JP2007238870A - Method for producing hydrocarbon oil and hydrocarbon oil - Google Patents

Method for producing hydrocarbon oil and hydrocarbon oil Download PDF

Info

Publication number
JP2007238870A
JP2007238870A JP2006066465A JP2006066465A JP2007238870A JP 2007238870 A JP2007238870 A JP 2007238870A JP 2006066465 A JP2006066465 A JP 2006066465A JP 2006066465 A JP2006066465 A JP 2006066465A JP 2007238870 A JP2007238870 A JP 2007238870A
Authority
JP
Japan
Prior art keywords
fraction
mass
hydrocarbon oil
boiling point
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006066465A
Other languages
Japanese (ja)
Other versions
JP4908022B2 (en
Inventor
Yuichi Tanaka
祐一 田中
Shinya Takahashi
信也 高橋
Yoshifumi Chiba
善文 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2006066465A priority Critical patent/JP4908022B2/en
Priority to MYPI20083399 priority patent/MY148585A/en
Priority to RU2008140146/04A priority patent/RU2425859C2/en
Priority to PCT/JP2007/052618 priority patent/WO2007105400A1/en
Priority to CN200780008543.6A priority patent/CN101400768B/en
Priority to AU2007226057A priority patent/AU2007226057B2/en
Publication of JP2007238870A publication Critical patent/JP2007238870A/en
Application granted granted Critical
Publication of JP4908022B2 publication Critical patent/JP4908022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a hydrocarbon oil, which obtains a hydrocarbon oil having sufficient excellent low-temperature fluidity and a kinematic viscosity of &ge;2.5mm<SP>2</SP>/s at 30&deg;C and to obtain a hydrocarbon oil obtained by the method. <P>SOLUTION: The method for producing a hydrocarbon group oil comprises fractionating a synthetic oil obtained by a Fischer-Tropsch synthesis method, obtaining an intermediate fraction comprising &ge;90 mass% of content of a fraction having 150-360&deg;C boiling point and &le;5 mass% of content of a fraction having &ge;350&deg;C boiling point and a wax component heavier than that of the intermediate fraction, bringing the intermediate fraction and the wax component into contact with a hydrogenation catalyst in the presence of hydrogen and mixing and fractionating the resulting components to give the objective hydrocarbon oil having &ge;86 mass% of content of a fraction having 150-360&deg;C boiling point and &le;5 mass% of content of a fraction having &ge;350&deg;C boiling point. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、炭化水素油及びその製造方法に関し、より詳しくはディーゼル燃料基材として有用な炭化水素油及びその製造方法に関する。   The present invention relates to a hydrocarbon oil and a method for producing the same, and more particularly to a hydrocarbon oil useful as a diesel fuel base material and a method for producing the same.

近年、環境負荷低減の観点から、硫黄分及び芳香族炭化水素の含有量が低く、環境にやさしいクリーンな液体燃料が求められている。そこで、石油業界においては、クリーン燃料の製造方法として、一酸化炭素と水素を原料としたフィッシャー・トロプシュ合成法(以下、「FT合成法」と略す。)が検討されている。FT合成法によれば、パラフィン含有量に富み、かつ硫黄分を含まない液体燃料基材を製造することができるため、その期待は非常に大きい。   In recent years, clean liquid fuels that are low in sulfur content and aromatic hydrocarbon content and that are friendly to the environment have been demanded from the viewpoint of reducing environmental impact. Therefore, in the petroleum industry, a Fischer-Tropsch synthesis method (hereinafter abbreviated as “FT synthesis method”) using carbon monoxide and hydrogen as raw materials is being studied as a method for producing clean fuel. According to the FT synthesis method, a liquid fuel base material having a high paraffin content and no sulfur content can be produced.

しかし、FT合成法により得られる合成油(以下、「FT合成油」という場合もある。)はノルマルパラフィン含有量が高く、アルコールなどの含酸素化合物を含んでいるため、当該合成油をそのまま燃料として使用することは困難である。より具体的には、当該合成油は、自動車用ガソリンとして用いるためにはオクタン価が不十分であり、また、ディーゼル燃料として用いるためには低温流動性が不十分である。また、アルコールなどの含酸素化合物は燃料の酸化安定性に悪影響を及ぼす。そのため、FT合成油は、合成油中のノルマルパラフィンをイソパラフィンへ変換したり含酸素化合物を他の物質へ変換したりするための水素化処理が施された後、燃料基材として使用されるのが一般的である。   However, a synthetic oil obtained by the FT synthesis method (hereinafter sometimes referred to as “FT synthetic oil”) has a high normal paraffin content and contains an oxygen-containing compound such as alcohol. It is difficult to use as. More specifically, the synthetic oil has insufficient octane number for use as automobile gasoline, and low temperature fluidity for use as diesel fuel. In addition, oxygen-containing compounds such as alcohol adversely affect the oxidation stability of the fuel. Therefore, FT synthetic oil is used as a fuel base after being subjected to hydrogenation treatment to convert normal paraffin in the synthetic oil into isoparaffin or oxygen-containing compounds into other substances. Is common.

例えば、ディーゼル燃料基材、灯油基材、航空燃料基材などを製造する場合、FT合成油の重質なワックス分を水素化分解して得られるイソパラフィンに富む中間留分や、FT合成油の中間留分を水素化異性化して得られるパラフィン異性化度が高められた中間留分などを適宜混合することにより燃料基材の低温流動性を向上させることが行われる(例えば、特許文献1及び2を参照)。   For example, when producing diesel fuel base, kerosene base, aviation fuel base, etc., middle distillate rich in isoparaffin obtained by hydrocracking heavy wax content of FT synthetic oil or FT synthetic oil The low temperature fluidity of the fuel base material is improved by appropriately mixing the middle distillate having an increased degree of paraffin isomerization obtained by hydroisomerizing the middle distillate (for example, Patent Document 1 and 2).

国際公開第00/020535号パンフレットInternational Publication No. 00/020535 Pamphlet フランス国特許公開第2826971号明細書French Patent Publication No. 2826971

ところで、ディーゼル自動車に供される燃料は、燃料ポンプの不調や油膜切れによる燃焼筒内での焼きつきを防止する観点から、常温及び高温においてある程度の動粘度を示すことが望ましい。例えば、日本工業規格JIS K2283の2号軽油動粘度規格においては、30℃での動粘度が2.5mm/s以上と定められている。そのため、FT合成油から得られる中間留分のうちディーゼル燃料基材として用いられる炭化水素油は、低温流動性及び動粘度の双方が十分改善されたものである必要がある。 By the way, it is desirable that the fuel supplied to the diesel vehicle exhibits a certain degree of kinematic viscosity at normal temperature and high temperature from the viewpoint of preventing seizure in the combustion cylinder due to malfunction of the fuel pump or running out of the oil film. For example, in the Japanese Industrial Standard JIS K2283 No. 2 diesel oil kinematic viscosity standard, the kinematic viscosity at 30 ° C. is defined as 2.5 mm 2 / s or more. Therefore, the hydrocarbon oil used as the diesel fuel base material in the middle distillate obtained from the FT synthetic oil needs to have both low-temperature fluidity and kinematic viscosity sufficiently improved.

その一方で、ディーゼル燃料製造におけるコスト削減が従来にも増して強く求められており、その要求はFT合成法を利用する燃料製造に対しても例外ではないことから、ディーゼル燃料基材に適した炭化水素油をFT合成油から効率よく製造することも必要となっている。   On the other hand, cost reduction in diesel fuel production is more strongly demanded than ever, and the requirement is no exception for fuel production using the FT synthesis method. It is also necessary to efficiently produce hydrocarbon oil from FT synthetic oil.

しかし、上記特許文献1及び2のものをはじめとする従来技術は上述のように燃料基材の低温流動性の改善を主とするものであり、低温流動性及び30℃での動粘度の双方を満足する炭化水素油の高収率化に有効な技術は未だ提供されていないのが実情である。   However, the prior arts including those in Patent Documents 1 and 2 mainly improve the low temperature fluidity of the fuel base as described above, and both the low temperature fluidity and the kinematic viscosity at 30 ° C. As a matter of fact, no effective technology for increasing the yield of hydrocarbon oil satisfying the above has been provided.

なお、炭化水素油を取得する際に、例えば、分留の沸点範囲を狭めることにより低温流動性及び30℃での動粘度の双方を向上させる方法が考えられるが、このような方法ではFT合成油におけるディーゼル燃料基材の製造可能量が低下するため、燃料製造プロセスの経済性が損なわれてしまう。また、FT合成油の重質なワックス分を水素化分解して得られる中間留分のみをディーゼル燃料基材として利用すれば低温流動性及び30℃での動粘度の双方を満足させることができる場合もあるが、FT合成油におけるその製造可能量は限られているため十分な量の燃料基材を製造するのは困難である。   In obtaining hydrocarbon oil, for example, a method of improving both low temperature fluidity and kinematic viscosity at 30 ° C. by narrowing the boiling point range of fractional distillation is conceivable. Since the manufacturable amount of the diesel fuel base material in the oil is lowered, the economy of the fuel production process is impaired. Moreover, if only the middle distillate obtained by hydrocracking the heavy wax content of FT synthetic oil is used as a diesel fuel base material, both low temperature fluidity and kinematic viscosity at 30 ° C. can be satisfied. In some cases, the amount of FT synthetic oil that can be produced is limited, and it is difficult to produce a sufficient amount of fuel base.

本発明は、上記実情に鑑みてなされたものであり、FT合成油から、低温流動性に十分優れるとともに30℃での動粘度が2.5mm/s以上である炭化水素油を高収率で得ることができる炭化水素油の製造方法及びかかる方法により得られる炭化水素油を提供することを目的とする。 The present invention has been made in view of the above circumstances, and from FT synthetic oil, a hydrocarbon oil having sufficiently low temperature fluidity and a kinematic viscosity at 30 ° C. of 2.5 mm 2 / s or higher is obtained in a high yield. It aims at providing the manufacturing method of the hydrocarbon oil which can be obtained by this, and the hydrocarbon oil obtained by this method.

