JP2007238829A - Foamable resin composition, method for foaming the same and method for producing foamed insulated electric wire - Google Patents

Foamable resin composition, method for foaming the same and method for producing foamed insulated electric wire Download PDF

Info

Publication number
JP2007238829A
JP2007238829A JP2006065145A JP2006065145A JP2007238829A JP 2007238829 A JP2007238829 A JP 2007238829A JP 2006065145 A JP2006065145 A JP 2006065145A JP 2006065145 A JP2006065145 A JP 2006065145A JP 2007238829 A JP2007238829 A JP 2007238829A
Authority
JP
Japan
Prior art keywords
resin composition
foaming
foamed
foam
foamed resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006065145A
Other languages
Japanese (ja)
Other versions
JP4879613B2 (en
Inventor
Tomonori Kondo
智紀 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006065145A priority Critical patent/JP4879613B2/en
Publication of JP2007238829A publication Critical patent/JP2007238829A/en
Application granted granted Critical
Publication of JP4879613B2 publication Critical patent/JP4879613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamable resin composition using a fluorinated oil as a spreader. <P>SOLUTION: This foamable resin composition comprising a thermoplastic resin, such as FEP or PFA, being foamed by the addition of a foaming nucleating agent is characterized by adding a fluorinated oil, such as perfluoropropyl ether, having an average mol.wt. of 2,700 to 4,500 as a spreader in an amount of 0.05 to 0.2 mass% per 100 pts.mass of the thermoplastic resin to promote the dispersion of the foaming nucleating agent. The foaming nucleating agent, such as boron nitride, can uniformly be dispersed in the resin composition with the fluorinated oil. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、フッ素系オイルを展着剤として用いた発泡樹脂組成物、その発泡方法及び発泡絶縁電線の製造方法に関するものである。   The present invention relates to a foamed resin composition using a fluorinated oil as a spreading agent, a foaming method thereof, and a method for producing a foam insulated wire.

近年種々の電子機器で使用される絶縁電線の場合、例えば高周波用の同軸ケーブルでは、使用周波数帯域がGHzオーダーに達している。GHz帯域では、低周波数帯域よりも減衰量の小さいケーブル特性が要求されるため、内部導体(中心導体)上に被覆される絶縁体にあっては、発泡形成することが行われている(特許文献1〜2)。
特許3227091号 特許2668198号
In the case of insulated wires used in various electronic devices in recent years, for example, in a high-frequency coaxial cable, the used frequency band has reached the GHz order. In the GHz band, a cable characteristic having a smaller attenuation than that in the low frequency band is required. Therefore, foaming is performed on the insulator coated on the inner conductor (center conductor) (patent) Literatures 1-2).
Japanese Patent No. 3227091 Japanese Patent No. 2668198

この絶縁体としては、ポリエチレン系樹脂の他に、低誘電率で、軽量性、耐熱性、不燃性、無煙性などに優れている、熱可塑性フッ素系樹脂、例えばテトラフロロエチレン−ヘキサフロロプロピレン共重合体(FEP)やテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体(PFA)なども用いられている。   As the insulator, in addition to the polyethylene resin, a thermoplastic fluororesin such as tetrafluoroethylene-hexafluoropropylene which has a low dielectric constant and is excellent in lightness, heat resistance, nonflammability, smokelessness, etc. A polymer (FEP), a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and the like are also used.

このような絶縁体の発泡にあたっては、押出時の加熱により発泡する化学物質を樹脂コンパウンド中に充填させて行う化学発泡法や、押出時に外部から窒素ガスや炭酸ガスなどを樹脂コンパウンド中に導入させて行う物理発泡法が採用されている。
しかし、これらの方法のみでは、高発泡度で均一かつ微細な発泡絶縁体を得ることは困難な状況にある。
For foaming such insulators, chemical foaming is performed by filling the resin compound with a chemical substance that is foamed by heating during extrusion, or nitrogen gas or carbon dioxide gas is introduced into the resin compound from the outside during extrusion. The physical foaming method is used.
However, it is difficult to obtain a uniform and fine foam insulator with a high foaming degree only by these methods.

このため、樹脂コンパウンド中に発泡の核となる物質、即ち、発泡核剤を予め添加して発泡を促進することが提案されている。例えば、物理発泡法において、発泡核剤として窒化ホウ素(BN)を使用することが知られている。窒化ホウ素の場合、熱可塑性フッ素系樹脂の押出温度付近において、熱的に安定で反応性が低く、優れた誘電特性を示すなどの利点が得られる。   For this reason, it has been proposed to add a substance that becomes the core of foaming to the resin compound, that is, a foaming nucleating agent in advance to promote foaming. For example, it is known to use boron nitride (BN) as a foam nucleating agent in the physical foaming method. In the case of boron nitride, advantages such as thermal stability, low reactivity and excellent dielectric properties are obtained in the vicinity of the extrusion temperature of the thermoplastic fluororesin.

しかし、この窒化ホウ素のような発泡核剤を、発泡樹脂組成物中に均一に分散させること自体が結構難しいため、従来から、分散剤を添加して発泡核剤の分散の均一化を図ったり、或いは、発泡核剤の形状や表面特性を改質したり、ベース樹脂のペレット側に展着剤を入れたりすることが試みられている。   However, since it is quite difficult to uniformly disperse the foam nucleating agent such as boron nitride in the foamed resin composition, conventionally, a dispersing agent is added to achieve uniform dispersion of the foam nucleating agent. Alternatively, attempts have been made to modify the shape and surface characteristics of the foam nucleating agent, or to put a spreading agent on the pellet side of the base resin.

ところが、分散剤には、誘電特性を悪化させるものもあったり、分散剤の混練が熱履歴として樹脂自体に悪影響を与えることがある。また、誘電特性が良好で発泡に適している発泡核剤であっても、その表面が不活性で改質が難しい場合が多かったり、さらに、改質のため形状やサイズを変えると目的とする特性が失われる場合もあった。
また、展着剤にあっても、用いるベース樹脂との関係で、具体的にどのような特性のものの使用が望ましいのかは不明であった。さらにまた、ベース樹脂として熱可塑性フッ素系樹脂を使用する場合、加工温度が樹脂分解温度に近いので、これに分散剤や展着剤を添加したとき、混練がスムーズに行えず、この混練による発熱などの熱履歴で樹脂が劣化して本来の特性が失われ易いというような問題もあった。
However, some dispersants may deteriorate the dielectric characteristics, and kneading of the dispersant may adversely affect the resin itself as a heat history. Moreover, even if the foam nucleating agent has good dielectric properties and is suitable for foaming, the surface is often inactive and difficult to modify, and further, when the shape and size are changed for modification In some cases, the characteristics were lost.
Even in the case of a spreading agent, it was not clear what specific characteristics it is desirable to use because of the relationship with the base resin used. Furthermore, when a thermoplastic fluororesin is used as the base resin, the processing temperature is close to the resin decomposition temperature, so when a dispersant or a spreading agent is added thereto, kneading cannot be performed smoothly, and heat generated by this kneading. There is also a problem that the original characteristics are easily lost due to deterioration of the resin due to the heat history.

このような状況下にあって、本発明者は、窒化ホウ素などの発泡核剤を用いて熱可塑性樹脂からなる発泡樹脂組成物を発泡させるにおいて、どのような特性の展着剤の使用が望ましいのか種々試験を行ったところ、ある特性のフッ素系オイルを使用すると、良好な結果が得られることを見い出した。   Under such circumstances, the present inventor desirably uses a spreading agent having any characteristic in foaming a foamed resin composition comprising a thermoplastic resin using a foaming nucleating agent such as boron nitride. As a result of various tests, it has been found that good results can be obtained when a fluorine-based oil having a certain characteristic is used.

