JP2007239270A - Pc box girder bridge - Google Patents

Pc box girder bridge Download PDF

Info

Publication number
JP2007239270A
JP2007239270A JP2006061451A JP2006061451A JP2007239270A JP 2007239270 A JP2007239270 A JP 2007239270A JP 2006061451 A JP2006061451 A JP 2006061451A JP 2006061451 A JP2006061451 A JP 2006061451A JP 2007239270 A JP2007239270 A JP 2007239270A
Authority
JP
Japan
Prior art keywords
web
corrugated steel
steel
flange
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006061451A
Other languages
Japanese (ja)
Other versions
JP4644146B2 (en
Inventor
Takuya Mori
森  拓也
Hiroaki Oyama
博明 大山
Akiro Shido
昭郎 志道
Piyamahant Songkram
ソンクラム ピヤマハント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2006061451A priority Critical patent/JP4644146B2/en
Publication of JP2007239270A publication Critical patent/JP2007239270A/en
Application granted granted Critical
Publication of JP4644146B2 publication Critical patent/JP4644146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate labor such as maintenance control, by easily securing quality of a joining structure, by rationalizing by applying an improvement to the joining structure with a concrete lower floorboard of a PC box girder bridge using a corrugated steel plate web. <P>SOLUTION: This PC box girder bridge is formed as a structure that a lower flange 11 is installed on the lower end of the corrugated steel plate web 10; a large number of steel plates 12 are fixed in a vertical attitude to a side surface of the corrugated steel plate web 10 and an upper surface of the lower flange 11; and are engaged with the steel plates 12 by inserting bar steel 14 in the bridge axis direction into a through-hole 13 of the steel plates 12; and these plates are built in the concrete lower floorboard 40. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、PC箱桁橋に関し、さらに詳しくは、波形鋼板ウェブを用いたPC箱桁橋における、波形鋼板ウェブとコンクリート下床版との新規な接合構造に係るものである。   The present invention relates to a PC box girder bridge, and more particularly to a novel joint structure between a corrugated steel sheet web and a concrete lower floor slab in a PC box girder bridge using a corrugated steel sheet web.

PC橋においてコンクリートウェブを波形形状に加工した構造用鋼板に置き換えた波形鋼板ウェブ橋は、主桁重量の軽減に加えて、ウェブ鋼板の形状特性に伴うアコーディオン効果や高いせん断座屈性状により、プレストレスの導入効率が優れ、補剛材の省略が可能となるなど、経済性や施工性に優れた、鋼とコンクリートとの複合構造である。   Corrugated steel web bridges, in which concrete webs are replaced with corrugated steel plates in PC bridges, are not only reduced in main girder weight, but also because of the accordion effect and high shear buckling properties associated with the web steel shape characteristics. It is a composite structure of steel and concrete that is excellent in economic efficiency and workability, such as excellent stress introduction efficiency and omission of stiffeners.

通常、波形鋼板ウェブとコンクリート下床版との接合構造としては、直接コンクリート中に波形鋼板ウェブ下端部を埋め込む構造や、波形鋼板ウェブ下端に取付けした鋼フランジ下面のスタッドジベル等による機械的な継手構造などが用いられている。(例えば、非特許文献1、2参照。)。   Usually, as a joining structure of the corrugated steel web and the concrete lower floor slab, a structure in which the lower end of the corrugated steel web is directly embedded in the concrete, or a mechanical joint such as a stud gibber on the lower surface of the steel flange attached to the lower end of the corrugated steel web. Structures are used. (For example, refer nonpatent literatures 1 and 2.).

このような構造では、現場施工のPC箱桁橋において、コンクリート下床版を施工する際に、波形鋼板ウェブの外側に足場設備や型枠設備を設けることが必要である。   In such a structure, it is necessary to provide scaffolding equipment and formwork equipment outside the corrugated steel web when constructing the concrete lower floor slab in the PC box girder bridge constructed on site.

また、上記鋼フランジ下面にスタッドジベル等の機械的継手を設け下床板コンクリートをスタッドジベルと係合させる接合構造の場合には、鋼フランジ下側にコンクリートを充填することとなるので、コンクリートが逆打ちとなる。従って、コンクリートに欠陥を生じないように、施工上細心の注意が必要となる。   In the case of a joint structure in which a mechanical joint such as a stud diver is provided on the lower surface of the steel flange and the lower floor concrete is engaged with the stud diver, the concrete is filled under the steel flange. It will be a hit. Therefore, careful attention is required in construction so as not to cause defects in the concrete.

上記のような接合構造では、コンクリート下床版と波形鋼板ウェブの境界点が主桁外側にあるため、下床版上面に雨水等が溜水することにより耐久性上の弱点となりやすく、点検等の維持管理時に別途足場等が必要になる。   In the above joint structure, the boundary point between the concrete lower floor slab and the corrugated steel web is located outside the main girder. A separate scaffolding is required for maintenance.

以上のような鋼フランジの下面へのコンクリート逆打ちを避けることや、鋼・コンクリート接合部の維持管理性を考慮して、鋼フランジ上面にコンクリート下床版を配置した断面形状とした例もある(例えば、非特許文献3参照。)。   In order to avoid concrete backlash on the lower surface of the steel flange as described above and to maintain and manage the steel / concrete joint, there is an example of a cross-sectional shape in which a concrete bottom slab is placed on the upper surface of the steel flange. (For example, refer nonpatent literature 3.).

