mm、遊星歯車用リングマグネットおよび空気モデルで4mmとした。   In addition, three-dimensional static magnetic field analysis of the sun gear and the planetary gear was performed. Table 1 shows the analysis conditions. The tooth tip magnetic flux density when the outer diameter of the ring magnet was increased every 0.5 mm was calculated. The analysis was performed by dividing a three-dimensional solid model created by Solid works into tetrahedral elements and using COMOS EMS. Moreover, the air model created the model which covers the whole model shown in FIG. The air model was 60 mm × 60 mm × 40 mm on the sun gear side, and 80 mm × 80 mm × 40 mm on the planetary gear side. The number of elements was 80570 to 334365 and the number of nodes was 14191 to 57520 although it was different depending on the analysis model. The element reference size was set to 1 mm for the sun gear, 2 mm for the ring magnet for the sun gear and the air model, and 4 mm for the ring magnet for the planetary gear and the air model due to the limitation of the memory of the computer.

図3に解析結果を示す。縦軸は歯車にリングマグネットを取付けた解析モデルの歯先から生ずる磁束密度Bと補正値(L/(D−d))の積である。Lは歯車と磁石の厚みの総和、Dは歯車の歯先円直径、dは歯車の内径である。横軸は図2に示す歯先とリングマグネットの距離Xである。また、図3中の実線は最小二乗近似式(lnBL/(D−d)=−4.78lnX+16.51)で表される直線であり、解析値群との相関係数は0.91とよくあてはまる。この最小二乗近似式により、磁束密度Bは歯先と磁石の距離Xの関数で表され、歯先と磁石の距離Xが長くなるほど歯先の磁束密度Bは小さくなるといえる。この最小二乗近似式を用いると、歯面磁束密度を等価にするためのリングマグネット外径を求めることができる。たとえば、実施例1の場合では歯数比に相当する外径比のリングマグネットを用い、大小歯車の両サイドに挟み込めば、かみ合い歯先磁束密度を等価にできる。   FIG. 3 shows the analysis results. The vertical axis represents the product of the magnetic flux density B generated from the tooth tip of the analytical model with the ring magnet attached to the gear and the correction value (L / (D−d)). L is the total thickness of the gear and the magnet, D is the diameter of the tooth tip circle of the gear, and d is the inner diameter of the gear. The horizontal axis is the distance X between the tooth tip and the ring magnet shown in FIG. The solid line in FIG. 3 is a straight line represented by the least square approximation (lnBL / (D−d) = − 4.78lnX + 16.51), and the correlation coefficient with the analysis value group is 0.91. From this least square approximation, the magnetic flux density B is expressed as a function of the tooth tip-to-magnet distance X, and it can be said that the tooth tip magnetic flux density B decreases as the tooth tip-to-magnet distance X increases. If this least square approximation is used, the outer diameter of the ring magnet for equalizing the tooth surface magnetic flux density can be obtained. For example, in the case of Example 1, if a ring magnet having an outer diameter ratio corresponding to the gear ratio is used and sandwiched between both sides of the large and small gears, the meshing tooth tip magnetic flux density can be made equivalent.

Figure 2007244014
Figure 2007244014

上記の実施例の非接触歯車は、従動側と駆動側の歯車の歯数を異にすることから、従動側と駆動側の歯車にて回転速度を異にすることができる。   In the non-contact gear of the above embodiment, the number of teeth of the driven side and the driving side gear is different, so that the rotational speed can be made different between the driven side and the driving side gear.

本発明は、上記の実施例の他に、さまざまな実施態様が挙げられる。
従動側の歯車の歯数が駆動側の歯車の歯数よりも多い非接触歯車は、駆動側の歯車の歯数が従動側の歯車よりも少ないため、駆動側の回転に対し、従動側の回転を減速することができる。
The present invention includes various embodiments in addition to the above examples.
Non-contact gears with more gears on the driven side than the gears on the drive side have fewer teeth on the drive side than the gears on the drive side. Rotation can be decelerated.

従動側の歯車の歯数が駆動側の歯車の歯数よりも少ない非接触歯車は、駆動側の歯車の歯数が従動側の歯車よりも多いため、駆動側少しの回転に対し、従動側を多く回転することができる。   Non-contact gears with less gear teeth on the driven side than the gears on the drive side have more teeth on the drive side than the gears on the driven side. Can rotate a lot.