つまり、フッ素系オイルの場合、耐熱性が高く(300℃程度)、平均分子量や動粘度を適当な範囲内に設定すれば、例えば、常温(20〜25℃)から成形機(押出機など)のホッパー温度付近で揮発し難く、かつ、成形機のフィード部分の温度と滞留期間内において揮発し易い特性のものを選べば、次のような利点が得られることが分かった。
(1)ベース樹脂ペレットに展着されたフッ素系オイルが成形機で混練されるまで離脱し難いこと、つまり、良好なオイルの展着が得られること、(2)発泡時にはスムーズに揮発するため、樹脂の発泡に対する悪影響が少ないこと、(3)成形機内でオイルがスムーズに流動するため、樹脂劣化の原因となる、焼き付きが起ったり、発泡樹脂中に残存することがないため、絶縁電線などの誘電特性を悪化さたりする懸念がないことなどが分かった。特にFEP、PFAなどの熱可塑性フッ素系樹脂との組み合わせにおいて好適であることも分かった。
また、上記同軸ケーブルのような特性が特に要求されない通常の発泡樹脂成形品、例えば通常のケーブル絶縁体、断熱用や遮音用の発泡板材など、さらに、軽量化のための成形体などの場合でも、フッ素系オイルの展着剤を用いことが有用であることが分かった。
That is, in the case of fluorinated oil, heat resistance is high (about 300 ° C.), and if the average molecular weight and kinematic viscosity are set within appropriate ranges, for example, from a normal temperature (20-25 ° C.) to a molding machine (extruder, etc.) It has been found that the following advantages can be obtained by selecting a material that does not easily volatilize in the vicinity of the hopper temperature and that easily vaporizes within the feed portion temperature and residence time of the molding machine.
(1) Fluorine-based oil spread on the base resin pellets is difficult to release until kneaded by a molding machine, that is, good oil spread can be obtained, and (2) because it volatilizes smoothly during foaming. (3) Since the oil flows smoothly in the molding machine, it does not cause seizure and does not remain in the foamed resin. It has been found that there is no concern of deteriorating the dielectric characteristics. It has also been found that it is particularly suitable in combination with thermoplastic fluororesins such as FEP and PFA.
In addition, even in the case of ordinary foamed resin molded products that do not require special characteristics such as the above coaxial cable, such as ordinary cable insulators, foam plates for heat insulation and sound insulation, and molded products for weight reduction. It has been found that it is useful to use a spreading agent for fluorine oil.

本発明は、この観点に立ってなされたもので、フッ素系オイルを展着剤として用いた発泡樹脂組成物、その発泡方法及び発泡絶縁電線の製造方法を提供するものである。   The present invention has been made in view of this point of view, and provides a foamed resin composition using a fluorine-based oil as a spreading agent, a foaming method thereof, and a foamed insulated wire manufacturing method.

請求項1記載の本発明は、発泡核剤の添加により発泡される熱可塑性樹脂からなる発泡樹脂組成物であって、前記熱可塑性樹脂100質量部に対して、フッ素系オイルの展着剤を0.05〜0.2質量%を添加して前記発泡核剤の分散を促進させることを特徴とする発泡樹脂組成物にある。   The present invention according to claim 1 is a foamed resin composition comprising a thermoplastic resin foamed by addition of a foam nucleating agent, wherein a fluorine-based oil spreading agent is added to 100 parts by mass of the thermoplastic resin. In the foamed resin composition, 0.05 to 0.2% by mass is added to promote the dispersion of the foam nucleating agent.

請求項2記載の本発明は、前記フッ素系オイルが、ポリパーフルオロプロピルエーテルであることを特徴とする請求項1記載の発泡樹脂組成物にある。   The present invention according to claim 2 resides in the foamed resin composition according to claim 1, wherein the fluorinated oil is polyperfluoropropyl ether.

請求項3記載の本発明は、前記ポリパーフルオロプロピルエーテルの平均分子量が2700〜4500であることを特徴とする請求項2記載の発泡樹脂組成物にある。   The present invention according to claim 3 is the foamed resin composition according to claim 2, wherein the polyperfluoropropyl ether has an average molecular weight of 2700 to 4500.

請求項4記載の本発明は、前記ポリパーフルオロプロピルエーテルの平均分子量が2700のとき、動粘度(20℃)が43〜63mm2 /s、150℃×3時間での揮発減量が6%以下であることを特徴とする請求項3記載の発泡樹脂組成物にある。 In the present invention according to claim 4, when the average molecular weight of the polyperfluoropropyl ether is 2700, the kinematic viscosity (20 ° C.) is 43 to 63 mm 2 / s, and the volatile loss at 150 ° C. × 3 hours is 6% or less. It exists in the foamed resin composition of Claim 3 characterized by the above-mentioned.

請求項5記載の本発明は、前記ポリパーフルオロプロピルエーテルの平均分子量が2700のとき、動粘度(40℃)が58〜72、200℃×3時間での揮発減量が2%以下であることを特徴とする請求項3記載の発泡樹脂組成物にある。   According to the fifth aspect of the present invention, when the average molecular weight of the polyperfluoropropyl ether is 2700, the kinematic viscosity (40 ° C.) is 58 to 72, and the volatilization loss at 200 ° C. × 3 hours is 2% or less. The foamed resin composition according to claim 3.

請求項6記載の本発明は、前記請求項1〜5のいずれかの発泡樹脂組成物であって、前記熱可塑性樹脂がテトラフロロエチレン−ヘキサフロロプロピレン共重合体、テトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体の熱可塑性フッ素系樹脂であることを特徴とする発泡樹脂組成物にある。   The present invention according to claim 6 is the foamed resin composition according to any one of claims 1 to 5, wherein the thermoplastic resin is a tetrafluoroethylene-hexafluoropropylene copolymer, a tetrafluoroethylene-perfluoroalkyl. The foamed resin composition is a thermoplastic fluororesin of vinyl ether copolymer.

請求項7記載の本発明は、前記請求項1〜6のいずれかの発泡樹脂組成物であって、前記発泡核剤が窒化ホウ素、ゼオライト、シリカ、活性炭、又はシリカゲルであることを特徴とする発泡樹脂組成物にある。   The present invention according to claim 7 is the foamed resin composition according to any one of claims 1 to 6, wherein the foam nucleating agent is boron nitride, zeolite, silica, activated carbon, or silica gel. It is in the foamed resin composition.

請求項8記載の本発明は、前記請求項1〜7のいずれかの発泡樹脂組成物を用いる発泡方法であって、前記熱可塑性樹脂100質量部に対してフッ素系オイルの展着剤を0.05〜0.2質量%を添加し、樹脂ペレット表面に付着させた後、これに前記発泡核剤の適量を添加し押出し発泡させることを特徴とする発泡樹脂組成物の発泡方法にある。   The present invention according to claim 8 is a foaming method using the foamed resin composition according to any one of claims 1 to 7, wherein a fluorine-based oil spreading agent is added to 100 parts by mass of the thermoplastic resin. After adding 0.05 to 0.2 mass% and adhering to the surface of the resin pellet, an appropriate amount of the foam nucleating agent is added thereto and extruded and foamed.

請求項9記載の本発明は、前記請求項1〜7のいずれかの発泡樹脂組成物を用いる発泡絶縁電線の製造方法であって、前記熱可塑性樹脂100質量部に対してフッ素系オイルの展着剤を0.05〜0.2質量%を添加し、樹脂ペレット表面に付着させた後、これに前記発泡核剤の適量を添加し押出し発泡させて導体外方に発泡絶縁体として押し出しすることを特徴とする発泡絶縁電線の製造方法にある。   The present invention according to claim 9 is a method for producing a foam insulated wire using the foamed resin composition according to any one of claims 1 to 7, wherein a fluorine-based oil is expanded with respect to 100 parts by mass of the thermoplastic resin. Add 0.05-0.2% by mass of the adhering agent and attach it to the surface of the resin pellet, then add an appropriate amount of the above-mentioned foaming nucleating agent, extrude and foam it, and extrude it as a foam insulator outside the conductor. It is in the manufacturing method of the foam insulated wire characterized by this.

本発明の発泡樹脂組成物によると、展着剤としてフッ素系オイルを用いて樹脂ペレット表面に展着させてあるため、窒化ホウ素などの発泡核剤が樹脂ペレット表面に付着し易くなり、樹脂組成物中に均一に分散させることができる。つまり、展着剤により樹脂ペレット表面の濡れ性が改善される。これにより、良好な発泡状態が得られ、また、発泡核剤の使用量も少なくて済み、低コスト化も可能となる。   According to the foamed resin composition of the present invention, the foamed nucleating agent such as boron nitride easily adheres to the surface of the resin pellet because the fluorine resin is used as the spreading agent and spreads on the surface of the resin pellet. It can be uniformly dispersed in the product. That is, the wettability of the resin pellet surface is improved by the spreading agent. As a result, a good foamed state can be obtained, the amount of the foam nucleating agent used can be reduced, and the cost can be reduced.

