JP2008041724A - Manufacturing method of overcurrent protecting element - Google Patents

Manufacturing method of overcurrent protecting element Download PDF

Info

Publication number
JP2008041724A
JP2008041724A JP2006210495A JP2006210495A JP2008041724A JP 2008041724 A JP2008041724 A JP 2008041724A JP 2006210495 A JP2006210495 A JP 2006210495A JP 2006210495 A JP2006210495 A JP 2006210495A JP 2008041724 A JP2008041724 A JP 2008041724A
Authority
JP
Japan
Prior art keywords
organic material
conductive particles
polymer matrix
sheet layer
overcurrent protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006210495A
Other languages
Japanese (ja)
Inventor
Nobuhiro Shinozuka
信裕 篠塚
Masaru Yoneyama
勝 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2006210495A priority Critical patent/JP2008041724A/en
Publication of JP2008041724A publication Critical patent/JP2008041724A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of an overcurrent-protecting element which improves the insulation properties by proper trip characteristics, when the temperature is raised higher than the room temperature by the short-circuiting of an electronic circuit, or the like. <P>SOLUTION: A sheet layer 1 is pinched by a pair of conductive plates 2, and the sheet layer 1 is formed of high molecular macromolecule matrix and a plurality of conductive particles contained in the high molecular macromolecule matrix. The surface of respective conductive particles is partially coated by an organic material that is different from the high polymer macromolecule matrix and moreover that does not have compatibility. The surface of respective conductive particles is partially coated by the organic material that is high in expansion coefficient, whereby superior trip characteristics can be obtained at short-circuiting of the electronic circuit, and can permit improvement in the insulation properties. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気機器・電子機器に内蔵されてその回路や部品等を保護する過電流保護素子の製造方法に関するものである。   The present invention relates to a method of manufacturing an overcurrent protection element that is built in an electric device / electronic device and protects a circuit or a component thereof.

従来の過電流保護素子は、図示しないが、高分子マトリクス中に導電性粒子が配合されたシート層と、このシート層を挟持する一対の導電板とを備えて形成され、自己制御型発熱体や温度センサとして携帯電話等の電子回路に組み込まれる。シート層の高分子マトリクスとしては、ポリエチレン樹脂等が使用され、導電性粒子としては、導電性、DBP吸油量、ストラクチャーの大きいカーボン粒子やグラファイト等が大量に使用される。   A conventional overcurrent protection element, although not shown, is formed by including a sheet layer in which conductive particles are blended in a polymer matrix and a pair of conductive plates sandwiching the sheet layer, and is a self-control heating element Or as a temperature sensor incorporated in an electronic circuit such as a cellular phone. As the polymer matrix of the sheet layer, polyethylene resin or the like is used, and as the conductive particles, carbon particles or graphite having a large conductivity, DBP oil absorption, large structure, etc. are used.

このような過電流保護素子は、電子回路の短絡等により温度が室温よりも上昇すると、トリップ特性を示して抵抗値を急激に増大させ、過電流の通電を規制して電子回路やその半導体素子を保護する。そして、逆に温度が低下すると、元の抵抗値に復帰する(特許文献1、2参照)。   Such an overcurrent protection element, when the temperature rises above room temperature due to a short circuit of an electronic circuit, etc., shows a trip characteristic and rapidly increases the resistance value, thereby restricting the overcurrent to be applied to the electronic circuit and its semiconductor element. Protect. Conversely, when the temperature decreases, the original resistance value is restored (see Patent Documents 1 and 2).

なお、この種の過電流保護素子は、電子回路に直列接続される場合には、(1)室温における抵抗値が十分に低いこと、(2)室温における抵抗値と動作時の抵抗値の変化率が十分に大きいこと、(3)繰り返し動作時の抵抗値の変化が小さいことが特性として求められる。
米国特許第3243753号 特開2005‐197660号公報
In addition, when this type of overcurrent protection element is connected in series to an electronic circuit, (1) the resistance value at room temperature is sufficiently low, and (2) the resistance value at room temperature and the change in resistance value during operation. It is required as a characteristic that the rate is sufficiently large and (3) the change in resistance value during repeated operation is small.
U.S. Pat. No. 3,243,753 JP 2005-197660 A

従来における過電流保護素子は、以上のように構成され、高分子マトリクス中に導電性粒子が単に配合されるに止まるので、電子回路の短絡時に良好なトリップ特性を示さず、絶縁性を向上させることができないという問題がある。   The conventional overcurrent protection element is configured as described above, and the conductive particles are merely blended in the polymer matrix, so that it does not show a good trip characteristic when the electronic circuit is short-circuited, and improves the insulation. There is a problem that can not be.

本発明は上記に鑑みなされたもので、電子回路の短絡等により温度が室温よりも上昇した場合には、良好なトリップ特性により絶縁性を向上させることのできる過電流保護素子の製造方法を提供することを目的としている。   The present invention has been made in view of the above, and provides a method of manufacturing an overcurrent protection element that can improve insulation by good trip characteristics when the temperature rises above room temperature due to a short circuit of an electronic circuit or the like. The purpose is to do.

本発明においては上記課題を解決するため、複数の導電性粒子と有機材料とを有機材料の軟化点以上の温度で加熱混練して各導電性粒子の一部を有機材料により被覆し、有機材料により被覆された複数の導電性粒子と高分子マトリクスとを加圧混練して混練物を調製し、この混練物をシート層に形成するとともに、このシート層を複数の導電体に挟んで加熱加圧し、その後、シート層と複数の導電体とに放射線を照射することを特徴としている。
なお、複数の導電性粒子の重量に対して有機材料を10〜30wt%配合し、有機材料を高分子マトリクスと相溶性のない材料とすることができる。
In the present invention, in order to solve the above problems, a plurality of conductive particles and an organic material are heated and kneaded at a temperature equal to or higher than the softening point of the organic material, and a part of each conductive particle is covered with the organic material. A plurality of conductive particles coated with a polymer matrix and a polymer matrix are pressure-kneaded to prepare a kneaded product. The kneaded product is formed into a sheet layer, and the sheet layer is sandwiched between a plurality of conductors and heated. And then irradiating the sheet layer and the plurality of conductors with radiation.
In addition, 10-30 wt% of organic materials can be blended with respect to the weight of the plurality of conductive particles, and the organic materials can be made incompatible with the polymer matrix.

また、高分子マトリクスを熱可塑性樹脂とし、各導電性粒子をカーボン粒子とすることができる。
また、有機材料を、変性エラストマーEPR、SBR樹脂、あるいはSBS樹脂とすることができる。
また、高分子マトリクスの重量に対して複数の導電性粒子を36〜57wt%配合して加圧混練することが好ましい。
Further, the polymer matrix can be a thermoplastic resin, and each conductive particle can be a carbon particle.
Further, the organic material can be modified elastomer EPR, SBR resin, or SBS resin.
Moreover, it is preferable to mix and knead | mix 36-57 wt% of several electroconductive particle with respect to the weight of a polymer matrix.

また、シート層を複数の導電体に挟み持たせたものであって、シート層は、高分子マトリクスと、この高分子マトリクス中に含有される複数の導電性粒子とを含み、各導電性粒子の一部を、高分子マトリクスと相溶性のない有機材料により被覆したことを特徴としても良い。   The sheet layer is sandwiched between a plurality of conductors, and the sheet layer includes a polymer matrix and a plurality of conductive particles contained in the polymer matrix, and each conductive particle A part of the substrate may be covered with an organic material incompatible with the polymer matrix.

本発明によれば、電子回路の短絡等により温度が室温よりも上昇した場合には、良好なトリップ特性により絶縁性を向上させることができるという効果がある。
また、有機材料を、変性エラストマーEPR、SBR樹脂、あるいはSBS樹脂とすれば、電子回路の短絡等で温度が上昇すると、有機材料が膨張して導電性粒子同士を引き離すので、良好なトリップ特性を得ることができる。
According to the present invention, when the temperature rises above room temperature due to a short circuit of an electronic circuit or the like, there is an effect that the insulating property can be improved by good trip characteristics.
Also, if the organic material is modified elastomer EPR, SBR resin, or SBS resin, when the temperature rises due to a short circuit of the electronic circuit, etc., the organic material expands and separates the conductive particles, so good trip characteristics are achieved. Obtainable.

以下、図面を参照して本発明の好ましい実施の形態を説明すると、本実施形態における過電流保護素子は、図1に示すように、シート層1を一対の導電板2に挟持させ、シート層1を、高分子マトリクスと、この高分子マトリクス中に含有される複数の導電性粒子とから形成し、各導電性粒子の表面を、高分子マトリクスとは異なり、しかも、相溶性のない有機材料により部分的に被覆するようにしている。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, an overcurrent protection element in the present embodiment sandwiches a sheet layer 1 between a pair of conductive plates 2 to form a sheet layer. 1 is formed from a polymer matrix and a plurality of conductive particles contained in the polymer matrix, and the surface of each conductive particle is different from the polymer matrix and is not compatible with the organic material. So that it is partially covered.

シート層1は、平面矩形、多角形、円形、あるいは楕円形等の任意の形に薄く成形される。このシート層1の高分子マトリクスは、熱可塑性樹脂が使用され、具体的にはポリエチレン樹脂やEBA樹脂等が使用される。また、各導電性粒子としては、導電性の有機材料、具体的には導電性に優れる安価なカーボン粒子が使用される。   The sheet layer 1 is thinly formed into an arbitrary shape such as a plane rectangle, a polygon, a circle, or an ellipse. As the polymer matrix of the sheet layer 1, a thermoplastic resin is used, and specifically, a polyethylene resin, an EBA resin, or the like is used. Moreover, as each electroconductive particle, the electroconductive organic material, specifically, the cheap carbon particle which is excellent in electroconductivity is used.

有機材料は、各導電性粒子に共有結合した後に高分子マトリクスに対して反応性を示さない材料、具体的には熱膨張率が高い変性エラストマーEPR(マレイン酸変性EPR)、SBR樹脂、あるいはSBS樹脂等が使用される。   The organic material is a material that does not react with the polymer matrix after being covalently bonded to each conductive particle, specifically, a modified elastomer EPR (maleic acid modified EPR), SBR resin, or SBS having a high coefficient of thermal expansion. Resin or the like is used.

一対の導電板2は、例えばシート層1と同じ大きさを有する一対のニッケル箔や銅箔等が使用され、各導電板2の表面には、携帯電話の電子回路接続用のリード線3が接続されており、各導電板2のシート層1に接触する裏面には、アンカー効果を発揮する粗い凹凸が粗面化処理により選択的に形成される。   For example, a pair of nickel foil and copper foil having the same size as the sheet layer 1 is used as the pair of conductive plates 2, and lead wires 3 for connecting an electronic circuit of a mobile phone are formed on the surface of each conductive plate 2. On the back surface of each conductive plate 2 that is connected and contacts the sheet layer 1, rough unevenness that exhibits an anchor effect is selectively formed by a roughening treatment.

上記において、過電流保護素子を製造する場合には、先ず、高分子マトリクス、導電性粒子、及び高分子マトリクスと相溶性のない有機材料をジェットミル等の粉砕機によりそれぞれ別々に粉砕し、これらのうち複数の導電性粒子と有機材料とを所定の温度に加熱したバッチ式の加圧ニーダに投入し、複数の導電性粒子と有機材料とを有機材料の軟化点以上の温度(例えば、180℃以上)で加熱混練して各導電性粒子の表面を有機材料により部分的に被覆する。   In the above, when manufacturing an overcurrent protection element, first, the polymer matrix, the conductive particles, and the organic material that is not compatible with the polymer matrix are separately pulverized separately by a pulverizer such as a jet mill. Are put into a batch type pressure kneader in which a plurality of conductive particles and an organic material are heated to a predetermined temperature, and the plurality of conductive particles and the organic material are heated to a temperature equal to or higher than the softening point of the organic material (for example, 180 And the surface of each conductive particle is partially covered with an organic material.

この際、複数の導電性粒子と有機材料の配合量は、各導電性粒子を有機材料により部分的にコーティングできるよう調整される。具体的には、複数の導電性粒子の重量に対して有機材料を10〜30wt%、好ましくは12〜28wt%配合する。有機材料の配合量を10〜30wt%の範囲とするのは、10wt未満の場合には、トリップ特性が低下し、逆に30wtを超える場合には、導電性が損なわれて抵抗値が必要以上に上昇するからである。   At this time, the blending amount of the plurality of conductive particles and the organic material is adjusted so that each conductive particle can be partially coated with the organic material. Specifically, the organic material is blended in an amount of 10 to 30 wt%, preferably 12 to 28 wt%, based on the weight of the plurality of conductive particles. The blending amount of the organic material is set in the range of 10 to 30 wt%. When the amount is less than 10 wt, the trip characteristic is deteriorated. On the other hand, when it exceeds 30 wt, the conductivity is impaired and the resistance value is more than necessary. Because it rises to.

また、複数の導電性粒子と有機材料とは、単に加熱混練するのではなく、有機材料の軟化点以上の温度で加熱混練しなければ、優れた絶縁性を得ることができないので、留意する必要がある。   In addition, it is necessary to pay attention to the fact that a plurality of conductive particles and an organic material are not simply heated and kneaded, and excellent insulation cannot be obtained unless heated and kneaded at a temperature higher than the softening point of the organic material. There is.

こうして各導電性粒子の表面を有機材料により部分的に被覆したら、加圧ニーダに高分子マトリクスを新たに投入して複数の導電性粒子と高分子マトリクスとを加圧混練し、混練物を調製する。この際、高分子マトリクスと複数の導電性粒子とは、高分子マトリクスの重量に対して複数の導電性粒子を36〜57wt%配合する。複数の導電性粒子の配合量を36〜57wt%の範囲とするのは、この範囲から外れる場合には、温度の低下時に元の抵抗値に容易に復帰せず、抵抗値が安定しないからである。   When the surface of each conductive particle is partially covered with an organic material in this way, a polymer matrix is newly added to a pressure kneader and a plurality of conductive particles and the polymer matrix are pressure-kneaded to prepare a kneaded product. To do. At this time, the polymer matrix and the plurality of conductive particles are blended in an amount of 36 to 57 wt% with respect to the weight of the polymer matrix. The reason why the blending amount of the plurality of conductive particles is in the range of 36 to 57 wt% is that when the temperature falls outside this range, the original resistance value is not easily restored when the temperature is lowered, and the resistance value is not stable. is there.

次いで、混練物をカレンダー加工機にセットして薄いシート層1に成形するとともに、このシート層1を一対の導電板2に挟んでプレス成形機により加熱加圧し、この一体化したシート層1と一対の導電板2とに安価なγ線、電子線、X線等からなる放射線を電子線架橋装置により照射して高分子を架橋し、その後、各導電板2の表面にリード線3を接続すれば、過電流保護素子を製造することができる。   Next, the kneaded material is set on a calendering machine and formed into a thin sheet layer 1. The sheet layer 1 is sandwiched between a pair of conductive plates 2 and heated and pressed by a press molding machine. A pair of conductive plates 2 are irradiated with inexpensive γ-rays, electron beams, X-rays or the like using an electron beam crosslinking device to crosslink the polymer, and then lead wires 3 are connected to the surface of each conductive plate 2. Then, an overcurrent protection element can be manufactured.

上記によれば、高分子マトリクス中に導電性粒子を単に配合するのではなく、各導電性粒子の表面を熱膨張率の高い有機材料により部分的にコーティングするので、電子回路の短絡時に有機材料が膨張して導電性粒子同士を離隔させ、良好なトリップ特性を得ることができ、絶縁性を著しく向上させることができる。また、各導電性粒子の表面を有機材料により全面的にコーティングするのではなく、部分的にコーティングして残部を露出させるので、室温では優れた低抵抗値を得ることができる。   According to the above, the conductive particles are not simply blended in the polymer matrix, but the surface of each conductive particle is partially coated with an organic material having a high coefficient of thermal expansion. Swells to separate the conductive particles from each other, good trip characteristics can be obtained, and the insulation can be remarkably improved. In addition, since the surface of each conductive particle is not entirely coated with an organic material but is partially coated to expose the remainder, an excellent low resistance value can be obtained at room temperature.

なお、本実施形態の過電流保護素子は、携帯電話のバッテリに使用しても良いが、何らこれに限定されるものではなく、例えばインバータ、火災報知器、自動車、スイッチング電源、制御装置等にも使用することができる。   Note that the overcurrent protection element of the present embodiment may be used for a battery of a mobile phone, but is not limited to this, for example, an inverter, a fire alarm, an automobile, a switching power supply, a control device, etc. Can also be used.

以下、本発明に係る過電流保護素子の製造方法の実施例を比較例と共に説明する。
実施例1
先ず、形態がペレットの高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)37.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)6.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。
Examples of the method for manufacturing an overcurrent protection element according to the present invention will be described below together with comparative examples.
Example 1
First, a polymer matrix (polyethylene: made by Idemitsu Petrochemical Co., Ltd., trade name 548B), 37.4 wt%, conductive particles (made by Colombian Carbon, trade name Raven410U), 56.6 wt%, and a polymer matrix and phase Insoluble organic materials (maleic acid-modified EPR: JSR, trade name: T-7741P) of 6.0 wt% were separately pulverized by a jet mill and adjusted to a particle size of 16 to 100 mesh.

こうして粉砕が完了したら、複数の導電性粒子と有機材料とを180℃の温度に加熱したバッチ式の加圧ニーダに投入し、複数の導電性粒子と有機材料とを有機材料の軟化点以上の温度で30分間加熱混練して各導電性粒子の表面を有機材料により部分的に被覆した。   When pulverization is completed in this way, a plurality of conductive particles and an organic material are put into a batch type pressure kneader heated to a temperature of 180 ° C., and the plurality of conductive particles and the organic material are brought to a temperature higher than the softening point of the organic material. The surface of each conductive particle was partially covered with an organic material by heating and kneading for 30 minutes at a temperature.

次いで、加熱状態の加圧ニーダ中に高分子マトリクスを新たに投入して複数の導電性粒子と高分子マトリクスとを180℃のまま20分間加圧混練し、混練物を調製した。混練物を調製したら、この混練物をカレンダー加工機にセットして厚さ50μmのシート層を成形し、このシート層を一対の導電板に挟んでプレス成形機により加熱加圧した。各導電板としては、粗さRaが2.0μmで125μmの厚さを有するニッケル箔を使用した。また、プレス成形機の加熱加圧は、加熱が250℃、加圧が10kgf/cmの条件で実施した。 Next, a polymer matrix was newly added into a heated pressure kneader, and a plurality of conductive particles and the polymer matrix were pressure-kneaded for 20 minutes at 180 ° C. to prepare a kneaded product. When the kneaded material was prepared, the kneaded material was set on a calendering machine to form a sheet layer having a thickness of 50 μm, and the sheet layer was sandwiched between a pair of conductive plates and heated and pressed by a press molding machine. As each conductive plate, a nickel foil having a roughness Ra of 2.0 μm and a thickness of 125 μm was used. The press molding machine was heated and pressed under the conditions of heating at 250 ° C. and pressing at 10 kgf / cm 2 .

そして、250μmの総厚で一体化したシート層と一対の導電板とに10MRadの電子線を電子線架橋装置により照射して高分子を架橋した後、各導電板の表面にリード線を接続して過電流保護素子を製造した。   The sheet layer integrated with a total thickness of 250 μm and the pair of conductive plates are irradiated with a 10 MRad electron beam by an electron beam cross-linking device to cross-link the polymer, and then lead wires are connected to the surface of each conductive plate. Thus, an overcurrent protection element was manufactured.

実施例2
高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)34.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)9.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。その他の部分については、実施例1と同様とした。
Example 2
Polymer matrix (polyethylene: Idemitsu Petrochemical Co., Ltd., trade name 548B) 34.4 wt%, conductive particles (Colombian Carbon, trade name Raven410U) 56.6 wt%, and organic material incompatible with polymer matrix ( Maleic acid-modified EPR: JSR, trade name: T-7741P) 9.0 wt% was separately pulverized by a jet mill and adjusted to a particle size of 16 to 100 mesh. The other parts were the same as in Example 1.

実施例3
高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)31.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)12.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。その他の部分については、実施例1と同様とした。
Example 3
Polymer matrix (polyethylene: Idemitsu Petrochemical, trade name 548B) 31.4 wt%, conductive particles (Colombian Carbon, trade name Raven410U) 56.6 wt%, and organic material incompatible with polymer matrix ( Maleic acid-modified EPR: JSR, trade name T-7741P) 12.0 wt% was separately pulverized by a jet mill and adjusted to a particle size of 16 to 100 mesh. The other parts were the same as in Example 1.

実施例4
高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)28.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)15.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。その他の部分については、実施例1と同様とした。
Example 4
Polymer matrix (polyethylene: Idemitsu Petrochemical Co., Ltd., trade name 548B) 28.4 wt%, conductive particles (Colombian Carbon, trade name Raven410U) 56.6 wt%, and organic material incompatible with the polymer matrix ( Maleic acid-modified EPR: JSR, trade name T-7741P) 15.0 wt% was separately pulverized by a jet mill to adjust the particle size to 16 to 100 mesh. The other parts were the same as in Example 1.

実施例5
高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)26.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)17.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。その他の部分については、実施例1と同様とした。
Example 5
Polymer matrix (polyethylene: Idemitsu Petrochemical Co., Ltd., trade name 548B) 26.4 wt%, conductive particles (Colombian Carbon, trade name Raven410U) 56.6 wt%, and organic material incompatible with the polymer matrix ( Maleic acid-modified EPR: JSR, trade name T-7741P) 17.0 wt% was separately pulverized by a jet mill and adjusted to a particle size of 16 to 100 mesh. The other parts were the same as in Example 1.

比較例1
先ず、形態がペレットの高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)38.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)5.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。
Comparative Example 1
First, a polymer matrix (polyethylene: made by Idemitsu Petrochemical Co., Ltd., trade name 548B), 38.4 wt%, conductive particles (made by Colombian Carbon, trade name Raven410U) 56.6 wt%, and a polymer matrix and phase Insoluble organic materials (maleic acid-modified EPR: JSR, trade name: T-7741P) of 5.0 wt% were separately pulverized by a jet mill to adjust the particle size to 16 to 100 mesh.

こうして粉砕が完了したら、高分子マトリクス、導電性粒子、及び有機材料をスーパーミキサ(カワタ製)により混合攪拌して180℃の温度に加熱した加圧ニーダに投入し、高分子マトリクス、導電性粒子、及び有機材料を混練して混練物を調製した。   When the pulverization is completed in this way, the polymer matrix, the conductive particles, and the organic material are mixed and stirred by a super mixer (manufactured by Kawata), and then put into a pressure kneader heated to a temperature of 180 ° C. A kneaded product was prepared by kneading organic materials.

次いで、調製した混練物をカレンダー加工機にセットして厚さ50μmのシート層を成形し、このシート層を一対の導電板に挟んでプレス成形機により加熱加圧した。各導電板としては、粗さRaが2.0μmで125μmの厚さを有するニッケル箔を使用した。また、プレス成形機の加熱加圧は、加熱が250℃、加圧が10kgf/cmの条件で実施した。 Next, the prepared kneaded material was set on a calendering machine to form a sheet layer having a thickness of 50 μm, and the sheet layer was sandwiched between a pair of conductive plates and heated and pressed by a press molding machine. As each conductive plate, a nickel foil having a roughness Ra of 2.0 μm and a thickness of 125 μm was used. The press molding machine was heated and pressed under the conditions of heating at 250 ° C. and pressing at 10 kgf / cm 2 .

そして、250μmの総厚で一体化したシート層と一対の導電板とに10MRadの電子線を電子線架橋装置により照射して高分子を架橋した後、各導電板の表面にリード線を接続して過電流保護素子を製造した。   The sheet layer integrated with a total thickness of 250 μm and the pair of conductive plates are irradiated with a 10 MRad electron beam by an electron beam cross-linking device to cross-link the polymer, and then lead wires are connected to the surface of each conductive plate. Thus, an overcurrent protection element was manufactured.

比較例2
高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)23.4wt%、導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%、及び高分子マトリクスと相溶性のない有機材料(マレイン酸変性EPR:JSR製、商品名T−7741P)20.0wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。その他の部分については、比較例1と同様とした。
Comparative Example 2
Polymer matrix (polyethylene: Idemitsu Petrochemical, trade name 548B) 23.4 wt%, conductive particles (Colombian Carbon, trade name Raven410U) 56.6 wt%, and organic material incompatible with polymer matrix ( Maleic acid-modified EPR: JSR, trade name T-7741P) 20.0 wt% was separately pulverized by a jet mill and adjusted to a particle size of 16 to 100 mesh. The other parts were the same as those in Comparative Example 1.

比較例3
高分子マトリクス(ポリエチレン:出光石油化学製、商品名548B)43.4wt%、及び導電性粒子(コロンビアンカーボン製、商品名Raven410U)56.6wt%をジェットミルによりそれぞれ別々に粉砕して16〜100meshの粒子径に調整した。その他の部分については、比較例1と同様とした。
Comparative Example 3
A polymer matrix (polyethylene: Idemitsu Petrochemical, trade name 548B) 43.4 wt% and conductive particles (Colombian Carbon, trade name Raven410U) 56.6 wt% were separately pulverized by a jet mill, respectively. The particle size was adjusted to 100 mesh. The other parts were the same as those in Comparative Example 1.

過電流保護素子の特性の測定
過電流保護素子の一のリード線を抵抗測定器に接続して初期抵抗値を測定し、この過電流保護素子をオーブンにセットして温度‐抵抗曲線の測定を開始した。具体的には、20℃から順次10℃毎に昇温して抵抗値を測定し、160℃(トリップ時の抵抗値)まで昇温するとともに、160℃に達したら、温度を順次10℃毎に降温して20℃まで測定を続けた。この20℃に戻った時の抵抗値を緩和抵抗値と呼ぶこととした。
Measuring the characteristics of the overcurrent protection element Connect one lead of the overcurrent protection element to a resistance measuring instrument to measure the initial resistance value, and place this overcurrent protection element in the oven to measure the temperature-resistance curve. Started. Specifically, the resistance value is measured by increasing the temperature sequentially from 20 ° C. every 10 ° C., and the temperature is increased to 160 ° C. (resistance value at the time of trip). The temperature was lowered to 20 ° C. and the measurement was continued. The resistance value when the temperature returned to 20 ° C. was called a relaxation resistance value.

こうして過電流保護素子を製造し、特性を測定したら、導電性粒子と有機材料の配合、初期抵抗値、160℃抵抗値、緩和抵抗値、緩和率を表1にまとめた。   After manufacturing the overcurrent protection element and measuring the characteristics, Table 1 shows the composition of the conductive particles and the organic material, the initial resistance value, the 160 ° C. resistance value, the relaxation resistance value, and the relaxation rate.

Figure 2008041724
Figure 2008041724

表1から明らかなように、実施例の過電流保護素子は、初期抵抗値が低く、トリップ時の抵抗値である160℃抵抗値が高く、緩和抵抗値も低く、実用上優れた素子であるのを確認した。   As is clear from Table 1, the overcurrent protection element of the example is a practically excellent element having a low initial resistance value, a high resistance value at 160 ° C. that is a resistance value at the time of trip, and a low relaxation resistance value. Confirmed.

これに対し、比較例の過電流保護素子は、同量の導電性粒子を配合している実施例と比較して初期抵抗値が同等ではあるが、トリップ時の抵抗値である160℃抵抗値が低く、しかも、緩和率も高いので、一般的に言われている緩和率の使用限界である120%を超えてしまう様子が伺える。これをグラフ化したものが図2であり、この図2によれば、実施例を踏襲する範囲では良好なPTC特性を示すが、踏襲範囲から逸脱すると、PTC特性が急激に悪化する様子を伺い知ることができる。   On the other hand, the overcurrent protection element of the comparative example has the same initial resistance value as that of the example in which the same amount of conductive particles is blended, but the resistance value at 160 ° C. is the resistance value at the time of trip. It is low and the relaxation rate is high, so it can be seen that it exceeds 120%, which is the generally used limit of relaxation rate. FIG. 2 is a graph of this, and according to FIG. 2, the PTC characteristics are shown to be good in the range following the embodiment, but the PTC characteristics rapidly deteriorate when deviating from the range. I can know.

以上のように実施例によれば、各導電性粒子の表面を熱膨張性の大きい有機材料により部分的に被覆しているので、過電流保護素子の昇温時には、複数の導電性粒子の間の導電経路が破壊されやすくなり、良好なトリップ状態を得ることができるとともに、抵抗の緩和時には、初期抵抗値に近い値を保つことが可能となり、良好な過電流保護素子としての機能が期待できることが判明した。   As described above, according to the embodiment, since the surface of each conductive particle is partially covered with an organic material having a large thermal expansion, when the temperature of the overcurrent protection element is increased, a plurality of conductive particles are not separated. It is possible to obtain a good trip state and maintain a value close to the initial resistance value when the resistance is relaxed, and a function as a good overcurrent protection element can be expected. There was found.

本発明に係る過電流保護素子の製造方法の実施形態における過電流保護素子を模式的に示す説明図である。It is explanatory drawing which shows typically the overcurrent protection element in embodiment of the manufacturing method of the overcurrent protection element which concerns on this invention. 本発明に係る過電流保護素子の製造方法の実施例における過電流保護素子のPTC特性を示すグラフである。It is a graph which shows the PTC characteristic of the overcurrent protection element in the Example of the manufacturing method of the overcurrent protection element which concerns on this invention.

符号の説明Explanation of symbols

1 シート層
2 導電板
3 リード線
1 Sheet layer 2 Conductive plate 3 Lead wire

Claims (4)

複数の導電性粒子と有機材料とを有機材料の軟化点以上の温度で加熱混練して各導電性粒子の一部を有機材料により被覆し、有機材料により被覆された複数の導電性粒子と高分子マトリクスとを加圧混練して混練物を調製し、この混練物をシート層に形成するとともに、このシート層を複数の導電体に挟んで加熱加圧し、その後、シート層と複数の導電体とに放射線を照射することを特徴とする過電流保護素子の製造方法。   A plurality of conductive particles and an organic material are heated and kneaded at a temperature equal to or higher than the softening point of the organic material, and a part of each conductive particle is coated with the organic material. A kneaded product is prepared by pressure-kneading a molecular matrix, and the kneaded product is formed into a sheet layer, and the sheet layer is sandwiched between a plurality of conductors and heated and pressurized, and then the sheet layer and the plurality of conductors are formed. And a method of manufacturing an overcurrent protection element. 複数の導電性粒子の重量に対して有機材料を10〜30wt%配合し、有機材料を高分子マトリクスと相溶性のない材料とする請求項1記載の過電流保護素子の製造方法。   The method for producing an overcurrent protection element according to claim 1, wherein the organic material is blended in an amount of 10 to 30 wt% with respect to the weight of the plurality of conductive particles, and the organic material is incompatible with the polymer matrix. 高分子マトリクスを熱可塑性樹脂とし、各導電性粒子をカーボン粒子とした請求項1又は2記載の過電流保護素子の製造方法。   The method for producing an overcurrent protection element according to claim 1 or 2, wherein the polymer matrix is a thermoplastic resin, and the conductive particles are carbon particles. 有機材料を、変性エラストマーEPR、SBR樹脂、あるいはSBS樹脂とした請求項1、2、又は3記載の過電流保護素子の製造方法。   The method for producing an overcurrent protection element according to claim 1, 2, or 3, wherein the organic material is a modified elastomer EPR, SBR resin, or SBS resin.
JP2006210495A 2006-08-02 2006-08-02 Manufacturing method of overcurrent protecting element Pending JP2008041724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210495A JP2008041724A (en) 2006-08-02 2006-08-02 Manufacturing method of overcurrent protecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210495A JP2008041724A (en) 2006-08-02 2006-08-02 Manufacturing method of overcurrent protecting element

Publications (1)

Publication Number Publication Date
JP2008041724A true JP2008041724A (en) 2008-02-21

Family

ID=39176449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210495A Pending JP2008041724A (en) 2006-08-02 2006-08-02 Manufacturing method of overcurrent protecting element

Country Status (1)

Country Link
JP (1) JP2008041724A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157827A (en) * 1992-11-16 1994-06-07 Otsuka Chem Co Ltd Conductive composition and heating element sheet capable of controlling its own temperature
JPH10172805A (en) * 1996-12-13 1998-06-26 Otsuka Chem Co Ltd Overccurrent protective circuit element
JP2004533112A (en) * 2001-03-29 2004-10-28 シンワ インターテック コーポレーション PTC composition and PTC element containing the same
JP2005197660A (en) * 2003-12-31 2005-07-21 Polytronics Technology Corp Overcurrent protection element and its manufacturing method
JP2006024863A (en) * 2004-07-09 2006-01-26 Shin Etsu Polymer Co Ltd Overcurrent protecting element and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157827A (en) * 1992-11-16 1994-06-07 Otsuka Chem Co Ltd Conductive composition and heating element sheet capable of controlling its own temperature
JPH10172805A (en) * 1996-12-13 1998-06-26 Otsuka Chem Co Ltd Overccurrent protective circuit element
JP2004533112A (en) * 2001-03-29 2004-10-28 シンワ インターテック コーポレーション PTC composition and PTC element containing the same
JP2005197660A (en) * 2003-12-31 2005-07-21 Polytronics Technology Corp Overcurrent protection element and its manufacturing method
JP2006024863A (en) * 2004-07-09 2006-01-26 Shin Etsu Polymer Co Ltd Overcurrent protecting element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US6090313A (en) High temperature PTC device and conductive polymer composition
JP3930905B2 (en) Conductive polymer composition and device
US5837164A (en) High temperature PTC device comprising a conductive polymer composition
JP3930904B2 (en) Electrical device
JP6598231B2 (en) Polymer conductive composite material and PTC element
JP4188682B2 (en) Conductive polymer composition and device containing NNm-phenylene dimaleimide
JPH08512174A (en) Conductive polymer composition
JP2005521256A (en) PTC conductive composition containing low molecular weight polyethylene processing aid
US7314583B2 (en) Organic positive temperature coefficient thermistor device
US10147525B1 (en) PTC circuit protection device
US20080100979A1 (en) High voltage over-current protection device
JP2008041724A (en) Manufacturing method of overcurrent protecting element
JP2000331804A (en) Ptc composition
JP2007242654A (en) Overheat protection element and its manufacturing method
JP4459438B2 (en) Method for manufacturing an electrical device and method for manufacturing a battery assembly
KR100291661B1 (en) Conductive polymer composition and electric device using it
JP2006210046A (en) Overheat protection element and its manufacturing method
JPH0799721B2 (en) Method for producing PTC composition
CN115413069A (en) PTC heating element and method for manufacturing same
JP2003318008A (en) Polymer ptc composition and polymer ptc element
JP2009081256A (en) Overcurrent protecting element, and manufacturing method thereof
TW201248652A (en) Positive temperature coefficient conductive composition, protection device and method for manufacturing the same
JPH11176561A (en) Ptc composition and manufacture thereof
JP2002367810A (en) Macromolecular ptc element and its manufacturing method
JP2007091804A (en) Insulating, highly heat-conductive resin and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110121

A131 Notification of reasons for refusal

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628