本発明者らは、上記課題を解決するべく鋭意検討した結果、FT合成油から特定の沸点範囲の留分を特定量含む中間留分と、この中間留分よりも重質なワックス分とを得、これらを別々に水素化処理した後混合し、この混合物から特定の沸点範囲の留分を特定量含むように分留して得られた炭化水素油が、−7.5℃以下の流動点及び30℃において2.5mm/s以上の動粘度を示すとともに原料であるFT合成油に対して十分な収率を示すことを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a middle fraction containing a specific amount of a fraction in a specific boiling range from FT synthetic oil, and a wax content heavier than this middle fraction. The hydrocarbon oil obtained by hydrotreating these separately and then mixing, and fractionating the mixture so as to contain a specific amount of a fraction having a specific boiling range, has a flow of −7.5 ° C. or less. The present invention was completed by finding that it showed a kinematic viscosity of 2.5 mm 2 / s or higher at 30 ° C. and a sufficient yield with respect to FT synthetic oil as a raw material.

すなわち、本発明の炭化水素油の製造方法は、フィッシャー・トロプシュ合成法により得られる合成油を分留し、沸点150〜360℃の留分の含有量が90質量%以上であり且つ沸点350℃以上の留分の含有量が5質量%以下である中間留分と、当該中間留分よりも重質なワックス分とを得、中間留分およびワックス分を、それぞれ、水素存在下、水素化触媒と接触させた後、混合し分留して沸点150〜360℃の留分の含有量が86質量%以上であり且つ沸点350℃以上の留分の含有量が5質量%以上である炭化水素油を得ることを特徴とする。   That is, the method for producing a hydrocarbon oil of the present invention fractionates synthetic oil obtained by the Fischer-Tropsch synthesis method, the content of a fraction having a boiling point of 150 to 360 ° C. is 90% by mass or more, and a boiling point of 350 ° C. An intermediate fraction having a content of the above fraction of 5% by mass or less and a wax fraction heavier than the middle fraction are obtained, and the middle fraction and the wax fraction are each hydrogenated in the presence of hydrogen. After contacting with the catalyst, mixing and fractionating, carbonization of a fraction having a boiling point of 150 to 360 ° C. is 86% by mass or more and a fraction having a boiling point of 350 ° C. or more is 5% by mass or more It is characterized by obtaining hydrogen oil.

本発明の炭化水素油の製造方法によれば、FT合成油から、低温流動性に十分優れるとともに30℃での動粘度が2.5mm/s以上である炭化水素油を高収率で得ることができる。これにより、環境低負荷型ディーゼル燃料を経済性よく製造することが可能となる。 According to the method for producing a hydrocarbon oil of the present invention, a hydrocarbon oil that is sufficiently excellent in low-temperature fluidity and has a kinematic viscosity at 30 ° C. of 2.5 mm 2 / s or higher is obtained in high yield from an FT synthetic oil. be able to. Thereby, it becomes possible to manufacture an environmentally low load type diesel fuel with good economic efficiency.

本発明の炭化水素油の製造方法においては、水素化触媒に接触後の中間留分における沸点150℃以下の炭化水素の含有率(質量%)が接触前のものよりも3〜9質量%大きくなるように中間留分を水素化処理することが好ましい。   In the method for producing a hydrocarbon oil of the present invention, the content (mass%) of hydrocarbon having a boiling point of 150 ° C. or less in the middle distillate after contact with the hydrogenation catalyst is 3 to 9 mass% larger than that before contact. It is preferable that the middle distillate be hydrotreated.

これにより、炭化水素油の収率を十分確保しつつ炭化水素油の流動点を更に低下させることができる。   As a result, the pour point of the hydrocarbon oil can be further lowered while sufficiently securing the yield of the hydrocarbon oil.

本発明の炭化水素油の製造方法においては、水素化触媒に接触後のワックス分における沸点360℃以下の留分の含有量が45〜85質量%となるようにワックス分を水素化処理することが好ましい。かかる含有量が45質量%未満であると、得られる炭化水素油の収率が低下したり、炭化水素油の低温流動性が低下したりする傾向にある。一方、含有量が85質量%を超えると、得られる炭化水素油の収率が低下する傾向にある。   In the method for producing a hydrocarbon oil of the present invention, the wax content is hydrotreated so that the content of the fraction having a boiling point of 360 ° C. or less in the wax content after contact with the hydrogenation catalyst is 45 to 85 mass%. Is preferred. If the content is less than 45% by mass, the yield of the resulting hydrocarbon oil tends to decrease, or the low-temperature fluidity of the hydrocarbon oil tends to decrease. On the other hand, when the content exceeds 85% by mass, the yield of the obtained hydrocarbon oil tends to decrease.

本発明の炭化水素油の製造方法においては、中間留分と接触させる水素化触媒およびワックス分と接触させる水素化触媒がそれぞれ、結晶性ゼオライト0.1質量%〜80.0質量%と耐熱性を有する無定形金属酸化物0.1質量%〜60.0質量%とを含む担体、および、当該担体上に担持された周期律表第VIII族に属する金属からなる群より選択される1種類以上の金属を含むものであることが好ましい。   In the method for producing a hydrocarbon oil of the present invention, the hydrogenation catalyst brought into contact with the middle distillate and the hydrogenation catalyst brought into contact with the wax fraction each have a crystalline zeolite content of 0.1% by mass to 80.0% by mass and heat resistance. One type selected from the group consisting of a support containing 0.1 to 60.0% by weight of an amorphous metal oxide having a metal, and a metal belonging to Group VIII of the periodic table supported on the support It is preferable that the above metal is included.

本発明の炭化水素油の製造方法においては、中間留分と水素化触媒とを接触させるときの反応温度が200〜370℃、水素分圧が1.0〜5.0MPaおよび液空間速度が0.3〜3.5h−1であり、且つ、ワックス分と水素化触媒とを接触させるときの反応温度が200〜370℃、水素分圧が1.0〜5.0MPaおよび液空間速度が0.3〜3.5h−1であることが好ましい。 In the method for producing a hydrocarbon oil of the present invention, the reaction temperature when contacting the middle distillate and the hydrogenation catalyst is 200 to 370 ° C., the hydrogen partial pressure is 1.0 to 5.0 MPa, and the liquid space velocity is 0. 3 to 3.5 h −1 , and the reaction temperature when the wax component and the hydrogenation catalyst are brought into contact is 200 to 370 ° C., the hydrogen partial pressure is 1.0 to 5.0 MPa, and the liquid space velocity is 0. It is preferable that it is 3-3.5h < -1 >.

また、本発明の炭化水素油は、上記本発明の炭化水素油の製造方法により得られ、流動点が−7.5℃以下であり、且つ、30℃での動粘度が2.5mm/s以上であることを特徴とする。かかる炭化水素油は、ディーゼル燃料基材として優れた品質を有するとともに、FT合成油から高収率で得られるものである。従って、本発明の炭化水素油によれば、環境低負荷型のディーゼル燃料の低コスト化を実現できる。 Moreover, the hydrocarbon oil of the present invention is obtained by the method for producing a hydrocarbon oil of the present invention, and has a pour point of −7.5 ° C. or lower and a kinematic viscosity at 30 ° C. of 2.5 mm 2 / It is characterized by being s or more. Such hydrocarbon oil has excellent quality as a diesel fuel base material and is obtained in high yield from FT synthetic oil. Therefore, according to the hydrocarbon oil of the present invention, it is possible to realize cost reduction of environmentally low load type diesel fuel.

本発明よれば、FT合成油から、低温流動性に十分優れるとともに30℃での動粘度が2.5mm/s以上である炭化水素油を高収率で得ることができる炭化水素油の製造方法及びかかる方法により得られる炭化水素油を提供することができる。 According to the present invention, the production of a hydrocarbon oil capable of obtaining a high-yield hydrocarbon oil having excellent low-temperature fluidity and a kinematic viscosity at 30 ° C. of 2.5 mm 2 / s or more from an FT synthetic oil. Methods and hydrocarbon oils obtained by such methods can be provided.

以下、添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において、同一または相当要素には同一の符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の炭化水素油の製造方法を実施する炭化水素油製造装置の一例を示すフロー図である。図1に示される炭化水素油製造装置100は、原料であるFT合成油が導入されるFT合成油導入流路1と、FT合成油導入流路1から導入された合成油を軽質留分と中間留分と重質ワックス分とに分留する第1の蒸留塔10と、蒸留塔10から中間留分流路3を通じて供給される中間留分を水素化処理する水素化処理装置20と、蒸留塔10からワックス分流路5を通じて供給される重質ワックス分を水素化処理する水素化処理装置30と、水素化処理装置20を経た中間留分からガス成分を除去する気液分離槽22と、水素化処理装置30を経た重質ワックス分からガス成分を除去する気液分離槽32と、気液分離槽22からの液体成分及び気液分離槽32からの液体成分を分留する第2の蒸留塔40とを備えている。気液分離槽22と第2の蒸留塔40、及び、気液分離槽32と第2の蒸留塔40はそれぞれ、流路4及び流路6で接続されている。   FIG. 1 is a flow diagram showing an example of a hydrocarbon oil production apparatus that implements the hydrocarbon oil production method of the present invention. A hydrocarbon oil production apparatus 100 shown in FIG. 1 includes an FT synthetic oil introduction channel 1 into which FT synthetic oil as a raw material is introduced, and a synthetic oil introduced from the FT synthetic oil introduction channel 1 into light fractions. A first distillation column 10 that fractionates into a middle distillate and a heavy wax component; a hydrotreating device 20 that hydrotreats the middle distillate supplied from the distillation column 10 through the middle distillate passage 3; A hydrotreatment device 30 for hydrotreating a heavy wax component supplied from the tower 10 through the wax fraction channel 5, a gas-liquid separation tank 22 for removing gas components from the middle distillate through the hydrotreatment device 20, hydrogen Gas-liquid separation tank 32 for removing gas components from the heavy wax component that has passed through the gasification treatment apparatus 30, and a second distillation column for fractionating the liquid components from the gas-liquid separation tank 22 and the liquid components from the gas-liquid separation tank 32 40. The gas-liquid separation tank 22 and the second distillation tower 40, and the gas-liquid separation tank 32 and the second distillation tower 40 are connected by the flow path 4 and the flow path 6, respectively.