また、フッ素系オイル自体の混練(ミキシング)において、平均分子量や動粘度の設定を用途に応じて最適に選べば、ベース樹脂に対して無理なく、即ち大きな熱履歴(熱ストレス)などを与えることなく行うことができる。例えば、展着剤の常温(20〜25℃)下での添加、混練や、少々の加温下(30〜40℃程度)での添加、混練、さらには、混練時間の調整(長めの混練)による加温などにより、良好に対応することができる。さらにまた、ベース樹脂としてFEP、PFAなどの熱可塑性フッ素系樹脂を使用する場合、この樹脂と同様フッ素系オイルも耐熱性が高いため、成形時に分解たり、変質することがなく、良好な発泡性が得られる。特にこの樹脂組成物を同軸ケーブルなどの発泡絶縁体として用いるとき、低誘電率で、軽量性、耐熱性、不燃性、無煙性などに優れた絶縁体が得られる。勿論、その他の発泡樹脂成形品も得ることができる。   Also, in the kneading (mixing) of fluorinated oil itself, if the setting of the average molecular weight and kinematic viscosity is optimally selected according to the application, the base resin can be given comfortably, that is, it gives a large thermal history (heat stress). Can be done without. For example, addition and kneading of a spreading agent at room temperature (20 to 25 ° C.), addition and kneading under a slight heating (about 30 to 40 ° C.), and further adjustment of kneading time (long kneading) It is possible to cope with the problem by heating by the above. Furthermore, when thermoplastic fluororesins such as FEP and PFA are used as the base resin, the fluorocarbon oil has high heat resistance as well as this resin, so it does not decompose or deteriorate during molding and has good foaming properties. Is obtained. In particular, when this resin composition is used as a foamed insulator such as a coaxial cable, an insulator having a low dielectric constant and excellent in lightness, heat resistance, nonflammability, smokelessness and the like can be obtained. Of course, other foamed resin molded products can also be obtained.

本発明の発泡樹脂組成物の成形方法によると、熱可塑性樹脂に対してフッ素系オイルの展着剤を添加し、樹脂ペレット表面に付着させた後、これに発泡核剤の適量を添加し押出し発泡させるため、樹脂ペレット表面に良好な濡れ性が確保された状態で、発泡核剤が添加されることになり、発泡核剤の均一な分散(混合)が得られる。これにより、良好な発泡状態の発泡樹脂成形品が得られる。   According to the method for molding a foamed resin composition of the present invention, after adding a fluorine-based oil spreading agent to a thermoplastic resin and adhering it to the surface of the resin pellet, an appropriate amount of a foam nucleating agent is added thereto and extruded. Since foaming is performed, the foam nucleating agent is added in a state where good wettability is ensured on the surface of the resin pellets, and uniform dispersion (mixing) of the foam nucleating agent is obtained. Thereby, a foamed resin molded article having a good foamed state is obtained.

本発明の発泡絶縁電線の製造方法によると、熱可塑性樹脂に対してフッ素系オイルの展着剤を添加し、樹脂ペレット表面に付着させた後、これに発泡核剤の適量を添加し押出し発泡させて導体外方に発泡絶縁体として被覆するため、樹脂ペレット表面に良好な濡れ性が確保された状態で、発泡核剤が添加されることになり、発泡核剤の均一な分散(混合)が得られる。これにより、良好な発泡状態の発泡絶縁電線が得られる。   According to the method for producing a foam insulated wire of the present invention, after adding a fluorine-based oil spreading agent to a thermoplastic resin and adhering it to the surface of the resin pellet, an appropriate amount of a foam nucleating agent is added thereto and extruded and foamed. In order to coat the outside of the conductor as a foam insulation, the foam nucleating agent is added in a state where good wettability is secured on the surface of the resin pellets, and the foam nucleating agent is uniformly dispersed (mixed) Is obtained. Thereby, the foam insulation electric wire of a favorable foaming state is obtained.

本発明の発泡樹脂組成物に用いる熱可塑性樹脂としては特に限定されないが、例えば発泡絶縁電線の絶縁体の場合、熱可塑性フッ素系樹脂、例えばテトラフロロエチレン−ヘキサフロロプロピレン共重合体(FEP)やテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体(PFA)などを用いるものとする。熱可塑性フッ素系樹脂は、上述したように、低誘電率で、軽量性、耐熱性、不燃性、無煙性などに優れているため、発泡絶縁電線の絶縁体としては好適である。これらのうち、発泡に適する特性の熱可塑性フッ素系樹脂としては、ASDTM−D1238−70に従って測定したメルトフローレシオ(MFR、190℃、2.16Kgf)が14〜30g/10分のものが好ましい。   Although it does not specifically limit as a thermoplastic resin used for the foamed resin composition of this invention, For example, in the case of the insulator of a foam insulated wire, thermoplastic fluororesins, for example, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) or the like is used. As described above, the thermoplastic fluororesin has a low dielectric constant and is excellent in lightness, heat resistance, nonflammability, smokelessness, and the like, and thus is suitable as an insulator for a foam insulated wire. Among these, as the thermoplastic fluororesin having characteristics suitable for foaming, those having a melt flow ratio (MFR, 190 ° C., 2.16 Kgf) measured according to ASDTM-D1238-70 of 14 to 30 g / 10 min are preferable.

これらのFEPやPFAの場合、通常のものでは、端末官能基の存在により誘電特性などの点に問題があるため、好ましくは端末官能基に対してフッ素化処理などを施して安定化させたものの使用が望ましい。このようなフッ素化処理を施したFEPの市販品としては、三井デュポンフロロケミカル社製の5100J(商品名、MFR=22)、PFAの市販品としては、三井デュポンフロロケミカル社製の440HP−J(商品名、MFR=15)などを挙げることができる。   In the case of these FEPs and PFAs, the usual ones have a problem in terms of dielectric properties due to the presence of terminal functional groups, and thus preferably stabilized by subjecting the terminal functional groups to fluorination treatment or the like. Use is desirable. As a commercial product of FEP subjected to such fluorination treatment, 5100J (trade name, MFR = 22) manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and as a commercial product of PFA, 440HP-J manufactured by Mitsui DuPont Fluorochemical Co., Ltd. (Trade name, MFR = 15).

これらのベース樹脂に添加される発泡核剤としては、窒化ホウ素(セラミックス)、ゼオライト、シリカ、活性炭、又はシリカゲルなどが使用できる。電線用絶縁体として使用する場合、これらの大きさ(粒径)は、メデアン径(d50)で1〜10μm、好ましくは1〜5μmのものがよい。その理由は、1μm未満のサブミクロンになると、二次凝集が生じて実質的に発泡に寄与する粒子数が減少するため、発泡の微細化が得られなくなるからである。また、逆に10μmを超えるようになると、二次凝集の場合と同様単位体積中の発泡に寄与する粒子数が減少するため、やはり発泡の微細化が得られなくなるからである。そして、発泡核剤の比表面積にもよるが、ベース樹脂に対する添加量としては、0.1〜1.5質量%が望ましい。特に窒化ホウ素の場合、メデアン径で1〜10μmで0.1〜1.0質量%が好ましい。このような窒化ホウ素の市販品としては、水島合金鉄社製のHP−P1(商品名)を挙げることができる。   As the foam nucleating agent added to these base resins, boron nitride (ceramics), zeolite, silica, activated carbon, silica gel, or the like can be used. When used as an insulator for electric wires, the size (particle diameter) of the median diameter (d50) is 1 to 10 μm, preferably 1 to 5 μm. The reason is that, when the submicron is less than 1 μm, secondary aggregation occurs and the number of particles that substantially contribute to foaming is reduced, so that finer foaming cannot be obtained. On the other hand, if the thickness exceeds 10 μm, the number of particles contributing to foaming in the unit volume decreases as in the case of secondary aggregation, and it is impossible to obtain finer foaming. And although it also depends on the specific surface area of the foam nucleating agent, the amount added to the base resin is preferably 0.1 to 1.5% by mass. Particularly in the case of boron nitride, the median diameter is preferably 1 to 10 μm and 0.1 to 1.0% by mass. Examples of such commercially available boron nitride include HP-P1 (trade name) manufactured by Mizushima Alloy Iron Company.

