JP2006210046A - Overheat protection element and its manufacturing method - Google Patents

Overheat protection element and its manufacturing method Download PDF

Info

Publication number
JP2006210046A
JP2006210046A JP2005018169A JP2005018169A JP2006210046A JP 2006210046 A JP2006210046 A JP 2006210046A JP 2005018169 A JP2005018169 A JP 2005018169A JP 2005018169 A JP2005018169 A JP 2005018169A JP 2006210046 A JP2006210046 A JP 2006210046A
Authority
JP
Japan
Prior art keywords
polymer matrix
protection element
overheat protection
conductors
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005018169A
Other languages
Japanese (ja)
Inventor
Masaru Yoneyama
勝 米山
Tsutomu Saga
努 佐賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005018169A priority Critical patent/JP2006210046A/en
Publication of JP2006210046A publication Critical patent/JP2006210046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)
  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an overheat protection element which realizes low resistance value at room temperature region and can shut off current by a rapid tripping action at the time of heat generation or the like of the circuit, and also provide its manufacturing method. <P>SOLUTION: The overheat protection element has a polymer matrix 1 containing no conductive material interposed between a pair of opposed metal foils 2, the contact faces 3 of the pair of metal foils 2 contacting the polymer matrix 1 are formed rough respectively, and the pair of metal foils 2 are contacted and made to flow current at the normal temperature, and are separated, based on expansion of the polymer matrix 1 and shut off current at the time of high temperatures. Since the metal foils 2 appropriately made rough are crimped on both surfaces of the polymer matrix 1 respectively, stable initial resistance value can be obtained and, furthermore, rapid tripping characteristics can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気電子機器の回路、電池、部品等を保護する過熱保護素子及びその製造方法に関するものである。   The present invention relates to an overheat protection element that protects circuits, batteries, components, and the like of electrical and electronic equipment, and a method for manufacturing the same.

高分子マトリクスに導電性粒子を分散させた過熱保護素子は、図示しないが、電気電子機器の分野では既に知られている(特許文献1参照)。この種の過熱保護素子は、特に室温抵抗値が十分低いこと、室温抵抗値と動作時の抵抗値の変化率が十分大きいこと、繰り返し動作時における抵抗値の変化が小さいことが特性として求められる。
特開2004‐103848号公報
Although not shown, an overheat protection element in which conductive particles are dispersed in a polymer matrix is already known in the field of electrical and electronic equipment (see Patent Document 1). This type of overheat protection element is required to have characteristics that the room temperature resistance value is sufficiently low, that the change rate between the room temperature resistance value and the resistance value during operation is sufficiently large, and that the change in resistance value during repeated operation is small. .
Japanese Patent Laid-Open No. 2004-103848

しかしながら、高分子マトリクスに導電性粒子を分散させた従来の過熱保護素子は、動作の繰り返しにより室温抵抗値が上昇したり、導電性の高分子マトリクスを一対の導電体間に挟持させる構造上、通電時に高分子マトリクス自体が回路内の抵抗になるという問題がある。   However, the conventional overheat protection element in which the conductive particles are dispersed in the polymer matrix has a structure in which the room temperature resistance value is increased by repeating the operation or the conductive polymer matrix is sandwiched between a pair of conductors. There is a problem that the polymer matrix itself becomes a resistance in the circuit when energized.

係る問題を解消する手段としては、電極になる導電体同士を直接接触させ、回路の過熱時には熱の検知により導電体同士を離隔させ、通電を遮断する方法が考えられる。
しかし、導電体同士の接触面が平面の場合には、高分子マトリクスの成形時の歪等により、周囲温度の上昇時に膨張の偏りが僅かに発生し、その結果、回路の過熱時に電流を遮断するトリップ温度が過熱保護素子毎に異なるおそれが少なくない。また、トリップ温度近辺でチャタリング等が発生するおそれもある。
As a means for solving such a problem, a method is considered in which the conductors that become the electrodes are brought into direct contact with each other, and when the circuit is overheated, the conductors are separated from each other by detection of heat to cut off the energization.
However, if the contact surface between the conductors is flat, a slight bias in expansion occurs when the ambient temperature rises due to distortion during molding of the polymer matrix, and as a result, the current is cut off when the circuit overheats. There is a possibility that the trip temperature to be different is different for each overheat protection element. In addition, chattering or the like may occur near the trip temperature.

また、上記特許文献には、一対の導電体間に挟持させたエラストマーやシリコーンゴムの膨張・収縮を利用する過熱保護素子が開示され、一対の導電体間に、高分子マトリクスに導電性粒子を分散させたPTC樹脂を挟持させ、安定性を維持するタイプが実施例に示されている。
このタイプの過熱保護素子は、安定性を得ることができるが、構造が複雑になり、これに伴い製造方法が煩雑化してコストが上昇してしまうという問題が生じる。
In addition, the above-mentioned patent document discloses an overheat protection element that utilizes expansion and contraction of an elastomer or silicone rubber sandwiched between a pair of conductors, and conductive particles are placed on a polymer matrix between the pair of conductors. A type that holds the dispersed PTC resin and maintains the stability is shown in the examples.
Although this type of overheat protection element can obtain stability, the structure becomes complicated, and this causes a problem that the manufacturing method becomes complicated and the cost increases.

本発明は上記に鑑みなされたもので、室温域では低抵抗値化を図り、回路の発熱時等には急激なトリップ挙動により電流を遮断することのできる過熱保護素子及びその製造方法を提供することを目的としている。   The present invention has been made in view of the above, and provides an overheat protection element capable of reducing a resistance value in a room temperature region and interrupting a current due to a sudden trip behavior when a circuit generates heat, and a method for manufacturing the same. The purpose is that.

本発明においては上記課題を解決するため、高分子マトリクスを対向する複数の導電体間に挟んだものであって、
高分子マトリクスに接触する複数の導電体の接触面をそれぞれ粗く形成し、複数の導電体同士を常温時には接触させて通電可能とし、高温時には高分子マトリクスの膨張に基づき離隔(離れ隔てる)させるようにしたことを特徴としている。
In the present invention, in order to solve the above problem, a polymer matrix is sandwiched between a plurality of opposing conductors,
The contact surfaces of a plurality of conductors that are in contact with the polymer matrix are each formed to be rough so that the plurality of conductors can be brought into contact with each other at room temperature to be energized, and separated (separated) based on the expansion of the polymer matrix at high temperatures. It is characterized by that.

なお、高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上含み、マレイン酸変性EPRを1wt%以上配合してなることが好ましい。
また、導電体をニッケル、銅、及び又は複数の合金としてその接触面の粗さをRa0.5〜5μmとすることが好ましい。
The polymer matrix preferably contains 70 wt% or more of a crystalline thermoplastic polymer and 1 wt% or more of maleic acid-modified EPR.
The conductor is preferably nickel, copper, and / or a plurality of alloys, and the roughness of the contact surface is preferably Ra 0.5 to 5 μm.

また、本発明においては上記課題を解決するため、高分子マトリクスを対向する複数の導電体間に挟んで使用する製造方法であって、
高分子マトリクスに接触する複数の導電体の接触面をそれぞれ粗く形成し、複数の導電体同士を常温時には接触させて通電可能とし、高温時には高分子マトリクスの膨張に基づき離隔させることを特徴としている。
Further, in the present invention, in order to solve the above-described problem, a manufacturing method using a polymer matrix sandwiched between a plurality of opposing conductors,
The contact surfaces of a plurality of conductors that come into contact with the polymer matrix are each formed to be rough, the conductors can be brought into contact with each other at room temperature to be energized, and separated at the high temperature based on the expansion of the polymer matrix. .

なお、高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上含み、マレイン酸変性EPRを1wt%以上配合してなると良い。
また、導電体をニッケル、銅、及び又は複数の合金としてその接触面の粗さをRa0.5〜5μmとすると良い。
The polymer matrix preferably contains 70 wt% or more of a crystalline thermoplastic polymer and 1 wt% or more of maleic acid-modified EPR.
Moreover, it is preferable that the conductor is made of nickel, copper, and / or a plurality of alloys, and the roughness of the contact surface is Ra 0.5 to 5 μm.

ここで、特許請求の範囲における高分子マトリクスは、導電材料を含有しないものであれば、一種類でも複数種でも良い。過熱保護素子は、少なくとも一次電池、二次電池、自動車のモータ、スピーカ、携帯電話の充電電池、コンピュータ回路の保護等に利用することができる。   Here, the polymer matrix in the claims may be one kind or plural kinds as long as it does not contain a conductive material. The overheat protection element can be used to protect at least a primary battery, a secondary battery, an automobile motor, a speaker, a mobile phone rechargeable battery, a computer circuit, and the like.

本発明によれば、室温域では低抵抗値化を図り、回路の発熱時等には急激なトリップ挙動により電流を遮断することができるという効果がある。
また、導電体をニッケル、銅、及び又は複数の合金としてその接触面の粗さをRa0.5〜5μmとすれば、優れた導電性を安価に得ることができるし、しかも、導通状態と絶縁状態が交互するチャタリングを招くこともない。
According to the present invention, there is an effect that the resistance value can be lowered in the room temperature region, and the current can be interrupted by a rapid trip behavior when the circuit generates heat.
Moreover, if the conductor is made of nickel, copper, and / or a plurality of alloys and the roughness of the contact surface is Ra 0.5 to 5 μm, excellent conductivity can be obtained at low cost, and the conductive state and insulation can be obtained. There is no chattering in which the states alternate.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における過熱保護素子及びその製造方法は、図1に示すように、導電材料を含有しない高分子マトリクス1を相対向する一対の金属箔2間に挟持させ、各金属箔2をコンピュータ回路の電極となるリード端子として利用するようにしている。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. In the overheat protection element and the manufacturing method thereof according to the present embodiment, as shown in FIG. The metal foils 2 are sandwiched between a pair of metal foils 2 and used as lead terminals that serve as electrodes of a computer circuit.

高分子マトリクス1は、例えば高密度ポリエチレン、ポリエチレン、ポリプロピレン等からなる結晶性の熱可塑性ポリマーが70wt%(重量%)以上含有されるとともに、マレイン酸変性EPRが1wt%以上配合され、矩形の薄いシート形に成形される。   The polymer matrix 1 contains 70 wt% (wt%) or more of a crystalline thermoplastic polymer made of, for example, high-density polyethylene, polyethylene, or polypropylene, and is blended with 1 wt% or more of maleic acid-modified EPR, and is thin in a rectangular shape Molded into a sheet form.

金属箔2は、例えば圧延された安価なニッケル、銅、及び又は複数の合金からなり、高分子マトリクス1に接触する接触面3が粗い凹凸に形成されており、この接触面3の粗さがRa=0.5〜5μmの範囲に設定される。このような一対の金属箔2は、常温時には相互に噛合接触して電流を通電させ、回路の発熱等に伴う高温時には高分子マトリクス1の膨張に基づき離れ、通電を遮断するよう機能する。   The metal foil 2 is made of, for example, rolled inexpensive nickel, copper, and / or a plurality of alloys, and the contact surface 3 that contacts the polymer matrix 1 is formed in rough unevenness. The roughness of the contact surface 3 is Ra is set in the range of 0.5 to 5 μm. Such a pair of metal foils 2 mesh with each other at normal temperature to energize the current, and function to separate from the polymer matrix 1 due to expansion of the polymer matrix 1 at high temperatures due to heat generation of the circuit.

上記によれば、高分子マトリクス1の両面に平坦な金属箔2を単に圧着するのではなく、適度に粗面化した金属箔2をそれぞれ圧着するので、安定した初期抵抗値を得ることができ、しかも、急峻なトリップ特性をも得ることができる。   According to the above, since the flat metal foil 2 is not simply crimped to both surfaces of the polymer matrix 1, but the metal foil 2 having a suitably roughened surface is crimped, a stable initial resistance value can be obtained. In addition, steep trip characteristics can be obtained.

以下、本発明に係る過熱保護素子及びその製造方法の実施例を比較例と共に説明する。実施例‐1
先ず、結晶性ポリマーであるポリエチレン〔出光石油化学製:商品名548B〕97wt%、及びマレイン酸変性EPR〔三井デュポン・ポリケミカル製:商品名NO903HC〕3wt%を原料としたペレットをジェットミルにより、16〜100meshの粒度に調製し、この原料をスーパーミキサー〔カワタ製〕により混合撹拌し、180℃の温度に調整された加圧ニーダーにより混練して混練物を得た。こうして混練物を得たら、この混練物をカレンダー加工機にセットしてシーティングし、厚さ50μmのシートを成形した。
Examples of the overheat protection element and the method for manufacturing the same according to the present invention will be described below together with comparative examples. Example-1
First, pellets made of polyethylene (produced by Idemitsu Petrochemical Co., Ltd .: trade name 548B) and 3 wt% maleic acid-modified EPR (produced by Mitsui DuPont Polychemical Co., Ltd .: trade name NO903HC) as raw materials by a jet mill are used. The raw material was prepared to a particle size of 16 to 100 mesh, and this raw material was mixed and stirred by a super mixer (manufactured by Kawata), and kneaded by a pressure kneader adjusted to a temperature of 180 ° C. to obtain a kneaded product. When the kneaded material was obtained in this way, the kneaded material was set on a calender and sheeted to form a sheet having a thickness of 50 μm.

次いで、成形したシートをRa:1.0μmに粗面化した一対の金属箔に挟んでプレス成形機にセットし、加熱(250℃)、加圧(10kgf/cm、なお、10kgf/cm=0.98MPa)して総厚250μmのラミネート物を得た。金属箔は厚さ125μmのニッケル箔とした。そして、得られたラミネート物に5MRadの電子線を電子線架橋装置により照射して高分子配合物を架橋させ、その後、5mm×12mmの大きさに裁断して過熱保護素子を製造した。 Next, the formed sheet is sandwiched between a pair of metal foils roughened to Ra: 1.0 μm, set in a press molding machine, heated (250 ° C.), pressurized (10 kgf / cm 2 , 10 kgf / cm 2 = 0.98 MPa) to obtain a laminate having a total thickness of 250 μm. The metal foil was a nickel foil having a thickness of 125 μm. The resulting laminate was irradiated with an electron beam of 5 MRad using an electron beam cross-linking device to cross-link the polymer blend, and then cut into a size of 5 mm × 12 mm to produce an overheat protection element.

実施例‐2
基本的には実施例‐1と同様であるが、Ra:3.0μmに粗面化した一対の金属箔を使用した。
比較例‐1
基本的には実施例‐1と同様であるが、原料を、ポリエチレン〔出光石油化学製:商品名548B〕93wt%、及びマレイン酸変性EPR〔三井デュポン・ポリケミカル製:商品名NO903HC〕7wt%とした。また、Ra:0.2μmに粗面化した一対の金属箔を使用した。
Example-2
Basically, it was the same as Example-1, but a pair of metal foils roughened to Ra: 3.0 μm was used.
Comparative Example-1
Basically the same as in Example-1, except that the raw materials were 93 wt% polyethylene [manufactured by Idemitsu Petrochemicals: trade name 548B] and 7 wt% maleic acid-modified EPR [manufactured by Mitsui DuPont Polychemicals: trade name NO903HC]. It was. Moreover, a pair of metal foil roughened to Ra: 0.2 micrometer was used.

比較例‐2
基本的には実施例‐1と同様であるが、Ra:6.0μmに粗面化した一対の金属箔を用いた。
比較例‐3
基本的には実施例‐1と同様であるが、原料を、ポリエチレン〔出光石油化学製:商品名548B〕60wt%、及びマレイン酸変性EPR〔三井デュポン・ポリケミカル製:商品名NO903HC〕40wt%とした。また、Ra:1.0μmに粗面化した一対の金属箔を用いた。
Comparative example-2
Basically the same as in Example-1, but a pair of metal foils roughened to Ra: 6.0 μm was used.
Comparative Example-3
Basically the same as in Example-1, except that the raw materials were 60 wt% polyethylene [made by Idemitsu Petrochemicals: trade name 548B] and 40 wt% maleic acid-modified EPR [made by Mitsui DuPont Polychemicals: trade name NO903HC]. It was. Moreover, a pair of metal foil roughened to Ra: 1.0 micrometer was used.

実施例、比較例の過熱保護素子をそれぞれ製造したら、各過熱保護素子のPTC特性を測定した。具体的には、過熱保護素子に電線の一端部を接合して他方の他端部を抵抗測定器に接続し、この過熱保護素子をオーブンに入れて抵抗値の測定を開始した。   When the overheat protection elements of Examples and Comparative Examples were manufactured, the PTC characteristics of each overheat protection element were measured. Specifically, one end of the electric wire was joined to the overheat protection element and the other end was connected to a resistance measuring device, and this overheat protection element was placed in an oven to start measuring the resistance value.

測定に際しては、20℃から順次10℃ごとに昇温して抵抗値を測定し、160℃まで昇温し、160℃に達したら、逆に10℃ごとに冷却して抵抗値を測定し、20℃まで冷却した。それぞれの測定温度に達したら、10分間その温度を保持してその時の抵抗値を測定した。20℃での抵抗測定後、1時間20℃に保持して1時間後の抵抗値を測定し、この抵抗値を最終的な復帰抵抗値とした。   In measurement, the resistance value is measured by increasing the temperature sequentially from 20 ° C. every 10 ° C., and the temperature is increased to 160 ° C. When reaching 160 ° C., the resistance value is measured by cooling every 10 ° C. Cooled to 20 ° C. When each measurement temperature was reached, the temperature was held for 10 minutes and the resistance value at that time was measured. After measuring the resistance at 20 ° C., the resistance value after 1 hour was measured by keeping the temperature at 20 ° C. for 1 hour, and this resistance value was taken as the final return resistance value.

実施例、比較例の初期抵抗(昇温前の20℃での抵抗値)、復帰抵抗、復帰率を測定したら、これらを表1、表2にまとめた。また、実施例、比較例のPTC特性を図2、図3のグラフにまとめた。   When the initial resistance (resistance value at 20 ° C. before temperature increase), the return resistance, and the return rate of Examples and Comparative Examples were measured, these were summarized in Tables 1 and 2. The PTC characteristics of the examples and comparative examples are summarized in the graphs of FIGS.

Figure 2006210046
Figure 2006210046

Figure 2006210046
Figure 2006210046

実施例‐1、2の過熱保護素子によれば、それぞれ良好なPTC特性を得ることができた。
これに対し、比較例‐1、2の過熱保護素子の場合には、常温状態からトリップ温度までの間において、導通状態と絶縁状態とが交互するチャタリングが確認された。さらに、比較例‐3の過熱保護素子の場合には、温度上昇に対する抵抗値の上昇が低く、トリップする様子が見られなかった。
According to the overheat protection elements of Examples-1 and 2, good PTC characteristics could be obtained.
On the other hand, in the case of the overheat protection elements of Comparative Examples-1 and 2, chattering in which the conduction state and the insulation state alternated between the normal temperature state and the trip temperature was confirmed. Furthermore, in the case of the overheat protection element of Comparative Example-3, the increase in the resistance value with respect to the temperature increase was low, and no appearance of tripping was observed.

本発明に係る過熱保護素子及びその製造方法の実施形態を模式的に示す断面説明図である。It is a section explanatory view showing typically an embodiment of an overheating protection element concerning the present invention, and its manufacturing method. 本発明に係る過熱保護素子の実施例における実施例の過熱保護素子の抵抗値‐温度曲線を示すグラフである。It is a graph which shows the resistance value-temperature curve of the overheat protection element of the Example in the Example of the overheat protection element which concerns on this invention. 本発明に係る過熱保護素子の実施例における比較例の過熱保護素子の抵抗値‐温度曲線を示すグラフである。It is a graph which shows the resistance value-temperature curve of the overheat protection element of the comparative example in the Example of the overheat protection element which concerns on this invention.

符号の説明Explanation of symbols

1 高分子マトリクス
2 金属箔(導電体)
3 接触面
1 Polymer matrix 2 Metal foil (conductor)
3 Contact surface

Claims (6)

高分子マトリクスを対向する複数の導電体間に挟んだ過熱保護素子であって、高分子マトリクスに接触する複数の導電体の接触面をそれぞれ粗く形成し、複数の導電体同士を常温時には接触させて通電可能とし、高温時には高分子マトリクスの膨張に基づき離隔させるようにしたことを特徴とする過熱保護素子。   An overheat protection element with a polymer matrix sandwiched between a plurality of opposing conductors, each of which forms a rough contact surface of the plurality of conductors in contact with the polymer matrix and allows the plurality of conductors to contact each other at room temperature. An overheat protection element characterized in that it can be energized and separated at high temperatures based on expansion of the polymer matrix. 高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上含み、マレイン酸変性EPRを1wt%以上配合してなる請求項1記載の過熱保護素子。   The overheat protection element according to claim 1, wherein the polymer matrix contains 70 wt% or more of a crystalline thermoplastic polymer and is blended with 1 wt% or more of maleic acid-modified EPR. 導電体をニッケル、銅、及び又は複数の合金としてその接触面の粗さをRa0.5〜5μmとした請求項1又は2記載の過熱保護素子。   The overheat protection element according to claim 1 or 2, wherein the conductor is nickel, copper, and / or a plurality of alloys, and the roughness of the contact surface is Ra 0.5 to 5 µm. 高分子マトリクスを対向する複数の導電体間に挟んで使用する過熱保護素子の製造方法であって、
高分子マトリクスに接触する複数の導電体の接触面をそれぞれ粗く形成し、複数の導電体同士を常温時には接触させて通電可能とし、高温時には高分子マトリクスの膨張に基づき離隔させることを特徴とする過熱保護素子の製造方法。
A method for manufacturing an overheat protection element that uses a polymer matrix sandwiched between a plurality of opposing conductors,
The contact surfaces of a plurality of conductors that are in contact with the polymer matrix are each roughly formed, and the plurality of conductors are brought into contact with each other at room temperature to be energized, and separated at the high temperature based on the expansion of the polymer matrix. Manufacturing method of overheat protection element.
高分子マトリクスは、結晶性の熱可塑性ポリマーを70wt%以上含み、マレイン酸変性EPRを1wt%以上配合してなる請求項4記載の過熱保護素子の製造方法。   The method for producing an overheat protection element according to claim 4, wherein the polymer matrix contains 70 wt% or more of a crystalline thermoplastic polymer and is blended with 1 wt% or more of maleic acid-modified EPR. 導電体をニッケル、銅、及び又は複数の合金としてその接触面の粗さをRa0.5〜5μmとする請求項4又は5記載の過熱保護素子の製造方法。   The method for manufacturing an overheat protection element according to claim 4 or 5, wherein the conductor is nickel, copper, and / or a plurality of alloys, and the roughness of the contact surface is Ra 0.5 to 5 µm.
JP2005018169A 2005-01-26 2005-01-26 Overheat protection element and its manufacturing method Pending JP2006210046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018169A JP2006210046A (en) 2005-01-26 2005-01-26 Overheat protection element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018169A JP2006210046A (en) 2005-01-26 2005-01-26 Overheat protection element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006210046A true JP2006210046A (en) 2006-08-10

Family

ID=36966660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018169A Pending JP2006210046A (en) 2005-01-26 2005-01-26 Overheat protection element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006210046A (en)

Similar Documents

Publication Publication Date Title
US5985182A (en) High temperature PTC device and conductive polymer composition
JP3333913B2 (en) Conductive polymer composition and PTC device
US6074576A (en) Conductive polymer materials for high voltage PTC devices
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
JP6598231B2 (en) Polymer conductive composite material and PTC element
US7532101B2 (en) Temperature protection device
US20080100979A1 (en) High voltage over-current protection device
JP2006210046A (en) Overheat protection element and its manufacturing method
KR100767058B1 (en) Manufacturing method of ptc polymer sheet-electrode assembly
CN116918005A (en) PPTC actuator heater
JP2007242654A (en) Overheat protection element and its manufacturing method
JP2007027412A (en) Overheat protective element and manufacturing method thereof
JP4459438B2 (en) Method for manufacturing an electrical device and method for manufacturing a battery assembly
KR100679742B1 (en) Polymer composition having ptc-characteristics and ptc polymer thermistor prepared thereof
JP2007036045A (en) Ptc element and method for manufacturing the same
JP4299215B2 (en) Organic PTC thermistor
JP2008251769A (en) Overcurrent protecting element
JP2006228760A (en) Overcurrent protecting element and manufacturing method thereof
CN115413069A (en) PTC heating element and method for manufacturing same
JP2007317994A (en) Overcurrent protecting element and its manufacturing method
JP2003318008A (en) Polymer ptc composition and polymer ptc element
JP2006080213A (en) Excess current protection element and method of manufacturing the same
JP2005086038A (en) P-ptc thermistor composition, method of manufacturing the same, elemental p-ptc thermistor body, and p-ptc thermistor
JP2008041724A (en) Manufacturing method of overcurrent protecting element
JP2010092933A (en) Ptc element and method of manufacturing the same