また、第1の蒸留塔10には、軽質ワックスを系外に取り出す流路2が接続されている。更に、第2の蒸留塔40には、分留により得られる本発明の炭化水素油を取り出すための回収流路8と、かかる炭化水素油よりも軽質な留分を取り出すための回収流路7と、かかる炭化水素油よりも重質なワックス分を必要に応じて水素化処理装置30に供給して水素化処理するための循環流路9とが接続されている。   The first distillation column 10 is connected to a flow path 2 for taking out light wax out of the system. Further, the second distillation column 40 has a recovery channel 8 for extracting the hydrocarbon oil of the present invention obtained by fractional distillation, and a recovery channel 7 for extracting a fraction lighter than the hydrocarbon oil. And a circulation flow path 9 for supplying a wax component heavier than the hydrocarbon oil to the hydrotreating device 30 as needed to perform hydrotreating.

以下、図1の炭化水素油製造装置100を参照しながら本発明の炭化水素油の製造方法について詳細に説明する。   Hereinafter, the hydrocarbon oil production method of the present invention will be described in detail with reference to the hydrocarbon oil production apparatus 100 of FIG.

(FT合成油の分留)
まず、本発明の炭化水素油の製造方法に供されるFT合成油としては、FT合成法により生成されるものであれば特に限定されないが、沸点150℃以上の炭化水素をFT合成油全量基準で80質量%以上含み、且つ、沸点360℃以上の炭化水素をFT合成油全量基準で35質量%以上含むものが好ましい。なお、FT合成油全量とは、FT合成法により生成される炭素数5以上の炭化水素の合計を意味する。
(Fractionation of FT synthetic oil)
First, the FT synthetic oil used in the method for producing a hydrocarbon oil of the present invention is not particularly limited as long as it is produced by the FT synthesis method, but hydrocarbons having a boiling point of 150 ° C. or higher are based on the total amount of FT synthetic oil. It is preferable to contain hydrocarbons having a boiling point of 360 ° C. or more and 35% by mass or more based on the total amount of FT synthetic oil. The total amount of FT synthetic oil means the total of hydrocarbons having 5 or more carbon atoms produced by the FT synthesis method.

第1の蒸留塔10では、2つのカットポイントを設定してFT合成油を分留することにより、第1のカットポイント以下の留分を軽質留分、第1のカットポイントから第2のカットポイントまでの留分を中間留分、第2のカットポイント以上の留分を塔底油(重質なワックス分)として得ることができる。本実施形態においては、第1のカットポイント及び第2のカットポイントを適宜設定することにより、沸点150〜360℃の留分の含有量が90質量%以上であり且つ沸点350℃以上の留分の含有量が5質量%以下である中間留分と、かかる中間留分よりも重質なワックス分とを得る。   In the first distillation column 10, by setting two cut points and fractionating the FT synthetic oil, the fraction below the first cut point is a light fraction, and the second cut from the first cut point is performed. The fraction up to the point can be obtained as the middle fraction, and the fraction above the second cut point can be obtained as the bottom oil (heavy wax). In the present embodiment, by appropriately setting the first cut point and the second cut point, the fraction having a boiling point of 150 to 360 ° C. is 90% by mass or more and the boiling point is 350 ° C. or more. A middle fraction having a content of 5% by mass or less and a wax content heavier than the middle fraction are obtained.

中間留分における沸点150〜360℃の留分の含有量及び沸点350℃以上の留分の含有量(質量%)は、例えば、中間留分流路3でサンプリングしたものをガスクロマトグラフィー等、公知の方法により分析し、求めることができる。   The content of fractions having a boiling point of 150 to 360 ° C. and the content (mass%) of fractions having a boiling point of 350 ° C. or higher in the middle distillate are known, for example, by gas chromatography after sampling in the middle distillate flow path 3 It can be analyzed and obtained by the method of

さらに、本実施形態では、第1の蒸留塔10において、中間留分に沸点350℃以上の留分が実質的に含まれないように分留することが好ましい。また、中間留分に沸点300〜350℃の留分が15質量%以上含まれるように分留することが好ましい。   Furthermore, in this embodiment, in the first distillation column 10, it is preferable to perform fractional distillation so that the middle fraction does not substantially contain a fraction having a boiling point of 350 ° C. or higher. Moreover, it is preferable to carry out fractional distillation so that the middle fraction contains a fraction having a boiling point of 300 to 350 ° C. in an amount of 15% by mass or more.

上記第1のカットポイント及び上記第2のカットポイントはそれぞれ、135〜170℃の範囲内及び330〜355℃の範囲内に設定することが好ましく、145〜155℃の範囲内及び345〜355℃の範囲内に設定することがより好ましい。   The first cut point and the second cut point are preferably set in the range of 135 to 170 ° C and in the range of 330 to 355 ° C, respectively, in the range of 145 to 155 ° C and 345 to 355 ° C. It is more preferable to set within the range.

なお、第1の蒸留塔10におけるカットポイントの数は、2つに限定されるものではなく、上述の中間留分及びワックス分が得られるのであれば3つ以上設定することもできる。   Note that the number of cut points in the first distillation column 10 is not limited to two, and can be set to three or more as long as the above middle distillate and wax can be obtained.

(中間留分の水素化処理)
水素化処理装置20では、第1の蒸留塔10で得られた中間留分が水素化処理される。水素化処理装置20としては、公知の固定床反応塔を用いることができる。本実施形態では、反応塔において、所定の水素化精製触媒を固定床の流通式反応器に充填し、第1の蒸留塔10で得られた中間留分を水素化精製することが好ましい。ここでいう水素化精製には、水素化分解及び水素化異性化の双方が包含される。なお、分解とは分子量の低下を伴う化学反応を意味し、異性化とは分子量及び分子を構成する炭素数を維持したまま、炭素骨格の異なる他の化合物への転換を意味する。
(Hydrotreatment of middle distillate)
In the hydrotreating apparatus 20, the middle distillate obtained in the first distillation column 10 is hydrotreated. As the hydrotreating apparatus 20, a known fixed bed reaction tower can be used. In the present embodiment, it is preferable to charge the middle distillate obtained in the first distillation column 10 by hydrotreating with a predetermined hydrotreating catalyst packed in a fixed bed flow reactor in the reaction tower. The hydrorefining here includes both hydrocracking and hydroisomerization. Decomposition means a chemical reaction accompanied by a decrease in molecular weight, and isomerization means conversion to another compound having a different carbon skeleton while maintaining the molecular weight and the number of carbon atoms constituting the molecule.

水素化精製触媒としては、例えば、固体酸を含んで構成される担体に、活性金属として周期律表第VIII族に属する金属を担持したものが挙げられる。   Examples of the hydrorefining catalyst include a catalyst in which a solid acid-containing carrier is loaded with a metal belonging to Group VIII of the periodic table as an active metal.

好適な担体としては、超安定化Y型(USY)ゼオライト、HYゼオライト、モルデナイト及びβゼオライトなどの結晶性ゼオライト、並びに、シリカアルミナ、シリカジルコニア及びアルミナボリアなどの耐熱性を有する無定形金属酸化物の中から選ばれる1種類以上の固体酸を含んで構成されるものが挙げられる。更に、担体は、USYゼオライトと、シリカアルミナ、アルミナボリア及びシリカジルコニアの中から選ばれる1種類以上の固体酸とを含んで構成されるものであることがより好ましく、USYゼオライトとシリカアルミナとを含んで構成されるものであることが更に好ましい。   Suitable supports include crystalline zeolites such as ultra-stabilized Y-type (USY) zeolite, HY zeolite, mordenite and β zeolite, and amorphous metal oxides having heat resistance such as silica alumina, silica zirconia and alumina boria. What is comprised including 1 or more types of solid acids chosen from these is mentioned. Furthermore, the carrier is more preferably composed of USY zeolite and one or more solid acids selected from silica alumina, alumina boria and silica zirconia. More preferably, it is configured to include.

USYゼオライトは、Y型のゼオライトを水熱処理及び/又は酸処理により超安定化したものであり、Y型ゼオライトが本来有する20Å以下のミクロ細孔と呼ばれる微細細孔構造に加え、20〜100Åの範囲に新たな細孔が形成されている。水素化精製触媒の担体としてUSYゼオライトを使用する場合、その平均粒子径に特に制限は無いが、好ましくは1.0μm以下、より好ましくは0.5μm以下である。また、USYゼオライトにおいて、シリカ/アルミナのモル比率(アルミナに対するシリカのモル比率;以下、「シリカ/アルミナ比」という。)は10〜200であると好ましく、15〜100であるとより好ましく、20〜60であるとさらにより好ましい。   USY zeolite is obtained by ultra-stabilizing Y-type zeolite by hydrothermal treatment and / or acid treatment, and in addition to the fine pore structure of 20 pores or less originally possessed by Y-type zeolite, New pores are formed in the area. When USY zeolite is used as the carrier for the hydrotreating catalyst, the average particle size is not particularly limited, but is preferably 1.0 μm or less, more preferably 0.5 μm or less. In the USY zeolite, the silica / alumina molar ratio (molar ratio of silica to alumina; hereinafter referred to as “silica / alumina ratio”) is preferably 10 to 200, more preferably 15 to 100, and 20 It is still more preferable that it is -60.

また、担体は、結晶性ゼオライト0.1質量%〜80質量%と、耐熱性を有する無定形金属酸化物0.1質量%〜60質量%とを含んで構成されるものであることが好ましい。   Moreover, it is preferable that a support | carrier is comprised including 0.1 mass%-80 mass% of crystalline zeolite, and the amorphous metal oxide which has heat resistance 0.1 mass%-60 mass%. .