また、展着剤のフッ素系オイルとしては、特に限定されず、目的とする発泡樹脂絶縁体や発泡樹脂成形品によって適宜選択すればよい。上記した高周波用の同軸ケーブルにおける発泡絶縁体用としては、下記の構造を有する、ポリパーフルオロプロピルエーテル(慣用名、パーフルオロエーテル)の使用が望ましい。そして、以下のように、特に平均分子量が2700〜4500のものの使用が好ましい。
CF3 −(CF2 −CF2 −CF2 −O−)n−CF2 −CF3 )・・・(1)
Moreover, it does not specifically limit as a fluorine-type oil of a spreading agent, What is necessary is just to select suitably with the target foamed resin insulator and foamed resin molded product. As the foam insulator for the high-frequency coaxial cable described above, it is desirable to use polyperfluoropropyl ether (common name, perfluoroether) having the following structure. And it is particularly preferable to use those having an average molecular weight of 2700 to 4500 as follows.
CF3- (CF2-CF2-CF2-O-) n-CF2-CF3) (1)

例えば、(1)平均分子量が2700のものでは、動粘度(20℃)が43〜63mm2 /s、150℃×3時間での揮発減量が6%以下であるため、後述するように、樹脂ペレットへの常温下(20〜25℃)での展着が可能であり、同軸ケーブルの発泡絶縁体における展着剤としては好適である。この特性の市販品としては、ダイキン工業社製のデムナムS−20(商品名)を挙げることができる。(2)平均分子量が4500のものでは、動粘度(40℃)が58〜72、200℃×3時間での揮発減量が2%以下であるため、後述するように、樹脂ペレットへの展着時、多少の加温が必要であるものの、やはり同軸ケーブルの発泡絶縁体における展着剤としては好適である。この特性の市販品としては、ダイキン工業社製のデムナムS−65(商品名)を挙げることができる。
これらのデムナムS−20、S−65、及び特性の異なる同種のフッ素系オイル〔ダイキン工業社製のデムナムS−100、S−200)のより詳しい特性データは、表1の如くである。なお、表1中蒸発損失(揮発減量)は、約90mm内径の耐熱シャーレに試料オイルを15〜25g入れて、目的温度の熱風循環式電気炉で加熱し、重量減少量を求めて測定した値である。表1のオイルのその他の物理的性質として、各オイルの比熱は1.0J/g(0.24cal/g)、絶縁破壊電圧は(2.5mm)72KVである。
For example, (1) When the average molecular weight is 2700, the kinematic viscosity (20 ° C.) is 43 to 63 mm 2 / s, and the volatile loss at 150 ° C. × 3 hours is 6% or less. It can be spread on the pellets at room temperature (20 to 25 ° C.), and is suitable as a spreading agent for a foamed insulation of a coaxial cable. As a commercially available product having this characteristic, there can be mentioned demnum S-20 (trade name) manufactured by Daikin Industries. (2) When the average molecular weight is 4500, the kinematic viscosity (40 ° C.) is 58 to 72, and the volatilization loss at 200 ° C. × 3 hours is 2% or less. Although it requires some heating, it is still suitable as a spreading agent for foamed insulation of coaxial cables. As a commercially available product having this characteristic, there can be mentioned demnum S-65 (trade name) manufactured by Daikin Industries.
Table 1 shows more detailed characteristic data of these demnum S-20 and S-65, and the same kind of fluorinated oils having different characteristics (Demkin S-100 and S-200 manufactured by Daikin Industries, Ltd.). In Table 1, the evaporation loss (volatilization loss) is a value measured by putting 15 to 25 g of sample oil in a heat-resistant petri dish having an inner diameter of about 90 mm and heating it in a hot air circulating electric furnace at the target temperature to obtain the weight loss. It is. As other physical properties of the oils in Table 1, the specific heat of each oil is 1.0 J / g (0.24 cal / g), and the dielectric breakdown voltage is (2.5 mm) 72 KV.

Figure 2007238829
Figure 2007238829

フッ素系オイルを上記特性とした場合、発泡に先立って、このフッ素系オイルをベース樹脂ペレット中に添加し、混練して展着させた後、成形機(押出機など)に供給するわけであるが、特定の温度下での揮発減量が大き過ぎると、成形機の供給口(ホッパーなど)部分などで過剰な蒸発が起こり、供給口付近にオイルが付着し易いという問題が生じるからである。しかし、また、逆に形成温度のような高温下における揮発減量が小さ過ぎると、成形後も組成物中に残留する恐れが生じるからである。。   When fluorine oil has the above characteristics, prior to foaming, this fluorine oil is added to the base resin pellets, kneaded and spread, and then supplied to a molding machine (such as an extruder). However, if the volatilization loss at a specific temperature is too large, excessive evaporation occurs at the supply port (such as a hopper) of the molding machine, and there is a problem that oil tends to adhere to the vicinity of the supply port. However, conversely, if the volatilization loss at a high temperature such as the forming temperature is too small, there is a possibility that it remains in the composition even after molding. .

例えば、表1のデムナムS−100、S−200のように、平均分子量が大きくなる(5600〜8400)と、当然動粘度も大きくなり、ベース樹脂ペレット中への添加、混練によって、均一に展着(付着)させることが困難となり、また、成形機による成形性(加工性)も低下するようになる。さらに、高温下(250℃や300℃)でも、揮発減量が小さいため、成形後も組成物中に残留成分として残る恐れがある。これに対して、表1のデムナムS−20の場合、平均分子量も小さく、常温下における動粘度も小さいことから、常温下での添加、混練により均一な展着が可能となる。また、揮発減量も小さいため(150℃×3時間下で6%以下)、ホッパー温度付近で揮発し難く、良好な使い勝手が得られる。デムナムS−65の場合、デムナムS−20に比較して、平均分子量や動粘度が若干大きくなるため、混練時加温する必要があるが、その温度が30〜40℃程度よく、樹脂ペレットに大きな熱ストレスを与える懸念は殆どない。また、常温でも混練時間(ミキシング時間)を少々長くすること(数分程度)で加温すことにより対応することができ、基本的には、デムナムS−20と同様、良好な使い勝手が得られる。   For example, as in demnum S-100 and S-200 in Table 1, when the average molecular weight increases (5600 to 8400), the kinematic viscosity naturally increases, and it is uniformly developed by addition to the base resin pellet and kneading. It becomes difficult to attach (attach), and the moldability (workability) by the molding machine also decreases. Further, even at high temperatures (250 ° C. and 300 ° C.), the volatilization loss is small, so that there is a possibility that it remains as a residual component in the composition even after molding. On the other hand, in the case of demnum S-20 in Table 1, since the average molecular weight is small and the kinematic viscosity is also low at room temperature, uniform spreading is possible by addition and kneading at room temperature. In addition, since the loss on volatilization is small (6% or less at 150 ° C. × 3 hours), it is difficult to volatilize near the hopper temperature and good usability can be obtained. In the case of demnum S-65, the average molecular weight and kinematic viscosity are slightly higher than demnum S-20, so it is necessary to heat it during kneading. There is almost no fear of giving large heat stress. Further, even at room temperature, the kneading time (mixing time) can be increased by heating a little (about several minutes). Basically, as with demnum S-20, good usability can be obtained. .

また、使用するフッ素系オイルの使用可能温度は、勿論用いるベース樹脂の成形温度に対応する温度範囲である必要がある。特にベース樹脂がFEP、PFAなどの熱可塑性フッ素系樹脂の場合、耐熱性が高く、成形温度が300℃付近の高温となり、使用する展着剤としてこの温度範囲で、分解したり、変質したりすることのない、耐熱性の高い展着剤が必要とされるが、フッ素系オイルの場合、耐熱性が高く、この成形温度環境に十分対応することができる。言い換えれば、成形時オイルが分解たり、変質することがなく、最後まで、所望の展着機能が得られる。   In addition, the usable temperature of the fluorinated oil to be used needs to be in a temperature range corresponding to the molding temperature of the base resin to be used. In particular, when the base resin is a thermoplastic fluorine-based resin such as FEP or PFA, the heat resistance is high, the molding temperature is as high as about 300 ° C., and it is decomposed or altered in this temperature range as a spreading agent to be used. However, in the case of a fluorinated oil, the heat resistance is high, and it can sufficiently cope with this molding temperature environment. In other words, the desired spreading function can be obtained until the end without the oil being decomposed or altered during molding.

このフッ素系オイルの添加量は、ベース樹脂のペレット100質量部に対して0.05〜0.2質量%が望ましい。0.05質量%未満では少な過ぎて所望の展着効果(濡れ性不足)が得られず、逆に、0.2質量%を超えるようになると、成形機(押出機などの)のコンプレッション部分(加圧部分)に達してもオイルが残留するようになり、発泡度の調整不良、これに伴う外径変動が大きくなるなどの問題が生じるようになる。   The amount of the fluorine-based oil added is desirably 0.05 to 0.2% by mass with respect to 100 parts by mass of the base resin pellets. If it is less than 0.05% by mass, the desired spreading effect (insufficient wettability) cannot be obtained. Conversely, if it exceeds 0.2% by mass, the compression portion of the molding machine (such as an extruder) Even when (pressure part) is reached, the oil remains, causing problems such as poor adjustment of the degree of foaming, and large fluctuations in the outer diameter.

この発泡樹脂組成物に対しては、必要により、その他の添加物、例えば、酸化防止剤、銅害防止剤、難燃剤、分散剤、無機フィラー、架橋剤、架橋助剤などを適宜添加することができる。   If necessary, other additives such as antioxidants, copper damage inhibitors, flame retardants, dispersants, inorganic fillers, cross-linking agents, cross-linking aids, etc. may be added to the foamed resin composition as necessary. Can do.