従動側および/または駆動側の歯車が磁性体または電磁石で挟み込まれている非接触歯車は、歯車を磁化させる手段として、歯車の両側に磁性体もしくは電磁石を設置する。例えば、歯車の両側に、中心に孔のある円柱状のリングマグネットを設置することができる。この際、リングマグネットの孔には、歯車の回転軸を通過させることができる。   In the non-contact gear in which the driven side and / or the driving side gear is sandwiched between magnetic bodies or electromagnets, magnetic bodies or electromagnets are installed on both sides of the gear as means for magnetizing the gears. For example, a cylindrical ring magnet having a hole in the center can be installed on both sides of the gear. At this time, the rotation shaft of the gear can be passed through the hole of the ring magnet.

従動側および/または駆動側の歯車の歯末の側面視形状が円弧状である非接触歯車は、歯車の歯末(いわゆる歯の先の部分)の側面視形状を円弧状とすることにより、鋭角の頂点が存在する矩形歯形やインボリュート歯形にくらべ、磁束の放出を均一化する。このため、歯車間の磁気斥力を好適に作用させることができ、伝達力を向上することができる。   The non-contact gear in which the side view shape of the tooth end of the driven side and / or the drive side gear has an arc shape is obtained by making the side view shape of the tooth end (so-called tooth tip portion) of the gear into an arc shape, Compared to rectangular tooth profiles and involute tooth profiles with sharp vertices, the magnetic flux is made uniform. For this reason, the magnetic repulsive force between gears can be made to act suitably, and a transmission force can be improved.

従動側および/または駆動側の歯と歯の間の歯底の側面視形状が円弧形状である非接触歯車は、歯と歯の間の歯底の側面視形状を円弧状とし、鋭角となる頂点をなくすことにより、隣り合う磁束が干渉し合う影響を少なくする。このため、歯車間の磁気斥力を好適に作用させることができ、伝達力を向上することができる。   A non-contact gear in which the side view of the root between the teeth on the driven side and / or the drive side has an arc shape has an acute angle with the side view of the root between the teeth having an arc shape. By eliminating the apex, the influence of interference between adjacent magnetic fluxes is reduced. For this reason, the magnetic repulsive force between gears can be made to act suitably, and a transmission force can be improved.

歯車の回転軸方向に複数設置されてなる非接触歯車は、歯車を歯車の同軸上に複数個設置することにより、伝達トルクを増加することができる。   A plurality of non-contact gears installed in the direction of the rotation axis of the gear can increase the transmission torque by installing a plurality of gears on the same axis of the gear.

また、本発明は、上記のいずれかに記載の非接触歯車を構成に含むことを特徴とする遊星歯車機構である。
本発明の遊星歯車機構は、遊星歯車機構を構成する遊星歯車、太陽歯車、内歯車のいずれかまたは全てに本非接触歯車を用いた動力伝達機構であり、従来の遊星歯車機構で問題となる遊星歯車と内歯車のかみ合い過剰がないため、振動や騒音を防止でき、静粛で高い効率でトルク伝達することができる。
Moreover, this invention is a planetary gear mechanism characterized by including the non-contact gear in any one of said above in a structure.
The planetary gear mechanism of the present invention is a power transmission mechanism using the present non-contact gear for any or all of the planetary gear, the sun gear, and the internal gear constituting the planetary gear mechanism, which causes a problem in the conventional planetary gear mechanism. Since there is no excessive meshing between the planetary gear and the internal gear, vibration and noise can be prevented, and torque can be transmitted quietly and with high efficiency.

実施例を示す歯車の寸法形状である。It is the dimension shape of the gearwheel which shows an Example. 実施例を示す歯車におけるリングマグネットの取り付け状態を示す図である。It is a figure which shows the attachment state of the ring magnet in the gearwheel which shows an Example. 実施例の歯車について磁場解析を行った結果を示すグラフである。It is a graph which shows the result of having performed magnetic field analysis about the gear of an example. 従来の非接触歯車の例を示す図である。It is a figure which shows the example of the conventional non-contact gear. 従来の非接触歯車の例を示す図である。It is a figure which shows the example of the conventional non-contact gear. 従来の非接触歯車の例を示す図である。It is a figure which shows the example of the conventional non-contact gear.