この場合、波形鋼板ウェブとコンクリート下床版の接合には、波形鋼板ウェブに取付けた水平方向の多数のスタッドジベルによる結合構造が採られていた。ただし、この場合、非常に多数の水平方向のスタッドジベルが必要であり、この部分の鉄筋組立てが煩雑となることやコンクリート打設時の締固めが困難となることなどの問題点があった。
プレストレストコンクリート技術協会:『第7回シンポジウム論文集』 1977年10月、p747〜752 プレストレストコンクリート技術協会:『プレストレストコンクリート』 vol.37,No.2,Mar.1995 p69〜78 プレストレストコンクリート技術協会:『プレストレストコンクリート』 vol.44,No.1,Jan.2002 p56
In this case, for the joining of the corrugated steel web and the concrete lower floor slab, a connecting structure by a large number of horizontal horizontal stud studs attached to the corrugated steel web has been adopted. However, in this case, a large number of horizontal stud gibbles are required, and there are problems such as complicated rebar assembly of this portion and difficulty in compaction when placing concrete.
Prestressed Concrete Technology Association: "The 7th Symposium Proceedings" October 1977, p747-752 Prestressed Concrete Technology Association: “Prestressed Concrete” vol. 37, no. 2, Mar. 1995 p69-78 Prestressed Concrete Technology Association: “Prestressed Concrete” vol. 44, no. 1, Jan. 2002 p56

波形鋼板ウェブを用いたPC箱桁橋において、鋼フランジの下面へのコンクリート逆打ちを避け、鋼・コンクリート接合部の維持管理性を考慮して、鋼フランジ上に下床版を配置した断面形状とした従来例では、非常に多数の水平方向のスタッドジベルが必要であり、鉄筋組立てが煩雑となり、コンクリート打設時の締固めが困難であった。   In a PC box girder bridge using corrugated steel webs, a cross-sectional shape with a lower floor slab placed on the steel flange in consideration of the maintainability of the steel-concrete joint, avoiding concrete backlash on the lower surface of the steel flange In the conventional example, a large number of stud studs in the horizontal direction are required, the rebar assembly becomes complicated, and it is difficult to compact the concrete when placing it.

本発明は上記問題点を解決し、波形鋼板ウェブを用いたPC箱桁橋のコンクリート下床板との接合構造を合理的に、かつ簡易化し、接合構造の品質の確保が容易で、保守点検等の手間を解消したPC箱桁橋を提供することを目的とする。   The present invention solves the above problems, rationally and simplifies the joint structure of the PC box girder bridge using the corrugated steel web with the concrete lower floor board, facilitates ensuring the quality of the joint structure, maintenance inspection, etc. The purpose is to provide a PC box girder bridge that eliminates the hassle of.

本発明は、上記問題点を解決するためになされたもので、次の技術手段を講じたことを特徴とするPC箱桁橋である。すなわち、本発明の第1の発明は、波形鋼板ウェブを用いたPC箱桁橋において、波形鋼板ウェブ下端にフランジを備え、前記フランジ上面と波形鋼板ウェブ側面とに、貫通孔を有する多数の鋼プレートを、該鋼プレート面が鉛直となる姿勢で固定し、長尺棒鋼を該貫通孔を通って前記鋼プレートに係止させ、前記鋼プレート及び長尺棒鋼を内蔵させたコンクリート下床版が前記フランジ上面に取付けられていることを特徴とする。   The present invention has been made to solve the above problems, and is a PC box girder bridge characterized by taking the following technical means. That is, according to a first aspect of the present invention, in a PC box girder bridge using a corrugated steel web, a plurality of steels having a flange at the lower end of the corrugated steel web and having through holes on the upper surface of the flange and the side of the corrugated steel web. A concrete lower floor slab in which a plate is fixed in a posture in which the steel plate surface is vertical, a long steel bar is locked to the steel plate through the through-hole, and the steel plate and the long steel bar are built in. It is attached to the upper surface of the flange.

また、本発明の第2の発明は、波形鋼板ウェブを用いたPC箱桁橋において、波形鋼板ウェブ下端にフランジを備え、多数の貫通孔を備えた長尺の帯状鋼プレートを前記フランジ上面に橋軸方向に沿って立設固定する共に、前記貫通孔を通って該帯状鋼プレートと交差する多数の鉄筋を配設し、波形鋼板ウェブ側面の下床版と接する部分及び前記フランジ上面にスタッドジベルを備え、前記帯状鋼プレート、前記多数の鉄筋及び前記スタッドジベルを内蔵させたコンクリート下床版が前記フランジ上面に取付けられていることを特徴とする。   Further, according to a second aspect of the present invention, in a PC box girder bridge using a corrugated steel web, a long strip steel plate having a flange at the lower end of the corrugated steel web and having a plurality of through holes is provided on the upper surface of the flange. A plurality of reinforcing bars that are erected and fixed along the bridge axis direction and that intersect with the strip steel plate through the through hole are disposed, and a stud that is in contact with the lower floor slab side surface of the corrugated steel sheet web and the upper surface of the flange A concrete lower floor slab is provided on the upper surface of the flange. The concrete lower floor slab includes a gibber and incorporates the strip steel plate, the multiple rebars, and the stud gibber.

さらに本発明の第3の発明は、波形鋼板ウェブを用いたPC箱桁橋において、波形鋼板ウェブ下端にフランジを備え、前記フランジ上方の波形鋼板ウェブ側面に橋軸方向に沿って長尺棒鋼を固定すると共に、波形鋼板ウェブ側面の下床版と接する部分にスタッドジベルを備え、前記長尺棒鋼及び前記スタッドジベルを内蔵させたコンクリート下床版が前記フランジ上面に取付けられていることを特徴とする。   Further, according to a third aspect of the present invention, in a PC box girder bridge using a corrugated steel web, a flange is provided at the lower end of the corrugated steel web, and a long steel bar is provided along the bridge axis direction on the side of the corrugated steel web above the flange. The concrete lower floor slab is fixed on the side of the corrugated steel sheet web and is in contact with the lower floor slab of the corrugated steel sheet web, and the long steel bar and the stud gibber are incorporated in the upper surface of the flange. To do.

本発明の第1〜第3の発明は、波形鋼板ウェブを用いたPC箱桁橋の波形鋼板ウェブとコンクリート下床版との接合構造に関するもので、産業上の利用分野及び解決しようとする課題が同一のものである。   1st-3rd invention of this invention is related with the joining structure of the corrugated steel plate web of a PC box girder bridge using a corrugated steel web, and a concrete lower floor slab, and the problem to be solved in an industrial field. Are the same.

本発明のPC箱桁橋は、接合構造が簡易化されることにより鋼部材の製作性や、下床版の鉄筋組み立てにおける作業性や、コンクリート打設における締固めの作業性が向上し、品質の確保が容易となり、また信頼性が高まり、保守点検手間が軽減されるなどの利点を有している。   The PC box girder bridge of the present invention improves the manufacturability of steel members, the workability in rebar assembly of lower floor slabs, and the workability of compaction in concrete placement by simplifying the joining structure. Can be easily secured, and the reliability is increased, and the maintenance work is reduced.

以下図面を参照して本発明の実施の形態を説明する。まず、従来技術について説明する。 図4は従来の波型鋼板ウェブを用いたPC箱桁橋1の正面図で、波形鋼板ウェブ10とコンクリート下床版40とコンクリート上床版50とから構成されている。波形鋼板ウェブ10とコンクリート下床版40との接合部(A部)は、直接コンクリート中に波形鋼板を埋め込む構造(図5)、又は、波形鋼板ウェブ下側に配置した鋼フランジ下面のスタッドジベル等の機械的な継手構造(図6)などが用いられている。   Embodiments of the present invention will be described below with reference to the drawings. First, the prior art will be described. FIG. 4 is a front view of a PC box girder bridge 1 using a conventional corrugated steel web, and is composed of a corrugated steel web 10, a concrete lower floor slab 40, and a concrete upper floor slab 50. The joint (A part) between the corrugated steel web 10 and the concrete lower floor slab 40 is a structure in which the corrugated steel is directly embedded in the concrete (FIG. 5), or a stud gibber on the lower surface of the steel flange disposed below the corrugated steel web. Such a mechanical joint structure (FIG. 6) or the like is used.

図5に示した構造では、波形鋼板ウェブ10の下端近傍に多数の貫通孔61を穿設し、この貫通孔61を通って波形鋼板ウェブ10と交差する多数の貫通鉄筋62を挿通し、これらの貫通鉄筋62と力学的に係合する長尺の接合棒鋼63を橋軸方向に配設し、これらの貫通鉄筋62、接合棒鋼63及び波形鋼板ウェブ10の下端部近傍がコンクリート下床版中に内蔵されるようにコンクリート下床版を施工した構造である。この場合、コンクリート下床版の施工の際に、波形鋼板ウェブ10の外側に足場設備や型枠設備を設けることが必要である。   In the structure shown in FIG. 5, a large number of through holes 61 are formed in the vicinity of the lower end of the corrugated steel sheet web 10, and a large number of through reinforcing bars 62 intersecting the corrugated steel sheet web 10 are inserted through the through holes 61. A long joining bar 63 that is mechanically engaged with the penetration reinforcing bar 62 is arranged in the bridge axis direction, and the vicinity of the lower ends of the penetration reinforcing bar 62, the joining bar 63, and the corrugated steel sheet web 10 is in the concrete lower slab. It is a structure in which a concrete lower floor slab is constructed so as to be built in. In this case, it is necessary to provide scaffolding equipment and formwork equipment on the outside of the corrugated steel web 10 when the concrete lower floor slab is constructed.

図6は後者の構造を示したものである。図6に示すように、波形鋼板ウェブ10の下端に鋼フランジ11を備え、その下面にジベルを設けた接合構造の場合には、鋼フランジ11の下側にコンクリートを充填する必要性からコンクリートが逆打ちとなる。従って、コンクリート下床版40の施工においては欠陥等が生ずるおそれがある。   FIG. 6 shows the latter structure. As shown in FIG. 6, in the case of a joined structure in which a steel flange 11 is provided at the lower end of the corrugated steel web 10 and a gibber is provided on the lower surface thereof, the concrete is required due to the necessity of filling the concrete below the steel flange 11. Counterstrokes. Accordingly, there is a risk that defects or the like may occur in the construction of the concrete lower floor slab 40.

また、図5,図6の示す構造ではコンクリート下床版40と波形鋼板ウェブ10の境界点が主桁外側にあるため、ここに雨水等が溜水し、耐久性上の弱点となりやすい。このため、点検等の維持管理時に注意が必要であり、その場合に別途足場等が必要になるという問題がある。   5 and 6, since the boundary point between the concrete lower floor slab 40 and the corrugated steel web 10 is outside the main girder, rainwater or the like accumulates here, which tends to be a weak point in durability. For this reason, it is necessary to pay attention during maintenance such as inspection, and in that case, there is a problem that a separate scaffold or the like is required.

図7,図8(a),図8(b)はこれを改善した従来例を示したものである。図7に示すPC箱桁橋1は、波形鋼板ウェブ10とコンクリート下床版40と接合部の構造(B部)が鋼フランジ11上にコンクリート下床版40が施工された構造のものである。   7, FIG. 8 (a) and FIG. 8 (b) show a conventional example in which this is improved. The PC box girder bridge 1 shown in FIG. 7 has a structure in which the corrugated steel sheet web 10, the concrete lower floor slab 40, and the joint structure (part B) are constructed with the concrete lower floor slab 40 on the steel flange 11. .

図8(a)はその正面図、図8(b)は図8(a)のC−C矢視図である。   FIG. 8A is a front view thereof, and FIG. 8B is a view taken along the line CC of FIG. 8A.

図8(a),図8(b)に示すように、波形鋼板ウェブ10とコンクリート下床版40との接合構造には、波形鋼板ウェブ10及び鋼フランジ11の表面に配置した多数のスタッドジベルによる接合構造が採られていた。この場合、波形鋼板ウェブ10に非常に多数の水平方向のスタッドジベルを設けることが必要であり、この部分のコンクリート下床版の鉄筋組立てが煩雑となり、コンクリート打設時の締固めが困難となる。   As shown in FIGS. 8 (a) and 8 (b), in the joining structure of the corrugated steel web 10 and the concrete lower floor slab 40, a number of stud dowels arranged on the surfaces of the corrugated steel web 10 and the steel flange 11 are used. The joint structure by was adopted. In this case, it is necessary to provide the corrugated steel sheet web 10 with a large number of horizontal stud gibbles, and the rebar assembly of the concrete lower floor slab in this part becomes complicated, and compaction at the time of placing the concrete becomes difficult. .

次に、以上の従来技術に改善を施した本発明の実施例を図面を参照して説明する。   Next, an embodiment of the present invention in which the above prior art is improved will be described with reference to the drawings.

図1(a),図1(b)は、本発明の第1の実施例の波型鋼板ウェブ10とコンクリート下床版40との接合構造を示すもので、図1(a)は正面図(図1(b)のA−A矢視図)、図1(b)はその平面図である。発明者はこの例をプレートジベル接合と命名した。   1 (a) and 1 (b) show a joining structure of a corrugated steel sheet web 10 and a concrete lower floor slab 40 according to the first embodiment of the present invention. FIG. 1 (a) is a front view. (AA arrow view of FIG. 1B), FIG. 1B is a plan view thereof. The inventor named this example a plate gibber joint.

この実施例は波形鋼板ウェブ10および下フランジ11に断面方向に多数の鋼プレート12を配置した接合構造で、この鋼プレート12の貫通孔13に長尺の棒鋼14を挿通して係合させ、波形鋼板ウェブ10とコンクリート下床版40とを接合したものである。   In this embodiment, the corrugated steel sheet web 10 and the lower flange 11 are joined structures in which a large number of steel plates 12 are arranged in the cross-sectional direction, and a long steel bar 14 is inserted into and engaged with the through holes 13 of the steel plate 12. The corrugated steel web 10 and the concrete lower floor slab 40 are joined.

この構造では、橋軸方向の波形鋼板ウェブ10とコンクリート下床版40とのずれせん断力に対しては、鋼プレート12と下床版橋コンクリート40の支圧耐力により抵抗する。橋軸直角方向の断面力に対しては、長尺の棒鋼14を挿通した鋼プレート12の貫通孔にコンクリートが充填されることで形成されるパーフォボンドリブのせん断耐力で抵抗する。鋼プレート12の寸法、貫通孔の径および数、長尺の棒鋼14の径は、桁に作用する断面力に応じて調整すればよい。   In this structure, the shearing force between the corrugated steel sheet web 10 and the concrete lower floor slab 40 in the bridge axis direction is resisted by the bearing strength of the steel plate 12 and the lower floor bridge concrete 40. The cross-sectional force in the direction perpendicular to the bridge axis is resisted by the shear strength of the perforated ribs formed by filling the through holes of the steel plate 12 through which the long steel bar 14 is inserted. What is necessary is just to adjust the dimension of the steel plate 12, the diameter and number of through-holes, and the diameter of the elongate steel bar 14 according to the cross-sectional force which acts on a girder.

図2(a),図2(b)は、本発明の第2の実施例の鋼板ウェブ10とコンクリート下床版40との接合構造を示すもので、図2(a)は正面図(図2(b)のB−B矢視図)、図2(b)はその平面図である。発明者はこの構造をパーフォボンドリブ接合と命名した。   2 (a) and 2 (b) show the joining structure of the steel plate web 10 and the concrete lower floor slab 40 of the second embodiment of the present invention, and FIG. 2 (a) is a front view (FIG. FIG. 2B is a plan view of FIG. 2B. The inventor named this structure a perforbonded rib joint.

鋼フランジ11に橋軸方向に沿う長尺の帯状鋼プレート15を橋軸方向に配置固定する。この帯状鋼プレート15は、多数の貫通孔を備え、この多数の貫通孔を通ってこの帯状鋼プレート15と交差する多数の鉄筋16を備えている。なお、図2(a),図2(b)に示す実地例では、波形鋼板ウェブ10側面および下フランジ11の上面にスタッドジベル30を配置し、これらのスタッドジベル30がそれぞれ鉄筋16とコンクリート中で力学的に接合するように配設された接合構造である。   A long strip steel plate 15 along the bridge axis direction is arranged and fixed on the steel flange 11 in the bridge axis direction. The strip steel plate 15 includes a plurality of through holes, and includes a plurality of reinforcing bars 16 that intersect the strip steel plate 15 through the plurality of through holes. In the actual example shown in FIGS. 2A and 2B, stud gibber 30 is disposed on the side surface of corrugated steel web 10 and the upper surface of lower flange 11, and these stud dibels 30 are respectively in reinforcing bar 16 and in concrete. It is the joining structure arrange | positioned so that it may join dynamically.

この実施例では、橋軸方向の波形鋼板ウェブ10とコンクリート下床版40とのずれせん断力に対しては、鉄筋16を挿通した帯状鋼プレート15の貫通孔にコンクリートが充填されることで形成されるパーフォボンドリブのせん断耐力およびスタッドジベルのせん断耐力で抵抗する。面外方向の断面力に対しては、スタッドジベル30の引張耐力で抵抗する。帯状鋼プレート15の寸法、帯状鋼プレート15の貫通孔の数および寸法、鉄筋16の径、スタッドジベル30の寸法や本数は、作用する断面力に応じて調整するとよい。   In this embodiment, the shearing force between the corrugated steel sheet web 10 in the bridge axis direction and the concrete lower floor slab 40 is formed by filling the through holes of the strip-shaped steel plate 15 through which the reinforcing bars 16 are inserted with concrete. Resist with the shear strength of the perfor bonded ribs and the shear strength of the stud gibber. The cross-sectional force in the out-of-plane direction is resisted by the tensile strength of the stud gibber 30. The dimensions of the strip steel plate 15, the number and dimensions of the through holes of the strip steel plate 15, the diameter of the reinforcing bar 16, and the dimensions and number of the stud gibels 30 may be adjusted in accordance with the acting sectional force.

図3(a),図3(b)は本発明の第3の実施例の波形鋼板ウェブ10とコンクリート下床版40との接合構造を示すものである。図3(a)は正面図(図3(b)のC−C矢視図)、図3(b)はその平面図である。発明者はこの接合をブロックジベル接合と命名した。   3 (a) and 3 (b) show the joining structure of the corrugated steel web 10 and the concrete lower floor slab 40 of the third embodiment of the present invention. FIG. 3A is a front view (a view taken along the line CC in FIG. 3B), and FIG. 3B is a plan view thereof. The inventor has named this joint a block gibel joint.

この実施例は波形鋼板ウェブ10の内側に波形鋼板ウェブ10の形状を保持する長尺の棒鋼17を配置した接合構造で、スタッドジベル30を併用した例を示している。長尺の棒鋼17は、図は波形鋼板ウェブ10の側面に固定されている。長尺の棒鋼17は丸棒、異形棒、角棒、形鋼、又は帯鋼等でも良く、波形鋼板ウェブ10の側面に溶接等により固定する。   This embodiment shows an example in which a stud bar 30 is used in a joint structure in which a long steel bar 17 that holds the shape of the corrugated steel web 10 is arranged inside the corrugated steel web 10. The long steel bar 17 is fixed to the side surface of the corrugated steel web 10 in the figure. The long steel bar 17 may be a round bar, a deformed bar, a square bar, a shaped steel, a steel strip, or the like, and is fixed to the side surface of the corrugated steel web 10 by welding or the like.

橋軸方向の波形鋼板ウェブ10とコンクリート下床版40とのずれせん断力に対しては、スタッドジベル30のせん断耐力および波形鋼板ウェブ10とコンクリート下床版40の支圧耐力により抵抗する。面外方向の断面力に対しては、スタッドジベル30の引張耐力で抵抗する。長尺の棒鋼17の断面寸法や本数、及びスタッドジベル30の寸法や本数は作用する断面力に応じて調整する。   The shear shear strength between the corrugated steel sheet web 10 and the concrete lower floor slab 40 in the bridge axis direction is resisted by the shear strength of the stud gibel 30 and the bearing strength of the corrugated steel web 10 and the concrete lower floor slab 40. The cross-sectional force in the out-of-plane direction is resisted by the tensile strength of the stud gibber 30. The cross-sectional dimension and the number of the long steel bars 17 and the dimension and the number of the stud gibels 30 are adjusted according to the acting cross-sectional force.

図3(a),図3(b)に示す構造においては、下フランジ11上にコンクリート下床版40が配置され、波形鋼板ウェブ10の片面(内側)のみがコンクリート下床版と接合される形式となっている。   In the structure shown in FIGS. 3A and 3B, the concrete lower floor slab 40 is disposed on the lower flange 11, and only one side (inner side) of the corrugated steel web 10 is joined to the concrete lower floor slab. It is a format.

前述した波形鋼板ウェブ10がコンクリート下床版40に埋め込まれる構造(コンクリート下床版が波形鋼板ウェブの両面と接合される構造)においては、波形鋼板ウェブ10の波形形状をコンクリート下床版40自体が保持するため、波形部分がせん断キーの役割を果たし、橋軸方向のずれせん断力に対して有効に働くことになる。しかしながら上述したようにコンクリート下床版40と波形鋼板ウェブ10との接合が波形鋼板ウェブの片側に限定される場合には、波形鋼板ウェブ10の変形がコンクリート下床版40と接合されない方向に自由であるため、コンクリート下床版40に波形鋼板ウェブ10の形状保持を期待することは難しい。したがって、波形部分のせん断キーの効果を設計上想定することは適当ではない。   In the structure in which the corrugated steel web 10 is embedded in the concrete lower floor slab 40 (a structure in which the concrete lower floor slab is joined to both surfaces of the corrugated steel web), the corrugated shape of the corrugated steel web 10 is changed to the concrete lower floor 40 itself. Therefore, the corrugated portion plays the role of a shear key and works effectively against the shear shear force in the bridge axis direction. However, as described above, when the joining of the concrete lower floor slab 40 and the corrugated steel web 10 is limited to one side of the corrugated steel web, the deformation of the corrugated steel web 10 can be freely performed in a direction not joined to the concrete lower floor 40. Therefore, it is difficult to expect the corrugated steel sheet web 10 to retain the shape of the concrete lower floor slab 40. Therefore, it is not appropriate to assume the effect of the shear key of the corrugated part in the design.

図3(a),図3(b)に示す構造においては、長尺の棒鋼17を波形鋼板ウェブ10の側面に固定することによって、長尺の棒鋼17が波形鋼板ウェブ10の変形を拘束し、上記埋め込み接合と同様に波形部分のせん断キー効果を期待するものである。その効果の度合は、波形形状およびコンクリート下床版40の厚さおよびコンクリートの強度、棒鋼17の強度により変化するが、十分な棒鋼17を配置した場合、波形鋼板ウェブ10に接触する部分のコンクリートの支圧強度分はずれせん断耐力に寄与することになり、相当数のスタッドジベル数を軽減することが可能となる。   In the structure shown in FIGS. 3A and 3B, the long steel bar 17 is fixed to the side surface of the corrugated steel web 10 so that the long steel bar 17 restrains the deformation of the corrugated steel web 10. As with the above-described embedded joint, the shear key effect of the corrugated portion is expected. The degree of the effect varies depending on the corrugated shape, the thickness of the concrete bottom slab 40, the strength of the concrete, and the strength of the steel bar 17, but when sufficient steel bar 17 is disposed, the portion of the concrete in contact with the corrugated steel web 10 is shown. Therefore, it is possible to reduce the number of stud dowels.

一般に曲げモーメントが卓越する面外方向の断面力に対しては、耐力的には捧鋼17も寄与すると考えられるが、その変形を棒鋼17によって拘束することが困難であるため、面外方向の断面力に対して棒鋼17で抵抗させることは適切ではない。   In general, it is considered that the dedicated steel 17 contributes to the cross-sectional force in the out-of-plane direction where the bending moment is dominant. However, since it is difficult to restrain the deformation by the steel bar 17, It is not appropriate to resist the cross-sectional force with the steel bar 17.

そのため、面外方向の断面力に対しては波形鋼板ウェブ10に設置したスタッドジベル30の引張耐力により抵抗させる構造としている。   Therefore, the cross-sectional force in the out-of-plane direction is made to resist by the tensile strength of the stud gibber 30 installed on the corrugated steel web 10.

次に、本発明に係るPC箱桁橋の鋼板ウェブ下端の下床版との接合構造については、橋軸方向および直角方向の断面力に対して供試体による載荷実験を実施し、波形鋼板ウェブと下床版の一体性に問題がないことを確認したので以下その実験について説明する。
(A)橋軸方向ずれせん断耐力確認実験について
実験は、橋軸方向2種類、1ウェブ2種類の計4種類の接合構造を波形鋼板ウェブ10とコンクリート下床版40との接合部に配置した梁供試体70により、行った。
Next, with respect to the joint structure of the lower end of the steel plate web of the PC box girder bridge according to the present invention, a loading test using a test piece was performed on the cross-sectional force in the bridge axis direction and the perpendicular direction, and the corrugated steel plate web Since it was confirmed that there was no problem with the integrity of the lower floor slab, the experiment will be described below.
(A) About bridge axis direction shear shear strength confirmation experiment In the experiment, a total of four types of joint structures of two types in the bridge axis direction and two types in the web were arranged at the joint between the corrugated steel sheet web 10 and the concrete lower floor slab 40. This was done with the beam specimen 70.

供試体70の側面図を図9(a)に、その正面図を図9(b)に示した。図中に示した接合構造の配設位置71,72,73には、波形鋼板ウェブ10とコンクリート下床版40との接合部に、それぞれ、図1に示すプレートジベル接合、図2に示すパーフォボンドリブ接合、図3に示すブロックジベル接合とそれぞれ同等な3種類の接合構造を形成した。これに加えて、ブロックジベル接合の棒鋼の効果を検証するため、棒鋼を配置しない外はブロックジベル接合と同様の接合構造(ここではスタッドジベル接合と呼称する)を配設位置74に配設した。   A side view of the specimen 70 is shown in FIG. 9 (a), and a front view thereof is shown in FIG. 9 (b). In the positions 71, 72, 73 of the joining structure shown in the figure, the plate gibber joint shown in FIG. 1 and the par shown in FIG. Three types of bonding structures equivalent to the fobond rib bonding and the block diver bonding shown in FIG. 3 were formed. In addition to this, in order to verify the effect of the steel bar of the block diver joint, a joint structure similar to that of the block gibel joint (herein referred to as a stud gibel joint) is disposed at the disposition position 74 except that the bar steel is not disposed. .

図9(a),図9(b)に示すように、供試体70の両端を支承75で支持し、橋軸方向2点および両ウェブの4点に荷重Pを均等かつ段階的に載荷し、供試体70の各部位に設置した計測装置により各部位の応力および変形等の性状確認を行った。   As shown in FIGS. 9 (a) and 9 (b), both ends of the specimen 70 are supported by a support 75, and loads P are loaded evenly and stepwisely at two points in the bridge axis direction and at four points on both webs. The properties of each part, such as stress and deformation, were confirmed by a measuring device installed at each part of the specimen 70.

いずれの接合構造の配設位置71,72,73,74においても、設計上の使用耐力相当のずれせん断力が接合部に作用する荷重載荷までは弾性的な挙動を示し、損傷は確認されず健全であることが確認された。   In any of the connection positions 71, 72, 73, and 74 of the joint structure, elastic behavior is exhibited until a load is applied where a shearing shear force corresponding to the design use strength is applied to the joint, and no damage is confirmed. It was confirmed to be healthy.

また、設計上の終局耐力以上のずれせん断力が接合部に作用する荷重載荷に対しても軽微な損傷の範囲であり、十分な耐力を有していることが確認された。   Further, it was confirmed that the shear shear force exceeding the designed ultimate strength was in a slight damage range even with respect to the load applied to the joint, and had sufficient strength.

(B)直角方向曲げ耐力確認実験について
実験は、図10に示すように、波形鋼板1波長分の波形鋼板ウェブ10とコンクリート下床版40の片側を代表させた供試体80の接合部Cに、上記4種類の接合構造をそれぞれ形成した4個の供試体80を作成し、それぞれ実験を行った。
(B) About a perpendicular direction bending strength confirmation experiment As shown in FIG. 10, the experiment was performed on a joint C of a specimen 80 typified by one side of a corrugated steel sheet web 10 for one wavelength of corrugated steel sheet and a concrete lower floor slab 40. Then, four specimens 80 each having the above-described four types of joint structures were prepared, and experiments were conducted.

荷重Qは、波形鋼板ウェブ10の上部に設置した載荷梁81を用いて波形鋼板ウェブ10を介して接合構造の部分に純曲げモーメントを載荷し、供試体80の各部位に設置した計測装置により各部位の応力および変形等の性状確認を行った。   The load Q is measured by a measuring device installed on each part of the specimen 80 by loading a pure bending moment on the part of the joint structure via the corrugated steel web 10 using the loading beam 81 installed on the top of the corrugated steel web 10. Properties of each part, such as stress and deformation, were confirmed.

いずれの接合構造においても、設計上の使用時に相当する荷重載荷までは弾性的な挙動を示し、損傷は確認されず健全であることが確認された。また、終局時の耐力相当の荷重載荷に対しても十分な耐力を有していることが確認された。   In any of the joint structures, elastic behavior was exhibited up to load loading corresponding to the design use, and it was confirmed that no damage was observed and that the structure was sound. Moreover, it was confirmed that it has sufficient strength against load loading equivalent to the ultimate strength.

実施例の鋼板ウェブと下床版との接合構造を示す正面図(図1(b)のA−A矢視図)である。It is a front view (AA arrow line view of FIG.1 (b)) which shows the joining structure of the steel plate web of an Example, and a lower floor slab. 図1(a)の平面図であるFIG. 2 is a plan view of FIG. 実施例の鋼板ウェブと下床版との接合構造を示す正面図(図2(b)のB−B矢視図)である。It is a front view (BB arrow line view of Drawing 2 (b)) showing the joining structure of the steel plate web of an example, and a lower floor slab. 図2(a)の平面図である。FIG. 3 is a plan view of FIG. 実施例の鋼板ウェブと下床版との接合構造を示す正面図(図3(b)のC−C矢視図)である。It is a front view (CC arrow view of FIG.3 (b)) which shows the joining structure of the steel plate web of an Example, and a lower floor slab. 図3(a)の平面図である。It is a top view of Fig.3 (a). 従来の波型鋼板ウェブを用いたPC箱桁橋の正面図である。It is a front view of the PC box girder bridge using the conventional corrugated steel web. 従来例の斜視図である。It is a perspective view of a prior art example. 従来例の斜視図である。It is a perspective view of a prior art example. 従来の波型鋼板ウェブを用いたPC箱桁橋の正面図である。It is a front view of the PC box girder bridge using the conventional corrugated steel web. 従来例の正面図である。It is a front view of a prior art example. 図8(a)の側面図である。It is a side view of Fig.8 (a). せん断耐力実験の供試体の側面図である。It is a side view of the test body of a shear strength experiment. せん断耐力実験の供試体の正面図である。It is a front view of the specimen of a shear strength test. 曲げ耐力実験の供試体の正面図である。It is a front view of the specimen of a bending strength experiment.