このような組成からなる発泡樹脂組成物の成形にあたっては、上記したように、好ましくは、先ず、ベース樹脂のペレットにフッ素系オイルを添加し、混合して展着させる。これにより、フッ素系オイルが樹脂ペレット表面に付着され、所望の濡れ性が得られる。このオイルの展着された樹脂ペレットに窒化ホウ素などの発泡核剤を添加して、オイルの展着層に付着させる。これらの作業は一連に行うとよい。この混合には、例えばシェーカー・ミキサや、ブラベンダー・ミキサなどを用いて行う。そして、ガス発泡(物理発泡)の場合には、所望のガス(窒素ガスなどの不活性ガス)を注入(投入)して発泡させる。化学発泡では、予め添加した化学発泡剤により発泡させる。これらの両発泡方法を併用することもできる。   In molding a foamed resin composition having such a composition, as described above, preferably, fluorine-based oil is first added to the base resin pellets, mixed and spread. Thereby, fluorine-type oil adheres to the resin pellet surface, and desired wettability is acquired. A foam nucleating agent such as boron nitride is added to the resin pellets on which the oil has been spread, and is adhered to the spread layer of the oil. These operations should be performed in series. This mixing is performed using, for example, a shaker mixer or a Brabender mixer. In the case of gas foaming (physical foaming), a desired gas (inert gas such as nitrogen gas) is injected (injected) to cause foaming. In chemical foaming, foaming is performed with a chemical foaming agent added in advance. Both of these foaming methods can be used in combination.

フッ素系オイルの場合、目的に対応した特性のものを選べば、熱可塑性樹脂、例えば熱可塑性フッ素系樹脂の成形温度と成形時間内において、十分かつ容易に樹脂ペレットに展着させて所望の濡れ性が得られる。また、混合は常温下や30〜40℃の加温下で、或いは、長めのミキシング時間(数分程度)で行うことができるため、混練による熱履歴の影響を最小限に抑えることができる。   In the case of fluorinated oils, if you select ones with properties that meet your purposes, the desired wettability can be achieved by spreading the resin pellets sufficiently and easily within the molding temperature and molding time of a thermoplastic resin, such as thermoplastic fluororesin. Sex is obtained. Moreover, since mixing can be performed under normal temperature, 30-40 degreeC heating, or a long mixing time (about several minutes), the influence of the heat history by kneading | mixing can be suppressed to the minimum.

このようなフッ素系オイルを用いて、得られる発泡樹脂体の用途は、特に限定されない。上述のように、例えば同軸ケーブルなどの発泡絶縁電線の発泡絶縁体として使用することができる。同軸ケーブルでは、内部導体(中心導体)上に絶縁体として発泡・被覆させる。特にベース樹脂として、トFEP、PFAなどの熱可塑性フッ素系樹脂を用いた場合、低誘電率で、軽量性、耐熱性、不燃性、無煙性などの点で優れた同軸ケーブルが得られる。勿論、この発泡樹脂体は、通常の電線・ケーブルの発泡絶縁体として使用することもできる。また、種々の一般的な発泡樹脂成形品、例えば、断熱用や遮音用の発泡板材など、さらに、軽量化のための成形体を得ることもできる。   The use of the foamed resin body obtained using such a fluorinated oil is not particularly limited. As described above, it can be used as a foam insulator of a foam insulated wire such as a coaxial cable. In the coaxial cable, the inner conductor (center conductor) is foamed and coated as an insulator. In particular, when a thermoplastic fluororesin such as ToFE or PFA is used as the base resin, a coaxial cable having a low dielectric constant and excellent in lightness, heat resistance, nonflammability, smokelessness, and the like can be obtained. Of course, this foamed resin body can also be used as a foamed insulator for ordinary electric wires and cables. Further, various general foamed resin molded articles, for example, foamed plate materials for heat insulation and sound insulation, and further molded articles for weight reduction can be obtained.

図1は、本発明に係る発泡樹脂組成物を発泡絶縁体として用いた発泡絶縁電線の一例を示したものである。この発泡絶縁電線は発泡同軸ケーブルの場合で、図中、1は撚線導体などの内部導体、2は本発明の発泡樹脂組成物を、押出成形により、導体1上に被覆させた発泡絶縁体、3は金属編組やコルゲート銅パイプなどからなる金属層(外部導体)、4はポリオレフィン樹脂組成物からなるシース、5a,5bは必要により施される、厚さ50μm程度の内スキン層、外スキン層である。このケーブル外径は、特に限定されないが、約3〜50mm程度のものとして形成される。なお、必要に応じて絶縁体2と金属層3の間にアルミテープなどを入れることもできる。   FIG. 1 shows an example of a foam insulated wire using the foamed resin composition according to the present invention as a foam insulator. This foam insulated wire is a foam coaxial cable. In the figure, 1 is an internal conductor such as a stranded wire conductor, 2 is a foam insulator in which the foamed resin composition of the present invention is coated on the conductor 1 by extrusion molding. 3 is a metal layer (outer conductor) made of a metal braid or corrugated copper pipe, 4 is a sheath made of a polyolefin resin composition, 5a and 5b are applied as needed, and an inner skin layer and outer skin with a thickness of about 50 μm Is a layer. The outer diameter of the cable is not particularly limited, but is formed as about 3 to 50 mm. In addition, an aluminum tape etc. can also be put between the insulator 2 and the metal layer 3 as needed.

図2は、本発明に係る発泡絶縁電線の製造方法を実施するための押出装置系の一例を示したものである。本発明に係る発泡同軸ケーブルの製造方法を実施するための押出装置系の一例を示したものである。10は第1押出機、11は第1押出機の樹脂供給口、12は第1押出機のクロスヘッド、20は冷却部、30は第1押出機へのガス発泡剤供給部、40は内スキン層用の第2押出機である。   FIG. 2 shows an example of an extrusion apparatus system for carrying out the method for manufacturing a foam insulated wire according to the present invention. An example of the extrusion apparatus system for enforcing the manufacturing method of the foaming coaxial cable which concerns on this invention is shown. 10 is a first extruder, 11 is a resin supply port of the first extruder, 12 is a crosshead of the first extruder, 20 is a cooling unit, 30 is a gas blowing agent supply unit to the first extruder, and 40 is an internal It is the 2nd extruder for skin layers.

この押出装置系による製造方法では、先ず、第1押出機10の樹脂供給口11から、フッ素系オイルが添加、混練されて展着されたベース樹脂のペレット、例えば熱可塑性フッ素系樹脂のペレットと、窒化ホウ素などの発泡核剤、必要な添加剤など供給し、そのクロスヘッド12により、内部導体1上に発泡絶縁体(発泡度50%程度)を被覆させる。この前に、内スキン層用の第2押出機40により、内部導体1上に上記発泡層と同じ熱可塑性フッ素系樹脂からなる内スキン層5aを被覆する。ここで、第1押出機10の押出温度は、300℃程度に設定する。第2押出機の押出温度は300〜350℃程度に設定する。第1押出機10へは、ガス発泡剤供給部30から、ガス発泡剤として窒素ガスなどを供給する。これにより、発泡核剤が良好に機能して発泡セルは微細化される。なお、第1押出機10にあっては、樹脂供給口とガス発泡剤供給部を備えた別の混練用の押出機を連設させた2段押出機構造とすることも可能である。   In this manufacturing method using an extrusion apparatus system, first, pellets of base resin, for example, thermoplastic fluorine-based resin pellets, to which fluorine-based oil is added, kneaded and spread from the resin supply port 11 of the first extruder 10, Then, a foam nucleating agent such as boron nitride and necessary additives are supplied, and the foamed insulator (foaming degree of about 50%) is coated on the inner conductor 1 by the crosshead 12. Prior to this, the inner skin layer 5a made of the same thermoplastic fluororesin as that of the foam layer is coated on the inner conductor 1 by the second extruder 40 for the inner skin layer. Here, the extrusion temperature of the first extruder 10 is set to about 300 ° C. The extrusion temperature of the second extruder is set to about 300 to 350 ° C. Nitrogen gas or the like is supplied as a gas foaming agent from the gas foaming agent supply unit 30 to the first extruder 10. As a result, the foam nucleating agent functions well and the foamed cells are made finer. The first extruder 10 may have a two-stage extruder structure in which another kneading extruder having a resin supply port and a gas foaming agent supply unit is connected.

