JP2007242654A - Overheat protection element and its manufacturing method - Google Patents

Overheat protection element and its manufacturing method Download PDF

Info

Publication number
JP2007242654A
JP2007242654A JP2006058880A JP2006058880A JP2007242654A JP 2007242654 A JP2007242654 A JP 2007242654A JP 2006058880 A JP2006058880 A JP 2006058880A JP 2006058880 A JP2006058880 A JP 2006058880A JP 2007242654 A JP2007242654 A JP 2007242654A
Authority
JP
Japan
Prior art keywords
polymer matrix
protection element
overheat protection
contact surface
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006058880A
Other languages
Japanese (ja)
Inventor
Masaru Yoneyama
勝 米山
Nobuhiro Shinozuka
信裕 篠塚
Tsutomu Saga
努 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2006058880A priority Critical patent/JP2007242654A/en
Publication of JP2007242654A publication Critical patent/JP2007242654A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermistors And Varistors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overheat protection element in which the trip temperature for interrupting a current when the circuit is overheated is prevented from differing for every element, and occurrence of chattering can be suppressed; and to provide its manufacturing method. <P>SOLUTION: The overheat protection element comprises a pair of conductive metal foils 1, and a macromolecular matrix layer 10 sandwiched between the pair of conductive metal foils 1. A plurality of recesses 3 for receiving the macromolecular matrix layer 10 are formed in the contact face 2 of each metal foil 1, and the contact face 2 is roughened in the metal foil 1 touching the macromolecular matrix layer 10. The macromolecular matrix layer 10 is admixed with insulating fine particles 11, and conduction is ensured through contact of the pair of conductive metal foils 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気機器の回路、電池、部品等を保護する過熱保護素子及びその製造方法に関するものである。   The present invention relates to an overheat protection element that protects circuits, batteries, components, and the like of electrical equipment and a method for manufacturing the same.

従来の過熱保護素子は、図示しないが、導電性を有する一対の金属箔と、この一対の金属箔の間に挟持される導電性の高分子マトリクス層とを備え、所定の電気回路あるいは電子回路に組み込まれて導通機能を発揮する。高分子マトリクス層には、導電性樹脂や導電性微粒子が分散して配合されている(特許文献1、2参照)。
このような過熱保護素子には、特に室温での抵抗値が十分に低いこと、室温抵抗値と動作時の抵抗値の変化率が十分に大きいこと、繰り返し動作時における抵抗値の変化が小さいことが特性として求められる。
Although not shown, the conventional overheat protection element includes a pair of conductive metal foils and a conductive polymer matrix layer sandwiched between the pair of metal foils, and a predetermined electric circuit or electronic circuit. Built-in to demonstrate the conduction function. In the polymer matrix layer, conductive resin and conductive fine particles are dispersed and blended (see Patent Documents 1 and 2).
Such an overheat protection element has a particularly low resistance value at room temperature, a sufficiently high rate of change between the room temperature resistance value and the resistance value during operation, and a small change in resistance value during repeated operation. Is required as a characteristic.

しかしながら、従来の過熱保護素子は、動作の繰り返しにより室温抵抗値が上昇し、しかも、一対の金属箔間に導電性の高分子マトリクス層を挟む構成のため、通電時には高分子マトリクス層自体が回路内の抵抗として機能してしまうという不都合な特徴を有している。
係る問題点に鑑み、通電時には電極となる一対の金属箔同士が接触し、回路の過熱時には熱を検知して一対の金属箔が離隔することにより電流を遮断する過熱保護素子が提案されている。
特開2006‐024863号公報 特開2005‐347480号公報
However, the conventional overheat protection element has a room temperature resistance value that increases due to repeated operations, and the conductive polymer matrix layer is sandwiched between a pair of metal foils. It has an inconvenient feature of functioning as an internal resistor.
In view of such problems, there has been proposed an overheat protection element in which a pair of metal foils serving as electrodes are in contact with each other when energized, and when the circuit is overheated, heat is detected and the pair of metal foils are separated to cut off current. .
JP 2006-024863 A JP 2005-347480 A

提案されている過熱保護素子は、以上のように構成されているので、高分子マトリクス層が回路の抵抗になるのを抑制防止することができる。しかし、金属箔の接触する接触面が単なる平面なので、高分子マトリクス層の成形時の歪等により、周囲温度の上昇時に僅かな膨張の偏りが発生し、その結果、回路の過熱時に電流を遮断するトリップ温度が素子毎に相違してしまうというおそれが考えられる。さらに、トリップ温度の近辺で通電状態と絶縁状態が交互に発生するチャタリングが生じてしまうので、過熱保護素子としては不適切である。   Since the proposed overheat protection element is configured as described above, the polymer matrix layer can be prevented from becoming a circuit resistance. However, since the contact surface with which the metal foil contacts is simply a flat surface, a slight bias of expansion occurs when the ambient temperature rises due to distortion during molding of the polymer matrix layer, and as a result, the current is cut off when the circuit overheats. There is a possibility that the trip temperature to be different is different for each element. Furthermore, chattering in which an energized state and an insulated state occur alternately occurs near the trip temperature, which is inappropriate as an overheat protection element.

本発明は上記に鑑みなされたもので、回路の過熱時に電流を遮断するトリップ温度が素子毎に相違したり、チャタリングが発生するのを抑制することのできる過熱保護素子及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above, and provides an overheat protection element capable of suppressing the occurrence of chattering or a trip temperature at which a current is interrupted when a circuit is overheated, and a method for manufacturing the same. The purpose is that.

本発明においては上記課題を解決するため、導電性を有する複数の電極体の間に高分子マトリクスを挟み持たせ、複数の電極体同士を常温時には接触させて導通可能とし、常温よりも温度の上昇する温度上昇時には高分子マトリクスを膨張させて離隔させるものであって、
電極体の接触面を粗面化し、高分子マトリクスに絶縁性微粒子を配合したことを特徴としている。
In the present invention, in order to solve the above-described problem, a polymer matrix is sandwiched between a plurality of conductive electrode bodies, and the plurality of electrode bodies are brought into contact with each other at room temperature so that they can conduct electricity. When the temperature rises, the polymer matrix is expanded and separated,
It is characterized in that the contact surface of the electrode body is roughened and insulating fine particles are blended in the polymer matrix.

なお、電極体の接触面に、高分子マトリクス用の滞留部を形成してその面積率を接触面の25〜80%とし、この滞留部を、電極体の厚み×40〜70%の範囲の深さで凹み形成することが好ましい。   In addition, a retention part for the polymer matrix is formed on the contact surface of the electrode body, and the area ratio is set to 25 to 80% of the contact surface. The retention part is within the range of the thickness of the electrode body × 40 to 70%. It is preferable to form a recess at a depth.

また、各電極体をニッケル、銅、あるいはこれらの合金とし、電極体の接触面における表面粗さRaを0.5〜50μmとすることが好ましい。
また、高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上有し、絶縁性微粒子を球状シリカ又はシリコーン微粒子としてその平均粒子径を0.1〜5.0μmとすることが好ましい。
Moreover, it is preferable that each electrode body is made of nickel, copper, or an alloy thereof, and the surface roughness Ra on the contact surface of the electrode body is 0.5 to 50 μm.
The polymer matrix preferably has a crystalline thermoplastic polymer of 70 wt% or more, and the insulating fine particles are spherical silica or silicone fine particles, and the average particle size is 0.1 to 5.0 μm.

また、本発明においては上記課題を解決するため、導電性を有する複数の電極体の間に高分子マトリクスを挟み持たせ、複数の電極体同士を常温時には接触させて導通可能とし、常温よりも温度の上昇する温度上昇時には高分子マトリクスを膨張させて離隔させる過熱保護素子の製造方法であって、
各電極体の接触面を粗面化し、高分子マトリクスに絶縁性微粒子を配合することを特徴としている。
Further, in the present invention, in order to solve the above-described problem, a polymer matrix is sandwiched between a plurality of conductive electrode bodies, and the plurality of electrode bodies are brought into contact with each other at room temperature so that they can conduct electricity. A method of manufacturing an overheat protection element that expands and separates a polymer matrix at a time when the temperature rises,
The contact surface of each electrode body is roughened, and insulating fine particles are blended in the polymer matrix.

なお、電極体の接触面に、高分子マトリクス用の滞留部を形成してその面積率を接触面の25〜80%とし、この滞留部を、電極体の厚み×40〜70%の範囲の深さで凹み形成すると良い。
また、各電極体をニッケル、銅、あるいはこれらの合金とし、電極体の接触面における表面粗さRaを0.5〜50μmとすると良い。
また、高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上有し、絶縁性微粒子をシリコーン微粒子としてその平均粒子径を0.1〜5.0μmとすると良い。
In addition, a retention part for the polymer matrix is formed on the contact surface of the electrode body, and the area ratio is set to 25 to 80% of the contact surface. The retention part is within the range of the thickness of the electrode body × 40 to 70%. It is good to form a dent with depth.
Each electrode body is preferably made of nickel, copper, or an alloy thereof, and the surface roughness Ra on the contact surface of the electrode body is preferably 0.5 to 50 μm.
Further, the polymer matrix preferably has a crystalline thermoplastic polymer of 70 wt% or more, the insulating fine particles are silicone fine particles, and the average particle size is 0.1 to 5.0 μm.

さらに、導電性を有する複数の電極体の間に高分子マトリクスを挟み持たせ、複数の電極体同士を常温時には接触させて導通可能とし、常温よりも温度の上昇する温度上昇時には高分子マトリクスを膨張させて離隔させるものであって、
電極体の接触面に、高分子マトリクス用の滞留部を形成するとともに、電極体の接触面を粗面化し、高分子マトリクスに絶縁性微粒子を配合したことを特徴としても良い。
Furthermore, a polymer matrix is sandwiched between a plurality of conductive electrode bodies so that the plurality of electrode bodies can be brought into contact with each other at room temperature to be conductive, and when the temperature rises above room temperature, the polymer matrix is formed. To inflate and separate,
A retention portion for the polymer matrix may be formed on the contact surface of the electrode body, the contact surface of the electrode body may be roughened, and insulating fine particles may be blended in the polymer matrix.

本発明によれば、電極体の接触面を粗面化し、高分子マトリクスに絶縁性微粒子を配合するので、回路の過熱時に電流を遮断するトリップ温度が素子毎に相違したり、チャタリングが発生するのを抑制することができるという効果がある。   According to the present invention, since the contact surface of the electrode body is roughened and the insulating matrix is blended in the polymer matrix, the trip temperature at which the current is interrupted when the circuit is overheated is different for each element, or chattering occurs. There is an effect that can be suppressed.

また、電極体の接触面に、高分子マトリクス用の滞留部を形成してその面積率を接触面の25〜80%とし、この滞留部を、電極体の厚み×40〜70%の範囲の深さで凹み形成すれば、電極体間の長さ(距離)を長期間安定して確保し、長時間の導通時における短絡のおそれを排除することができるという効果がある。また、高分子マトリクスの膨張に支障を来たしたり、初期抵抗値が当初から高くなるのを防ぐことができる。   Further, a retention portion for the polymer matrix is formed on the contact surface of the electrode body, and the area ratio is set to 25 to 80% of the contact surface, and the retention portion is within the range of the thickness of the electrode body × 40 to 70%. If the recess is formed at a depth, the length (distance) between the electrode bodies can be secured stably for a long period of time, and the possibility of short-circuiting during a long period of conduction can be eliminated. Moreover, it can prevent the expansion of the polymer matrix and prevent the initial resistance value from increasing from the beginning.

さらに、各電極体をニッケル、銅、あるいはこれらの合金とし、電極体の接触面における表面粗さRaを0.5〜50μmとすれば、優れた導電性を比較的安価に得ることができ、しかも、通電状態と絶縁状態が交互に発生するチャタリングを防ぐことが可能になる。   Furthermore, if each electrode body is made of nickel, copper, or an alloy thereof, and the surface roughness Ra on the contact surface of the electrode body is 0.5 to 50 μm, excellent conductivity can be obtained relatively inexpensively, In addition, chattering in which an energized state and an insulated state occur alternately can be prevented.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における過熱保護素子は、図1に示すように、導電性を有する一対の金属箔1と、この相対向する一対の金属箔1の間に接着挟持される膨張可能な絶縁性の高分子マトリクス層10とを備え、コンピュータや自動車等の所定の電気回路あるいは電子回路に組み込まれて一対の金属箔1同士の直接接触により導通機能を発揮する。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, an overheat protection element in this embodiment includes a pair of conductive metal foils 1 and a pair of the metal foils 1 facing each other. And an expandable insulating polymer matrix layer 10 that is bonded and sandwiched between the metal foils 1, and is incorporated into a predetermined electric circuit or electronic circuit such as a computer or an automobile, and directly between the pair of metal foils 1. Demonstrates a conduction function by contact.

一対の金属箔1と高分子マトリクス層10とは、それぞれ平面矩形に形成され、各金属箔1が圧延等により薄肉に形成されており、高分子マトリクス層10が比較的厚肉に形成される。   The pair of metal foils 1 and the polymer matrix layer 10 are each formed in a flat rectangular shape, each metal foil 1 is formed thin by rolling or the like, and the polymer matrix layer 10 is formed relatively thick. .

複数の金属箔1は、錆びにくく安価なニッケル、銅、あるいはこれらの合金等を使用して形成され、対向する金属箔1に接触する接触面2には、高分子マトリクス層10の一部を滞留させる複数の滞留部3がエッチング法等により凹み形成されており、高分子マトリクス層10に接触しない非接触面4には、回路接続用のリード線5が接続されて電極として機能する。複数の金属箔1のうち、少なくとも一の金属箔1の接触面2は、粗くランダムな凹凸に粗面化される。   The plurality of metal foils 1 are formed using nickel, copper, or an alloy thereof that is less likely to rust, and a part of the polymer matrix layer 10 is formed on the contact surface 2 that contacts the opposing metal foil 1. A plurality of staying portions 3 to be stayed are recessed by an etching method or the like, and a lead wire 5 for circuit connection is connected to a non-contact surface 4 that does not contact the polymer matrix layer 10 and functions as an electrode. Of the plurality of metal foils 1, the contact surface 2 of at least one metal foil 1 is roughened into rough and random irregularities.

複数の滞留部3は、その面積率が接触面2の25〜80%の範囲とされ、接触面2から金属箔1の厚み×40〜70%の範囲の深さで凹み形成されており、高分子マトリクス層10の一部に嵌合してその膨張を増大させるよう機能する。滞留部3の面積率が接触面2の25〜80%の範囲とされ、接触面2から金属箔1の厚み×40〜70%の範囲の深さで凹み形成されるのは、係る範囲から外れる場合には、高分子マトリクス層10の膨張を支障を来たしたり、初期抵抗値が当初から高くなり、実用に耐えないからである。   The plurality of staying portions 3 have an area ratio in the range of 25 to 80% of the contact surface 2 and are formed to be recessed from the contact surface 2 at a depth in the range of the thickness of the metal foil 1 x 40 to 70%. It functions to fit into a part of the polymer matrix layer 10 and increase its expansion. The area ratio of the staying portion 3 is in the range of 25 to 80% of the contact surface 2, and the depression is formed from the contact surface 2 at a depth in the range of the thickness of the metal foil 1 x 40 to 70%. This is because if it comes off, it will hinder the expansion of the polymer matrix layer 10 and the initial resistance value will be high from the beginning, which will not be practical.

金属箔1の接触面2における表面粗さRaは、導電性を向上させる観点から0.5〜50μmの範囲とされる。   The surface roughness Ra on the contact surface 2 of the metal foil 1 is in the range of 0.5 to 50 μm from the viewpoint of improving the conductivity.

高分子マトリクス層10は、結晶性を有する熱可塑性ポリマーを70wt%(重量%)以上含有したシートに成形され、非相溶の絶縁性微粒子11が多数配合される。この高分子マトリクス層10としては、例えば適切な膨張率を得ることのできるポリエチレンやマレイン酸変性EPR等が材料に使用される。   The polymer matrix layer 10 is formed into a sheet containing 70 wt% (wt%) or more of a crystalline thermoplastic polymer, and a large number of incompatible insulating fine particles 11 are blended. As the polymer matrix layer 10, for example, polyethylene or maleic acid-modified EPR that can obtain an appropriate expansion coefficient is used as a material.

絶縁性微粒子11は、例えば球状シリカやシリコーン微粒子等からなり、平均粒子径が0.1〜5.0μm、好ましくは0.3〜2.0μmの範囲とされており、高分子マトリクス層10の剛性を向上させるよう機能する。この絶縁性微粒子11の平均粒子径が0.1〜5.0μmの範囲なのは、平均粒子径が0.1μm未満の場合には、樹脂の分散時に粘度が上昇したり、成形性に問題が生じ、コストが上昇するからである。逆に、平均粒子径が5.0μmを超える場合には、長期間使用するときに過熱保護素子の強度が不十分になるからである。   The insulating fine particles 11 are made of, for example, spherical silica or silicone fine particles, and have an average particle diameter of 0.1 to 5.0 μm, preferably 0.3 to 2.0 μm. It functions to improve rigidity. The average particle diameter of the insulating fine particles 11 is in the range of 0.1 to 5.0 μm. When the average particle diameter is less than 0.1 μm, the viscosity increases during the dispersion of the resin or a problem occurs in moldability. This is because the cost increases. Conversely, when the average particle diameter exceeds 5.0 μm, the strength of the overheat protection element becomes insufficient when used for a long period of time.

上記において、過熱保護素子を製造する場合には、先ず、一対の金属箔1を用意してその接触面2に、高分子マトリクス層10用の滞留部3をそれぞれ複数凹み形成し、金属箔1の接触面2を凹凸に粗面化する。   In the above, when manufacturing an overheat protection element, first, a pair of metal foils 1 is prepared, and a plurality of dwelling portions 3 for the polymer matrix layer 10 are formed on the contact surface 2, respectively. The contact surface 2 is roughened into irregularities.

また、金属箔1の加工と前後して、ペレット状の高分子マトリクスと絶縁性微粒子11とをジェットミル等にセットしてその粒度を調整し、この高分子マトリクスと絶縁性微粒子11とをミキサーに投入して混合攪拌し、所定の温度に調整された加圧ニーダーにより混練した後にカレンダー加工機にセットし、このカレンダー加工機によりシーティングして高分子マトリクス層10を製造する。   Further, before and after the processing of the metal foil 1, the pellet-shaped polymer matrix and the insulating fine particles 11 are set in a jet mill or the like to adjust the particle size, and the polymer matrix and the insulating fine particles 11 are mixed with the mixer. The polymer matrix layer 10 is manufactured by mixing with stirring and kneading with a pressure kneader adjusted to a predetermined temperature, setting in a calendering machine, and sheeting with the calendering machine.

こうして一対の金属箔1と高分子マトリクス層10とをそれぞれ製造したら、一対の金属箔1に高分子マトリクス層10を挟持させてプレス成形機にセットし、このプレス成形機により加熱加圧してラミネート物を製造し、その後、ラミネート物に電子線を照射して高分子マトリクスを架橋させ、各金属箔1の非接触面4にリード線5を接続すれば、過熱保護素子を製造することができる。   When the pair of metal foils 1 and the polymer matrix layer 10 are manufactured in this way, the polymer matrix layer 10 is sandwiched between the pair of metal foils 1 and set in a press molding machine. If the laminate is manufactured, and then the laminate is irradiated with an electron beam to crosslink the polymer matrix and the lead wire 5 is connected to the non-contact surface 4 of each metal foil 1, an overheat protection element can be manufactured. .

このように製造された過熱保護素子は、所定の電気回路あるいは電子回路に組み込まれ、一対の金属箔1同士が常温時には接触して回路を導通可能とし、常温よりも温度の上昇する温度上昇時、すなわち過熱時には高分子マトリクス層10が膨張して離隔し、電流を遮断する。係る過熱保護素子は、一次電池、二次電池、自動車のモータ、スピーカ、コンピュータ回路の保護等にヒューズとして広く利用することができる。   The overheat protection element manufactured in this way is incorporated in a predetermined electric circuit or electronic circuit, and a pair of metal foils 1 come into contact with each other at room temperature so that the circuit can be conducted, and when the temperature rises higher than room temperature That is, at the time of overheating, the polymer matrix layer 10 expands and separates to interrupt the current. Such an overheat protection element can be widely used as a fuse for protection of primary batteries, secondary batteries, automobile motors, speakers, computer circuits, and the like.

上記によれば、金属箔1の接触面2を平面ではなく、適度な凸凹に粗面化するとともに、高分子マトリクス層10に絶縁性微粒子11を配合するので、常温よりも温度の上昇する回路の過熱時に電流を遮断するトリップ温度が素子毎に相違してしまうことがなく、しかも、安定した初期抵抗値や急峻なトリップ特性を得ることができる。また、トリップ温度の近辺で通電状態と絶縁状態が交互に発生するチャタリングが生じるのを抑制防止することができるので、適切な過熱保護素子を提供することができる。   According to the above, the contact surface 2 of the metal foil 1 is not flat but roughened to moderate irregularities, and the insulating fine particles 11 are blended in the polymer matrix layer 10, so that the circuit has a temperature higher than normal temperature. The trip temperature for interrupting the current during overheating of the device does not differ for each element, and a stable initial resistance value and steep trip characteristics can be obtained. Further, since chattering in which the energized state and the insulated state occur alternately near the trip temperature can be suppressed and prevented, an appropriate overheat protection element can be provided.

また、高分子マトリクスに絶縁性微粒子11を配合するので、過熱保護素子のトリップ後における安定性を向上させることが可能になる。さらに、各金属箔1に、ある程度の高分子マトリクス層10の体積を確保する滞留部3を形成して過熱保護素子の過熱時に高分子マトリクス層10の膨張幅を増大させるので、例え過熱保護素子自体の熱により薄い高分子マトリクス層10が軟化しても、全体的な金属箔1間の距離を長時間安定して確保することができ、しかも、長時間の導通時に接近して短絡の発生するおそれがない。   In addition, since the insulating fine particles 11 are blended in the polymer matrix, it becomes possible to improve the stability of the overheat protection element after a trip. Furthermore, since the retention part 3 which secures the volume of the polymer matrix layer 10 to some extent is formed in each metal foil 1 to increase the expansion width of the polymer matrix layer 10 when the overheat protection element is overheated, for example, the overheat protection element Even if the thin polymer matrix layer 10 is softened by its own heat, the entire distance between the metal foils 1 can be secured stably for a long time, and a short circuit occurs when approaching for a long time. There is no fear.

なお、上記実施形態では一の金属箔1の接触面2を粗くランダムな凹凸に粗面化したが、各金属箔1の接触面2を粗くランダムな凹凸に粗面化しても良い。また、各金属箔1の接触面2に、複数の滞留部3を凹み形成したが、何らこれに限定されるものではなく、例えば単一の滞留部3を凹み形成しても良い。さらに、高分子マトリクス層10の高分子マトリクスは、絶縁性を有するものであれば、一種類、多種類、単数複数を特に問うものではない。   In the above-described embodiment, the contact surface 2 of one metal foil 1 is roughened into rough and random irregularities. However, the contact surface 2 of each metal foil 1 may be roughened into rough and random irregularities. Moreover, although the several retention part 3 was recessedly formed in the contact surface 2 of each metal foil 1, it is not limited to this at all, For example, you may form the single retention part 3 into a recess. Furthermore, the polymer matrix of the polymer matrix layer 10 is not particularly limited to one type, many types, or a plurality of types as long as it has insulating properties.

以下、本発明に係る過熱保護素子及びその製造方法の実施例を比較例と共に説明する。
実施例1
先ず、高分子マトリクス層と絶縁性微粒子を製造するため、材料としてポリエチレン(出光石油化学製:商品名548B)92wt%、マレイン酸変性EPR(JSR製:商品名T−7741P)7wt%、シリコーン微粒子(GE東芝シリコーン製:商品名XC99−A8808)1wt%を用意した。
Examples of the overheat protection element and the method for manufacturing the same according to the present invention will be described below together with comparative examples.
Example 1
First, in order to produce a polymer matrix layer and insulating fine particles, polyethylene (Idemitsu Petrochemical: trade name 548B) 92 wt%, maleic acid-modified EPR (JSR: trade name T-7741P) 7 wt%, silicone fine particles (GE Toshiba Silicone: trade name XC99-A8808) 1 wt% was prepared.

こうして高分子マトリクス層と絶縁性微粒子の材料を用意したら、ジェットミルにより支給形態であるペレットから16〜100meshの粒度に調整し、この高分子マトリクスと絶縁性微粒子とをスーパーミキサー(カワタ製)に投入して混合攪拌し、180℃の温度に調整された加圧ニーダーにより混練して混練物を製造するとともに、この混練物をカレンダー加工機にセットしてシーティングし、厚さ50μmの高分子マトリクス層を製造した。   After preparing the material of the polymer matrix layer and the insulating fine particles in this way, the particle size is adjusted to 16 to 100 mesh from the pellets in the form of supply by a jet mill, and this polymer matrix and the insulating fine particles are put into a super mixer (manufactured by Kawata). The mixture is mixed and stirred and kneaded by a pressure kneader adjusted to a temperature of 180 ° C. to produce a kneaded product. The kneaded product is set in a calendering machine and seated, and a polymer matrix having a thickness of 50 μm. A layer was produced.

次いで、図2や表1に示す粗面化処理した一対の金属箔に高分子マトリクス層を挟持させてプレス成形機にセットし、このプレス成形機により250℃、10kgf/cmの条件で加熱加圧して厚さ250μmのラミネート物を製造し、その後、ラミネート物に30MRadの電子線を電子線架橋装置により照射して高分子マトリクスを架橋させ、過熱保護素子を製造した。各金属箔は、厚さ125μmのニッケル箔としてその接触面の表面粗さRaを2.0μmとした。 Next, a polymer matrix layer is sandwiched between a pair of roughened metal foils shown in FIG. 2 and Table 1 and set in a press molding machine, and heated by this press molding machine at 250 ° C. and 10 kgf / cm 2. A laminate having a thickness of 250 μm was produced by pressurization, and then the polymer matrix was crosslinked by irradiating the laminate with an electron beam of 30 MRad by an electron beam crosslinking apparatus, thereby producing an overheat protection element. Each metal foil was a nickel foil having a thickness of 125 μm, and its surface roughness Ra was 2.0 μm.

実施例2
高分子マトリクス層と絶縁性微粒子を製造するため、材料としてポリエチレン(出光石油化学製:商品名548B)92wt%、マレイン酸変性EPR(JSR製:商品名T−7741P)7wt%、シリコーン微粒子(GE東芝シリコーン製:商品名XC99−A8808)1wt%を用意した。また、一対の金属箔の寸法比を表1に示すように変更した。その他の部分については、実施例1と同様とした。
Example 2
In order to produce a polymer matrix layer and insulating fine particles, polyethylene (Idemitsu Petrochemical: trade name 548B) 92 wt%, maleic acid modified EPR (JSR: trade name T-7741P) 7 wt%, silicone fine particles (GE) Toshiba Silicone Co., Ltd. product name XC99-A8808) 1 wt% was prepared. The dimensional ratio of the pair of metal foils was changed as shown in Table 1. The other parts were the same as in Example 1.

実施例3
高分子マトリクス層と絶縁性微粒子を製造するため、材料としてポリエチレン(出光石油化学製:商品名548B)92wt%、マレイン酸変性EPR(JSR製:商品名T−7741P)7wt%、シリコーン微粒子(GE東芝シリコーン製:商品名トスパール145)1wt%を用意した。また、一対の金属箔の寸法比を表1に示すように変更した。その他の部分については、実施例1と同様とした。
Example 3
In order to produce a polymer matrix layer and insulating fine particles, polyethylene (Idemitsu Petrochemical: trade name 548B) 92 wt%, maleic acid-modified EPR (JSR: trade name T-7741P) 7 wt%, silicone fine particles (GE) Toshiba Silicone product name: Tospearl 145) 1 wt% was prepared. The dimensional ratio of the pair of metal foils was changed as shown in Table 1. The other parts were the same as in Example 1.

実施例4
高分子マトリクス層と絶縁性微粒子を製造するため、材料としてポリエチレン(出光石油化学製:商品名548B)92wt%、マレイン酸変性EPR(JSR製:商品名NO903HC)7wt%、シリコーン微粒子(GE東芝シリコーン製:商品名XC99−A8808)1wt%を用意した。また、一対の金属箔の寸法比を表1に示すように変更した。その他の部分については、実施例1と同様とした。
Example 4
In order to produce the polymer matrix layer and the insulating fine particles, polyethylene (Idemitsu Petrochemical: trade name 548B) 92 wt%, maleic acid-modified EPR (JSR: trade name NO903HC) 7 wt%, silicone fine particles (GE Toshiba Silicone) Product name: XC99-A8808) 1 wt% was prepared. The dimensional ratio of the pair of metal foils was changed as shown in Table 1. The other parts were the same as in Example 1.

実施例5
高分子マトリクス層と絶縁性微粒子を製造するため、材料としてポリエチレン(出光石油化学製:商品名548B)92wt%、マレイン酸変性EPR(JSR製:商品名NO903HC)7wt%、シリコーン微粒子(GE東芝シリコーン製:商品名XC99−A8808)1wt%を用意した。また、一対の金属箔の寸法比を表1に示すように変更した。その他の部分については、実施例1と同様とした。
Example 5
In order to produce a polymer matrix layer and insulating fine particles, the materials are polyethylene (Idemitsu Petrochemical: trade name 548B) 92 wt%, maleic acid modified EPR (JSR: trade name NO903HC) 7 wt%, silicone fine particles (GE Toshiba Silicone). Product name: XC99-A8808) 1 wt% was prepared. The dimensional ratio of the pair of metal foils was changed as shown in Table 1. The other parts were the same as in Example 1.

比較例
先ず、材料としてポリエチレン(出光石油化学製:商品名548B)93wt%、マレイン酸変性EPR(JSR製:T−7741P)7wt%を選択し、この材料をジェットミルにより支給形態であるペレットから16〜100meshの粒度に調整し、これらをスーパーミキサー(カワタ製)に投入して混合攪拌し、180℃の温度に調整された加圧ニーダーにより混練して混練物を製造した。こうして混練物を製造したら、この混練物をカレンダー加工機にセットしてシーティングし、厚さ50μmのシートを製造した。
Comparative Example First, 93 wt% of polyethylene (made by Idemitsu Petrochemical Co., Ltd .: trade name 548B) and 7 wt% of maleic acid-modified EPR (made by JSR: T-7741P) are selected as materials, and this material is supplied from pellets that are supplied by a jet mill. The particle size was adjusted to 16 to 100 mesh, these were put into a super mixer (manufactured by Kawata), mixed and stirred, and kneaded by a pressure kneader adjusted to a temperature of 180 ° C. to produce a kneaded product. When the kneaded material was manufactured in this way, the kneaded material was set in a calendering machine and sheeted to manufacture a sheet having a thickness of 50 μm.

次いで、表1に示す一対の金属箔にシートを挟持させてプレス成形機にセットし、このプレス成形機により250℃、10kgf/cmの条件で加熱加圧して厚さ250μmのラミネート物を製造し、その後、ラミネート物に30MRadの電子線を電子線架橋装置により照射してシートの高分子配合物を架橋させ、過熱保護素子を製造した。各金属箔は、実施例の場合とは異なり、粗面化処理や滞留部を有しない構造に構成した。 Next, a sheet is sandwiched between a pair of metal foils shown in Table 1 and set in a press molding machine, and this press molding machine is heated and pressed under the conditions of 250 ° C. and 10 kgf / cm 2 to produce a laminate having a thickness of 250 μm. Thereafter, the laminate was irradiated with an electron beam of 30 MRad by an electron beam cross-linking device to cross-link the polymer composition of the sheet, thereby producing an overheat protection element. Unlike the case of an Example, each metal foil was comprised in the structure which does not have a roughening process and a retention part.

Figure 2007242654
Figure 2007242654

実施例と比較例の過熱保護素子をそれぞれ製造したら、各過熱保護素子の特性とR−T曲線とをそれぞれ測定して表2〜4と図3〜9にまとめた。   When the overheat protection elements of Examples and Comparative Examples were respectively produced, the characteristics and RT curves of each overheat protection element were measured and summarized in Tables 2 to 4 and FIGS.

過熱保護素子の特性の測定に際しては、過熱保護素子に電線を接続するとともに、電線のもう一方の端部を抵抗測定器に接続し、接続した過熱保護素子をオーブンに入れて抵抗値の測定を開始した。20℃から順次10℃毎に昇温して抵抗値を測定し、160℃まで昇温した。こうして160℃に達したら、温度を保持して過熱保護素子の抵抗値の状態を観察した。絶縁状態が保てなくなったら、その時点で測定は中止した。絶縁状態の抵抗値は35000Ωを限界として測定した。   When measuring the characteristics of the overheat protection element, connect an electric wire to the overheat protection element, connect the other end of the electric wire to a resistance measuring instrument, place the connected overheat protection element in an oven, and measure the resistance value. Started. The resistance value was measured by increasing the temperature sequentially from 20 ° C. every 10 ° C., and the temperature was increased to 160 ° C. When the temperature reached 160 ° C. in this way, the temperature was maintained and the resistance value state of the overheat protection element was observed. When the insulation could not be maintained, the measurement was stopped at that time. The resistance value in the insulation state was measured with a limit of 35000Ω.

約24時間毎にトリップ状態の抵抗値を測定し、1000時間に達するまで観察した(UL1434のエージングテスト相当)。その後、問題の生じなかった過熱保護素子について、室温に1時間放置後、R−T曲線を測定した。   The resistance value in the trip state was measured about every 24 hours and observed until 1000 hours were reached (equivalent to the aging test of UL1434). Then, the overheat protection element which did not cause a problem was allowed to stand at room temperature for 1 hour, and then the RT curve was measured.

R−T曲線は以下の通りに測定した。すなわち、20℃から順次10℃毎に昇温して抵抗値を測定し、160℃まで昇温した。160℃に達したら、温度を順次10℃毎に降温して20℃まで測定を続け、20℃に戻った時の抵抗値を緩和抵抗値と呼ぶこととした。   The RT curve was measured as follows. That is, the resistance value was measured by increasing the temperature sequentially from 20 ° C. every 10 ° C., and the temperature was increased to 160 ° C. When the temperature reached 160 ° C., the temperature was sequentially decreased every 10 ° C. and measurement was continued until 20 ° C., and the resistance value when the temperature returned to 20 ° C. was called a relaxation resistance value.

Figure 2007242654
Figure 2007242654

Figure 2007242654
Figure 2007242654

Figure 2007242654
Figure 2007242654

実施例1〜5の場合には、良好な絶縁状態を示し、1000時間後のR−T測定でも問題が無かった。
これに対し、比較例の場合には、トリップ温度に到達後、約50時間以降に絶縁状態が保たれず、チャタリングしている様子が確認され、250時間後には全て通電状態になっている様子を確認した。
In the case of Examples 1 to 5, a good insulation state was shown, and there was no problem even in the RT measurement after 1000 hours.
On the other hand, in the case of the comparative example, after reaching the trip temperature, the insulation state is not maintained after about 50 hours, and it is confirmed that chattering is performed, and after 250 hours, all are in the energized state. It was confirmed.

本発明に係る過熱保護素子の実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically an embodiment of an overheat protection element concerning the present invention. 本発明に係る過熱保護素子の実施例を模式的に示す斜視説明図である。It is a perspective explanatory view showing typically the example of the overheat protection element concerning the present invention. 本発明に係る過熱保護素子の実施例における長期安定性を示すグラフである。It is a graph which shows the long-term stability in the Example of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の比較例における長期安定性を示すグラフである。It is a graph which shows the long-term stability in the comparative example of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の実施例1におけるR−T曲線を示すグラフである。It is a graph which shows the RT curve in Example 1 of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の実施例2におけるR−T曲線を示すグラフである。It is a graph which shows the RT curve in Example 2 of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の実施例3におけるR−T曲線を示すグラフである。It is a graph which shows the RT curve in Example 3 of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の実施例4におけるR−T曲線を示すグラフである。It is a graph which shows the RT curve in Example 4 of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の実施例5におけるR−T曲線を示すグラフである。It is a graph which shows the RT curve in Example 5 of the overheat protection element which concerns on this invention.

符号の説明Explanation of symbols

1 金属箔(電極体)
2 接触面
3 滞留部
10 高分子マトリクス層(高分子マトリクス)
11 絶縁性微粒子
1 Metal foil (electrode body)
2 Contact surface 3 Retaining part 10 Polymer matrix layer (polymer matrix)
11 Insulating fine particles

Claims (8)

導電性を有する複数の電極体の間に高分子マトリクスを挟み持たせ、複数の電極体同士を常温時には接触させて導通可能とし、常温よりも温度の上昇する温度上昇時には高分子マトリクスを膨張させて離隔させる過熱保護素子であって、
電極体の接触面を粗面化し、高分子マトリクスに絶縁性微粒子を配合したことを特徴とする過熱保護素子。
A polymer matrix is sandwiched between a plurality of conductive electrode bodies so that the plurality of electrode bodies can be brought into contact with each other at room temperature to be conductive, and the polymer matrix is expanded when the temperature rises above room temperature. An overheat protection element that is separated by
An overheat protection element characterized in that the contact surface of the electrode body is roughened and insulating fine particles are blended in a polymer matrix.
電極体の接触面に、高分子マトリクス用の滞留部を形成してその面積率を接触面の25〜80%とし、この滞留部を、電極体の厚み×40〜70%の範囲の深さで凹み形成した請求項1記載の過熱保護素子。   A retention portion for the polymer matrix is formed on the contact surface of the electrode body, and the area ratio is set to 25 to 80% of the contact surface, and the retention portion has a depth in the range of the thickness of the electrode body × 40 to 70%. The overheat protection element according to claim 1, wherein the overheat protection element is formed as a depression. 各電極体をニッケル、銅、あるいはこれらの合金とし、電極体の接触面における表面粗さRaを0.5〜50μmとした請求項1又は2記載の過熱保護素子。   The overheat protection element according to claim 1 or 2, wherein each electrode body is made of nickel, copper, or an alloy thereof, and the surface roughness Ra on the contact surface of the electrode body is 0.5 to 50 µm. 高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上有し、絶縁性微粒子をシリコーン微粒子としてその平均粒子径を0.1〜5.0μmとした請求項1、2、又は3記載の過熱保護素子。   The superheat according to claim 1, 2, or 3, wherein the polymer matrix has a crystalline thermoplastic polymer of 70 wt% or more, the insulating fine particles are silicone fine particles, and the average particle size is 0.1 to 5.0 µm. Protective element. 導電性を有する複数の電極体の間に高分子マトリクスを挟み持たせ、複数の電極体同士を常温時には接触させて導通可能とし、常温よりも温度の上昇する温度上昇時には高分子マトリクスを膨張させて離隔させる過熱保護素子の製造方法であって、
各電極体の接触面を粗面化し、高分子マトリクスに絶縁性微粒子を配合することを特徴とする過熱保護素子の製造方法。
A polymer matrix is sandwiched between a plurality of conductive electrode bodies so that the plurality of electrode bodies can be brought into contact with each other at room temperature to be conductive, and the polymer matrix is expanded when the temperature rises above room temperature. A method of manufacturing an overheat protection element that is separated by
A method for manufacturing an overheat protection element, characterized in that the contact surface of each electrode body is roughened and insulating fine particles are blended in a polymer matrix.
電極体の接触面に、高分子マトリクス用の滞留部を形成してその面積率を接触面の25〜80%とし、この滞留部を、電極体の厚み×40〜70%の範囲の深さで凹み形成する請求項5記載の過熱保護素子の製造方法。   A retention portion for the polymer matrix is formed on the contact surface of the electrode body, and the area ratio is set to 25 to 80% of the contact surface. This retention portion is a depth in the range of the thickness of the electrode body × 40 to 70%. The method for manufacturing an overheat protection element according to claim 5, wherein the depression is formed by a step. 各電極体をニッケル、銅、あるいはこれらの合金とし、電極体の接触面における表面粗さRaを0.5〜50μmとする請求項5又は6記載の過熱保護素子の製造方法。   The method for manufacturing an overheat protection element according to claim 5 or 6, wherein each electrode body is made of nickel, copper, or an alloy thereof, and the surface roughness Ra on the contact surface of the electrode body is 0.5 to 50 µm. 高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上有し、絶縁性微粒子をシリコーン微粒子としてその平均粒子径を0.1〜5.0μmとする請求項5、6、又は7記載の過熱保護素子の製造方法。
The superheat according to claim 5, 6 or 7, wherein the polymer matrix has a crystalline thermoplastic polymer of 70 wt% or more, the insulating fine particles are silicone fine particles, and the average particle size is 0.1 to 5.0 µm. A manufacturing method of a protection element.
JP2006058880A 2006-03-06 2006-03-06 Overheat protection element and its manufacturing method Pending JP2007242654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058880A JP2007242654A (en) 2006-03-06 2006-03-06 Overheat protection element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006058880A JP2007242654A (en) 2006-03-06 2006-03-06 Overheat protection element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007242654A true JP2007242654A (en) 2007-09-20

Family

ID=38587948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058880A Pending JP2007242654A (en) 2006-03-06 2006-03-06 Overheat protection element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007242654A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232433A (en) * 2007-12-25 2013-11-14 Byd Co Ltd Battery system
KR101441207B1 (en) * 2012-12-27 2014-09-17 에이치엘그린파워 주식회사 Current Interrupt Device using a thermal expansion pad

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013232433A (en) * 2007-12-25 2013-11-14 Byd Co Ltd Battery system
KR101441207B1 (en) * 2012-12-27 2014-09-17 에이치엘그린파워 주식회사 Current Interrupt Device using a thermal expansion pad

Similar Documents

Publication Publication Date Title
JP3333913B2 (en) Conductive polymer composition and PTC device
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
WO2013077286A1 (en) Temperature fuse and sliding electrode used in temperature fuse
JP2007221119A (en) Overcurrent protection element
JP2000188206A (en) Polymer ptc composition and ptc device
WO2006059826A1 (en) Disc avristor and method of manufacturing the same
TW200847195A (en) Manufacturing method of over-current protection device
JP2007242654A (en) Overheat protection element and its manufacturing method
EP1501110A1 (en) Temperature protection device
JP2002012777A (en) Electroconductive polymer composition containing fibril fiber and its element using the same
CN116918005A (en) PPTC actuator heater
JP2019091627A (en) Contact switch and manufacturing method thereof
CN210245193U (en) Thermistor element
KR100841142B1 (en) Ptc-device with improved safety and manufacturing method thereof
JP2006210046A (en) Overheat protection element and its manufacturing method
CN115413069A (en) PTC heating element and method for manufacturing same
JP4459438B2 (en) Method for manufacturing an electrical device and method for manufacturing a battery assembly
JPH11214203A (en) Positive temperature coefficient element and manufacture thereof
JP2007027412A (en) Overheat protective element and manufacturing method thereof
JP2012518874A (en) Contact element for contacting a galvanicel with the galvanicel
JP2010092933A (en) Ptc element and method of manufacturing the same
JP2008041724A (en) Manufacturing method of overcurrent protecting element
JP2007317994A (en) Overcurrent protecting element and its manufacturing method
JP2007036045A (en) Ptc element and method for manufacturing the same
CN109841364B (en) Positive temperature coefficient circuit protection device and preparation method thereof