符号の説明Explanation of symbols

1…太陽歯車、2…遊星歯車、3…鋼材、4s…リングマグネット(S極側)
4n…リングマグネット(N極側)
DESCRIPTION OF SYMBOLS 1 ... Sun gear, 2 ... Planetary gear, 3 ... Steel material, 4s ... Ring magnet (S pole side)
4n Ring magnet (N pole side)

Claims (8)

近傍に配置した磁性体または電磁石により同極性に磁化された歯を有する歯車を駆動側と従動側に配置し、駆動側歯車の歯と従動側の歯の間に隙間をもたせ、磁気斥力により非接触で回転運動を伝達する非接触歯車において、従動側の歯車と駆動側の歯車の歯数が異なることを特徴とする非接触歯車。   A gear having teeth magnetized to the same polarity by a magnetic body or an electromagnet arranged in the vicinity is arranged on the driving side and the driven side, and a gap is provided between the teeth of the driving side gear and the driven side, so that the non-magnetic A non-contact gear that transmits rotational motion by contact, wherein the number of teeth of a driven gear and a drive gear is different. 従動側の歯車の歯数が駆動側の歯車の歯数よりも多い請求項1に記載の非接触歯車。   The non-contact gear according to claim 1, wherein the number of teeth of the driven gear is larger than the number of teeth of the driving gear. 従動側の歯車の歯数が駆動側の歯車の歯数よりも少ない請求項1に記載の非接触歯車。   The non-contact gear according to claim 1, wherein the number of teeth of the driven gear is smaller than the number of teeth of the driving gear. 従動側および/または駆動側の歯車が磁性体または電磁石で挟み込まれている請求項1〜3のいずれかに記載の非接触歯車。   The non-contact gear according to any one of claims 1 to 3, wherein the driven-side and / or driving-side gears are sandwiched between magnetic bodies or electromagnets. 従動側および/または駆動側の歯車の歯末の側面視形状が円弧状である請求項1〜4のいずれかに記載の非接触歯車。   The non-contact gear according to any one of claims 1 to 4, wherein a side view shape of a tooth end of the driven side and / or the driving side gear is an arc shape. 従動側および/または駆動側の歯と歯の間の歯底の側面視形状が円弧形状である請求項1〜5のいずれかに記載の非接触歯車。   The non-contact gear according to any one of claims 1 to 5, wherein a side view shape of a tooth bottom between teeth on the driven side and / or the driving side is an arc shape. 非接触歯車が歯車の回転軸方向に複数設置されてなる請求項1〜6のいずれかに記載の非接触歯車。   The non-contact gear according to any one of claims 1 to 6, wherein a plurality of non-contact gears are installed in a rotation axis direction of the gear. 請求項1〜7のいずれかに記載の非接触歯車を構成に含むことを特徴とする遊星歯車機構。
A planetary gear mechanism comprising the non-contact gear according to any one of claims 1 to 7 in its configuration.
JP2006058911A 2006-03-06 2006-03-06 Noncontact gear by magnetism Pending JP2007244014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058911A JP2007244014A (en) 2006-03-06 2006-03-06 Noncontact gear by magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058911A JP2007244014A (en) 2006-03-06 2006-03-06 Noncontact gear by magnetism

Publications (1)

Publication Number Publication Date
JP2007244014A true JP2007244014A (en) 2007-09-20

Family

ID=38588988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058911A Pending JP2007244014A (en) 2006-03-06 2006-03-06 Noncontact gear by magnetism

Country Status (1)

Country Link
JP (1) JP2007244014A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000210A (en) * 2008-06-20 2010-01-07 Fujinon Corp Probe
US20110113908A1 (en) * 2009-11-16 2011-05-19 Corradini Martin Rpm multiplier and/or torque increaser for turbines
KR101389501B1 (en) 2012-10-24 2014-04-25 최이화 Magnetic gear for cogging decrease and transfer equipment using the same
CN105201747A (en) * 2015-07-17 2015-12-30 东莞市汇如涞电能科技有限公司 Wind driven generator
CN107040122A (en) * 2017-05-02 2017-08-11 福建(泉州)哈工大工程技术研究院 A kind of non-contact electromagnetic gearbox
CN107394991A (en) * 2017-09-18 2017-11-24 安徽沃弗电力科技有限公司 A kind of radial support formula permanent-magnet speed governor
WO2019137042A1 (en) * 2018-01-10 2019-07-18 山东大学 Electromagnetic hybrid gear ring-free planetary gear transmission system
US11639746B2 (en) * 2019-10-30 2023-05-02 Gabrael T. LEVINE Sunless planetary gear and method for use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0176180U (en) * 1987-11-11 1989-05-23
JPH05161341A (en) * 1991-11-08 1993-06-25 Mitsubishi Materials Corp Ultrasmall rotary driver and manufacture of its magnetic gear
JPH0614524A (en) * 1992-06-19 1994-01-21 Ulvac Japan Ltd Non-contact gear device
JP2002247833A (en) * 2001-02-16 2002-08-30 Isel Co Ltd Planetary geared transmission
JP2005253292A (en) * 2004-02-04 2005-09-15 Techno Network Shikoku Co Ltd High torque transmission non-contact gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0176180U (en) * 1987-11-11 1989-05-23
JPH05161341A (en) * 1991-11-08 1993-06-25 Mitsubishi Materials Corp Ultrasmall rotary driver and manufacture of its magnetic gear
JPH0614524A (en) * 1992-06-19 1994-01-21 Ulvac Japan Ltd Non-contact gear device
JP2002247833A (en) * 2001-02-16 2002-08-30 Isel Co Ltd Planetary geared transmission
JP2005253292A (en) * 2004-02-04 2005-09-15 Techno Network Shikoku Co Ltd High torque transmission non-contact gear

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000210A (en) * 2008-06-20 2010-01-07 Fujinon Corp Probe
US20110113908A1 (en) * 2009-11-16 2011-05-19 Corradini Martin Rpm multiplier and/or torque increaser for turbines
KR101389501B1 (en) 2012-10-24 2014-04-25 최이화 Magnetic gear for cogging decrease and transfer equipment using the same
CN105201747A (en) * 2015-07-17 2015-12-30 东莞市汇如涞电能科技有限公司 Wind driven generator
CN105201747B (en) * 2015-07-17 2018-12-18 东莞市汇如涞电能科技有限公司 Wind-driven generator
CN107040122A (en) * 2017-05-02 2017-08-11 福建(泉州)哈工大工程技术研究院 A kind of non-contact electromagnetic gearbox
CN107394991A (en) * 2017-09-18 2017-11-24 安徽沃弗电力科技有限公司 A kind of radial support formula permanent-magnet speed governor
WO2019137042A1 (en) * 2018-01-10 2019-07-18 山东大学 Electromagnetic hybrid gear ring-free planetary gear transmission system
US11639746B2 (en) * 2019-10-30 2023-05-02 Gabrael T. LEVINE Sunless planetary gear and method for use

Similar Documents

Publication Publication Date Title
JP2007244014A (en) Noncontact gear by magnetism
US7105968B2 (en) Magnetic transmission
JP4072186B2 (en) Power transmission mechanism
JPWO2015053005A1 (en) Magnetic gear unit
JP6604820B2 (en) Planetary gear reducer and drive mechanism
JP2020521927A (en) Actuator with reducer
US20020158531A1 (en) Device for kinetic energy accelerator/amplifier
CN101499710A (en) Magnetic gear transmission
WO2019123772A1 (en) Actuator
RU2369955C1 (en) Magnetic reducer
JP2005253292A (en) High torque transmission non-contact gear
JPH03107658A (en) Magnetic gear
KR20100115885A (en) Magnetic coupling for conveyor
KR102103200B1 (en) Magnetic gear having air barrier
JPH0750979B2 (en) Multi-rotation type absolute encoder
EP2874293A1 (en) Contactless magnetic gear
JP2003009504A (en) Transmission device
JP6645891B2 (en) Magnetic gear device
JP2006038110A (en) Gear transmission mechanism, and planetary gear mechanism
JP2011196451A (en) Magnetic gear device
CN102299610B (en) Magnetic resistance permanent magnetic gear with outer rotor
JP2007239765A (en) Non-contact worm gear by magnetic force
JP2005094954A (en) Kinetic energy accelerating and amplifying device
JP2012237328A (en) Rotation transmission device and vibration device
JP5618610B2 (en) Torque transmission device and turning machine using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921