第1押出機10のクロスヘッド12により被覆された発泡絶縁体を冷却部20で冷却する。このとき、好ましくは、第3押出機(図示省略)の押出部を、例えばクロスヘッド12内に組み込み、上記内スキン層と同様の熱可塑性フッ素系樹脂からなる外スキン層5bを発泡絶縁体の外周に被覆させる。この第3押出機の押出温度は300〜350℃程度に設定する。この後、必要な外部導体、シースを施すことにより、上記した発泡同軸ケーブルが得られる。   The foamed insulation covered with the cross head 12 of the first extruder 10 is cooled by the cooling unit 20. At this time, preferably, the extruded portion of a third extruder (not shown) is incorporated into the cross head 12, for example, and the outer skin layer 5b made of the same thermoplastic fluorine-based resin as the inner skin layer is made of a foamed insulator. Cover the outer periphery. The extrusion temperature of the third extruder is set to about 300 to 350 ° C. Thereafter, the above-described foamed coaxial cable is obtained by applying necessary external conductors and sheaths.

これらの押出成形は、通常の押出機により対応することができ、良好な生産性を持って行うことができる。なお、押出方式としては、各被覆層毎にタンデム(順次)に行ってもよく、また、同時押出としてもよい。また、各押出機における押出温度は、実測した樹脂温度である。発泡剤(物理発泡剤)としてのガスは、窒素ガスの他に、上述したように、例えば、アルゴンガス、代替フロンガス、炭酸ガスなどの不活性ガスを用いることができる。また、化学発泡剤については、分解残渣発生の問題があるが、超微量であれば添加することも可能であり、上記ガス発泡と併用することもできる。このような化学発泡剤しては、例えば、ビステトラゾール・ジアンモニウム、ビステトラゾール・ピペラジン、ビステトラゾール・ジグアニジンなどのビステトラゾール系のものを挙げることができる。   These extrusion moldings can be performed by a normal extruder and can be performed with good productivity. The extrusion method may be performed in tandem (sequentially) for each coating layer, or may be simultaneous extrusion. Moreover, the extrusion temperature in each extruder is the measured resin temperature. As the gas as the foaming agent (physical foaming agent), in addition to nitrogen gas, as described above, for example, an inert gas such as argon gas, alternative chlorofluorocarbon gas, or carbon dioxide gas can be used. Further, the chemical foaming agent has a problem of generation of decomposition residues, but it can be added if it is in a very small amount and can be used in combination with the above gas foaming. Examples of such chemical foaming agents include bistetrazole-based ones such as bistetrazole / diammonium, bistetrazole / piperazine, and bistetrazole / diguanidine.

〈実施例、比較例〉
〔配合〕
先ず、表2〜表10に示す配合割合からなる材料を用意した。
ベース樹脂:PFA〔440HP−J(商品名、三井デュポンフロロケミカル社製)〕、FEP〔5100J(商品名、三井デュポンフロロケミカル社製)〕、展着剤:フッ素系オイル〔デムナムS−20、S−65、S−100、S−200(商品名、ダイキン工業社製)〕、発泡核剤:窒化ホウ素〔HP−P1(商品名、水島合金鉄社製)〕。なお、表中の配合材料において、ベース樹脂量は質量部数を、展着剤量は質量%を示す。
そして、先ず、シェーカー・ミキサ(容量1L)にベース樹脂ペレット1Kgと展着剤を投入し、樹脂ペレット表面が均一に展着剤で濡れるようにミキシングした。その後、発泡核剤を投入し、再度ミキシングした。ミキシングでは容器に発泡核剤が残留するので、その残量を計測、統計して配合にフィードバックさせた。ミキシング時間は、展着剤をペレットに付着させる場合には1分を目安に行った。発泡核剤を展着する場合には5分を目安に行った。その理由はそれ以上行っても押出性と発泡に変化がなかったからである。また、ミキシング時の加温(℃)については、常温(20〜25℃)、30〜40℃、50〜60℃、70〜80℃の数種類を設定し、展着剤に対応して選択した。
<Examples and comparative examples>
[Combination]
First, the material which consists of a mixture ratio shown in Table 2-Table 10 was prepared.
Base resin: PFA [440HP-J (trade name, manufactured by Mitsui DuPont Fluoro Chemical Co.)], FEP [5100J (trade name, manufactured by Mitsui DuPont Fluoro Chemical Co., Ltd.)], Spreading agent: Fluorine oil [DEMNUM S-20, S-65, S-100, S-200 (trade name, manufactured by Daikin Industries, Ltd.)], foaming nucleating agent: boron nitride [HP-P1 (trade name, manufactured by Mizushima Alloy Iron Company)]. In the compounding materials in the table, the amount of the base resin indicates the number of parts by mass, and the amount of the spreading agent indicates mass%.
First, 1 kg of base resin pellets and a spreading agent were introduced into a shaker mixer (capacity 1 L), and mixing was performed so that the surface of the resin pellets was uniformly wetted with the spreading agent. Thereafter, the foam nucleating agent was added and mixed again. In mixing, the foam nucleating agent remained in the container, so the remaining amount was measured and statistically fed back to the formulation. The mixing time was about 1 minute when the spreading agent was adhered to the pellet. In the case of spreading the foam nucleating agent, 5 minutes was used as a guide. The reason for this is that there was no change in extrudability and foaming even if it was carried out further. Moreover, about the heating (degreeC) at the time of mixing, several types, normal temperature (20-25 degreeC), 30-40 degreeC, 50-60 degreeC, 70-80 degreeC, were set and selected according to the spreading agent. .

〔加工〕
上記配合で展着を終えた樹脂ペレットを押出機(成形機)の供給部(ポッパー)へ投入し、ガス発泡剤(物理発泡剤)として窒化ガスを使用して導体外周に押出発泡させた。ここで、導体外径は1.0mm、発泡絶縁体径は3mm、発泡度は50%とした。
〔processing〕
The resin pellets that had been spread with the above composition were put into a supply part (popper) of an extruder (molding machine), and extruded and foamed around the conductor using a nitriding gas as a gas foaming agent (physical foaming agent). Here, the conductor outer diameter was 1.0 mm, the foamed insulator diameter was 3 mm, and the foaming degree was 50%.

〔評価方法〕
樹脂ペレットへの展着剤の「濡れ性」は、発泡核剤を展着後、容器への粉の残った量を測定して判断した。そして、粉の残量が1割り未満の場合には濡れ性が「良好」として評価した。粉の残量が1割り以上の場合には濡れ性が「不良」として評価した。
〔Evaluation methods〕
The “wetting property” of the spreading agent to the resin pellet was judged by measuring the amount of powder remaining in the container after spreading the foam nucleating agent. When the remaining amount of the powder was less than 10%, the wettability was evaluated as “good”. When the remaining amount of the powder was 10% or more, the wettability was evaluated as “bad”.

「押出性」は、スクリュー回転数に対する吐出量と樹脂圧を測定して求めた。そして、良好に展着と押出発泡ができている場合を「良好」として評価した。この「良好」な場合に比較して、ガス注入部の樹脂圧と吐出量が20%以上低いときには「不良」として評価した。   “Extrudability” was determined by measuring the discharge amount and the resin pressure with respect to the screw rotation speed. And the case where spreading and extrusion foaming were performed satisfactorily was evaluated as “good”. Compared with the case of “good”, when the resin pressure and the discharge amount of the gas injection part were lower by 20% or more, they were evaluated as “bad”.

「発泡度の変動」は、発泡絶縁体の外径変動として現れるため、この外径変動を外径測定機とシックネスゲージで測定した。外径変動があるとケーブルではインピーダンスの変動が起こり電気信号の反射に関わるようになり、外径変動はケーブル特性の重要な要素をなす。上記構造の場合(導体外径1.0mm、発泡絶縁体径3mm、発泡度50%)、外径の公差は±30μm程度である。発泡度の公差は49〜51%となる。発泡絶縁体の外径変動が吐出量の変化のみに起因しているとすると、発泡させず非発泡絶縁体(ソリッド)として押し出した場合での変動は±20μm程度になる。しかし、実際には±10μm程度であるので、発泡絶縁体の外径変動は、発泡度の変動に起因していることが分る。
そのため、評価結果では、外径変動公差を発泡度変動公差に変換して表した。そして、外径変動が公差の範囲内にあるときは「公差の範囲」として評価した。外径変動が公差の範囲外で、大きいときは「変動大」とした。ここで、特に変動が大きく、発泡に疎密があって、かつ発泡度が不均一な場合を「不良」とした。
Since the “variation in the degree of foaming” appears as a variation in the outer diameter of the foamed insulator, the variation in the outer diameter was measured with an outer diameter measuring machine and a thickness gauge. If there is a variation in the outer diameter, the cable will cause a variation in impedance and become involved in the reflection of electrical signals, and the outer diameter variation will be an important factor in the cable characteristics. In the case of the above structure (conductor outer diameter 1.0 mm, foam insulator diameter 3 mm, foaming degree 50%), the tolerance of the outer diameter is about ± 30 μm. The tolerance of the foaming degree is 49 to 51%. Assuming that the variation in the outer diameter of the foamed insulator is caused only by the change in the discharge amount, the variation when extruded as a non-foamed insulator (solid) without foaming is about ± 20 μm. However, since it is actually about ± 10 μm, it can be seen that the variation in the outer diameter of the foamed insulator is caused by the variation in the degree of foaming.
Therefore, in the evaluation results, the outer diameter fluctuation tolerance is converted into the foaming degree fluctuation tolerance. When the outer diameter variation was within the tolerance range, it was evaluated as “tolerance range”. When the outside diameter fluctuation is outside the tolerance range and is large, it is set as “large fluctuation”. Here, the case where the fluctuation was particularly large, the foaming was sparse and dense, and the foaming degree was not uniform was defined as “bad”.