触媒担体は、上記固体酸とバインダーとを含む混合物を成形した後、焼成することにより製造することができる。固体酸の配合割合は、担体全量を基準として1〜70質量%であることが好ましく、2〜60質量%であることがより好ましい。また、担体がUSYゼオライトを含んで構成される場合、USYゼオライトの配合量は、担体全量を基準として0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。更に、担体がUSYゼオライト及びアルミナボリアを含んで構成される場合、USYゼオライトとアルミナボリアとの配合比(USYゼオライト/アルミナボリア)は、質量比で0.03〜1であることが好ましい。また、担体がUSYゼオライト及びシリカアルミナを含んで構成される場合、USYゼオライトとシリカアルミナとの配合比(USYゼオライト/シリカアルミナ)は、質量比で0.03〜1であることが好ましい。   The catalyst carrier can be produced by molding a mixture containing the solid acid and the binder and then firing the mixture. The blending ratio of the solid acid is preferably 1 to 70% by mass and more preferably 2 to 60% by mass based on the total amount of the carrier. Moreover, when a support | carrier is comprised including USY zeolite, it is preferable that the compounding quantity of USY zeolite is 0.1-10 mass% on the basis of the support whole quantity, and it is 0.5-5 mass%. More preferred. Furthermore, when the carrier is configured to contain USY zeolite and alumina boria, the blending ratio of USY zeolite to alumina boria (USY zeolite / alumina boria) is preferably 0.03 to 1 in terms of mass ratio. Moreover, when a support | carrier is comprised including USY zeolite and a silica alumina, it is preferable that the compounding ratio (USY zeolite / silica alumina) of USY zeolite and a silica alumina is 0.03-1.

バインダーとしては、特に制限はないが、アルミナ、シリカ、シリカアルミナ、チタニア、マグネシアが好ましく、アルミナがより好ましい。バインダーの配合量は、担体全量を基準として20〜98質量%であることが好ましく、30〜96質量%であることがより好ましい。   The binder is not particularly limited, but alumina, silica, silica alumina, titania and magnesia are preferable, and alumina is more preferable. The blending amount of the binder is preferably 20 to 98% by mass, more preferably 30 to 96% by mass based on the total amount of the carrier.

混合物の焼成温度は、400〜550℃の範囲内であることが好ましく、470〜530℃の範囲内であることがより好ましく、490〜530℃の範囲内であることが更に好ましい。   The firing temperature of the mixture is preferably in the range of 400 to 550 ° C, more preferably in the range of 470 to 530 ° C, and still more preferably in the range of 490 to 530 ° C.

第VIII族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらのうち、ニッケル、パラジウム及び白金の中から選ばれる金属を、1種を単独で又は2種以上を組み合わせて用いることが好ましい。   Specific examples of the Group VIII metal include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, it is preferable to use a metal selected from nickel, palladium, and platinum alone or in combination of two or more.

これらの金属は、含浸やイオン交換等の常法によって上述の担体に担持させることができる。担持する金属量は特に制限はないが、金属の合計量が担体に対して0.1〜3.0質量%であることが好ましい。   These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange. The amount of metal to be supported is not particularly limited, but the total amount of metal is preferably 0.1 to 3.0% by mass with respect to the support.

中間留分の水素化精製は、次のような反応条件下で行うことができる。水素分圧としては、0.5〜12MPaが挙げられるが、1.0〜5.0MPaが好ましい。中間留分の液空間速度(LHSV)としては、0.1〜10.0h−1が挙げられるが、0.3〜3.5h−1が好ましい。水素/油比としては、特に制限はないが、50〜1000NL/Lが挙げられ、70〜800NL/Lが好ましい。 The hydrorefining of the middle distillate can be performed under the following reaction conditions. Examples of the hydrogen partial pressure include 0.5 to 12 MPa, but 1.0 to 5.0 MPa is preferable. The liquid hourly space velocity of the middle fraction (LHSV), including but 0.1~10.0h -1, 0.3~3.5h -1 are preferred. Although there is no restriction | limiting in particular as hydrogen / oil ratio, 50-1000NL / L is mentioned, 70-800NL / L is preferable.

なお、本明細書において、「LHSV(liquid hourly space velocity;液空間速度)」とは、触媒が充填されている触媒層の容量当たりの、標準状態(25℃、101325Pa)における原料油の体積流量のことをいい、単位「h−1」は時間(hour)の逆数を示す。また、水素/油比における水素容量の単位である「NL」は、正規状態(0℃、101325Pa)における水素容量(L)を示す。 In this specification, “LHSV (liquid hourly space velocity)” means the volume flow rate of the raw material oil in the standard state (25 ° C., 101325 Pa) per volume of the catalyst layer filled with the catalyst. The unit “h −1 ” indicates the reciprocal of time (hour). Further, “NL”, which is a unit of hydrogen capacity in the hydrogen / oil ratio, indicates a hydrogen capacity (L) in a normal state (0 ° C., 101325 Pa).

また、水素化精製における反応温度としては、180〜400℃が挙げられるが、200〜370℃が好ましく、250〜350℃がより好ましく、280〜350℃がさらにより好ましい。水素化分解における反応温度が370℃を越えると、ナフサ留分へ分解する副反応が増えて中間留分の収率が極度に減少するだけでなく、生成物が着色し、燃料基材としての使用が制限されるため好ましくない。また、反応温度が200℃を下回ると、アルコール分が除去しきれずに残存するため好ましくない。   Moreover, 180-400 degreeC is mentioned as reaction temperature in hydrorefining, However, 200-370 degreeC is preferable, 250-350 degreeC is more preferable, 280-350 degreeC is still more preferable. When the reaction temperature in hydrocracking exceeds 370 ° C., the side reaction that decomposes into the naphtha fraction increases and the yield of the middle fraction is extremely reduced. Since use is restricted, it is not preferable. On the other hand, when the reaction temperature is lower than 200 ° C., the alcohol component cannot be completely removed and is not preferable.

また、本実施形態においては、触媒と接触後の中間留分における沸点150℃以下の炭化水素の含有率(質量%)が接触前のものよりも3〜9質量%大きくなるように中間留分を水素化精製することが好ましい。   In this embodiment, the middle distillate is such that the content (mass%) of hydrocarbons having a boiling point of 150 ° C. or lower in the middle distillate after contact with the catalyst is 3 to 9 mass% higher than that before contact. Is preferably hydrorefined.

触媒と接触前の中間留分及び接触後の中間留分における、沸点150℃以下の炭化水素の含有率(質量%)は、例えば、上記反応塔の入口及び出口でサンプリングしたものをガスクロマトグラフィー等、公知の方法により分析し、求めることができる。   The content (mass%) of hydrocarbons having a boiling point of 150 ° C. or lower in the middle distillate before contact with the catalyst and the middle distillate after contact is, for example, gas chromatography obtained by sampling at the inlet and outlet of the reaction tower. Etc., and can be determined by a known method.

なお、本実施形態の炭化水素油の製造方法においては、上述の方法により、触媒と接触前の中間留分及び接触後の中間留分における各炭素数の炭化水素の含有率を確認しながら、触媒と接触後の中間留分における沸点150℃以下の炭化水素の含有率(質量%)が接触前のものよりも3〜9質量%大きくなる反応条件を予め決定し、この条件で水素化精製を行ってもよい。   In the method for producing a hydrocarbon oil of the present embodiment, while confirming the content of hydrocarbons of each carbon number in the middle distillate before contact with the catalyst and the middle distillate after contact by the above-described method, The reaction conditions in which the content (mass%) of hydrocarbons having a boiling point of 150 ° C. or less in the middle distillate after contact with the catalyst is 3 to 9 mass% higher than that before the contact are determined, and hydrorefining is performed under these conditions May be performed.

(重質なワックス分の水素化処理)
水素化処理装置30では、第1の蒸留塔10で得られた重質なワックス分が水素化処理される。水素化処理装置30としては、公知の固定床反応塔を用いることができる。本実施形態においては、本実施形態では、反応塔において、所定の水素化分解触媒を固定床の流通式反応器に充填し、第1の蒸留塔10で得られたワックス分を水素化分解する。なお、ワックス分の水素化処理は、分子量の低下を伴う化学反応が主に進行するものであるが、かかる水素化処理には水素化異性化も包含される。
(Hydrotreatment of heavy wax)
In the hydrotreating device 30, the heavy wax component obtained in the first distillation column 10 is hydrotreated. As the hydrotreating apparatus 30, a known fixed bed reaction tower can be used. In the present embodiment, in this embodiment, a predetermined hydrocracking catalyst is charged in a fixed bed flow reactor in the reaction tower, and the wax content obtained in the first distillation tower 10 is hydrocracked. . The hydrogenation treatment of the wax mainly involves a chemical reaction accompanied by a decrease in molecular weight. Such hydrogenation treatment includes hydroisomerization.

水素化分解触媒としては、例えば、固体酸を含んで構成される担体に、活性金属として周期律表第VIII族に属する金属を担持したものが挙げられる。   Examples of the hydrocracking catalyst include a catalyst in which a solid acid-containing carrier is loaded with a metal belonging to Group VIII of the periodic table as an active metal.

好適な担体としては、超安定化Y型(USY)ゼオライト、HYゼオライト、モルデナイト及びβゼオライトなどの結晶性ゼオライト、並びに、シリカアルミナ、シリカジルコニア及びアルミナボリアなどの耐熱性を有する無定形金属酸化物の中から選ばれる1種類以上の固体酸を含んで構成されるものが挙げられる。更に、担体は、USYゼオライトと、シリカアルミナ、アルミナボリア及びシリカジルコニアの中から選ばれる1種類以上の固体酸とを含んで構成されるものであることがより好ましく、USYゼオライトとシリカアルミナとを含んで構成されるものであることが更に好ましい。   Suitable supports include crystalline zeolites such as ultra-stabilized Y-type (USY) zeolite, HY zeolite, mordenite and β zeolite, and amorphous metal oxides having heat resistance such as silica alumina, silica zirconia and alumina boria. What is comprised including 1 or more types of solid acids chosen from these is mentioned. Further, the carrier is more preferably composed of USY zeolite and one or more solid acids selected from silica alumina, alumina boria and silica zirconia. More preferably, it is configured to include.

USYゼオライトは、Y型のゼオライトを水熱処理及び/又は酸処理により超安定化したものであり、Y型ゼオライトが本来有する20Å以下のミクロ細孔と呼ばれる微細細孔構造に加え、20〜100Åの範囲に新たな細孔が形成されている。水素化精製触媒の担体としてUSYゼオライトを使用する場合、その平均粒子径に特に制限は無いが、好ましくは1.0μm以下、より好ましくは0.5μm以下である。また、USYゼオライトにおいて、シリカ/アルミナのモル比率(アルミナに対するシリカのモル比率;以下、「シリカ/アルミナ比」という。)は10〜200であると好ましく、15〜100であるとより好ましく、20〜60であるとさらにより好ましい。   USY zeolite is obtained by ultra-stabilizing Y-type zeolite by hydrothermal treatment and / or acid treatment, and in addition to the fine pore structure of 20 pores or less originally possessed by Y-type zeolite, New pores are formed in the area. When USY zeolite is used as the carrier for the hydrotreating catalyst, the average particle size is not particularly limited, but is preferably 1.0 μm or less, more preferably 0.5 μm or less. In the USY zeolite, the silica / alumina molar ratio (molar ratio of silica to alumina; hereinafter referred to as “silica / alumina ratio”) is preferably 10 to 200, more preferably 15 to 100, and 20 It is still more preferable that it is -60.

また、担体は、結晶性ゼオライト0.1質量%〜80質量%と、耐熱性を有する無定形金属酸化物0.1質量%〜60質量%とを含んで構成されるものであることが好ましい。   Moreover, it is preferable that a support | carrier is comprised including 0.1 mass%-80 mass% of crystalline zeolite, and the amorphous metal oxide which has heat resistance 0.1 mass%-60 mass%. .

触媒担体は、上記固体酸とバインダーとを含む混合物を成形した後、焼成することにより製造することができる。固体酸の配合割合は、担体全量を基準として1〜70質量%であることが好ましく、2〜60質量%であることがより好ましい。また、担体がUSYゼオライトを含んで構成される場合、USYゼオライトの配合量は、担体全量を基準として0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。更に、担体がUSYゼオライト及びアルミナボリアを含んで構成される場合、USYゼオライトとアルミナボリアとの配合比(USYゼオライト/アルミナボリア)は、質量比で0.03〜1であることが好ましい。また、担体がUSYゼオライト及びシリカアルミナを含んで構成される場合、USYゼオライトとシリカアルミナとの配合比(USYゼオライト/シリカアルミナ)は、質量比で0.03〜1であることが好ましい。   The catalyst carrier can be produced by molding a mixture containing the solid acid and the binder and then firing the mixture. The blending ratio of the solid acid is preferably 1 to 70% by mass and more preferably 2 to 60% by mass based on the total amount of the carrier. Moreover, when a support | carrier is comprised including USY zeolite, it is preferable that the compounding quantity of USY zeolite is 0.1-10 mass% on the basis of the support whole quantity, and it is 0.5-5 mass%. More preferred. Furthermore, when the carrier is configured to contain USY zeolite and alumina boria, the blending ratio of USY zeolite to alumina boria (USY zeolite / alumina boria) is preferably 0.03 to 1 in terms of mass ratio. Moreover, when a support | carrier is comprised including USY zeolite and a silica alumina, it is preferable that the compounding ratio (USY zeolite / silica alumina) of USY zeolite and a silica alumina is 0.03-1.

バインダーとしては、特に制限はないが、アルミナ、シリカ、シリカアルミナ、チタニア、マグネシアが好ましく、アルミナがより好ましい。バインダーの配合量は、担体全量を基準として20〜98質量%であることが好ましく、30〜96質量%であることがより好ましい。   The binder is not particularly limited, but alumina, silica, silica alumina, titania and magnesia are preferable, and alumina is more preferable. The blending amount of the binder is preferably 20 to 98% by mass, more preferably 30 to 96% by mass based on the total amount of the carrier.

混合物の焼成温度は、400〜550℃の範囲内であることが好ましく、470〜530℃の範囲内であることがより好ましく、490〜530℃の範囲内であることが更に好ましい。   The firing temperature of the mixture is preferably in the range of 400 to 550 ° C, more preferably in the range of 470 to 530 ° C, and still more preferably in the range of 490 to 530 ° C.

第VIII族の金属としては、具体的にはコバルト、ニッケル、ロジウム、パラジウム、イリジウム、白金などが挙げられる。これらのうち、ニッケル、パラジウム及び白金の中から選ばれる金属を、1種を単独で又は2種以上を組み合わせて用いることが好ましい。   Specific examples of the Group VIII metal include cobalt, nickel, rhodium, palladium, iridium, and platinum. Among these, it is preferable to use a metal selected from nickel, palladium, and platinum alone or in combination of two or more.

これらの金属は、含浸やイオン交換等の常法によって上述の担体に担持させることができる。担持する金属量は特に制限はないが、金属の合計量が担体に対して0.1〜3.0質量%であることが好ましい。   These metals can be supported on the above-mentioned carrier by a conventional method such as impregnation or ion exchange. The amount of metal to be supported is not particularly limited, but the total amount of metal is preferably 0.1 to 3.0% by mass with respect to the support.

重質なワックス分の水素化分解は、次のような反応条件下で行うことができる。水素分圧としては、0.5〜12MPaが挙げられるが、1.0〜5.0MPaが好ましい。中間留分の液空間速度(LHSV)としては、0.1〜10.0h−1が挙げられるが、0.3〜3.5h−1が好ましい。水素/油比としては、特に制限はないが、50〜1000NL/Lが挙げられ、70〜800NL/Lが好ましい。 The hydrocracking of heavy wax can be performed under the following reaction conditions. Examples of the hydrogen partial pressure include 0.5 to 12 MPa, but 1.0 to 5.0 MPa is preferable. The liquid hourly space velocity of the middle fraction (LHSV), including but 0.1~10.0h -1, 0.3~3.5h -1 are preferred. Although there is no restriction | limiting in particular as hydrogen / oil ratio, 50-1000NL / L is mentioned, 70-800NL / L is preferable.

また、本実施形態においては、触媒と接触後のワックス分における沸点360℃以下の留分の含有量が45〜85質量%となるようにワックス分を水素化分解することが好ましい。   In this embodiment, it is preferable to hydrocrack the wax so that the content of the fraction having a boiling point of 360 ° C. or less in the wax after contact with the catalyst is 45 to 85% by mass.

触媒と接触前のワックス分及び接触後のワックス分における、沸点360℃以下の留分の含有量は、例えば、上記反応塔の入口及び出口でサンプリングしたものをガスクロマトグラフィー等、公知の方法により分析し、求めることができる。   The content of the fraction having a boiling point of 360 ° C. or lower in the wax content before contact with the catalyst and the wax content after contact is measured by a known method such as gas chromatography using samples sampled at the inlet and outlet of the reaction tower. Can be analyzed and determined.

なお、本実施形態の炭化水素油の製造方法においては、上述の方法により、触媒と接触前のワックス分及び接触後のワックス分における沸点360℃以下の留分の含有量が45〜85質量%となる反応条件を予め決定し、この条件で水素化分解を行ってもよい。   In addition, in the manufacturing method of the hydrocarbon oil of this embodiment, content of the fraction of the boiling point of 360 degrees C or less in the wax part before a catalyst and a wax part after a contact by the above-mentioned method is 45-85 mass%. The reaction conditions to be determined may be determined in advance, and the hydrogenolysis may be performed under these conditions.

(炭化水素油の分留)
水素化処理装置20から流出する水素化処理後の中間留分(以下、「水素化精製物」という場合もある)、及び、水素化処理装置30から流出する水素化処理後のワックス分(以下、「水素化分解生成物」という場合ものある)は、それぞれ気液分離槽22、32を経てから第2の蒸留塔40に移送され、第2の蒸留塔40で一緒に蒸留され、所望の留分へと分留される。
(Distillation of hydrocarbon oil)
The middle distillate after hydrotreating flowing out from the hydrotreating apparatus 20 (hereinafter also referred to as “hydrotreated product”) and the wax fraction after hydrotreating flowing out from the hydrotreating apparatus 30 (hereinafter referred to as “hydrotreated product”). , In some cases referred to as “hydrocracking products”) are transferred to the second distillation column 40 through the gas-liquid separation tanks 22 and 32, respectively, and are distilled together in the second distillation column 40 to obtain a desired It is fractionated into fractions.

気液分離槽22、32では、上記の水素化精製物及び水素化分解生成物が、例えば、未反応水素ガスや炭素数4以下の炭化水素からなる軽質炭化水素ガスと、炭素数5以上の炭化水素からなる液状の炭化水素組成油とに分離される。この場合、液状の炭化水素組成油が、水素化精製物及び水素化分解生成物として蒸留塔40に移送される。気液分離槽としては、公知のものを使用できる。   In the gas-liquid separation tanks 22 and 32, the hydrorefined product and the hydrocracked product are, for example, light hydrocarbon gas composed of unreacted hydrogen gas or hydrocarbon having 4 or less carbon atoms, and carbon atoms having 5 or more carbon atoms. It is separated into a liquid hydrocarbon composition oil composed of hydrocarbons. In this case, the liquid hydrocarbon composition oil is transferred to the distillation column 40 as a hydrorefined product and a hydrocracked product. A well-known thing can be used as a gas-liquid separation tank.

第2の蒸留塔40では、2つのカットポイントを設定して水素化精製物及び水素化分解生成物を分留することにより、第1のカットポイント以下の留分を軽質留分、第1のカットポイントから第2のカットポイントまでの留分を中間留分、第2のカットポイント以上の留分を塔底油(上記の重質なワックス分)として得ることができる。本実施形態においては、沸点150〜360℃の留分の含有量が90質量%以上且つ沸点350℃以上の留分の含有量が5質量%以上となるように分留された中間留分を本発明に係る炭化水素油として得る。   In the second distillation column 40, by setting two cut points and fractionating the hydrorefined product and the hydrocracked product, the fraction below the first cut point is divided into a light fraction, The fraction from the cut point to the second cut point can be obtained as an intermediate fraction, and the fraction above the second cut point can be obtained as tower bottom oil (the above heavy wax content). In the present embodiment, an intermediate fraction that has been fractionated so that the content of a fraction having a boiling point of 150 to 360 ° C. is 90% by mass or more and the content of a fraction having a boiling point of 350 ° C. or more is 5% by mass or more. Obtained as a hydrocarbon oil according to the present invention.

上記第1のカットポイント及び上記第2のカットポイントはそれぞれ、135〜170℃の範囲内及び345〜375℃の範囲内に設定することが好ましく、145〜155℃の範囲内及び360〜375℃の範囲内に設定することがより好ましい。   The first cut point and the second cut point are preferably set within the range of 135 to 170 ° C and the range of 345 to 375 ° C, respectively, within the range of 145 to 155 ° C and 360 to 375 ° C. It is more preferable to set within the range.