符号の説明Explanation of symbols

1 PC箱桁橋
10 波形鋼板ウェブ
11 鋼フランジ(下フランジ)
12 鋼プレート
13 貫通孔
14 棒鋼
15 帯状鋼プレート
16 鉄筋
17 接合鋼材
30 スタッドジベル
40 コンクリート下床版
50 コンクリート上床版
61 貫通孔
62 貫通鉄筋
63 接合棒鋼
70 供試体
71,72,73,74 接合構造
75 支承
80 供試体
81 載荷梁
1 PC box girder bridge 10 Corrugated steel web 11 Steel flange (lower flange)
DESCRIPTION OF SYMBOLS 12 Steel plate 13 Through-hole 14 Bar steel 15 Strip | steel-shaped steel plate 16 Reinforcement 17 Joining steel material 30 Stud diver 40 Concrete lower floor slab 50 Concrete upper floor slab 61 Through-hole 62 Through rebar 63 Bonding bar 70 Specimen 71, 72, 73, 74 Joining structure 75 Bearing 80 Specimen 81 Loading beam

Claims (3)

波形鋼板ウェブを用いたPC箱桁橋において、波形鋼板ウェブ下端にフランジを備え、
前記フランジ上面と波形鋼板ウェブ側面とに、貫通孔を有する多数の鋼プレートを、該鋼プレート面が鉛直となる姿勢で固定し、長尺棒鋼を該貫通孔を通って前記鋼プレートに係止させ、前記鋼プレート及び長尺棒鋼を内蔵させたコンクリート下床版が前記フランジ上面に取付けられていることを特徴とするPC箱桁橋。
In a PC box girder bridge using a corrugated steel web, a flange is provided at the lower end of the corrugated steel web.
A large number of steel plates having through holes are fixed to the flange upper surface and the corrugated steel sheet web side surface in a posture in which the steel plate surface is vertical, and a long steel bar is locked to the steel plate through the through holes. A PC box girder bridge, wherein a concrete lower floor slab incorporating the steel plate and long steel bar is attached to the upper surface of the flange.
波形鋼板ウェブを用いたPC箱桁橋において、波形鋼板ウェブ下端にフランジを備え、多数の貫通孔を備えた長尺の帯状鋼プレートを前記フランジ上面に橋軸方向に沿って立設固定する共に、前記貫通孔を通って該帯状鋼プレートと交差する多数の鉄筋を配設し、波形鋼板ウェブ側面の下床版と接する部分及び前記フランジ上面に、スタッドジベルを備え、前記帯状鋼プレート、前記多数の鉄筋及び前記スタッドジベルを内蔵させたコンクリート下床版が前記フランジ上面に取付けられていることを特徴とするPC箱桁橋。   In a PC box girder bridge using a corrugated steel web, a long strip steel plate having a flange at the lower end of the corrugated steel web and having a large number of through holes is vertically fixed on the upper surface of the flange along the bridge axis direction. A plurality of reinforcing bars intersecting with the strip steel plate through the through hole, a portion contacting the lower floor slab of the corrugated steel sheet web side surface and a top surface of the flange are provided with stud gibels, the strip steel plate, A PC box girder bridge, wherein a concrete lower floor slab incorporating a large number of reinforcing bars and stud studs is attached to the upper surface of the flange. 波形鋼板ウェブを用いたPC箱桁橋において、波形鋼板ウェブ下端にフランジを備え、前記フランジ上方の波形鋼板ウェブ側面に橋軸方向に沿って長尺棒鋼を固定すると共に、波形鋼板ウェブ側面の下床版と接する部分にスタッドジベルを備え、前記長尺棒鋼及び前記スタッドジベルを内蔵させたコンクリート下床版が前記フランジ上面に取付けられていることを特徴とするPC箱桁橋。   In a PC box girder bridge using a corrugated steel web, a flange is provided at the lower end of the corrugated steel web, and a long steel bar is fixed to the side of the corrugated steel web above the flange along the bridge axis direction. A PC box girder bridge comprising a stud gibber in a portion in contact with a floor slab, and a concrete lower floor slab incorporating the long steel bar and the stud diver is attached to an upper surface of the flange.
JP2006061451A 2006-03-07 2006-03-07 PC box girder bridge Active JP4644146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061451A JP4644146B2 (en) 2006-03-07 2006-03-07 PC box girder bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061451A JP4644146B2 (en) 2006-03-07 2006-03-07 PC box girder bridge

Publications (2)

Publication Number Publication Date
JP2007239270A true JP2007239270A (en) 2007-09-20
JP4644146B2 JP4644146B2 (en) 2011-03-02

Family

ID=38585072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061451A Active JP4644146B2 (en) 2006-03-07 2006-03-07 PC box girder bridge

Country Status (1)

Country Link
JP (1) JP4644146B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741579A (en) * 2013-12-25 2014-04-23 广西科技大学 Corrugated steel web combination curve beam bridge with horizontal partition plates
CN105672113A (en) * 2016-01-22 2016-06-15 山东大学 Reinforced concrete combined part structure on lower flange of corrugated steel web and construction method of reinforced concrete combined part structure
CN107558351A (en) * 2017-09-30 2018-01-09 深圳市市政设计研究院有限公司 Abdomen bag bottom is trapezoidal(Waveform)Steel plate combination box beam and its construction method
CN109989331A (en) * 2019-04-11 2019-07-09 江西省交通设计研究院有限责任公司 Wavelike steel webplate inner lining concrete combined box beam structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742293A (en) * 1993-07-30 1995-02-10 Taisei Corp Reinforced concrete floor slab with reinforcing steel frame
JPH11148110A (en) * 1997-11-14 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd Continuous girder bridge
JP2000008324A (en) * 1998-06-29 2000-01-11 Nippon Steel Corp Combined girder structure for floor slab
JP2000319816A (en) * 1999-05-12 2000-11-21 Nippon Steel Corp Rigid connection structure of upper and lower composite members
JP2001081720A (en) * 1999-09-13 2001-03-27 Nippon Steel Corp Connection structure of concrete floor slab to steel web in composite box-girder
JP2001234510A (en) * 2000-02-23 2001-08-31 Nkk Corp Bridge and its construction method
JP2001342612A (en) * 2000-06-02 2001-12-14 Akimitsu Kurita Joining device for floor slab and web steel plate
JP2002038420A (en) * 2000-07-28 2002-02-06 Nippon Kokan Light Steel Kk Corrugated steel plate for bridge
JP2002188120A (en) * 2000-12-19 2002-07-05 Nippon Steel Corp Joining structure of corrugated steel plate web beam
JP2003232009A (en) * 2002-02-08 2003-08-19 Nippon Steel Corp Reinforcing structure for mixed box girder bridge
JP2004300902A (en) * 2003-03-29 2004-10-28 Takenaka Komuten Co Ltd Cfh, cfh beam and cfh post
JP2004332486A (en) * 2003-05-12 2004-11-25 Shimizu Corp Column structure
JP2005213825A (en) * 2004-01-28 2005-08-11 Ichiro Okura Installation method for floor slab

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742293A (en) * 1993-07-30 1995-02-10 Taisei Corp Reinforced concrete floor slab with reinforcing steel frame
JPH11148110A (en) * 1997-11-14 1999-06-02 Ishikawajima Harima Heavy Ind Co Ltd Continuous girder bridge
JP2000008324A (en) * 1998-06-29 2000-01-11 Nippon Steel Corp Combined girder structure for floor slab
JP2000319816A (en) * 1999-05-12 2000-11-21 Nippon Steel Corp Rigid connection structure of upper and lower composite members
JP2001081720A (en) * 1999-09-13 2001-03-27 Nippon Steel Corp Connection structure of concrete floor slab to steel web in composite box-girder
JP2001234510A (en) * 2000-02-23 2001-08-31 Nkk Corp Bridge and its construction method
JP2001342612A (en) * 2000-06-02 2001-12-14 Akimitsu Kurita Joining device for floor slab and web steel plate
JP2002038420A (en) * 2000-07-28 2002-02-06 Nippon Kokan Light Steel Kk Corrugated steel plate for bridge
JP2002188120A (en) * 2000-12-19 2002-07-05 Nippon Steel Corp Joining structure of corrugated steel plate web beam
JP2003232009A (en) * 2002-02-08 2003-08-19 Nippon Steel Corp Reinforcing structure for mixed box girder bridge
JP2004300902A (en) * 2003-03-29 2004-10-28 Takenaka Komuten Co Ltd Cfh, cfh beam and cfh post
JP2004332486A (en) * 2003-05-12 2004-11-25 Shimizu Corp Column structure
JP2005213825A (en) * 2004-01-28 2005-08-11 Ichiro Okura Installation method for floor slab

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741579A (en) * 2013-12-25 2014-04-23 广西科技大学 Corrugated steel web combination curve beam bridge with horizontal partition plates
CN105672113A (en) * 2016-01-22 2016-06-15 山东大学 Reinforced concrete combined part structure on lower flange of corrugated steel web and construction method of reinforced concrete combined part structure
CN105672113B (en) * 2016-01-22 2017-03-15 山东大学 A kind of Wavelike steel webplate lower flange steel reinforced concrete combines cage structure and construction method
CN107558351A (en) * 2017-09-30 2018-01-09 深圳市市政设计研究院有限公司 Abdomen bag bottom is trapezoidal(Waveform)Steel plate combination box beam and its construction method
CN109989331A (en) * 2019-04-11 2019-07-09 江西省交通设计研究院有限责任公司 Wavelike steel webplate inner lining concrete combined box beam structure

Also Published As

Publication number Publication date
JP4644146B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
KR100797194B1 (en) Composite concrete column and construction method using the same
KR100690197B1 (en) Steel beam with plate type shear connector and Steel composite beam using the steel beam
JP4078367B2 (en) Cable-stayed cable fixing structure
JP2006316580A (en) Corrugated steel plate web pc composite beam and construction method of bridge using corrugated steel plate web pc composite beam
JP2008063803A (en) Composite floor slab formed of shape steel with inner rib, composite floor slab bridge, or composite girder bridge
JP4644146B2 (en) PC box girder bridge
KR101407512B1 (en) Steel composite beam for reducing story height, slim floor structure and construction method using the same
JP3830767B2 (en) Continuous girder for bridge
KR100949828B1 (en) Steel beam and hybrid beam of steel concrete for slim floor
KR20130075995A (en) Lateral supporter, composite concrete column structure having the same, and constructing method thereeof
JP2008088634A (en) Composite steel-concrete floor slab
JP2000355906A (en) Connecting section structure of corrugated steel plate and concrete floor slab in corrugated steel-plate web pc box girder bridge
JP4492422B2 (en) Structure near the intermediate fulcrum of continuous I-girder bridge
JP4101397B2 (en) Method of joining concrete slab and corrugated steel in corrugated steel web bridge
JP2013096176A (en) Reinforcement structure of existing foundation
JP2010144512A (en) Structure near intermediate supporting point of continuous i-beam bridge
JP3682520B2 (en) PC steel wire anchorage structure in composite bridge girder
KR20090006512A (en) Shear reinforcement device for junctional region of slab and column
JP4293696B2 (en) Construction method of composite floor slab bridge
KR101038291B1 (en) Steel beam and hybrid beam of steel concrete for slim floor
RU2423585C1 (en) Composite beam structure
KR100485060B1 (en) Joint between steel superstructure and reinforced concrete substructure of rahmen typed hybrid bridge
JP2009185532A (en) Lap joint-anchoring method by deformed wire-welded metal wire net
JP2009091743A (en) Continuous i-beam bridge and structure near its intermediate supporting point
JP2007191961A (en) Reinforced structure of slab in existing building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101101

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101203

R150 Certificate of patent or registration of utility model

Ref document number: 4644146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350