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

Figure 2007238829
Figure 2007238829

〔評価結果〕
上記表2〜表10により、以下のように評価した。
(1)展着剤:デムナムS−20を使用した場合
展着剤量が0.05〜0.2質量%では、室温で1分程度のミキシング時間で樹脂ペレット表面が均一に濡れ、かつ発泡状態に不均一はないことが分かった(実施例1〜3、10〜12)。展着剤量が0.05質量%未満では、均一に樹脂ペレット表面を濡らすには量が不足であり、押出機のホッパー中で樹脂ペレット表面から発泡核剤が脱落してホッパー下に溜まる不具合が生じることが分かった。その結果、押し出された発泡絶縁体に発泡核剤の濃度変動(分散ムラ)が生じて、発泡度、発泡セル径、外径にそれぞれ大きな変動があることが分かった(比較列1〜4)。また、展着剤量が0.2質量%を超える場合には、押出機コンプレッション部分に達してもある程度オイルが残り、発泡度を調整することに不具合が生じたため、外径変動が大きくなることが分かった(比較列5〜8)。
〔Evaluation results〕
Evaluation was performed as follows according to Tables 2 to 10 above.
(1) Spreading agent: When demnum S-20 is used When the amount of spreading agent is 0.05 to 0.2% by mass, the surface of the resin pellets is uniformly wet and foamed at a mixing time of about 1 minute at room temperature. It was found that the state was not uneven (Examples 1 to 3 and 10 to 12). If the amount of spreading agent is less than 0.05% by mass, the amount is insufficient to uniformly wet the surface of the resin pellet, and the foam nucleating agent falls off from the surface of the resin pellet in the hopper of the extruder and accumulates under the hopper. Was found to occur. As a result, it was found that fluctuations in the concentration of the foam nucleating agent (dispersion unevenness) occurred in the extruded foam insulation, and there were large fluctuations in the degree of foaming, the foamed cell diameter, and the outer diameter (Comparative columns 1 to 4). . Also, if the amount of spreading agent exceeds 0.2% by mass, oil will remain to some extent even if it reaches the compression part of the extruder, and there will be a problem in adjusting the foaming degree, so that the fluctuation of the outer diameter will increase. (Comparison columns 5 to 8).

(2)展着剤:デムナムS−65を使用した場合
デムナムS−20で良好な発泡絶縁体が得られた添加量(実施例1〜3、10〜12)とミキシング時間では樹脂ペレットが均一に濡れないことが分かった(比較列9〜12)。この場合、加熱器(オーブンなど)で樹脂ペレットを30〜40℃程度に加温してからミキシングすると、デムナムS−20のときと同様に良好に展着させることができ、また、良好に押出発泡できることが分かった(実施例7〜9、16〜18)。また、樹脂ペレットを加温しなくとも、ミキシング時間を長くすることで、ミキシングによる発熱で結果的に加温されるため、良好な展着と押出発泡ができることが分かった(実施例4〜6、13〜15)。また、この場合も良好な展着と押出発泡ができる適用範囲は、デムナムS−20のときと同様であることが分かった(実施例13〜15)。勿論、添加量が少ないときには、濡れ性が不十分で、また、発泡度の変動も大きくなることが分かった(比較例13〜16)。
(2) Spreading agent: When demnum S-65 is used Resin pellets are uniform in the amount of addition (Examples 1 to 3 and 10 to 12) in which good foamed insulation was obtained with demnum S-20 and mixing time (Comparative rows 9 to 12). In this case, if the resin pellets are heated to about 30 to 40 ° C. with a heater (such as an oven) and then mixed, the resin pellets can be spread well as in the case of demnum S-20, and can be extruded well. It turned out that it can foam (Examples 7-9, 16-18). Further, it was found that, even if the resin pellets are not heated, by extending the mixing time, the resulting heat is generated by the heat generated by the mixing, so that good spreading and extrusion foaming can be achieved (Examples 4 to 6). , 13-15). Also in this case, it was found that the applicable range where good spreading and extrusion foaming can be performed is the same as that of demnum S-20 (Examples 13 to 15). Of course, it was found that when the addition amount is small, the wettability is insufficient and the fluctuation of the foaming degree is also large (Comparative Examples 13 to 16).

(3)デムナムS−100、200を使用した場合
この場合にもデムナムS−65と同様に常温では良好な展着ができないことが分かった。樹脂ペレットを加温したり、ミキシング時間を長くしたりすれば、展着可能であったが、デムナムS−20で添加量を多くした例と同様オイルが揮発し難く、押出機シリンダ内での樹脂ペレットの滑りによる押出性の悪化が生じたり、発泡絶縁体中にオイル成分として残留しりして、発泡状態への悪影響が生じることが分かった(比較列17〜30)。
(3) When using demnum S-100, 200 It was found that in this case as well, as with demnum S-65, good spreading cannot be achieved at room temperature. If the resin pellets are heated or the mixing time is increased, the resin pellets can be spread. However, as with the case where the amount of addition is increased with demnum S-20, the oil is less likely to volatilize. It was found that extrudability deteriorates due to sliding of the resin pellets or remains as an oil component in the foamed insulator, and adversely affects the foamed state (Comparative Rows 17 to 30).

なお、耐熱性の低い通常のフッ素系オイルを用いて、熱可塑性フッ素系樹脂を300℃程度の押出温度で押出発泡させる場合、オイル分解の懸念や、有毒分解ガス発生の危険であるため、上記と同様の試験は行わなかった。   In addition, when thermoplastic foam resin is extruded and foamed at an extrusion temperature of about 300 ° C. using ordinary fluorine oil with low heat resistance, there is a risk of oil decomposition and risk of toxic decomposition gas generation. The same test was not conducted.

本発明に係る発泡樹脂組成物を発泡絶縁体とした発泡絶縁電線の一例を示した縦断端面図である。It is the vertical end view which showed an example of the foam insulated wire which used the foamed resin composition which concerns on this invention as the foam insulator. 本発明に係る発泡絶縁電線の製造方法を実施するための押出装置系の一例を示した概略説明図である。It is the schematic explanatory drawing which showed an example of the extrusion apparatus system for enforcing the manufacturing method of the foam insulated wire which concerns on this invention.

符号の説明Explanation of symbols

1・・・内部導体、2・・・発泡絶縁体、3・・・金属層(外部導体)、4・・・シース、5a・・・内スキン層、5b・・・外スキン層、10・・・第1押出機、12・・・第1押出機のクロスヘッド、20・・・冷却部、30・・・ガス発泡剤供給部、40・・・第2押出機
DESCRIPTION OF SYMBOLS 1 ... Internal conductor, 2 ... Foam insulator, 3 ... Metal layer (outer conductor), 4 ... Sheath, 5a ... Inner skin layer, 5b ... Outer skin layer, 10 * ..First extruder, 12 ... Cross head of first extruder, 20 ... Cooling unit, 30 ... Gas blowing agent supply unit, 40 ... Second extruder

Claims (9)