なお、第2の蒸留塔40におけるカットポイントの数は、2つに限定されるものではなく、上述の本発明に係る炭化水素油が得られるのであれば3つ以上設定することもできる。   The number of cut points in the second distillation column 40 is not limited to two, and can be set to three or more as long as the above-described hydrocarbon oil according to the present invention is obtained.

上記で得られた中間留分、すなわち本発明に係る炭化水素油は、回収流路8から回収される。また、中間留分よりも軽質なナフサ留分は流路7から系外へと取り出され、一方、中間留分よりも重質なワックス分は循環流路9を通じて水素化処理装置30に供給され、必要に応じて水素化分解される。   The middle distillate obtained above, that is, the hydrocarbon oil according to the present invention is recovered from the recovery flow path 8. A naphtha fraction that is lighter than the middle distillate is taken out of the system from the flow path 7, while a wax that is heavier than the middle distillate is supplied to the hydrotreating apparatus 30 through the circulation flow path 9. If necessary, it is hydrocracked.

上述した本発明の炭化水素油の製造方法によれば、流動点が−7.5℃以下であり、且つ、30℃での動粘度が2.5mm/s以上である炭化水素油を高収率で得ることができる。このような炭化水素油は、例えば、環境低負荷型ディーゼル燃料の基材として好適に利用される。 According to the above-described method for producing a hydrocarbon oil of the present invention, a hydrocarbon oil having a pour point of −7.5 ° C. or lower and a kinematic viscosity at 30 ° C. of 2.5 mm 2 / s or higher is high. The yield can be obtained. Such a hydrocarbon oil is suitably used as a base material for an environmentally low load diesel fuel, for example.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<触媒の調整>
(触媒1)
平均粒子径1.1μmのUSYゼオライト(シリカ/アルミナのモル比:37)、シリカアルミナ(シリカ/アルミナのモル比:14)及びアルミナバインダーを重量比3:57:40で混合混練し、これを直径約1.6mm、長さ約4mmの円柱状に成型した後、500℃で1時間焼成し担体を得た。この担体に、塩化白金酸水溶液を含浸し、白金を担持した。これを120℃で3時間乾燥し、次いで500℃で1時間焼成することで触媒Aを得た。なお、白金の担持量は、担体に対して0.8質量%であった。
<Catalyst adjustment>
(Catalyst 1)
USY zeolite having an average particle diameter of 1.1 μm (silica / alumina molar ratio: 37), silica alumina (silica / alumina molar ratio: 14) and alumina binder were mixed and kneaded at a weight ratio of 3:57:40. After forming into a cylindrical shape having a diameter of about 1.6 mm and a length of about 4 mm, the carrier was obtained by firing at 500 ° C. for 1 hour. This carrier was impregnated with an aqueous chloroplatinic acid solution to carry platinum. This was dried at 120 ° C. for 3 hours and then calcined at 500 ° C. for 1 hour to obtain Catalyst A. The supported amount of platinum was 0.8% by mass with respect to the carrier.

<ディーゼル燃料基材用炭化水素油の製造>
(実施例1)
(FT合成油の分留)
FT合成法により得られた生成油(FT合成油)(沸点150℃以上の炭化水素の含有量:84質量%、沸点360℃以上の炭化水素の含有量:42質量%、いずれの含有量もFT合成油全量(炭素数5以上の炭化水素の合計)基準)を蒸留塔で、沸点150℃以下の軽質留分と、沸点150〜350℃の中間留分(沸点150〜360℃の炭化水素の含有量100質量%、沸点350℃以上の炭化水素の含有量4質量%、沸点300〜350℃の炭化水素の含有量19質量%、沸点150℃以下の炭化水素含有量0質量%)と、塔底残渣重質ワックス分(沸点350℃以上の留分に相当)とに分離した。
<Manufacture of hydrocarbon oil for diesel fuel base>
Example 1
(Fractionation of FT synthetic oil)
Product oil obtained by the FT synthesis method (FT synthetic oil) (content of hydrocarbons having a boiling point of 150 ° C. or higher: 84 mass%, content of hydrocarbons having a boiling point of 360 ° C. or higher: 42 mass%, both contents The total amount of FT synthetic oil (based on the sum of hydrocarbons having 5 or more carbon atoms) is distilled in a distillation column, a light fraction having a boiling point of 150 ° C. or less and an intermediate fraction having a boiling point of 150 to 350 ° C. (hydrocarbon having a boiling point of 150 to 360 ° C. Content of hydrocarbons having a boiling point of 350 ° C or higher, 4 mass% of hydrocarbons, a content of hydrocarbons having a boiling point of 300 to 350 ° C of 19 mass%, and a hydrocarbon content of boiling point of 150 ° C or lower of 0 mass%) The residue was separated into a heavy wax component (corresponding to a fraction having a boiling point of 350 ° C. or higher).

(中間留分の水素化処理(水素化精製))
触媒A(150ml)を固定床の流通式反応器に充填し、上記で得られた中間留分を反応塔の塔頂より300ml/hの速度で供給して、水素気流下、下記の反応条件で水素化処理した。
(Hydrogenation of middle distillate (hydrorefining))
Catalyst A (150 ml) was charged into a fixed bed flow reactor, and the middle distillate obtained above was fed from the top of the reaction tower at a rate of 300 ml / h. Hydrogenated.

すなわち、中間留分に対して水素/油比340NL/Lで水素を塔頂より供給し、反応塔圧力が入口圧3.0MPaで一定となるように背圧弁を調節し、この条件にて処理後の中間留分(反応生成物)中の沸点150℃以下の炭化水素の含有率が5質量%となるように反応温度(触媒床重量平均温度)を調節した。このときの反応温度は308℃であった。なお、上記含有率は、水素化処理後の中間留分(反応生成物)のガスクロマトグラフィー測定により確認した。   That is, hydrogen was supplied from the top of the middle fraction at a hydrogen / oil ratio of 340 NL / L, and the back pressure valve was adjusted so that the reaction tower pressure was constant at an inlet pressure of 3.0 MPa. The reaction temperature (catalyst bed weight average temperature) was adjusted so that the content of hydrocarbons having a boiling point of 150 ° C. or lower in the later middle distillate (reaction product) was 5% by mass. The reaction temperature at this time was 308 degreeC. In addition, the said content rate was confirmed by the gas chromatography measurement of the middle distillate (reaction product) after a hydrogenation process.

(重質ワックス分の水素化処理(水素化分解))
一方、別の反応塔において、触媒A(150ml)を固定床の流通式反応器に充填し、上記で得られた塔底残渣重質ワックス分を反応塔の塔頂より300ml/hの速度で供給して、水素気流下、下記の反応条件で水素化処理した。
(Hydroprocessing of heavy wax (hydrocracking))
On the other hand, in another reaction tower, catalyst A (150 ml) was charged into a fixed bed flow-type reactor, and the heavy residue in the tower bottom was obtained at a rate of 300 ml / h from the top of the reaction tower. Then, hydrogenation was performed under the following reaction conditions in a hydrogen stream.

すなわち、ワックス分に対して水素/油比680NL/Lで水素を塔頂より供給し、反応塔圧力が入口圧4.0MPaで一定となるように背圧弁を調節し、この条件にて処理後のワックス分(分解生成物)中の沸点360℃以下の分解生成物含有量の合計が約70質量%となるように反応温度(触媒床重量平均温度)を調節した。このときの反応温度は320℃であった。なお、上記含有量は、水素化処理後のワックス分(分解生成物)をガスクロマトグラフィー測定し、その蒸留性状を分析することにより確認した。   That is, hydrogen was supplied from the top of the column at a hydrogen / oil ratio of 680 NL / L with respect to the wax content, and the back pressure valve was adjusted so that the reaction column pressure was constant at an inlet pressure of 4.0 MPa. The reaction temperature (catalyst bed weight average temperature) was adjusted so that the total content of decomposition products having a boiling point of 360 ° C. or less in the wax content (decomposition product) of the mixture was about 70% by mass. The reaction temperature at this time was 320 degreeC. The content was confirmed by measuring the wax content (decomposition product) after hydrogenation by gas chromatography and analyzing its distillation properties.

(水素化精製物及び水素化分解生成物の分留)
上記で得られた、中間留分の水素化精製物とワックス分の水素化分解生成物とを、それぞれの得率どおりの割合で混合し、この混合物を蒸留塔で分留した。沸点150〜360℃の留分を実施例1のディーゼル燃料基材用炭化水素油として得た。得られた炭化水素油について、流動点(℃)及び30℃での動粘度(mm/s)を測定した。結果を表1に示す。なお、流動点はJIS K2269試験法に従って測定し、30℃での動粘度はJIS K2283試験法に従って測定した。
(Fractionation of hydrorefined products and hydrocracked products)
The middle distillate hydrofinished product and wax hydrocracked product obtained above were mixed in proportions according to their respective yields, and this mixture was fractionated in a distillation column. A fraction having a boiling point of 150 to 360 ° C. was obtained as the hydrocarbon oil for diesel fuel base material of Example 1. About the obtained hydrocarbon oil, the pour point (° C.) and the kinematic viscosity (mm 2 / s) at 30 ° C. were measured. The results are shown in Table 1. The pour point was measured according to the JIS K2269 test method, and the kinematic viscosity at 30 ° C. was measured according to the JIS K2283 test method.

Figure 2007238870
Figure 2007238870

(実施例2)
実施例1における水素化精製物及び水素化分解生成物の分留で沸点150〜360℃の留分をディーゼル燃料基材用炭化水素油として得た代わりに、沸点150〜380℃の留分をディーゼル燃料基材用炭化水素油として得たこと以外は実施例1と同様にして、実施例2のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表1に示す。
(Example 2)
Instead of obtaining a fraction having a boiling point of 150 to 360 ° C. as a hydrocarbon oil for a diesel fuel base material by fractionation of the hydrorefined product and hydrocracking product in Example 1, a fraction having a boiling point of 150 to 380 ° C. A hydrocarbon oil for diesel fuel base material of Example 2 was obtained in the same manner as Example 1 except that it was obtained as a hydrocarbon oil for diesel fuel base material. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
実施例1における水素化精製物及び水素化分解生成物の分留で沸点150〜360℃の留分をディーゼル燃料基材用炭化水素油として得た代わりに、沸点145〜380℃の留分をディーゼル燃料基材用炭化水素油として得たこと以外は実施例1と同様にして、実施例3のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表1に示す。
(Example 3)
Instead of obtaining a fraction having a boiling point of 150 to 360 ° C. as a hydrocarbon oil for a diesel fuel base material by fractionation of the hydrorefined product and hydrocracking product in Example 1, a fraction having a boiling point of 145 to 380 ° C. A hydrocarbon oil for diesel fuel base material of Example 3 was obtained in the same manner as in Example 1 except that it was obtained as a hydrocarbon oil for diesel fuel base material. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 1.

(実施例4)
実施例1における水素化精製物及び水素化分解生成物の分留で沸点150〜360℃の留分をディーゼル燃料基材用炭化水素油として得た代わりに、沸点140〜385℃の留分をディーゼル燃料基材用炭化水素油として得たこと以外は実施例1と同様にして、実施例4のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表1に示す。
Example 4
Instead of obtaining a fraction having a boiling point of 150 to 360 ° C. as a hydrocarbon oil for a diesel fuel base material by fractionation of the hydrorefined product and hydrocracking product in Example 1, a fraction having a boiling point of 140 to 385 ° C. A hydrocarbon oil for diesel fuel base material of Example 4 was obtained in the same manner as in Example 1 except that it was obtained as a hydrocarbon oil for diesel fuel base material. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 1.

(実施例5)
実施例1におけるFT合成油の分留で、中間留分として沸点150〜350℃の留分の代わりに沸点150〜356℃の留分(沸点350℃以上の炭化水素の含有量が4質量%)を得、塔底残渣ワックス分として沸点356℃以上の留分に相当するワックス分を得たこと以外は実施例1と同様にして、実施例5のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表1に示す。
(Example 5)
In the fractionation of FT synthetic oil in Example 1, instead of a fraction having a boiling point of 150 to 350 ° C. as a middle fraction, a fraction having a boiling point of 150 to 356 ° C. (the content of hydrocarbon having a boiling point of 350 ° C. or higher is 4% by mass) The hydrocarbon oil for diesel fuel base material of Example 5 was obtained in the same manner as Example 1 except that the wax content corresponding to the fraction having a boiling point of 356 ° C. or higher was obtained as the residue wax residue at the bottom of the column. It was. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
実施例1におけるFT合成油の分留で、中間留分として沸点150〜350℃の留分の代わりに沸点150〜362℃の留分(沸点350℃以上の炭化水素の含有量が10質量%)を得、塔底残渣ワックス分として沸点362℃以上の留分に相当するワックス分を得たこと以外は実施例1と同様にして、比較例1のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表1に示す。
(Comparative Example 1)
In the fractionation of FT synthetic oil in Example 1, instead of a fraction having a boiling point of 150 to 350 ° C. as a middle fraction, a fraction having a boiling point of 150 to 362 ° C. (the content of hydrocarbon having a boiling point of 350 ° C. or higher is 10% by mass) And a hydrocarbon oil for a diesel fuel base material of Comparative Example 1 was obtained in the same manner as in Example 1 except that the wax content corresponding to the fraction having a boiling point of 362 ° C. or higher was obtained as the bottom residue wax content. It was. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
実施例1におけるFT合成油の分留で、中間留分として沸点150〜350℃の留分の代わりに沸点150〜375℃の留分(沸点350℃以上の炭化水素の含有量が20質量%)を得、塔底残渣ワックス分として沸点375℃以上の留分に相当するワックス分を得たこと以外は実施例1と同様にして、比較例2のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表1に示す。
(Comparative Example 2)
In the fractionation of FT synthetic oil in Example 1, instead of a fraction having a boiling point of 150 to 350 ° C. as a middle fraction, a fraction having a boiling point of 150 to 375 ° C. (the content of hydrocarbon having a boiling point of 350 ° C. or higher is 20% by mass) And a hydrocarbon oil for a diesel fuel base material of Comparative Example 2 was obtained in the same manner as in Example 1 except that a wax content corresponding to a fraction having a boiling point of 375 ° C. or higher was obtained as a bottom residue wax content. It was. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
実施例1における水素化精製物及び水素化分解生成物の分留で沸点150〜360℃の留分をディーゼル燃料基材用炭化水素油として得た代わりに、沸点180〜330℃の留分をディーゼル燃料基材用炭化水素油として得たこと以外は実施例1と同様にして、比較例3のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表2に示す。
(Comparative Example 3)
Instead of obtaining a fraction having a boiling point of 150 to 360 ° C. as a hydrocarbon oil for a diesel fuel base material by fractionation of the hydrorefined product and hydrocracking product in Example 1, a fraction having a boiling point of 180 to 330 ° C. A hydrocarbon oil for diesel fuel base material of Comparative Example 3 was obtained in the same manner as in Example 1 except that it was obtained as a hydrocarbon oil for diesel fuel base material. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 2.

Figure 2007238870
Figure 2007238870

(比較例4)
実施例1における中間留分を使用せず、塔底残渣ワックス分の水素化分解生成物のみを蒸留塔で分留し、沸点150〜370℃の留分をディーゼル燃料基材用炭化水素油として得たこと以外は実施例1と同様にして、比較例4のディーゼル燃料基材用炭化水素油を得た。得られた炭化水素油について、実施例1と同様の分析を行った。結果を表2に示す。
(Comparative Example 4)
The middle distillate in Example 1 is not used, but only the hydrocracking product of the bottom residue wax is fractionated in the distillation column, and the fraction having a boiling point of 150 to 370 ° C. is used as the hydrocarbon oil for the diesel fuel base material. A hydrocarbon oil for a diesel fuel base material of Comparative Example 4 was obtained in the same manner as Example 1 except that it was obtained. The obtained hydrocarbon oil was analyzed in the same manner as in Example 1. The results are shown in Table 2.

本発明の炭化水素油の製造方法を実施する炭化水素油製造装置の一例を示すフロー図である。It is a flowchart which shows an example of the hydrocarbon oil manufacturing apparatus which enforces the manufacturing method of the hydrocarbon oil of this invention.

符号の説明Explanation of symbols

1…FT合成油導入流路、2,4,6…流路、3…中間留分流路、5…ワックス分流路、7,8…回収流路、9…循環流路、10…第1の蒸留塔、20,30…水素化処理装置、22,32…気液分離槽、40…第2の蒸留塔、100…炭化水素油製造装置。   DESCRIPTION OF SYMBOLS 1 ... FT synthetic oil introduction flow path, 2, 4, 6 ... Flow path, 3 ... Middle distillate flow path, 5 ... Wax distribution flow path, 7, 8 ... Recovery flow path, 9 ... Circulation flow path, 10 ... First Distillation tower, 20, 30 ... hydrotreating apparatus, 22, 32 ... gas-liquid separation tank, 40 ... second distillation tower, 100 ... hydrocarbon oil production apparatus.

Claims (6)

フィッシャー・トロプシュ合成法により得られる合成油を分留し、沸点150〜360℃の留分の含有量が90質量%以上であり且つ沸点350℃以上の留分の含有量が5質量%以下である中間留分と、当該中間留分よりも重質なワックス分と、を得、
前記中間留分および前記ワックス分を、それぞれ、水素存在下、水素化触媒と接触させた後、混合し分留して沸点150〜360℃の留分の含有量が86質量%以上であり且つ沸点350℃以上の留分の含有量が5質量%以上である炭化水素油を得ることを特徴とする炭化水素油の製造方法。
Synthetic oil obtained by the Fischer-Tropsch synthesis method is fractionated, and the content of a fraction having a boiling point of 150 to 360 ° C. is 90% by mass or more and the content of a fraction having a boiling point of 350 ° C. or more is 5% by mass or less. Obtaining a middle distillate and a heavier wax than the middle distillate,
The middle fraction and the wax fraction are each brought into contact with a hydrogenation catalyst in the presence of hydrogen, mixed and fractionated, and the content of a fraction having a boiling point of 150 to 360 ° C. is 86% by mass or more, and A method for producing a hydrocarbon oil, comprising obtaining a hydrocarbon oil having a fraction having a boiling point of 350 ° C or higher of 5% by mass or more.
前記水素化触媒に接触後の前記中間留分における沸点150℃以下の炭化水素の含有率(質量%)が接触前のものよりも3〜9質量%大きくなるように前記中間留分を水素化処理することを特徴とする請求項1に記載の炭化水素油の製造方法。   Hydrogenate the middle distillate so that the content (mass%) of hydrocarbons having a boiling point of 150 ° C. or less in the middle distillate after contact with the hydrogenation catalyst is 3 to 9 mass% higher than that before contact. The method for producing a hydrocarbon oil according to claim 1, wherein the hydrocarbon oil is treated. 前記水素化触媒に接触後の前記ワックス分における沸点360℃以下の留分の含有量が45〜85質量%となるように前記ワックス分を水素化処理することを特徴とする請求項1又は2に記載の炭化水素油の製造方法。   The wax is hydrotreated so that the content of a fraction having a boiling point of 360 ° C. or less in the wax after contact with the hydrogenation catalyst is 45 to 85% by mass. The manufacturing method of hydrocarbon oil as described in any one of. 前記中間留分と接触させる水素化触媒および前記ワックス分と接触させる水素化触媒がそれぞれ、結晶性ゼオライト0.1質量%〜80.0質量%と、耐熱性を有する無定形金属酸化物0.1質量%〜60.0質量%と、を含む担体、および、当該担体上に担持された周期律表第VIII族に属する金属からなる群より選択される1種類以上の金属を含むものであることを特徴とする請求項1〜3のいずれか1項に記載の炭化水素油の製造方法。   The hydrogenation catalyst to be brought into contact with the middle distillate and the hydrogenation catalyst to be brought into contact with the wax are 0.1% by mass to 80.0% by mass of crystalline zeolite and an amorphous metal oxide having heat resistance. 1% to 60.0% by mass of a carrier, and one or more metals selected from the group consisting of metals belonging to Group VIII of the Periodic Table carried on the carrier. The manufacturing method of the hydrocarbon oil of any one of Claims 1-3 characterized by the above-mentioned. 前記中間留分と前記水素化触媒とを接触させるときの反応温度が200〜370℃、水素分圧が1.0〜5.0MPaおよび液空間速度が0.3〜3.5h−1であり、且つ、前記ワックス分と前記水素化触媒とを接触させるときの反応温度が200〜370℃、水素分圧が1.0〜5.0MPaおよび液空間速度が0.3〜3.5h−1であることを特徴とする請求項1〜4のいずれか1項に記載の炭化水素油の製造方法。 The reaction temperature when contacting the middle distillate and the hydrogenation catalyst is 200 to 370 ° C., the hydrogen partial pressure is 1.0 to 5.0 MPa, and the liquid space velocity is 0.3 to 3.5 h −1 . And the reaction temperature when the wax component and the hydrogenation catalyst are brought into contact is 200 to 370 ° C., the hydrogen partial pressure is 1.0 to 5.0 MPa, and the liquid space velocity is 0.3 to 3.5 h −1. It is these, The manufacturing method of the hydrocarbon oil of any one of Claims 1-4 characterized by the above-mentioned. 請求項1〜5のいずれかの製造方法により得られる炭化水素油であって、流動点が−7.5℃以下であり、且つ、30℃での動粘度が2.5mm/s以上であることを特徴とする炭化水素油。 It is hydrocarbon oil obtained by the manufacturing method in any one of Claims 1-5, Comprising: A pour point is -7.5 degrees C or less, and kinematic viscosity in 30 degrees C is 2.5 mm < 2 > / s or more. A hydrocarbon oil characterized by being.
JP2006066465A 2006-03-10 2006-03-10 Method for producing hydrocarbon oil and hydrocarbon oil Expired - Fee Related JP4908022B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006066465A JP4908022B2 (en) 2006-03-10 2006-03-10 Method for producing hydrocarbon oil and hydrocarbon oil
MYPI20083399 MY148585A (en) 2006-03-10 2007-02-14 Process for production of hydrocarbon oil and hydrocarbon oil
RU2008140146/04A RU2425859C2 (en) 2006-03-10 2007-02-14 Petroleum oil and petroleum oil obtaining method
PCT/JP2007/052618 WO2007105400A1 (en) 2006-03-10 2007-02-14 Process for production of hydrocarbon oil and hydrocarbon oil
CN200780008543.6A CN101400768B (en) 2006-03-10 2007-02-14 Process for production of hydrocarbon oil and hydrocarbon oil
AU2007226057A AU2007226057B2 (en) 2006-03-10 2007-02-14 Process for production of hydrocarbon oil and hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006066465A JP4908022B2 (en) 2006-03-10 2006-03-10 Method for producing hydrocarbon oil and hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2007238870A true JP2007238870A (en) 2007-09-20
JP4908022B2 JP4908022B2 (en) 2012-04-04

Family

ID=38509238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006066465A Expired - Fee Related JP4908022B2 (en) 2006-03-10 2006-03-10 Method for producing hydrocarbon oil and hydrocarbon oil

Country Status (6)

Country Link
JP (1) JP4908022B2 (en)
CN (1) CN101400768B (en)
AU (1) AU2007226057B2 (en)
MY (1) MY148585A (en)
RU (1) RU2425859C2 (en)
WO (1) WO2007105400A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509943A (en) * 2008-07-25 2012-04-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Adaptive vacuum gas oil conversion method
JP5090457B2 (en) * 2007-09-28 2012-12-05 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing diesel fuel
JP5159785B2 (en) * 2007-09-28 2013-03-13 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing diesel fuel substrate and resulting diesel fuel substrate
CN104673383A (en) * 2015-03-03 2015-06-03 上海兖矿能源科技研发有限公司 Method for producing high-melting-point wax through fischer-tropsch synthesis product

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4908037B2 (en) * 2006-03-30 2012-04-04 Jx日鉱日石エネルギー株式会社 Method for treating synthetic oil, hydrocarbon oil for kerosene smoke point improver and hydrocarbon oil for diesel fuel base material
CN105579561A (en) * 2013-09-30 2016-05-11 国际壳牌研究有限公司 Fischer-tropsch derived gas oil fraction
EP3052589A1 (en) * 2013-09-30 2016-08-10 Shell Internationale Research Maatschappij B.V. Fischer-tropsch derived gas oil
US20160215229A1 (en) * 2013-09-30 2016-07-28 Shell Oil Company Fischer-tropsch derived gas oil fraction
CN105579562A (en) * 2013-09-30 2016-05-11 国际壳牌研究有限公司 Biocidal resin composition including one or a plurality of resins selected from mf, uf, pf, muf and phenolic resins; and more than one soluble copper salt
US20160215230A1 (en) * 2013-09-30 2016-07-28 Shell Oil Company Fischer-tropsch derived gas oil fraction
EP3052591A1 (en) * 2013-09-30 2016-08-10 Shell Internationale Research Maatschappij B.V. Fischer-tropsch derived gas oil fraction
CN104673384B (en) * 2015-03-02 2016-09-14 武汉凯迪工程技术研究总院有限公司 A kind of hydrofinishing process of Low Temperature Fischer Tropsch full distillate oil fecund intermediate oil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049812A1 (en) * 1999-12-29 2001-07-12 Chevron U.S.A. Inc. A diesel fuel having a very high iso-paraffin to normal paraffin mole ratio
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons
WO2004076598A1 (en) * 2003-01-27 2004-09-10 Institut Francais Du Petrole Method for the production of middle distillates by hydroisomerisation et hydrocracking of charges arrising from the fischer-tropsch method
JP2005279382A (en) * 2004-03-29 2005-10-13 Nippon Oil Corp Hydrocracking catalyst and method of manufacturing liquid hydrocarbon
JP2006015336A (en) * 2004-06-01 2006-01-19 Idemitsu Kosan Co Ltd Catalyst for hydrocracking wax-containing raw material oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ204088A (en) * 1982-05-18 1986-03-14 Mobil Oil Corp Catalytic isomerisation of long chain n-paraffins
US4919786A (en) * 1987-12-18 1990-04-24 Exxon Research And Engineering Company Process for the hydroisomerization of was to produce middle distillate products (OP-3403)
US5689031A (en) * 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US5866748A (en) * 1996-04-23 1999-02-02 Exxon Research And Engineering Company Hydroisomerization of a predominantly N-paraffin feed to produce high purity solvent compositions
US5814109A (en) * 1997-02-07 1998-09-29 Exxon Research And Engineering Company Diesel additive for improving cetane, lubricity, and stability
EP1835011A1 (en) * 1998-10-05 2007-09-19 Sasol Technology (Pty) Ltd Biodegradable middle distillates and production thereof
JP3963311B2 (en) * 2002-06-14 2007-08-22 株式会社ジャパンエナジー Refrigerator oil composition
BRPI0414040A (en) * 2003-09-03 2006-10-24 Shell Int Research use of a fuel derived from fischer-tropsch, and, fuel composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049812A1 (en) * 1999-12-29 2001-07-12 Chevron U.S.A. Inc. A diesel fuel having a very high iso-paraffin to normal paraffin mole ratio
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons
WO2004076598A1 (en) * 2003-01-27 2004-09-10 Institut Francais Du Petrole Method for the production of middle distillates by hydroisomerisation et hydrocracking of charges arrising from the fischer-tropsch method
JP2005279382A (en) * 2004-03-29 2005-10-13 Nippon Oil Corp Hydrocracking catalyst and method of manufacturing liquid hydrocarbon
JP2006015336A (en) * 2004-06-01 2006-01-19 Idemitsu Kosan Co Ltd Catalyst for hydrocracking wax-containing raw material oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090457B2 (en) * 2007-09-28 2012-12-05 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing diesel fuel
JP5159785B2 (en) * 2007-09-28 2013-03-13 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing diesel fuel substrate and resulting diesel fuel substrate
US8597502B2 (en) 2007-09-28 2013-12-03 Japan Oil, Gas And Metals National Corporation Method of manufacturing diesel fuel base stock and diesel fuel base stock thereof
US8734636B2 (en) 2007-09-28 2014-05-27 Japan Oil, Gas And Metals National Corporation Method of manufacturing diesel fuel
JP2012509943A (en) * 2008-07-25 2012-04-26 エクソンモービル リサーチ アンド エンジニアリング カンパニー Adaptive vacuum gas oil conversion method
CN104673383A (en) * 2015-03-03 2015-06-03 上海兖矿能源科技研发有限公司 Method for producing high-melting-point wax through fischer-tropsch synthesis product

Also Published As

Publication number Publication date
WO2007105400A1 (en) 2007-09-20
AU2007226057A1 (en) 2007-09-20
AU2007226057B2 (en) 2011-12-01
RU2425859C2 (en) 2011-08-10
CN101400768B (en) 2012-08-22
CN101400768A (en) 2009-04-01
RU2008140146A (en) 2010-04-20
JP4908022B2 (en) 2012-04-04
MY148585A (en) 2013-04-30

Similar Documents

Publication Publication Date Title
JP4908022B2 (en) Method for producing hydrocarbon oil and hydrocarbon oil
JP5090457B2 (en) Method for producing diesel fuel
JP5568619B2 (en) Method for producing synthetic naphtha
JP4908038B2 (en) Method for treating synthetic oil, hydrocarbon oil for hydrogen production and hydrocarbon oil for diesel fuel base material
JP5159785B2 (en) Method for producing diesel fuel substrate and resulting diesel fuel substrate
JP4908037B2 (en) Method for treating synthetic oil, hydrocarbon oil for kerosene smoke point improver and hydrocarbon oil for diesel fuel base material
WO2007113967A1 (en) Method for treatment of synthetic oil, process for production of hydrocarbon oil, hydrocarbon oil for hydrogen production, hydrocarbon oil for the smoke point improver for kerosene, and hydrocarbon oil for diesel fuel base
JP4848191B2 (en) Method for hydrotreating synthetic oil
JP4783645B2 (en) Method for hydrotreating wax
JP4886338B2 (en) Wax hydrocracking method and fuel substrate manufacturing method
JP4711849B2 (en) Manufacturing method of fuel substrate
CA2867573C (en) Diesel fuel or diesel fuel base stock and production method thereof
JP2007246663A (en) Method for hydrotreating
JP2007270060A (en) Method for hydrogenating wax

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees