JP2005094954A - Kinetic energy accelerating and amplifying device - Google Patents

Kinetic energy accelerating and amplifying device Download PDF

Info

Publication number
JP2005094954A
JP2005094954A JP2003326741A JP2003326741A JP2005094954A JP 2005094954 A JP2005094954 A JP 2005094954A JP 2003326741 A JP2003326741 A JP 2003326741A JP 2003326741 A JP2003326741 A JP 2003326741A JP 2005094954 A JP2005094954 A JP 2005094954A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnets
drive
central portion
kinetic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326741A
Other languages
Japanese (ja)
Inventor
Satoru Aritaka
悟 有高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003326741A priority Critical patent/JP2005094954A/en
Publication of JP2005094954A publication Critical patent/JP2005094954A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase kinetic energy by inputting energy into a device combined with permanent magnets for generating kinetic energy and by adding energy generated by the permanent magnets. <P>SOLUTION: An operation rotor 4 is provided that comprises a central portion 4a, on the circumference of which permanent magnets 5 are provided and the polarity of adjacent permanent magnets 5 is opposite, and an outside circumferential portion 4b made of a material whose specific gravity is different and provided at the outside circumference of the central portion 4a. A drive rotor 1, on the outside circumferential edge of which permanent magnets 2 are provided, is provided close to the outside circumference of the central portion 4a. The drive rotor 1 is made of the same material with that of the central portion 4a of the operation rotor 4. Each of the neighboring permanent magnets 2 provided on the outside circumference of the drive rotor 1 has opposite polarity, and one of the permanent magnets 5 of the operation rotor 4 is positioned between two permanent magnets 2, 2 each having opposite polarity. The revolutions of the operation rotor 4 is amplified by making one of the two permanent magnets 2, 2 having opposite polarity attract one of the permanent magnets 5 of the operation rotor 4 and by making the other magnet push the other permanent magnet 5 by repulsion, when the drive rotor 1 is rotated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、磁力を使用した回転運動による運動エネルギーを加速、増幅する装置に関するものである。   The present invention relates to an apparatus for accelerating and amplifying kinetic energy by rotational movement using magnetic force.

運動エネルギーを発生させる装置としては、古くは、水車などの水力を利用したものがあり、近代では、タービンなどの蒸気を利用したもの、また電力を使用したモータ、ガスやガソリン等を使用した内燃機関など各種のものが開発されており、様々な分野において盛んに使用されている。   In the old days, devices that generate kinetic energy used hydropower such as water turbines. In modern times, devices that use steam such as turbines, motors that use electric power, and internal combustion that uses gas, gasoline, etc. Various things such as an institution have been developed and are actively used in various fields.

これらの装置の出力効率としては、例えばモータなどでは、30%〜90%であり、中には出力効率の良い装置もあるが、一般的に、出力効率100%の装置の開発は不可能であり、ましてや入力した以上のエネルギーを創出できる装置の開発は、エネルギー保存の法則より不可能である。そのような中、電磁石と永久磁石を使用した回転装置として、以下のものがある。   The output efficiency of these devices is 30% to 90% for motors, for example, and some devices have good output efficiency, but in general, it is impossible to develop a device with 100% output efficiency. In fact, it is impossible to develop a device that can generate more energy than input, because of the law of conservation of energy. Under such circumstances, there are the following rotating devices using electromagnets and permanent magnets.

この回転装置は、回転可能な回転軸と、永久磁石を同数個で数組に分けその各組を夫々外周縁部等間隔で径方向外側に向けて一定角度に配置させ、且つ前記各永久磁石の先頭部に夫々電磁石を前記一定角度で配置させ、前記回転軸に固定された回転体と、前記回転体上の永久磁石及び電磁石の磁極と周期的に近接対向するように前記回転体の近傍に外周縁部等間隔に配置された数個の外部永久磁石とを具備し、前記回転体上の永久磁石に対して、前記外部永久磁石の反発力で付勢するようにした磁力回転装置である。   In this rotating device, the same number of rotatable rotating shafts and the number of permanent magnets are divided into several sets, each set is arranged at a constant angle toward the outside in the radial direction at equal intervals on the outer peripheral edge, and each permanent magnet An electromagnet is arranged at the fixed angle at the top of each of the rotating body, and the rotating body fixed to the rotating shaft, and the vicinity of the rotating body so as to periodically approach and face the permanent magnet and the magnetic pole of the electromagnet on the rotating body And a plurality of external permanent magnets arranged at equal intervals on the outer peripheral edge, and urged against the permanent magnet on the rotating body by the repulsive force of the external permanent magnet. is there.

これにより、回転体をよりスムーズに回転させることができ、回転体の回転方向に対して先頭の永久磁石同士、及び永久磁石と電磁石が互いに近接する時に生じる逆回転トルクの影響を無くすことができ、更には回転体の回転速度もコントロールでき、回転体の制動構造として別に複雑な機構も必要とせず簡単、且つ正確にこれらの回転体の制動をなすことができるようにした磁力回転装置を提供することを求めたものであり、出力効率を求めたものではない。
特開平9−233872号公報
As a result, the rotating body can be rotated more smoothly, and the influence of reverse rotational torque generated when the permanent magnets at the head and the permanent magnet and the electromagnet come close to each other in the rotating direction of the rotating body can be eliminated. In addition, a magnetic rotating device that can control the rotational speed of the rotating body and can easily and accurately brake the rotating body without requiring a complicated mechanism as a braking structure of the rotating body is provided. It is not what the output efficiency is required.
Japanese Patent Laid-Open No. 9-238772

一般的に運動エネルギーを発生させる装置においては、入力したエネルギー以上に出力エネルギーを得ることは出来ない。そこでこの発明は、永久磁石を組み合わせた装置にエネルギーを入力して、永久磁石よって発生するエネルギーを加えることにより、運動エネルギーを増加させることを目的としたものである。   In general, a device that generates kinetic energy cannot obtain output energy more than input energy. In view of this, the present invention has an object to increase kinetic energy by inputting energy into a device combined with a permanent magnet and adding energy generated by the permanent magnet.

請求項1の発明は、中心から一定の半径の円周上に間隔をあけて複数の永久磁石を設け、これらの隣接する永久磁石は相互に反対の極性とした中央部と、この中央部の外周に、この中央部と比重の異なる材質から成る外周部とから成る作動ロータを回転自在に設け、この作動ロータの上記中央部外周に近接して、外周縁に間隔をあけて複数の永久磁石を設けた駆動ロータを設け、この駆動ロータは上記作動ロータの中央部と材質を同じくし、この駆動ロータの外周に沿って隣接する各永久磁石は相互に反対の極性を有し、これらの反対の極性の二つの永久磁石の間に上記作動ロータの一つの永久磁石が対向する位置となるようにし、上記駆動ロータを駆動、回転させた際、上記反対の極性の二つの永久磁石の一方が作動ロータの上記一つの永久磁石を吸引し、他方が当該永久磁石をその反発力で押すことにより、作動ロータが加速、増幅回転する運動エネルギー加速増幅装置とした。   According to the first aspect of the present invention, a plurality of permanent magnets are provided spaced apart from each other on a circumference having a certain radius from the center, and the adjacent permanent magnets have opposite polarities, and a central portion of the central portion. An operating rotor comprising an outer peripheral portion made of a material having a specific gravity different from that of the central portion is rotatably provided on the outer periphery, and a plurality of permanent magnets are provided adjacent to the outer periphery of the central portion of the operating rotor and spaced from the outer peripheral edge. The drive rotor is provided with the same material as the central portion of the working rotor, and the permanent magnets adjacent to each other along the outer periphery of the drive rotor have opposite polarities to each other. When one of the two permanent magnets of the opposite polarity is driven and rotated, the one permanent magnet of the operating rotor is positioned between the two permanent magnets of the opposite polarity. The above one permanent of the working rotor Aspirating a magnet and the other by pressing the permanent magnet in its repulsive force, driven rotor is accelerated, and the kinetic energy accelerator amplifier for amplifying the rotation.

請求項2の発明は、上記作動ロータと上記駆動ロータは、その半径及び厚さをほぼ同じとし、上記作動ロータの外周部の径は、上記中央部の半径とほぼ同じとした上記請求項1に記載の運動エネルギー加速増幅装置とした。また請求項3の発明は、上記作動ロータの外周部は、中央部より、比重が大きい部材から形成した上記請求項1又は2の何れかに記載の運動エネルギー加速増幅装置とした。   According to a second aspect of the present invention, the operating rotor and the driving rotor have substantially the same radius and thickness, and the outer peripheral portion of the operating rotor has a diameter substantially the same as the radius of the central portion. The kinetic energy accelerated amplification apparatus described in 1. According to a third aspect of the present invention, there is provided the kinetic energy acceleration / amplification device according to the first or second aspect, wherein the outer peripheral portion of the operating rotor is formed of a member having a specific gravity greater than that of the central portion.

請求項4の発明は、上記作動ロータ1個に対して、上記駆動ロータを複数個を組み合わせて設けた上記請求項1乃至3の何れかに記載の運動エネルギー加速増幅装置とした。また請求項5の発明は、上記駆動ロータに設けた永久磁石の数量は、当該駆動ロータに組み合わされた上記作動ロータの中央部に設けた永久磁石の数量の1倍以上、又は1倍未満とした上記請求項1乃至4の何れかに記載の運動エネルギー加速増幅装置とした。   According to a fourth aspect of the present invention, there is provided the kinetic energy acceleration / amplification device according to any one of the first to third aspects, wherein a plurality of the drive rotors are provided in combination with the one operating rotor. In the invention of claim 5, the number of permanent magnets provided in the drive rotor is one or more times or less than one time the number of permanent magnets provided in the central portion of the operating rotor combined with the drive rotor. The kinetic energy accelerated amplification device according to any one of claims 1 to 4 is provided.

この発明は、駆動ロータを回転させることにより、作動ロータに回転を伝達するとともに、永久磁石の吸引力及び反発力によって発生するエネルギーを使用して作動ロータの回転を加速、増幅し、入力エネルギーに永久磁石の吸引力及び反発力によって発生するエネルギーを加えることにより、運動エネルギーを増加することができる。従って、発電機の駆動回転や自動車等の乗り物の駆動に適している。   The present invention transmits rotation to the operating rotor by rotating the drive rotor, and uses the energy generated by the attractive force and repulsive force of the permanent magnet to accelerate and amplify the rotation of the operating rotor to obtain input energy. The kinetic energy can be increased by adding energy generated by the attractive force and repulsive force of the permanent magnet. Therefore, it is suitable for driving rotation of a generator and driving of a vehicle such as an automobile.

作動ロータを比重の異なる材質から形成し、駆動ロータに設けた永久磁石の数を作動ロータに設けた永久磁石の数の1倍以上又は1倍未満とし、夫々設けた永久磁石が持つ吸引と反発という力を利用して、二つのロータを互いに干渉させて、入力したエネルギーに加えて、増加した運動エネルギーを得た。   The working rotor is made of a material having a different specific gravity, and the number of permanent magnets provided in the drive rotor is set to be one or more times or less than one times the number of permanent magnets provided in the working rotor. Using this force, the two rotors interfered with each other, resulting in increased kinetic energy in addition to the input energy.