発泡核剤の添加により発泡される熱可塑性樹脂からなる発泡樹脂組成物であって、前記熱可塑性樹脂100質量部に対して、フッ素系オイルの展着剤を0.05〜0.2質量%を添加して前記発泡核剤の分散を促進させることを特徴とする発泡樹脂組成物。 A foamed resin composition comprising a thermoplastic resin foamed by the addition of a foam nucleating agent, and 0.05 to 0.2% by mass of a fluorine-based oil spreading agent with respect to 100 parts by mass of the thermoplastic resin. Is added to promote dispersion of the foam nucleating agent. 前記フッ素系オイルが、ポリパーフルオロプロピルエーテルであることを特徴とする請求項1記載の発泡樹脂組成物。 The foamed resin composition according to claim 1, wherein the fluorinated oil is polyperfluoropropyl ether. 前記ポリパーフルオロプロピルエーテルの平均分子量が2700〜4500であることを特徴とする請求項2記載の発泡樹脂組成物。 The foamed resin composition according to claim 2, wherein the polyperfluoropropyl ether has an average molecular weight of 2700 to 4500. 前記ポリパーフルオロプロピルエーテルの平均分子量が2700のとき、動粘度(20℃)が43〜63mm2 /s、150℃×3時間での揮発減量が6%以下であることを特徴とする請求項3記載の発泡樹脂組成物。 When the average molecular weight of the polyperfluoropropyl ether is 2700, the kinematic viscosity (20 ° C) is 43 to 63 mm 2 / s, and the volatile loss at 150 ° C x 3 hours is 6% or less. 3. The foamed resin composition according to 3. 前記ポリパーフルオロプロピルエーテルの平均分子量が2700のとき、動粘度(40℃)が58〜72、200℃×3時間での揮発減量が2%以下であることを特徴とする請求項3記載の発泡樹脂組成物。 The kinematic viscosity (40 ° C) is 58 to 72 when the average molecular weight of the polyperfluoropropyl ether is 2700, and the volatilization loss at 200 ° C for 3 hours is 2% or less. Foamed resin composition. 前記請求項1〜5のいずれかの発泡樹脂組成物であって、前記熱可塑性樹脂がテトラフロロエチレン−ヘキサフロロプロピレン共重合体、テトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体の熱可塑性フッ素系樹脂であることを特徴とする発泡樹脂組成物。 The foamed resin composition according to any one of claims 1 to 5, wherein the thermoplastic resin is a thermoplastic fluorine-based copolymer of a tetrafluoroethylene-hexafluoropropylene copolymer or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. A foamed resin composition, which is a resin. 前記請求項1〜6のいずれかの発泡樹脂組成物であって、前記発泡核剤が窒化ホウ素、ゼオライト、シリカ、活性炭、又はシリカゲルであることを特徴とする発泡樹脂組成物。 The foamed resin composition according to any one of claims 1 to 6, wherein the foam nucleating agent is boron nitride, zeolite, silica, activated carbon, or silica gel. 前記請求項1〜7のいずれかの発泡樹脂組成物を用いる発泡方法であって、前記熱可塑性樹脂100質量部に対してフッ素系オイルの展着剤を0.05〜0.2質量%を添加し、樹脂ペレット表面に付着させた後、これに前記発泡核剤の適量を添加し押出し発泡させることを特徴とする発泡樹脂組成物の発泡方法。 A foaming method using the foamed resin composition according to any one of claims 1 to 7, wherein 0.05 to 0.2% by mass of a fluorine-based oil spreading agent is added to 100 parts by mass of the thermoplastic resin. A foaming method for a foamed resin composition, which comprises adding an appropriate amount of the foam nucleating agent to the resin pellet surface and then extruding and foaming. 前記請求項1〜7のいずれかの発泡樹脂組成物を用いる発泡絶縁電線の製造方法であって、前記熱可塑性樹脂100質量部に対してフッ素系オイルの展着剤を0.05〜0.2質量%を添加し、樹脂ペレット表面に付着させた後、これに前記発泡核剤の適量を添加し押出し発泡させて導体外方に発泡絶縁体として被覆することを特徴とする発泡絶縁電線の製造方法。
It is a manufacturing method of the foam insulated wire using the foamed resin composition in any one of the said Claims 1-7, Comprising: The spreading | diffusion agent of fluorine-type oil is 0.05-0.100 with respect to 100 mass parts of said thermoplastic resins. A foam insulated electric wire characterized by adding 2% by mass and adhering to the surface of the resin pellets, adding an appropriate amount of the foam nucleating agent to the resin pellets, extruding and foaming, and covering the outer side of the conductor as a foam insulation. Production method.
JP2006065145A 2006-03-10 2006-03-10 Resin composition, foamed resin composition, molded article and electric wire Expired - Fee Related JP4879613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065145A JP4879613B2 (en) 2006-03-10 2006-03-10 Resin composition, foamed resin composition, molded article and electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006065145A JP4879613B2 (en) 2006-03-10 2006-03-10 Resin composition, foamed resin composition, molded article and electric wire

Publications (2)

Publication Number Publication Date
JP2007238829A true JP2007238829A (en) 2007-09-20
JP4879613B2 JP4879613B2 (en) 2012-02-22

Family

ID=38584678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065145A Expired - Fee Related JP4879613B2 (en) 2006-03-10 2006-03-10 Resin composition, foamed resin composition, molded article and electric wire

Country Status (1)

Country Link
JP (1) JP4879613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8901184B2 (en) 2012-09-18 2014-12-02 Hitachi Metals, Ltd. Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
US9196393B2 (en) 2012-09-13 2015-11-24 Hitachi Metals, Ltd. Foamed resin molded product, foamed insulated wire, cable and method of manufacturing foamed resin molded product
JP2019513954A (en) * 2016-04-06 2019-05-30 ヘキサゴン テクノロジー アーエス Damage resistant indicator coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016082211A1 (en) 2014-11-28 2016-06-02 Dow Global Technologies Llc Process for foaming polyolefin compositions using a fluororesin/azodicarbonamide mixture as a nucleating agent
JP6619027B2 (en) 2015-05-08 2019-12-11 ダウ グローバル テクノロジーズ エルエルシー Method for foaming polyolefin compositions using azodicarbonamide / citrate mixtures as nucleating agents
CA3020188C (en) 2016-03-28 2023-06-27 Dow Global Technologies Llc Process for foaming polyolefin compositions using a fluororesin/boron nitride mixture as a nucleating agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123233A (en) * 1980-12-08 1982-07-31 Allied Chem Ethylene-ethylene chloride trifluoride copolymer foam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57123233A (en) * 1980-12-08 1982-07-31 Allied Chem Ethylene-ethylene chloride trifluoride copolymer foam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9196393B2 (en) 2012-09-13 2015-11-24 Hitachi Metals, Ltd. Foamed resin molded product, foamed insulated wire, cable and method of manufacturing foamed resin molded product
US8901184B2 (en) 2012-09-18 2014-12-02 Hitachi Metals, Ltd. Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
JP2019513954A (en) * 2016-04-06 2019-05-30 ヘキサゴン テクノロジー アーエス Damage resistant indicator coating
JP7089477B2 (en) 2016-04-06 2022-06-22 ヘキサゴン テクノロジー アーエス Damage resistance indicator coating

Also Published As

Publication number Publication date
JP4879613B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP5975334B2 (en) Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body
JP4879613B2 (en) Resin composition, foamed resin composition, molded article and electric wire
JP3457543B2 (en) Nucleating agent for foaming, foam, and method for producing foam
US8901184B2 (en) Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
JP5187214B2 (en) Foamed resin composition and electric wire / cable using the same
CN1146607A (en) Isulation material for coaxial cable, coaxial cable and method for making same
EP2065155B1 (en) High processing temperature foaming polymer composition
JP2001031792A (en) Foaming composition and foamed coaxial insulating cable
JP2008019379A (en) Masterbatch for foaming resin composition, foamed coaxial cable and method for producing the same
US8722137B2 (en) Hydrated water-absorption polymer containing resin composition, porous body and insulated wire using same, method of making the wire and coaxial cable
JP2008021585A (en) Foamed coaxial cable
JP5420663B2 (en) Foamed electric wire and transmission cable having the same
JP5426948B2 (en) Foamed electric wire and transmission cable having the same
JP2005343916A (en) Expandable nucleating agent and high-frequency coaxial cable using the same
JP5420662B2 (en) Foamed electric wire and transmission cable having the same
JP5545179B2 (en) Foam insulated wire and manufacturing method thereof
JP2007237645A (en) Foam molding method, foamed coaxial cable, and manufacturing method therefor
JP2004349160A (en) Insulating material for high-frequency coaxial cable
JP3227091B2 (en) Insulating material for coaxial cable, coaxial cable, and method of manufacturing coaxial cable
JP2010215796A (en) Foaming resin composition, method for producing the same and foam-insulated wire using the same
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
JP5212265B2 (en) Foamed resin composition and electric wire / cable using the same
CN110964278A (en) Physical foaming fluoride cable material and preparation method thereof
JP2007172854A (en) Method of manufacturing foamed insulated wire
JP2007242589A (en) Foamed coaxial cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees