JP2007240054A - Cold system - Google Patents

Cold system Download PDF

Info

Publication number
JP2007240054A
JP2007240054A JP2006062259A JP2006062259A JP2007240054A JP 2007240054 A JP2007240054 A JP 2007240054A JP 2006062259 A JP2006062259 A JP 2006062259A JP 2006062259 A JP2006062259 A JP 2006062259A JP 2007240054 A JP2007240054 A JP 2007240054A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
evaporator
lubricating oil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006062259A
Other languages
Japanese (ja)
Inventor
Motoharu Sato
元春 佐藤
Shunji Komatsu
俊二 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2006062259A priority Critical patent/JP2007240054A/en
Publication of JP2007240054A publication Critical patent/JP2007240054A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold system capable of improving heat exchanging efficiency in an evaporator by reducing the quantity of lubricant flowing into the evaporator together with a refrigerant. <P>SOLUTION: As this cold system comprises a lubricant gas/liquid separator 6 for separating the lubricant in the refrigerant decompressed by an expansion valve 3, separating the gas refrigerant from the liquid refrigerant, and allowing the liquid refrigerant to circulate to the evaporator 4, piping 19 for allowing the lubricant-containing refrigerant separated by the lubricant gas/liquid separator 6 to circulate to a suction side of a compressor 1, and a flow control valve 19a controlling a flow rate of the lubricant-containing refrigerant circulating in the piping 19, the flow rate of the lubricant flowing into the evaporator 4 can be reduced, to improve the heat exchanging efficiency in the evaporator 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば空気調和装置、給湯器、冷蔵庫等の冷熱システムに関するものである。   The present invention relates to a cooling system such as an air conditioner, a water heater, and a refrigerator.

従来、この種の冷熱システムとしては、冷媒を圧縮する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器において放熱した冷媒を膨張させる膨張手段と、膨張手段によって膨張した冷媒を蒸発させる蒸発器とを備え、冷媒として自然系冷媒の一つである二酸化炭素を用いたものが知られている(例えば、特許文献1参照)。
特開平11−193967号公報
Conventionally, this type of cooling system includes a compressor that compresses refrigerant, a radiator that radiates the refrigerant discharged from the compressor, an expansion means that expands the refrigerant radiated in the radiator, and an expansion means that expands the refrigerant. An evaporator that evaporates the refrigerant is used, and carbon dioxide that is one of natural refrigerants is used as the refrigerant (see, for example, Patent Document 1).
JP 11-193967 A

従来の冷熱システムにおいて、冷媒として二酸化炭素を用いる場合には、高圧側を二酸化炭素が超臨界圧まで圧縮する必要があり、圧縮機の駆動動力が大きくなるため、蒸発器における熱交換効率が悪くなる。また、圧縮機から吐出される冷媒中には、圧縮機駆動用の潤滑油が含まれているため、蒸発器に冷媒と共に流入する潤滑油の量が多くなると、蒸発器における熱交換効率が更に低下するという問題点があった。   In the case of using carbon dioxide as a refrigerant in a conventional refrigeration system, it is necessary to compress the high pressure side to a supercritical pressure, which increases the driving power of the compressor, resulting in poor heat exchange efficiency in the evaporator. Become. In addition, since the refrigerant discharged from the compressor contains lubricating oil for driving the compressor, if the amount of lubricating oil flowing into the evaporator together with the refrigerant increases, the heat exchange efficiency in the evaporator further increases. There was a problem that it decreased.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、蒸発器に冷媒と共に流入する潤滑油の量を低減することにより、蒸発器における熱交換効率を向上させることのできる冷熱システムを提供することにある。   The present invention has been made in view of the above problems, and its object is to improve the heat exchange efficiency in the evaporator by reducing the amount of lubricating oil flowing into the evaporator together with the refrigerant. It is to provide a cooling system that can.

本発明は前記目的を達成するために、冷媒を圧縮する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器において放熱した冷媒を膨張させる膨張手段と、膨張手段によって減圧された冷媒を蒸発させる蒸発器とを備えた冷熱システムにおいて、膨張手段によって減圧された冷媒中の潤滑油を分離するとともに、気体の冷媒と液体の冷媒を分離して液体の冷媒を蒸発器に流通させる油気液分離器と、油気液分離器によって分離された潤滑油が含まれる冷媒を圧縮機の吸入側に流通させる油冷媒流路と、油冷媒流路を流通する潤滑油が含まれる冷媒の流量を調整可能な流量調整手段とを備えている。   In order to achieve the above-mentioned object, the present invention achieves the above-described purpose by a compressor that compresses the refrigerant, a radiator that radiates the refrigerant discharged from the compressor, an expansion means that expands the refrigerant radiated in the radiator, and a pressure reduction by the expansion means. In the cooling system comprising an evaporator for evaporating the generated refrigerant, the lubricating oil in the refrigerant decompressed by the expansion means is separated, and the gaseous refrigerant and the liquid refrigerant are separated to convert the liquid refrigerant into the evaporator. Includes an oil / gas / liquid separator to be circulated, an oil / refrigerant flow path for circulating a refrigerant containing lubricating oil separated by the oil / gas / liquid separator to the suction side of the compressor, and a lubricating oil that circulates through the oil / refrigerant path. And a flow rate adjusting means capable of adjusting the flow rate of the refrigerant.

これにより、膨張手段によって減圧された冷媒中の潤滑油が分離され、液体の冷媒が蒸発器に流入し、潤滑油が蒸発器を流通することなく圧縮機に吸入されることから、蒸発器に流入する潤滑油の流量が低減される。   As a result, the lubricating oil in the refrigerant decompressed by the expansion means is separated, the liquid refrigerant flows into the evaporator, and the lubricating oil is sucked into the compressor without flowing through the evaporator. The flow rate of the lubricating oil flowing in is reduced.

本発明によれば、蒸発器に流入する潤滑油の流量を低減することができるので、蒸発器における熱交換効率の向上を図ることが可能となる。   According to the present invention, since the flow rate of the lubricating oil flowing into the evaporator can be reduced, the heat exchange efficiency in the evaporator can be improved.

図1乃至図3は本発明の第1の実施形態を示すもので、図1は冷熱システムの概略構成図、図2は油気液分離器の側面断面図、図3は流量調整弁の弁開度制御に関するフローチャートである。   1 to 3 show a first embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a cooling system, FIG. 2 is a side sectional view of an oil-gas-liquid separator, and FIG. It is a flowchart regarding opening control.

この冷熱システムは、冷媒を圧縮するための圧縮機1と、圧縮機1から吐出された冷媒を放熱させるための放熱器2と、放熱器2において放熱した冷媒を減圧する膨張手段としての膨張弁3と、膨張弁3によって減圧された冷媒を蒸発させるための蒸発器4と、放熱器2において放熱した冷媒と蒸発器4において吸熱した冷媒を熱交換するための内部熱交換器5と、膨張弁3によって膨張した冷媒中の潤滑油を分離するためのオイルセパレータとしての機能と、気体の冷媒と液体の冷媒を分離するため気液分離器としての機能を有する油気液分離器6とを備えている。即ち、圧縮機1の吐出側には、配管11によって放熱器2の流入側が接続されている。放熱器2の流出側には、配管12によって内部熱交換器5の高圧冷媒流入側が接続されている。内部熱交換器5の高圧冷媒流入側には、配管13によって膨張弁3の流入側が接続されている。膨張弁3の流出側には、配管14によって油気液分離器6の流入側が接続されている。油気液分離器6の液冷媒流出側には、配管15によって蒸発器4の流入側が接続されている。蒸発器4の流出側には、配管16によって内部熱交換器5の低圧冷媒流入側が接続されている。内部熱交換器5の低圧冷媒流出側には、配管17によって圧縮機1の吸入側の配管18に接続されている。油気液分離器6の潤滑油の流出側は、油冷媒流路としての配管19によって内部熱交換器5の低圧冷媒流出側と並列に圧縮機1の吸入側の配管18に接続され、配管19には、流通する潤滑油の流量を調整可能な開度可変の電動弁からなる流量調整弁19aが設けられている。また、配管16には、蒸発器4から流出する冷媒の温度を検出するための第1の温度検出器16aが設けられ、配管18には、圧縮機1に吸入される冷媒の温度を検出するための第2の温度検出器18aが設けられている。更に、配管17には、配管を立ち下げた後に立ち上げることにより液冷媒流入防止手段としてのトラップ17aが形成されており、内部熱交換器5から流出する液体の冷媒をトラップ17aによって捕集することにより気体の冷媒のみが圧縮機1に吸入されるようになっている。   The cooling system includes a compressor 1 for compressing refrigerant, a radiator 2 for radiating the refrigerant discharged from the compressor 1, and an expansion valve as expansion means for decompressing the refrigerant radiated in the radiator 2. 3, an evaporator 4 for evaporating the refrigerant decompressed by the expansion valve 3, an internal heat exchanger 5 for exchanging heat between the refrigerant radiated in the radiator 2 and the refrigerant absorbed in the evaporator 4, expansion A function as an oil separator for separating the lubricating oil in the refrigerant expanded by the valve 3, and an oil / gas / liquid separator 6 having a function as a gas / liquid separator for separating the gaseous refrigerant and the liquid refrigerant. I have. That is, the inflow side of the radiator 2 is connected to the discharge side of the compressor 1 by the pipe 11. A high pressure refrigerant inflow side of the internal heat exchanger 5 is connected to the outflow side of the radiator 2 by a pipe 12. The inflow side of the expansion valve 3 is connected to the high-pressure refrigerant inflow side of the internal heat exchanger 5 by a pipe 13. The inflow side of the oil / gas separator 6 is connected to the outflow side of the expansion valve 3 by a pipe 14. An inflow side of the evaporator 4 is connected to a liquid refrigerant outflow side of the oil-gas separator 6 by a pipe 15. The low pressure refrigerant inflow side of the internal heat exchanger 5 is connected to the outflow side of the evaporator 4 by a pipe 16. A low-pressure refrigerant outflow side of the internal heat exchanger 5 is connected to a suction side pipe 18 of the compressor 1 by a pipe 17. The outflow side of the lubricating oil of the oil / gas separator 6 is connected to the suction side pipe 18 of the compressor 1 in parallel with the low pressure refrigerant outflow side of the internal heat exchanger 5 by a pipe 19 as an oil refrigerant flow path. 19 is provided with a flow rate adjusting valve 19a composed of a motor valve with a variable opening that can adjust the flow rate of the flowing lubricating oil. The pipe 16 is provided with a first temperature detector 16a for detecting the temperature of the refrigerant flowing out of the evaporator 4, and the pipe 18 detects the temperature of the refrigerant sucked into the compressor 1. For this purpose, a second temperature detector 18a is provided. Further, the pipe 17 is formed with a trap 17a as a liquid refrigerant inflow prevention means by raising the pipe after being lowered, and the liquid refrigerant flowing out from the internal heat exchanger 5 is collected by the trap 17a. As a result, only the gaseous refrigerant is sucked into the compressor 1.

油気液分離器6は、縦長に形成された中空の分離器本体6aと、分離器本体6a内の上部を上下に仕切るように設けられた整流部材としての整流板6bと、分離器本体6a内の下部を上下に仕切るように設けられた油分離部材6cとからなる。分離器本体6aには、配管14,15,19が接続されている。配管14は、端部が整流板6bの上方の空間6dの上面に向くようにして分離器本体6aに接続されている。また、配管19は、端部が整流板6bと油分離部材6cとの間の空間6eの下部に位置するように分離器本体6aに接続されている。更に、配管15は、端部が油分離部材6cの下方の空間6fに位置するように分離器本体6aに接続されている。整流板6bは、複数の孔が全面に亘って設けられた板状部材からなり、空間6dに流入した冷媒を複数の連通孔を介して空間6eに流通させるようになっている。油分離部材6cは、焼結フィルタや多孔質セラミックフィルタ等の板状部材からなり、空間6e内の潤滑油を含んだ冷媒を潤滑油と分離して、冷媒のみを空間6fに流通させるようになっている。   The oil / gas separator 6 includes a vertically separated hollow separator body 6a, a rectifying plate 6b as a rectifying member provided so as to partition an upper part in the separator body 6a vertically, and a separator body 6a. The oil separation member 6c is provided so as to partition the lower part in the top and bottom. Pipes 14, 15, and 19 are connected to the separator body 6a. The pipe 14 is connected to the separator body 6a so that the end thereof faces the upper surface of the space 6d above the rectifying plate 6b. Further, the pipe 19 is connected to the separator main body 6a so that the end thereof is located below the space 6e between the rectifying plate 6b and the oil separation member 6c. Furthermore, the pipe 15 is connected to the separator main body 6a so that the end thereof is located in the space 6f below the oil separation member 6c. The rectifying plate 6b is composed of a plate-like member having a plurality of holes provided over the entire surface, and the refrigerant flowing into the space 6d is circulated into the space 6e through the plurality of communication holes. The oil separating member 6c is made of a plate-like member such as a sintered filter or a porous ceramic filter, and separates the refrigerant containing the lubricating oil in the space 6e from the lubricating oil so that only the refrigerant flows through the space 6f. It has become.

また、この冷熱システムは、流量調整弁19aの弁開度を制御するための制御部20を備えている。制御部20は、マイクロコンピュータによって構成され、流量制御弁19aの弁開度の動作制御に関するプログラムが記憶されている。また、制御部20には、第1の温度検出器16a、第2の温度検出器18a及び流量調整弁19aが接続されている。   In addition, the cooling / heating system includes a control unit 20 for controlling the valve opening degree of the flow rate adjusting valve 19a. The control unit 20 is configured by a microcomputer, and stores a program related to operation control of the valve opening degree of the flow control valve 19a. The controller 20 is connected to a first temperature detector 16a, a second temperature detector 18a, and a flow rate adjusting valve 19a.

以上のように構成された冷熱システムにおいて、圧縮機1から吐出された冷媒は、放熱器2において放熱し、内部熱交換器5において蒸発器4から流出した冷媒と熱交換することにより更に放熱する。内部熱交換器5から流出した冷媒は、膨張弁3によって減圧され、油気液分離器6に流入して液体の冷媒、気体の冷媒及び潤滑油に分離される。油気液分離器6において分離された液体の冷媒は、蒸発器4において蒸発して吸熱し、内部熱交換器5において放熱器2から流出した冷媒と熱交換することにより加熱されて圧縮機1に吸入される。また、油気液分離器6において分離された潤滑油は、少量の冷媒と共に配管19及び配管18を流通して圧縮機1に吸入される。   In the cooling system configured as described above, the refrigerant discharged from the compressor 1 dissipates heat in the radiator 2 and further dissipates heat by exchanging heat with the refrigerant flowing out of the evaporator 4 in the internal heat exchanger 5. . The refrigerant flowing out of the internal heat exchanger 5 is decompressed by the expansion valve 3 and flows into the oil / gas separator 6 to be separated into a liquid refrigerant, a gaseous refrigerant and lubricating oil. The liquid refrigerant separated in the oil-gas separator 6 evaporates and absorbs heat in the evaporator 4 and is heated by exchanging heat with the refrigerant flowing out of the radiator 2 in the internal heat exchanger 5 to be compressed. Inhaled. Further, the lubricating oil separated in the oil-gas separator 6 flows through the pipe 19 and the pipe 18 together with a small amount of refrigerant and is sucked into the compressor 1.

前記のように冷媒が循環する際、油気液分離器6では、配管14から空間6dに流入した冷媒が整流板6bを介して空間6eに流入し、空間6eにおいて気体の冷媒と液体の冷媒とがそれぞれ分離された状態となる。このとき、空間6d内の冷媒は、整流板6bを介して空間6eに流入するため、配管14から流出する冷媒によって空間6e内の液体の冷媒が撹拌されることはない。これにより、空間6e内の液体の冷媒中に含まれる潤滑油の濃度は、上部側よりも下部側の液体の冷媒の方が高濃度となる。また、空間6e内の液体の冷媒は、油分離部材6cを通過することにより潤滑油と分離されて空間6fに流入し、配管15を介して蒸発器4に流入する。更に、空間6eの下部に位置する潤滑油を多く含む冷媒は、配管19及び配管18を介して圧縮機1に流入する。   When the refrigerant circulates as described above, in the oil-gas / liquid separator 6, the refrigerant that has flowed into the space 6d from the pipe 14 flows into the space 6e through the rectifying plate 6b, and the gas refrigerant and the liquid refrigerant in the space 6e. Are separated from each other. At this time, since the refrigerant in the space 6d flows into the space 6e via the rectifying plate 6b, the liquid refrigerant in the space 6e is not stirred by the refrigerant flowing out of the pipe 14. Thereby, the concentration of the lubricating oil contained in the liquid refrigerant in the space 6e is higher in the liquid refrigerant on the lower side than on the upper side. The liquid refrigerant in the space 6e is separated from the lubricating oil by passing through the oil separating member 6c, flows into the space 6f, and flows into the evaporator 4 through the pipe 15. Furthermore, the refrigerant containing a large amount of lubricating oil located in the lower portion of the space 6 e flows into the compressor 1 through the pipe 19 and the pipe 18.

また、このときの制御部20は、第1の温度検出器16aの検出温度T1と第2の温度検出器18aの検出温度T2との温度差(T2−T1)が所定の設定温度差Ts1以上になると(図3のS1)、流量調整弁19aの弁開度を大きくする(図3のS2)。また、第1の温度検出器16aの検出温度T1と第2の温度検出器18aの検出温度T2との温度差(T2−T1)が所定の設定温度差Ts1よりも小さくなると(図3のS1)、流量調整弁19aの弁開度を小さくする(図3のS3)。   Further, the control unit 20 at this time has a temperature difference (T2−T1) between the detected temperature T1 of the first temperature detector 16a and the detected temperature T2 of the second temperature detector 18a equal to or greater than a predetermined set temperature difference Ts1. (S1 in FIG. 3), the valve opening degree of the flow rate adjusting valve 19a is increased (S2 in FIG. 3). Further, when the temperature difference (T2−T1) between the detected temperature T1 of the first temperature detector 16a and the detected temperature T2 of the second temperature detector 18a becomes smaller than a predetermined set temperature difference Ts1 (S1 in FIG. 3). ), The valve opening degree of the flow rate adjusting valve 19a is reduced (S3 in FIG. 3).

このように、本実施形態の冷熱システムによれば、膨張弁3によって減圧された冷媒中の潤滑油を分離するとともに、気体の冷媒と液体の冷媒を分離して液体の冷媒を蒸発器4に流通させる油気液分離器6と、油気液分離器6によって分離された潤滑油が含まれる冷媒を圧縮機1の吸入側に流通させる配管19と、配管19を流通する潤滑油が含まれる冷媒の流量を調整可能な流量調整弁19aを備えたので、蒸発器4に流入する潤滑油の流量を減少させることができ、蒸発器4における熱交換効率の向上を図ることが可能となる。   Thus, according to the cooling system of the present embodiment, the lubricating oil in the refrigerant decompressed by the expansion valve 3 is separated, and the gaseous refrigerant and the liquid refrigerant are separated, and the liquid refrigerant is transferred to the evaporator 4. Oil / gas / liquid separator 6 to be circulated, piping 19 for circulating refrigerant containing lubricating oil separated by oil / gas / liquid separator 6 to the suction side of compressor 1, and lubricating oil to circulate through piping 19 are included. Since the flow rate adjusting valve 19a capable of adjusting the flow rate of the refrigerant is provided, the flow rate of the lubricating oil flowing into the evaporator 4 can be reduced, and the heat exchange efficiency in the evaporator 4 can be improved.

また、第1の温度検出器16aの検出温度T1と第2の温度検出器18aの検出温度T2との温度差(T2−T1)を所定の設定温度差Ts1となるように流量調整弁19aの開度を制御するようにしたので、圧縮機1に吸入される冷媒を適正な過熱度とすることができ、圧縮機1の不具合の発生を防止するとともに、エネルギー効率の向上を図ることが可能となる。   Further, the flow rate adjustment valve 19a has a temperature difference (T2−T1) between the detection temperature T1 of the first temperature detector 16a and the detection temperature T2 of the second temperature detector 18a to be a predetermined set temperature difference Ts1. Since the opening degree is controlled, the refrigerant sucked into the compressor 1 can be set to an appropriate degree of superheat, so that the compressor 1 can be prevented from malfunctioning and energy efficiency can be improved. It becomes.

また、内部熱交換器5の低圧冷媒の流出側の配管17にトラップ17aを設けたので、内部熱交換器5の低圧冷媒流出側から液体の冷媒が流出した場合においても、液体の冷媒が圧縮機1に吸入されることはなく、圧縮機1の破損を防止することが可能となる。   In addition, since the trap 17a is provided in the low-pressure refrigerant outflow side pipe 17 of the internal heat exchanger 5, the liquid refrigerant is compressed even when the liquid refrigerant flows out from the low-pressure refrigerant outflow side of the internal heat exchanger 5. It is not sucked into the machine 1 and it is possible to prevent the compressor 1 from being damaged.

また、油気液分離器6は、膨張弁3によって減圧された冷媒が流入する分離器本体6aと、分離器本体6a内を仕切るように設けられ、分離器本体6a内に流入した潤滑油を含む冷媒から潤滑油を分離して冷媒を通過させる油分離部材6cを有しているので、油分離部材6cによって潤滑油を含む冷媒を潤滑油と冷媒とに分離して冷媒を蒸発器4に流通させることができ、オイルセパレータとしての性能を向上させることが可能となる。   The oil-gas separator 6 is provided so as to partition the separator main body 6a into which the refrigerant decompressed by the expansion valve 3 flows, and the separator main body 6a. Since it has the oil separation member 6c which isolate | separates lubricating oil from the refrigerant | coolant containing, and lets a refrigerant | coolant pass through, the refrigerant | coolant containing lubricating oil is isolate | separated into lubricating oil and a refrigerant | coolant by the oil separation member 6c, and a refrigerant | coolant is sent to the evaporator 4. It is possible to circulate and improve the performance as an oil separator.

また、分離器本体6a内に流入した潤滑油を含む冷媒中から潤滑油を分離して冷媒を下方に通過させるように油分離部材6cを配置し、分離器本体6a内に流入した冷媒を整流して下方に流通させる整流板6bを油分離部材6cの上方に設け、整流板6bと油分離部材6cとの間の空間6eの下部を配管19によって圧縮機1の吸入側と連通するようにしたので、空間6eに溜まる液体の冷媒は、分離器本体6aに流入する冷媒によって撹拌されることなく、液体の冷媒中に含まれる潤滑油の濃度を上部側よりも下部側の液体の冷媒の方を高濃度となるように分布させ、潤滑油の濃度が高濃度となる冷媒を圧縮機1の吸入側に流通させることができ、油気液分離器6によって分離した潤滑油を確実に圧縮機1に流通させることが可能となる。   Further, the oil separating member 6c is disposed so as to separate the lubricating oil from the refrigerant containing the lubricating oil flowing into the separator main body 6a and allow the refrigerant to pass downward, and the refrigerant flowing into the separator main body 6a is rectified. A rectifying plate 6b that flows downward is provided above the oil separating member 6c, and a lower portion of the space 6e between the rectifying plate 6b and the oil separating member 6c is communicated with the suction side of the compressor 1 by a pipe 19. Therefore, the liquid refrigerant accumulated in the space 6e is not agitated by the refrigerant flowing into the separator body 6a, and the concentration of the lubricating oil contained in the liquid refrigerant is lower than that of the liquid refrigerant on the lower side than the upper side. The refrigerant is distributed so as to have a high concentration, and the refrigerant having a high concentration of lubricating oil can be circulated to the suction side of the compressor 1, and the lubricating oil separated by the oil-gas-liquid separator 6 is reliably compressed. It becomes possible to distribute to the machine 1.

図4乃至図5は本発明の第2の実施形態を示すもので、図4は冷熱システムの概略構成図、図5は流量調整弁の弁開度制御に関するフローチャートである。尚、前記第1の実施形態と同様の構成部分には同一の符号を付して示す。   FIGS. 4 to 5 show a second embodiment of the present invention, FIG. 4 is a schematic configuration diagram of a cooling system, and FIG. 5 is a flowchart relating to valve opening control of a flow regulating valve. The same components as those in the first embodiment are denoted by the same reference numerals.

この冷熱システムは、制御部20に、圧縮機1から吐出される冷媒の温度を検出するための第3の温度検出器11aと、流量調整弁19aとが接続されている。   In this cooling / heating system, a third temperature detector 11 a for detecting the temperature of refrigerant discharged from the compressor 1 and a flow rate adjusting valve 19 a are connected to the control unit 20.

以上のように構成された冷熱システムにおいて、制御部20は、第3の温度検出器11aの検出温度T3が所定の設定温度Ts2以上となると(図5のS11)、流量調整弁19aの弁開度を大きくする(図5のS12)。また、第3の温度検出器11aの検出温度T3が所定の設定温度Ts2よりも小さくなると(図5のS11)、流量調整弁19aの弁開度を小さくする(図5のS13)。   In the cooling / heating system configured as described above, the control unit 20 opens the flow rate adjustment valve 19a when the detected temperature T3 of the third temperature detector 11a becomes equal to or higher than a predetermined set temperature Ts2 (S11 in FIG. 5). The degree is increased (S12 in FIG. 5). When the detected temperature T3 of the third temperature detector 11a is lower than the predetermined set temperature Ts2 (S11 in FIG. 5), the valve opening degree of the flow rate adjusting valve 19a is decreased (S13 in FIG. 5).

このように、本実施形態の冷熱システムによれば、第3の温度検出器11aの検出温度T3を所定の設定温度Ts2となるように流量調整弁19aの弁開度を制御するようにしたので、圧縮機1から吐出される冷媒を適正な温度とすることができ、圧縮機1の不具合を防止するとともに、エネルギー効率の向上を図ることが可能となる。   Thus, according to the cooling system of the present embodiment, the valve opening degree of the flow rate adjustment valve 19a is controlled so that the detected temperature T3 of the third temperature detector 11a becomes the predetermined set temperature Ts2. Thus, the refrigerant discharged from the compressor 1 can be set to an appropriate temperature, so that the malfunction of the compressor 1 can be prevented and the energy efficiency can be improved.

図6は本発明の第3の実施形態を示すもので、油気液分離器6の側面断面図である。尚、前記第1の実施形態と同様の構成部分には同一の符号を付して示す。   FIG. 6 shows a third embodiment of the present invention, and is a side cross-sectional view of the oil / gas / liquid separator 6. The same components as those in the first embodiment are denoted by the same reference numerals.

この冷熱システムは、油気液分離器6の空間6eの上部と配管15とを連通する冷媒流路としての配管15aを備えている。   This cooling / heating system includes a pipe 15 a serving as a refrigerant flow path that connects the upper portion of the space 6 e of the oil-gas-liquid separator 6 and the pipe 15.

以上のように構成された冷熱システムにおいて、油気液分離器6では、配管14から空間6dに流入した冷媒が整流板6bを介して空間6eに流入し、空間6eにおいて気体の冷媒と液体の冷媒とがそれぞれ分離された状態となる。このとき、空間6d内の冷媒は、整流板6bを介して空間6eに流入するため、配管14から流出する冷媒によって空間6e内の液体の冷媒が撹拌されることはない。これにより、空間6e内の液体の冷媒中に含まれる潤滑油の濃度は、上部側よりも下部側の液体の冷媒の方が高濃度となる。また、空間6e内の液体の冷媒は、油分離部材6cを通過することにより潤滑油と分離されて空間6fに流入し、配管15を介して蒸発器4に流入する。更に、空間6eの下部に位置する潤滑油を多く含む冷媒は、配管19及び配管18を介して圧縮機1に流入する。空間6eの液体の冷媒のうち液面側に位置する冷媒は、配管15aを介して配管15に流入し、配管15を介して蒸発器4に流入する。このとき、配管15aを流通して蒸発器4に流入する冷媒は、潤滑油の濃度が低濃度であるため、蒸発器4に流通させても必要な熱交換効率は確保される。   In the cooling / heating system configured as described above, in the oil / gas separator 6, the refrigerant flowing into the space 6 d from the pipe 14 flows into the space 6 e through the rectifying plate 6 b, and the gaseous refrigerant and liquid in the space 6 e The refrigerant is separated from each other. At this time, since the refrigerant in the space 6d flows into the space 6e via the rectifying plate 6b, the liquid refrigerant in the space 6e is not stirred by the refrigerant flowing out of the pipe 14. Thereby, the concentration of the lubricating oil contained in the liquid refrigerant in the space 6e is higher in the liquid refrigerant on the lower side than on the upper side. The liquid refrigerant in the space 6e is separated from the lubricating oil by passing through the oil separating member 6c, flows into the space 6f, and flows into the evaporator 4 through the pipe 15. Furthermore, the refrigerant containing a large amount of lubricating oil located in the lower portion of the space 6 e flows into the compressor 1 through the pipe 19 and the pipe 18. Of the liquid refrigerant in the space 6e, the refrigerant located on the liquid surface side flows into the pipe 15 through the pipe 15a and flows into the evaporator 4 through the pipe 15. At this time, since the refrigerant flowing through the pipe 15a and flowing into the evaporator 4 has a low concentration of lubricating oil, the necessary heat exchange efficiency is ensured even if it is circulated through the evaporator 4.

このように、本実施形態の冷熱システムによれば、空間6eに溜められた潤滑油を含む液体の冷媒のうち液面側の冷媒を蒸発器4に流通させるようにしたので、油分離部材6cを通過した空間6fの液体の冷媒だけでなく、空間6eの液面側の潤滑油の濃度が低濃度となる液体の冷媒を蒸発器4に流通させることができ、油分離部材6cを通過する冷媒の流通抵抗が増加することによる冷媒の流量不足を防止することが可能となる。   Thus, according to the cooling / heating system of the present embodiment, the liquid-side refrigerant out of the liquid refrigerant containing the lubricating oil stored in the space 6e is circulated to the evaporator 4, and therefore the oil separating member 6c. In addition to the liquid refrigerant in the space 6f that has passed through, the liquid refrigerant having a low concentration of lubricating oil on the liquid surface side in the space 6e can be circulated through the evaporator 4 and passes through the oil separation member 6c. It becomes possible to prevent a refrigerant flow shortage due to an increase in refrigerant flow resistance.

本発明の第1の実施形態を示す冷熱システムの概略構成図The schematic block diagram of the cooling system which shows the 1st Embodiment of this invention 油気液分離器の側面断面図Side cross-sectional view of oil-gas separator 流量調整弁の弁開度制御に関するフローチャートFlow chart related to valve opening control of flow regulating valve 本発明の第2の実施形態を示す冷熱システムの概略構成図Schematic configuration diagram of a cooling system showing a second embodiment of the present invention 流量調整弁の弁開度制御に関するフローチャートFlow chart related to valve opening control of flow regulating valve 本発明の第3の実施形態を示す油気液分離器の側面断面図Side surface sectional drawing of the oil-gas-liquid separator which shows the 3rd Embodiment of this invention

符号の説明Explanation of symbols

1…圧縮機、2…放熱器、3…膨張弁、4…蒸発器、5…内部熱交換器、6…油気液分離器、6a…分離器本体、6b…整流板、6c…油分離部材、11a…第3の温度検出器、15a…配管、16a…第1の温度検出器、18a…第2の温度検出器、19…配管、19a…流量調整弁、20…制御部。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Radiator, 3 ... Expansion valve, 4 ... Evaporator, 5 ... Internal heat exchanger, 6 ... Oil-gas-liquid separator, 6a ... Separator main body, 6b ... Rectification plate, 6c ... Oil separation Member, 11a ... third temperature detector, 15a ... piping, 16a ... first temperature detector, 18a ... second temperature detector, 19 ... piping, 19a ... flow control valve, 20 ... control unit.

Claims (7)

冷媒を圧縮する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器において放熱した冷媒を膨張させる膨張手段と、膨張手段によって減圧された冷媒を蒸発させる蒸発器とを備えた冷熱システムにおいて、
膨張手段によって減圧された冷媒中の潤滑油を分離するとともに、気体の冷媒と液体の冷媒を分離して液体の冷媒を蒸発器に流通させる油気液分離器と、
油気液分離器によって分離された潤滑油が含まれる冷媒を圧縮機の吸入側に流通させる油冷媒流路と、
油冷媒流路を流通する潤滑油が含まれる冷媒の流量を調整可能な流量調整手段とを備えた
ことを特徴とする冷熱システム。
A compressor for compressing the refrigerant; a radiator for dissipating the refrigerant discharged from the compressor; an expansion unit for expanding the refrigerant dissipated in the radiator; and an evaporator for evaporating the refrigerant decompressed by the expansion unit. In the cooling and heating system
An oil-gas-liquid separator that separates the lubricating oil in the refrigerant decompressed by the expansion means, separates the gaseous refrigerant and the liquid refrigerant, and distributes the liquid refrigerant to the evaporator;
An oil refrigerant flow path for circulating a refrigerant containing lubricating oil separated by the oil-gas-liquid separator to the suction side of the compressor;
A cooling system comprising: a flow rate adjusting means capable of adjusting a flow rate of a refrigerant containing lubricating oil flowing through the oil refrigerant flow path.
前記蒸発器から流出する冷媒の温度を検出する第1の温度検出器と、
圧縮機に吸入される冷媒の温度を検出する第2の温度検出器と、
油冷媒流路を流通する潤滑油が含まれた冷媒の流量を、第1の温度検出器の検出温度と第2の温度検出器の検出温度との温度差が所定の設定温度差となるように制御する流量制御手段とを備えた
ことを特徴とする請求項1記載の冷熱システム。
A first temperature detector for detecting the temperature of the refrigerant flowing out of the evaporator;
A second temperature detector for detecting the temperature of the refrigerant sucked into the compressor;
The flow rate of the refrigerant containing lubricating oil flowing through the oil refrigerant flow path is set such that the temperature difference between the detected temperature of the first temperature detector and the detected temperature of the second temperature detector becomes a predetermined set temperature difference. The cooling / heating system according to claim 1, further comprising a flow rate control unit that controls the flow rate.
前記圧縮機から吐出される冷媒の温度を検出する温度検出器と、
油冷媒流路を流通する潤滑油が含まれた冷媒の流量を、温度検出器の検出温度が所定の温度範囲となるように制御する流量制御手段とを備えた
ことを特徴とする請求項1記載の冷熱システム。
A temperature detector for detecting the temperature of the refrigerant discharged from the compressor;
2. A flow rate control means for controlling the flow rate of the refrigerant containing lubricating oil flowing through the oil / refrigerant flow path so that the temperature detected by the temperature detector falls within a predetermined temperature range. The refrigeration system described.
前記蒸発器から流出する低圧冷媒と放熱器から流出する高圧冷媒とを熱交換する内部熱交換器と、
内部熱交換器の低圧冷媒の流出側の流路に設けられ、圧縮機への液体の冷媒の流入を防止する液冷媒流入防止手段とを備えた
ことを特徴とする請求項1記載の冷熱システム。
An internal heat exchanger for exchanging heat between the low-pressure refrigerant flowing out of the evaporator and the high-pressure refrigerant flowing out of the radiator;
The cooling system according to claim 1, further comprising liquid refrigerant inflow prevention means provided in a flow path on the outflow side of the low-pressure refrigerant of the internal heat exchanger and preventing inflow of liquid refrigerant into the compressor. .
前記油気液分離器を、膨張手段によって減圧された冷媒が流入する分離器本体と、分離器本体内を仕切るように設けられ、分離器本体内に流入した潤滑油を含む冷媒から潤滑油を分離して冷媒を通過させる油分離部材とから構成した
ことを特徴とする請求項1記載の冷熱システム。
The oil-gas-liquid separator is provided so as to partition the separator main body into which the refrigerant decompressed by the expansion means flows, and the lubricant from the refrigerant containing the lubricating oil that has flowed into the separator main body. The cooling system according to claim 1, further comprising an oil separation member that separates and passes the refrigerant.
前記油分離部材を、分離器本体内に流入した潤滑油を含む冷媒から潤滑油を分離して冷媒を下方に通過させるように配置し、
油分離部材の上方に、分離器本体内に流入した冷媒を整流して下方に流通させる整流部材を設け、
整流部材と油分離部材との間に形成された空間の下部に油冷媒流路の流入口を配置した
ことを特徴とする請求項5記載の冷熱システム。
The oil separating member is disposed so as to separate the lubricating oil from the refrigerant containing the lubricating oil flowing into the separator body and to pass the refrigerant downward.
A rectifying member is provided above the oil separating member to rectify the refrigerant flowing into the separator body and to flow downward.
The cooling / heating system according to claim 5, wherein an inlet of the oil refrigerant flow path is disposed in a lower portion of a space formed between the rectifying member and the oil separation member.
前記整流部材と油分離部材との間に形成された空間に溜められた潤滑油を含む冷媒のうち液面側の冷媒を蒸発器に流通させる冷媒流路を備えた
ことを特徴とする請求項6記載の冷熱システム。
The refrigerant flow path which distribute | circulates the refrigerant | coolant by the side of a liquid level to an evaporator among the refrigerant | coolants containing the lubricating oil stored in the space formed between the said rectifying member and an oil separation member was provided. 6. The cooling / heating system according to 6.
JP2006062259A 2006-03-08 2006-03-08 Cold system Pending JP2007240054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062259A JP2007240054A (en) 2006-03-08 2006-03-08 Cold system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062259A JP2007240054A (en) 2006-03-08 2006-03-08 Cold system

Publications (1)

Publication Number Publication Date
JP2007240054A true JP2007240054A (en) 2007-09-20

Family

ID=38585761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062259A Pending JP2007240054A (en) 2006-03-08 2006-03-08 Cold system

Country Status (1)

Country Link
JP (1) JP2007240054A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546041A (en) * 2017-01-24 2017-03-29 黄昕亚 Multilayer concentric oil-attached device and separator comprising same
CN107314582A (en) * 2017-07-10 2017-11-03 珠海格力电器股份有限公司 Flash evaporation and handpiece Water Chilling Units
JP2020020482A (en) * 2018-07-30 2020-02-06 ダイハツ工業株式会社 Air conditioner for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238958A (en) * 1986-04-11 1987-10-19 株式会社ボッシュオートモーティブ システム Oil return mechanism of evaporator in air conditioner
JPS62276368A (en) * 1986-05-23 1987-12-01 株式会社ボッシュオートモーティブ システム Oil return mechanism in air conditioner
JPS6433469A (en) * 1987-07-28 1989-02-03 Mitsubishi Electric Corp Refrigerator
JPH1114201A (en) * 1997-06-20 1999-01-22 Matsushita Refrig Co Ltd Accumulator
JPH11248296A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Oil separator
JP2000283583A (en) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd Heat pump
JP2003042599A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238958A (en) * 1986-04-11 1987-10-19 株式会社ボッシュオートモーティブ システム Oil return mechanism of evaporator in air conditioner
JPS62276368A (en) * 1986-05-23 1987-12-01 株式会社ボッシュオートモーティブ システム Oil return mechanism in air conditioner
JPS6433469A (en) * 1987-07-28 1989-02-03 Mitsubishi Electric Corp Refrigerator
JPH1114201A (en) * 1997-06-20 1999-01-22 Matsushita Refrig Co Ltd Accumulator
JPH11248296A (en) * 1998-03-05 1999-09-14 Mitsubishi Electric Corp Oil separator
JP2000283583A (en) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd Heat pump
JP2003042599A (en) * 2001-08-01 2003-02-13 Denso Corp Refrigerating cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546041A (en) * 2017-01-24 2017-03-29 黄昕亚 Multilayer concentric oil-attached device and separator comprising same
CN107314582A (en) * 2017-07-10 2017-11-03 珠海格力电器股份有限公司 Flash evaporation and handpiece Water Chilling Units
CN107314582B (en) * 2017-07-10 2023-08-15 珠海格力电器股份有限公司 Flash evaporator and water chilling unit
JP2020020482A (en) * 2018-07-30 2020-02-06 ダイハツ工業株式会社 Air conditioner for vehicle
JP6997048B2 (en) 2018-07-30 2022-01-17 ダイハツ工業株式会社 Vehicle air conditioner

Similar Documents

Publication Publication Date Title
US10544971B2 (en) Method for controlling a vapour compression system with an ejector
JP3925545B2 (en) Refrigeration equipment
JP4776438B2 (en) Refrigeration cycle
JP2007285675A (en) Refrigerating appliance
US9638445B2 (en) Oil return management in a HVAC system
KR20150092642A (en) A heat-pump system and a method controlling the same
JP2009236397A (en) Air conditioner
US11112151B2 (en) Heat source unit for refrigeration apparatus including a heat-source-side heat exchanger having a heat exchange region of variable size
JP5145026B2 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
KR20110097367A (en) Chiller
JP2012247136A (en) Booster unit, and air conditioning apparatus combined with water heater including the same
JP2007240054A (en) Cold system
US10309698B2 (en) Oil return management in a HVAC system
JP5796619B2 (en) Air conditioner
JP5871681B2 (en) Refrigeration cycle and refrigeration showcase
JP2018515738A (en) Self-regulating valve for vapor compression system
KR101923770B1 (en) Engine drive type air conditioner
US20220333834A1 (en) Chiller system with multiple compressors
KR101418155B1 (en) An air conditioner
KR101676492B1 (en) Gas pressure regulator for refrigerant cycle system
KR20160096947A (en) An air conditioning system and a method for controlling the same
JP5606262B2 (en) Heat pump system
JP5176874B2 (en) Refrigeration equipment
JP2005345069A (en) Air conditioner and its operation control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A02 Decision of refusal

Effective date: 20101129

Free format text: JAPANESE INTERMEDIATE CODE: A02