まずこの発明の装置において、運動を加速増幅させる原理的な説明をする。
図3に示すように、駆動ロータ1の外周縁には間隔をあけて設けた複数の永久磁石2の、隣接する各永久磁石2は相互に反対の極性を有し、これらの反対の極性の二つの永久磁石2、2´の間に、作動ロータ4の一つの永久磁石5が対向する位置となるようにしているため、上記駆動ロータ1を反時計方向に回転させた際(図3における矢印方向)、上記反対の極性の二つの永久磁石の一方の永久磁石2(N極)が作動ロータ4の上記一つの永久磁石5(S極)を吸引し、他方の永久磁石2´(S極)が当該永久磁石5(S極)をその反発力で押すことにより、作動ロータ4が時計方向に回転する(図3における矢印方向)。
First, the principle of accelerating and amplifying motion in the apparatus of the present invention will be described.
As shown in FIG. 3, the adjacent permanent magnets 2 of the plurality of permanent magnets 2 provided at intervals on the outer peripheral edge of the drive rotor 1 have opposite polarities, and these opposite polarities Since one permanent magnet 5 of the working rotor 4 is positioned between the two permanent magnets 2 and 2 ', the drive rotor 1 is rotated counterclockwise (in FIG. 3). In the direction of the arrow), one permanent magnet 2 (N pole) of the two permanent magnets of opposite polarities attracts the one permanent magnet 5 (S pole) of the operating rotor 4, and the other permanent magnet 2 '(S When the pole) pushes the permanent magnet 5 (S pole) with its repulsive force, the operating rotor 4 rotates in the clockwise direction (in the direction of the arrow in FIG. 3).

この様にして駆動ロータ1の外周の隣接する永久磁石2の磁束の間に、作動ロータ4の一つの永久磁石5の磁束が入り、これらの駆動ロータ1と作動ロータ4の回転により、駆動ロータ1の外周の永久磁石2の磁束と作動ロータ4の磁束が次々に歯車のように噛み合い、これにより作動ロータ4が回転する。また、その際作動ロータ4の永久磁石5の数と駆動ロータ1の永久磁石2の数の比により、作動ロータ4の回転は加速、増幅される。また、駆動ロータ1の外周の永久磁石2、及び作動ロータ4の永久磁石5はいずれも円周から円心に向かって磁化されており、各永久磁石の磁束は、図3の斜線で囲まれた部分で示す。そして、この装置で得られた上記作動ロータ4の回転を、そのまま回転力として利用しても良く、この回転を直線運動に変えて利用することもできる。   In this way, the magnetic flux of one permanent magnet 5 of the operating rotor 4 enters between the magnetic fluxes of the adjacent permanent magnets 2 on the outer periphery of the driving rotor 1, and the driving rotor 1 is driven by the rotation of the driving rotor 1 and the operating rotor 4. The magnetic flux of the permanent magnet 2 and the magnetic flux of the working rotor 4 are successively meshed like a gear, whereby the working rotor 4 rotates. At that time, the rotation of the working rotor 4 is accelerated and amplified by the ratio of the number of permanent magnets 5 of the working rotor 4 and the number of permanent magnets 2 of the driving rotor 1. Further, the permanent magnet 2 on the outer periphery of the drive rotor 1 and the permanent magnet 5 of the working rotor 4 are both magnetized from the circumference toward the center, and the magnetic flux of each permanent magnet is surrounded by the oblique lines in FIG. This is shown in the part. Then, the rotation of the working rotor 4 obtained by this device may be used as it is as a rotational force, or this rotation can be used by changing it into a linear motion.

図4は、作動ロータ4の外周の相対する2箇所に駆動ロータ1を設けた状態を示す。外周縁に、等間隔で4個の永久磁石5を設けた作動ロータ4を、当該作動ロータ4と一体に設けた中心軸6を中心に回転自在に設けている。これらの外周に沿って隣接する各永久磁石5は相互に反対の極性を有している。従って、各永久磁石5は90度の間隔で、N極とS極が相互に配置されている。   FIG. 4 shows a state in which the drive rotor 1 is provided at two opposite positions on the outer periphery of the working rotor 4. The operating rotor 4 provided with four permanent magnets 5 at equal intervals on the outer peripheral edge is provided so as to be rotatable around a central shaft 6 provided integrally with the operating rotor 4. The permanent magnets 5 adjacent to each other along the outer periphery have opposite polarities. Therefore, each permanent magnet 5 has an N pole and an S pole arranged at an interval of 90 degrees.

そして、この作動ロータ4の外周の相対する2箇所に、当該外周に近接して、作動ロータ4の直径の2倍の直径を有する駆動ロータ1、1を設けている。これらの各駆動ロータ1はこれと一体に設けた中心軸3を中心に回転自在である。この駆動ロータ1の外周縁には、等間隔で8個の永久磁石2を設け、これらの外周に沿って隣接する各永久磁石2は相互に反対の極性を有している。従って、各永久磁石2は45度の間隔で、N極とS極が相互に配置されている。また、作動ロータ4と駆動ロータ1の外周の間隔は、永久磁石の吸引力並びに反発力が最大になる間隔に設定すれば良い。また、上記駆動ロータ1及び作動ロータ4の材質は、非磁性体からできており、上記の所定の箇所に溝を設けて、これらの溝の中に上記永久磁石2又は5を埋め込んでいる。さらに、駆動ロータ1及び作動ロータ4はいずれも数センチの厚みがあるが、これらの厚みは必要に応じて適宜に決めればよい。   Drive rotors 1 and 1 having a diameter twice as large as that of the working rotor 4 are provided at two opposing positions on the outer circumference of the working rotor 4. Each of these drive rotors 1 is rotatable around a central shaft 3 provided integrally therewith. Eight permanent magnets 2 are provided on the outer peripheral edge of the drive rotor 1 at equal intervals, and the permanent magnets 2 adjacent to each other along the outer periphery thereof have opposite polarities. Therefore, each permanent magnet 2 has an N pole and an S pole arranged at an interval of 45 degrees. Moreover, what is necessary is just to set the space | interval of the outer periphery of the working rotor 4 and the drive rotor 1 to the space | interval which the attraction force and repulsive force of a permanent magnet become the maximum. The material of the drive rotor 1 and the working rotor 4 is made of a non-magnetic material. Grooves are provided at the predetermined locations, and the permanent magnets 2 or 5 are embedded in these grooves. Furthermore, although both the drive rotor 1 and the working rotor 4 have a thickness of several centimeters, these thicknesses may be appropriately determined as necessary.

これらの各駆動ロータ1の相互に反対の極性の、隣接する二つの永久磁石2,2の間に上記作動ロータ4の一つの永久磁石5が対向する位置となるように配置し、上記駆動ロータ1をモータ等の適宜の手段で駆動、回転させた際、駆動ロータ1の上記反対の極性の二つの永久磁石2,2の一方が作動ロータ4の上記一つの永久磁石5を吸引し、他方が当該永久磁石5をその反発力で押すことにより、作動ロータ4が中心軸6を中心に回転する構成となっている。これにより、駆動ロータ1が1回転すると、作動ロータ4は2回転し、回転が加速される。また、作動ロータ4は両側の二つの駆動ロータ1、1により回転力が伝達され、トルクが増幅される。   The drive rotors 1 are arranged such that one permanent magnet 5 of the operating rotor 4 is positioned between two adjacent permanent magnets 2 and 2 having opposite polarities to each other, and the drive rotor 1 When 1 is driven and rotated by appropriate means such as a motor, one of the two permanent magnets 2 and 2 of the opposite polarity of the drive rotor 1 attracts the one permanent magnet 5 of the operating rotor 4 and the other However, when the permanent magnet 5 is pushed by the repulsive force, the operating rotor 4 rotates around the central axis 6. As a result, when the drive rotor 1 rotates once, the operating rotor 4 rotates twice and the rotation is accelerated. Further, the rotational force is transmitted to the operating rotor 4 by the two drive rotors 1 and 1 on both sides, and the torque is amplified.

ここでは、作動ロータ4の永久磁石5の数と駆動ロータ1の永久磁石2の数の比を1:2としたため、作動ロータ4の回転数は2倍となった。これは一例であって、作動ロータ4の永久磁石5の数と駆動ロータ1の永久磁石2の数の比を1:3とすれば、作動ロータ4の回転数は3倍、作動ロータ4の永久磁石5の数と駆動ロータ1の永久磁石2の数の比を1:4とすれば、作動ロータ4の回転数は4倍となり、作動ロータ4の永久磁石5の数と駆動ロータ1の永久磁石2の数の比によって、作動ロータ4の回転数は変化して出力するものである。また逆に駆動ロータ1の永久磁石2の数を作動ロータ4の永久磁石5の数の1倍未満にした場合、作動ロータ4の回転数は低くなるが、その分馬力のある回転が得られることになる。   Here, since the ratio of the number of permanent magnets 5 of the working rotor 4 and the number of permanent magnets 2 of the drive rotor 1 was 1: 2, the rotational speed of the working rotor 4 was doubled. This is an example. If the ratio of the number of permanent magnets 5 of the working rotor 4 to the number of permanent magnets 2 of the driving rotor 1 is 1: 3, the number of rotations of the working rotor 4 is three times that of the working rotor 4. If the ratio of the number of permanent magnets 5 to the number of permanent magnets 2 in the drive rotor 1 is 1: 4, the rotational speed of the working rotor 4 is quadrupled, and the number of permanent magnets 5 in the working rotor 4 and the number of drive rotors 1 Depending on the ratio of the number of permanent magnets 2, the rotational speed of the working rotor 4 changes and is output. Conversely, when the number of permanent magnets 2 of the drive rotor 1 is less than one times the number of permanent magnets 5 of the working rotor 4, the rotational speed of the working rotor 4 is lowered, but a rotation with a corresponding horsepower is obtained. It will be.

次にこの発明の実施の形態例を図に基づいて説明する。
図1及び図2は、作動ロータ4の外周の一側に駆動ロータ1を設けた、この発明の実施の形態例を示す。
この作動ロータ4は、中央部4aとその外周に設けた、当該中央部より比重が大きい材質からなる外周部4bとから構成され、外周部4bの中心からの半径は、中央部4aの中心からの半径の2倍である。この中央部4aの外周縁に、等間隔で4個の永久磁石5を設け、当該作動ロータ4は、これと一体に設けた中心軸6を中心に回転自在となっている。これらの外周に沿って隣接する各永久磁石5は相互に反対の極性を有している。従って、各永久磁石5は90度の間隔で、N極とS極が相互に配置されている。
Next, an embodiment of the present invention will be described with reference to the drawings.
1 and 2 show an embodiment of the present invention in which a drive rotor 1 is provided on one side of the outer periphery of an operating rotor 4.
This operating rotor 4 is composed of a central portion 4a and an outer peripheral portion 4b made of a material having a specific gravity greater than that of the central portion, and the radius from the center of the outer peripheral portion 4b is from the center of the central portion 4a. Is twice the radius. Four permanent magnets 5 are provided at equal intervals on the outer peripheral edge of the central portion 4a, and the operating rotor 4 is rotatable around a central shaft 6 provided integrally therewith. The permanent magnets 5 adjacent to each other along the outer periphery have opposite polarities. Therefore, each permanent magnet 5 has an N pole and an S pole arranged at an interval of 90 degrees.

そして、この作動ロータ4の外周部4bの上面に一部重なって、中心部4aの外周の一側に近接して非接触で、作動ロータ4の直径とほぼ同じ直径を有する駆動ロータ1を設けている。この駆動ロータ1はこれと一体に設けた中心軸3を中心に回転自在である。この駆動ロータ1の外周縁には、等間隔で8個の永久磁石2を設け、これらの外周に沿って隣接する各永久磁石2は相互に反対の極性を有している。従って、各永久磁石2は45度の間隔で、N極とS極が相互に配置されている。また、上記駆動ロータ1及び作動ロータ4の材質は、非磁性体からできており、例えば、駆動ロータ1及び作動ロータ4の中央部4aはアルミニウム、作動ロータ4の外周部4bは真鍮とする。そして、これらの駆動ロータ1及び作動ロータ4の上記の所定の箇所に溝を設けて、これらの溝の中に上記永久磁石2又は5を埋め込んでいる。さらに、駆動ロータ1及び作動ロータ4の厚さは同じにしている。   A drive rotor 1 is provided which partially overlaps the upper surface of the outer peripheral portion 4b of the operating rotor 4 and is close to the outer side of the central portion 4a in a non-contact manner and has a diameter substantially the same as the diameter of the operating rotor 4. ing. The drive rotor 1 is rotatable around a central shaft 3 provided integrally therewith. Eight permanent magnets 2 are provided on the outer peripheral edge of the drive rotor 1 at equal intervals, and the permanent magnets 2 adjacent to each other along the outer periphery thereof have opposite polarities. Therefore, each permanent magnet 2 has an N pole and an S pole arranged at an interval of 45 degrees. The drive rotor 1 and the working rotor 4 are made of a non-magnetic material. For example, the central portion 4a of the driving rotor 1 and the working rotor 4 is aluminum, and the outer peripheral portion 4b of the working rotor 4 is brass. And the groove | channel is provided in said predetermined location of these drive rotor 1 and the action | operation rotor 4, and the said permanent magnet 2 or 5 is embedded in these grooves. Furthermore, the thickness of the drive rotor 1 and the operation | movement rotor 4 is made the same.

この駆動ロータ1の相互に反対の極性の、隣接する二つの永久磁石2,2の間に上記作動ロータ4の一つの永久磁石5が対向する位置となるように配置し、上記駆動ロータ1をモータ等の適宜の手段で駆動、回転させた際、駆動ロータ1の上記反対の極性の二つの永久磁石2,2の一方が作動ロータ4の上記一つの永久磁石5を吸引し、他方が当該永久磁石5をその反発力で押すことにより、作動ロータ4が中心軸6を中心に回転する構成となっている。   The drive rotor 1 is disposed so that one permanent magnet 5 of the operating rotor 4 faces between two adjacent permanent magnets 2 and 2 having opposite polarities to each other. When driven and rotated by appropriate means such as a motor, one of the two permanent magnets 2 and 2 of the opposite polarity of the drive rotor 1 attracts the one permanent magnet 5 of the working rotor 4 and the other is By pushing the permanent magnet 5 with its repulsive force, the operating rotor 4 rotates around the central axis 6.

この様にして駆動ロータ1の外周の隣接する永久磁石2の磁束の間に、作動ロータ4の一つの永久磁石5の磁束が入り、これらの駆動ロータ1と作動ロータ4の回転により、駆動ロータ1の外周の永久磁石2の磁束と作動ロータ4の磁束が次々に歯車のように噛み合い作動ロータ4が回転する。これにより、駆動ロータ1が1回転すると、作動ロータ4は2回転し、回転が加速される。また、作動ロータ4は両側の二つの駆動ロータ1、1により回転力が伝達され、トルクが増幅される。
この実施の形態例では、作動ロータと駆動ロータは、その半径及び厚さをほぼ同じとし、上記作動ロータの外周部の径は、上記中央部の半径とほぼ同じとしたので、より円滑に駆動ロータの回転を作動ロータに伝えることが出来、また、作動ロータの外周部を中央部より比重の大きい部材から形成したので、より確実に安定して回転を伝えることが出来る。
In this way, the magnetic flux of one permanent magnet 5 of the operating rotor 4 enters between the magnetic fluxes of the adjacent permanent magnets 2 on the outer periphery of the driving rotor 1, and the driving rotor 1 is driven by the rotation of the driving rotor 1 and the operating rotor 4. The magnetic flux of the permanent magnet 2 and the magnetic flux of the operating rotor 4 are successively meshed like a gear and the operating rotor 4 rotates. As a result, when the drive rotor 1 rotates once, the operating rotor 4 rotates twice and the rotation is accelerated. Further, the rotational force is transmitted to the operating rotor 4 by the two drive rotors 1 and 1 on both sides, and the torque is amplified.
In this embodiment, the operating rotor and the driving rotor have substantially the same radius and thickness, and the diameter of the outer peripheral portion of the operating rotor is substantially the same as the radius of the central portion. The rotation of the rotor can be transmitted to the operating rotor, and the outer peripheral portion of the operating rotor is formed of a member having a specific gravity greater than that of the central portion, so that the rotation can be transmitted more reliably and stably.

以下に、この発明の運動エネルギーの出力が加速、増幅される仕組みを上記実施例の場合を用いて実証する。
(1)駆動ロータ1はアルミニウムからなり、その半径をRとし、その外周に上述のように磁石が配置されている。また、作動ロータ4は磁石の配置が、半径R/2の円周上、すなわちアルミニウムからなる中央部4aの外周になされ、その外側にR/2の径の真鍮からなるリング状の外周部4bが一体に設けられている。
(2)駆動ロータ1が1回転したとき、作動ロータ4は2回転する。
(3)そのとき駆動ロータ1の外周に発生せる運動エネルギーベクトル(AE)の大きさは、
(AE)=(πR×d×2.7)×W×R
となる。ただし、dは駆動ロータ1の厚さ、Wは回転スピードを示す。
また、この時、作動ロータ4の外周に発生する運動エネルギーベクトル(BE)の大きさは、
Below, the mechanism by which the output of the kinetic energy of the present invention is accelerated and amplified will be demonstrated using the case of the above-described embodiment.
(1) The drive rotor 1 is made of aluminum, the radius thereof is R, and the magnet is disposed on the outer periphery thereof as described above. Further, the operating rotor 4 is arranged such that the magnets are arranged on the circumference of the radius R / 2, that is, on the outer periphery of the central portion 4a made of aluminum, and on the outer side thereof, the ring-shaped outer peripheral portion 4b made of brass of R / 2 diameter. Are provided integrally.
(2) When the drive rotor 1 rotates once, the working rotor 4 rotates twice.
(3) The magnitude of the kinetic energy vector (AE) generated on the outer periphery of the drive rotor 1 at that time is
(AE) = (πR 2 × d × 2.7) × W × R
It becomes. However, d shows the thickness of the drive rotor 1, and W shows a rotational speed.
At this time, the magnitude of the kinetic energy vector (BE) generated on the outer periphery of the working rotor 4 is

Figure 2005094954
Figure 2005094954

(4)ベクトル(AE)とベクトル(BE)の大きさの差は、
(BE)−(AE)=13.5πRdW−2.7πRdW
=10.8πRdW
(4) The difference in magnitude between vector (AE) and vector (BE) is
(BE)-(AE) = 13.5πR 3 dW-2.7πR 3 dW
= 10.8πR 3 dW

これは、駆動ロータ1の回転運動により、作動ロータ4に発生する運動エネルギーが
a)10.8=2.7+8.1…アルミニウムの比重2.7と真鍮の比重8.1の和に比例し、
b)R=半径Rの3乗に比例
c)d=駆動ロータ1及び作動ロータ4の厚さに比例し、
d)W=回転スピードに比例する。
これにより、駆動ロータ1の回転により作動ロータ4の運動エネルギーが、
10.8πRdWに比例して大きくなることを証明していると言うことができる。
e)上記a)の結果により、作動ロータ4に比重a及びbの金属を配置して、上記と同様の回転運動を駆動ロータ1から作動ロータ4に与えた場合、
(a+b)πR・dW
の比で、増幅されることを証明していると言うことが出来る。
This is because the kinetic energy generated in the working rotor 4 due to the rotational motion of the drive rotor 1 is proportional to the sum of a) 10.8 = 2.7 + 8.1... Specific gravity of aluminum 2.7 and specific gravity of brass 8.1. ,
b) R 3 = proportional to the cube of the radius R c) d = proportional to the thickness of the drive rotor 1 and the working rotor 4,
d) W = proportional to rotational speed.
As a result, the kinetic energy of the working rotor 4 due to the rotation of the drive rotor 1 is
It can be said that it is proved to increase in proportion to 10.8πR 3 dW.
e) According to the result of a) above, when the metals of specific gravity a and b are arranged on the working rotor 4 and the same rotational motion as above is given from the driving rotor 1 to the working rotor 4,
(A + b) πR 3 · dW
It can be said that it is proved that it is amplified by the ratio of.

図5は、この発明の運動エネルギー加速増幅装置を、発電機に使用した説明図である。立設した中心軸6の下端には、はずみ車7が取り付けられており、この中心軸6の上下にそれぞれ作動ロータ4、4が固定されており、当該中心軸6は回転自在に支持されている。この中心軸6の周辺には、2本の中心軸3が回転自在に立設して配置されている。   FIG. 5 is an explanatory diagram in which the kinetic energy acceleration amplification device of the present invention is used in a generator. A flywheel 7 is attached to the lower end of the upright central shaft 6, and operating rotors 4, 4 are respectively fixed above and below the central shaft 6, and the central shaft 6 is rotatably supported. . Two central shafts 3 are arranged so as to be rotatable around the central shaft 6.

また、これらの各中心軸3の上下に駆動ロータ1が設けられ、これらの各駆動ロータ1の外周は、上記上下の各作動ロータ4の外周上面に一部が重なって近接して非接触で設けられている。また、これらの駆動ロータ1及び作動ロータ4に設けられている永久磁石の構成関係は上記図4と同様である。また、上記各中心軸3の一端にはサーボモータ10が取り付けられている。
上記中心軸6の上端にはT字型ギア11が取り付けられ、そのT字型ギア11の一端は、出力発電機水平回転軸12aを介して出力発電機12に、他の一端は駆動発電機水平回転軸13aを介して駆動発電機13に連結されている。そして駆動発電機13で得られた電力は、駆動バッテリー14に蓄電されるようになっている。
Further, drive rotors 1 are provided above and below the central shafts 3, and the outer circumferences of the drive rotors 1 are partly overlapped with the upper surfaces of the outer circumferences of the upper and lower operation rotors 4 so as to be non-contact. Is provided. Moreover, the structural relationship of the permanent magnets provided in the drive rotor 1 and the working rotor 4 is the same as that in FIG. A servo motor 10 is attached to one end of each central shaft 3.
A T-shaped gear 11 is attached to the upper end of the central shaft 6. One end of the T-shaped gear 11 is connected to the output generator 12 via the output generator horizontal rotating shaft 12 a, and the other end is a drive generator. It is connected to the drive generator 13 via the horizontal rotating shaft 13a. The electric power obtained by the drive generator 13 is stored in the drive battery 14.

ここで、各サーボモータ10を回転させると、各中心軸3が回転を始める。すると、上記と同様に(図4参照)、駆動ロータ1の外周に沿って隣接する二つの相互に反対の極性の永久磁石2の間に位置する作動ロータ4の永久磁石5が、これらの反対の極性の二つの永久磁石2の、一方の永久磁石2(N極)が作動ロータ4の上記一つの永久磁石5(S極)を吸引し、他方の永久磁石2(S極)が当該永久磁石5(S極)をその反発力で押すことにより、作動ロータ4が回転する。   Here, when each servo motor 10 is rotated, each central shaft 3 starts rotating. Then, similarly to the above (see FIG. 4), the permanent magnet 5 of the working rotor 4 positioned between two permanent magnets 2 of opposite polarities adjacent to each other along the outer periphery of the drive rotor 1 One permanent magnet 2 (N pole) of the two permanent magnets 2 having the same polarity attracts the one permanent magnet 5 (S pole) of the operating rotor 4, and the other permanent magnet 2 (S pole) is the permanent magnet. The operating rotor 4 rotates by pushing the magnet 5 (S pole) with its repulsive force.

そして、二つの駆動ロータ1により一つの作動ロータ4が回転され、かつ、これらの構成が上下二組設けられているため、駆動ロータ1の吸引力並びに反発力が、作動ロータ4乃至はこれらの中心軸6に集中され、加速・増幅されるので、当該中心軸6の回転力は一層高まる。そして、T字型ギア11を介して、その回転力の一部は駆動発電機13を駆動して発電を行う。ここで発生した電力は、駆動バッテリー14に蓄えられ、また、サーボモータ10を駆動して発電が継続される。また、一部は出力発電機12を駆動して大量の発電を行うことができる。   Since one operating rotor 4 is rotated by the two drive rotors 1 and these configurations are provided in two sets, upper and lower, the suction force and the repulsive force of the drive rotor 1 are applied to the operating rotor 4 or these rotors. Since it is concentrated on the central axis 6 and accelerated / amplified, the rotational force of the central axis 6 is further increased. A part of the rotational force drives the drive generator 13 to generate power via the T-shaped gear 11. The electric power generated here is stored in the drive battery 14, and the servo motor 10 is driven to continue power generation. In addition, a part of the power generator 12 can be driven to generate a large amount of power.

なお、モータ、発電機は一旦回転を始めると、その回転を維持し続けるには、あまり電力を消費しなくて済む。ここでは中心軸6にはずみ車7を設けているのでサーボモータ10の消費電力は極めて少なくて済み、中心軸6の回転力が一層加速・増幅されるので、時にはサーボモータ10の電磁作用により、サーボモータ10に起電力が発生し、その電力は駆動バッテリー14に蓄電されるので、サーボモータ10の消費電力はゼロか極めて低いものになる。つまり、極めて僅かの電気エネルギーの使用によって、多量の電力を発電することができる。   Note that once the motor and generator start rotating, less power is consumed in order to maintain the rotation. Here, since the flywheel 7 is provided on the central shaft 6, the power consumption of the servo motor 10 is extremely small, and the rotational force of the central shaft 6 is further accelerated and amplified. Since electromotive force is generated in the motor 10 and the electric power is stored in the drive battery 14, the power consumption of the servo motor 10 is zero or extremely low. That is, a large amount of electric power can be generated by using very little electric energy.

なお、上記実施の形態例において、この発明の原理を説明した際、一つの作動ロータ4に対して二つの駆動ロータ1、1を設けたが、一つの作動ロータ4に対して一つの駆動ロータ1、又は二つ以上の駆動ロータ1により作動ロータ4を回転させても良い。また、上記実施の形態例において、作動ロータ4の中央部4aをアルミニウム、外周部4bを真鍮で設けているが、これらの部分を設ける比重の異なる材質又は中央部4aより比重が大きい外周部4bの材質は、これらの金属に限定するものではなく、駆動ロータ1をアルミニウムにより設けているが、駆動ロータ1を設ける材質もアルミニウムに限定するものではない。   In the embodiment described above, when the principle of the present invention is described, two drive rotors 1 and 1 are provided for one operating rotor 4, but one driving rotor is provided for one operating rotor 4. The working rotor 4 may be rotated by one or two or more drive rotors 1. In the above embodiment, the central portion 4a of the operating rotor 4 is made of aluminum and the outer peripheral portion 4b is made of brass. However, the outer peripheral portion 4b having a specific gravity different from that of the central portion 4a or a material having a different specific gravity for providing these portions. These materials are not limited to these metals, and the drive rotor 1 is made of aluminum, but the material for providing the drive rotor 1 is not limited to aluminum.

この発明の実施の形態例の説明平面図である。It is a description top view of the embodiment of this invention. この発明の実施の形態例の説明側面図である。It is a description side view of the embodiment of this invention. この発明の原理作用を示す説明平面図である。It is a description top view which shows the principle effect | action of this invention. この発明の原理作用を示す説明平面図である。It is a description top view which shows the principle effect | action of this invention. この発明の原理作用を発電機に応用した場合の概略斜視図である。It is a schematic perspective view at the time of applying the principle effect | action of this invention to a generator.

符号の説明Explanation of symbols

1 駆動ロータ 2 永久磁石
3 中心軸 4 作動ロータ
5 永久磁石 6 中心軸
DESCRIPTION OF SYMBOLS 1 Drive rotor 2 Permanent magnet 3 Central axis 4 Actuator rotor 5 Permanent magnet 6 Central axis

Claims (5)

中心から一定の半径の円周上に間隔をあけて複数の永久磁石を設け、これらの隣接する永久磁石は相互に反対の極性とした中央部と、この中央部の外周に、この中央部と比重の異なる材質から成る外周部とから成る作動ロータを回転自在に設け、この作動ロータの上記中央部外周に近接して、外周縁に間隔をあけて複数の永久磁石を設けた駆動ロータを設け、この駆動ロータは上記作動ロータの中央部と材質を同じくし、この駆動ロータの外周に沿って隣接する各永久磁石は相互に反対の極性を有し、これらの反対の極性の二つの永久磁石の間に上記作動ロータの一つの永久磁石が対向する位置となるようにし、上記駆動ロータを駆動、回転させた際、上記反対の極性の二つの永久磁石の一方が作動ロータの上記一つの永久磁石を吸引し、他方が当該永久磁石をその反発力で押すことにより、作動ロータが加速、増幅回転することを特徴とする、運動エネルギー加速増幅装置。 A plurality of permanent magnets are provided spaced apart from each other on the circumference of a constant radius from the center, and these adjacent permanent magnets have opposite central polarities, and an outer periphery of the central portion, the central portion and An operating rotor composed of an outer peripheral portion made of a material having different specific gravity is rotatably provided, and a driving rotor provided with a plurality of permanent magnets is provided adjacent to the outer periphery of the central portion of the operating rotor and spaced at the outer peripheral edge. The drive rotor is made of the same material as the central portion of the working rotor, and the adjacent permanent magnets along the outer periphery of the drive rotor have opposite polarities, and two permanent magnets having the opposite polarities. When one of the two permanent magnets of the opposite polarity is driven and rotated, one of the two permanent magnets of the opposite polarity is fixed to the one permanent magnet of the working rotor. Suck magnet and other There by pressing the permanent magnet in its repulsive force, wherein the driven rotor is accelerated, amplified rotational kinetic energy accelerated amplifier. 上記作動ロータと上記駆動ロータは、その半径及び厚さをほぼ同じとし、上記作動ロータの外周部の径は、上記中央部の半径とほぼ同じとしたことを特徴とする、上記請求項1に記載の運動エネルギー加速増幅装置。 The operating rotor and the driving rotor have substantially the same radius and thickness, and the diameter of the outer peripheral portion of the operating rotor is substantially the same as the radius of the central portion. The kinetic energy acceleration amplification apparatus as described. 上記作動ロータの外周部は、中央部より、比重が大きい部材から形成したことを特徴とする、上記請求項1又は2の何れかに記載の運動エネルギー加速増幅装置。 The outer peripheral part of the said working rotor was formed from the member with larger specific gravity than the center part, The kinetic energy acceleration amplification apparatus in any one of the said Claim 1 or 2 characterized by the above-mentioned. 上記作動ロータ1個に対して、上記駆動ロータを複数個を組み合わせて設けたことを特徴とする、上記請求項1乃至3の何れかに記載の運動エネルギー加速増幅装置。 4. The kinetic energy acceleration amplification apparatus according to claim 1, wherein a plurality of the drive rotors are provided in combination with the one operation rotor. 上記駆動ロータに設けた永久磁石の数量は、当該駆動ロータに組み合わされた上記作動ロータの中央部に設けた永久磁石の数量の1倍以上、又は1倍未満としたことを特徴とする、上記請求項1乃至4の何れかに記載の運動エネルギー加速増幅装置。 The number of permanent magnets provided in the drive rotor is one or more times or less than one time the number of permanent magnets provided in the central portion of the working rotor combined with the drive rotor, The kinetic energy acceleration amplification device according to any one of claims 1 to 4.
JP2003326741A 2003-09-18 2003-09-18 Kinetic energy accelerating and amplifying device Pending JP2005094954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326741A JP2005094954A (en) 2003-09-18 2003-09-18 Kinetic energy accelerating and amplifying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326741A JP2005094954A (en) 2003-09-18 2003-09-18 Kinetic energy accelerating and amplifying device

Publications (1)

Publication Number Publication Date
JP2005094954A true JP2005094954A (en) 2005-04-07

Family

ID=34456836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326741A Pending JP2005094954A (en) 2003-09-18 2003-09-18 Kinetic energy accelerating and amplifying device

Country Status (1)

Country Link
JP (1) JP2005094954A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442789A (en) * 2006-07-28 2008-04-16 Jason Mark Bailey Self powered rotary magnet field engine
US20100141073A1 (en) * 2007-06-05 2010-06-10 Izuogu Ezekiel O Izuogu machine (the time-limited self sustaining emagnetodynamics machine)
JP2014181555A (en) * 2013-03-17 2014-09-29 Haruo Ota Connected power generator
CN106533127A (en) * 2016-11-30 2017-03-22 沈阳工业大学 Dual-magnet-wheel non-contact advancing driving device with permanent-magnet poles symmetrically arranged at intervals
KR101879631B1 (en) * 2017-03-03 2018-07-18 김채식 Agitator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2442789A (en) * 2006-07-28 2008-04-16 Jason Mark Bailey Self powered rotary magnet field engine
US20100141073A1 (en) * 2007-06-05 2010-06-10 Izuogu Ezekiel O Izuogu machine (the time-limited self sustaining emagnetodynamics machine)
JP2014181555A (en) * 2013-03-17 2014-09-29 Haruo Ota Connected power generator
CN106533127A (en) * 2016-11-30 2017-03-22 沈阳工业大学 Dual-magnet-wheel non-contact advancing driving device with permanent-magnet poles symmetrically arranged at intervals
CN106533127B (en) * 2016-11-30 2023-11-21 沈阳工业大学 Permanent magnet magnetic poles alternately arranged and symmetrically arranged double-magnetic wheel non-contact forward driving device
KR101879631B1 (en) * 2017-03-03 2018-07-18 김채식 Agitator

Similar Documents

Publication Publication Date Title
KR100816421B1 (en) Magnetic force rotating device
US20020158531A1 (en) Device for kinetic energy accelerator/amplifier
KR101894672B1 (en) Power generation system
JPS62171458A (en) Magnetic force rotating apparatus
JP2008043138A (en) Auxiliary driving gear
US20120267973A1 (en) Method of propulsion
JP2007244014A (en) Noncontact gear by magnetism
JP2005094954A (en) Kinetic energy accelerating and amplifying device
US6369477B1 (en) Roller-type electric motor
JP2005192374A (en) Automobile running by wind power generation
JP2005253292A (en) High torque transmission non-contact gear
JP2013179724A (en) Rotation accelerating device
JP5763198B2 (en) Magnetic drive blower or generator
JP2008054374A (en) Magnetic drive mechanism
JP6616538B1 (en) Rotating device and power generation system
JP2003259622A (en) Kinetic energy acceleration amplifier
JP2006025469A (en) High efficiency magnetic force rotating device
JP2005233326A (en) Transmission mechanism
JP2001190058A (en) Magnetic rotating device
JP5916231B2 (en) Electromagnetic rotation mechanism and tube pump provided with the same
WO2022000517A1 (en) Magnetic perpetual motion machine
JP2003314434A (en) Kinetic energy acceleration and amplification equipment
JP6888523B2 (en) Vehicle power transmission device
JP2008312331A (en) Magnetic force rotating device
JP2006174674A (en) Rotary drive device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20070501

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904