JP2007238815A - Phosphor for light emitting device and light emitting device - Google Patents

Phosphor for light emitting device and light emitting device Download PDF

Info

Publication number
JP2007238815A
JP2007238815A JP2006064618A JP2006064618A JP2007238815A JP 2007238815 A JP2007238815 A JP 2007238815A JP 2006064618 A JP2006064618 A JP 2006064618A JP 2006064618 A JP2006064618 A JP 2006064618A JP 2007238815 A JP2007238815 A JP 2007238815A
Authority
JP
Japan
Prior art keywords
phosphor
light emitting
light
emitting device
emits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006064618A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yokozawa
信幸 横沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006064618A priority Critical patent/JP2007238815A/en
Priority to PCT/JP2007/000187 priority patent/WO2007102276A1/en
Priority to TW096108284A priority patent/TW200745312A/en
Publication of JP2007238815A publication Critical patent/JP2007238815A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7718Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor for a light emitting device such as a LED lamp with a high luminous intensity. <P>SOLUTION: The phosphor for the light emitting device is a blue phosphor which essentially comprises a Ce- and Na-activated thiogallate phosphor substantially represented by the formula: BaGa<SB>2</SB>S<SB>4</SB>:Ce, Na and emits a blue light when excited by an ultraviolet radiation (particularly a near-ultraviolet ray at a wavelength of 370-410 nm). The light emitting device is equipped with a light emitting element that emits an ultraviolet radiation and a light emitting part containing the phosphor for the light emitting device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光装置用蛍光体とそれを用いたLEDランプのような発光装置に関する。   The present invention relates to a phosphor for a light emitting device and a light emitting device such as an LED lamp using the phosphor.

近年、無鉛化のような環境保護に対応する技術が世界的に拡大しており、それに合わせて、照明用の光源(ランプ)も、Hgを含有する蛍光ランプから白色光を発光する発光ダイオード(LED:Light Emitting Diode)ランプへ移行しつつある。   In recent years, technologies corresponding to environmental protection such as lead-free have expanded worldwide, and accordingly, a light source (lamp) for illumination is also a light emitting diode that emits white light from a fluorescent lamp containing Hg ( The LED (Light Emitting Diode) lamp is shifting.

一般的な照明用途では、高演色性の白色LEDランプが要求されている。また、LCDのバックライトとしては、色再現域の拡大が可能な白色LEDランプが要求される。このような要求に応えるために、青色発光のLEDチップと黄色ないし橙色発光の黄色系蛍光体とを組合せた白色LEDランプに代わり、近紫外(長波長の紫外線)発光のLEDチップと青色、緑色および赤色の三色混合蛍光体(以下、RGB蛍光体と記す)とを組合せた方式の白色LEDランプの開発が行われている。   In general lighting applications, white LED lamps with high color rendering properties are required. Further, a white LED lamp capable of expanding the color reproduction range is required as a backlight of the LCD. In order to meet these demands, a near-ultraviolet (long-wavelength ultraviolet) LED chip and a blue or green LED chip instead of a white LED lamp combining a blue LED chip and a yellow or orange-emitting yellow phosphor. In addition, a white LED lamp of a system combining a three-color mixed phosphor of red and red (hereinafter referred to as RGB phosphor) has been developed.

しかしながら、この方式の白色LEDランプは、青色発光のLEDチップと黄色系蛍光体とを組合せたLEDランプに比べて発光効率が低いという問題があった。発光効率を高めるためには、LEDチップの発光効率の改善も必要であるが、370〜410nmというLEDチップの発光波長の領域において、より高い発光効率を有する蛍光体が求められている。   However, this type of white LED lamp has a problem that its luminous efficiency is lower than an LED lamp in which a blue light emitting LED chip and a yellow phosphor are combined. In order to increase the light emission efficiency, it is necessary to improve the light emission efficiency of the LED chip. However, a phosphor having a higher light emission efficiency is required in the region of the light emission wavelength of the LED chip of 370 to 410 nm.

最近、高い発光効率を有する蛍光体として、リン酸塩蛍光体やアルミン酸塩蛍光体の使用が検討されているが、十分な輝度が得られていないのが現状であった。   Recently, the use of phosphate phosphors and aluminate phosphors has been studied as phosphors having high luminous efficiency, but sufficient brightness has not been obtained.

また、紫外線を発光するLEDを含み、青色発光成分としてユーロピウム付活ハロリン酸塩蛍光体またはユーロピウム付活アルミン酸塩蛍光体、緑色発光成分としてユーロピウムおよびマンガン付活アルミン酸塩蛍光体、赤色発光成分としてユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体をそれぞれ使用した白色LEDランプが提案されている。(例えば、特許文献1参照)   In addition, it includes an LED that emits ultraviolet light, a europium activated halophosphate phosphor or a europium activated aluminate phosphor as a blue light emitting component, a europium and manganese activated aluminate phosphor as a green light emitting component, a red light emitting component For example, white LED lamps using europium and samarium activated lanthanum oxysulfide phosphors have been proposed. (For example, see Patent Document 1)

しかし、このような蛍光体を含むLEDランプは、高い演色性や発光の均一性は備えているものの、輝度の点で十分に満足できるものではなかった。
特開2000−73052公報
However, although the LED lamp including such a phosphor has high color rendering properties and uniformity of light emission, it is not fully satisfactory in terms of luminance.
JP 2000-73052 A

本発明はこのような問題を解決するためになされたもので、発光輝度が高い発光装置用蛍光体を提供することを目的としている。また、そのような蛍光体を用いることによって、発光輝度の高い白色LEDランプなどの発光装置を提供することを目的としている。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a phosphor for a light emitting device having high emission luminance. Another object of the present invention is to provide a light emitting device such as a white LED lamp with high emission brightness by using such a phosphor.

本発明の発光装置用蛍光体は、化学式:BaGa:Ce,Naで実質的に表されるセリウム(Ce)およびナトリウム(Na)で付活されたチオガレート蛍光体を主体とし、紫外線の放射により励起されて青色光を発光する青色蛍光体であることを特徴とする。 The phosphor for a light-emitting device of the present invention is mainly composed of a thiogallate phosphor substantially activated by cerium (Ce) and sodium (Na) substantially represented by the chemical formula: BaGa 2 S 4 : Ce, Na. It is a blue phosphor that emits blue light when excited by radiation.

本発明の発光装置は、紫外線を放射する発光素子と、前記した本発明の発光装置用蛍光体を含む発光部を具備することを特徴とする。   The light-emitting device of the present invention includes a light-emitting element that emits ultraviolet rays and a light-emitting portion that includes the above-described phosphor for a light-emitting device of the present invention.

本発明の発光装置用蛍光体は、CeおよびNa付活チオガレート蛍光体を主体とし、波長350〜420nmに亘る幅の広い吸収帯を有するので、紫外線(例えば近紫外線)の励起により高効率で波長変換し、高輝度の青色光を発光する。したがって、この蛍光体を用いることで、発光輝度の高いLEDランプなどの発光装置を実現することができる。   The phosphor for light-emitting device of the present invention is mainly composed of Ce and Na-activated thiogallate phosphors and has a wide absorption band over a wavelength range of 350 to 420 nm. Converts and emits bright blue light. Therefore, by using this phosphor, it is possible to realize a light emitting device such as an LED lamp with high emission luminance.

以下、本発明を実施するための形態について説明する。   Hereinafter, modes for carrying out the present invention will be described.

本発明の第1の実施形態は、セリウム(Ce)とナトリウム(Na)をそれぞれ付活剤および共付活剤とし、周期律表II族に属するバリウム(Ba)とIII族に属するガリウム(Ga)、およびVI族に属するイオウ(S)を組合せた三元化合物を主体とする蛍光体である。より具体的には、化学式:BaGa:Ce,Naで実質的に表される組成を有するセリウムおよびナトリウム付活バリウムチオガレートを主体として構成され、紫外線(例えば、波長370〜410nmの近紫外線)の放射により励起されて青色光を発光する青色蛍光体である。 In the first embodiment of the present invention, cerium (Ce) and sodium (Na) are used as an activator and a coactivator, respectively, and barium (Ba) belonging to group II of the periodic table and gallium belonging to group III (Ga ) And sulfur (S) belonging to group VI. More specifically, it is mainly composed of cerium and sodium-activated barium thiogallate having a composition substantially represented by the chemical formula: BaGa 2 S 4 : Ce, Na, and is composed of ultraviolet rays (for example, near wavelengths of 370 to 410 nm). It is a blue phosphor that emits blue light when excited by the radiation of ultraviolet rays.

第1の実施形態の蛍光体において、Ceは発光中心をなす第1の付活剤(主付活剤)であり、高い遷移確率を有しているので発光効率が高い。主付活剤であるCeは、蛍光体の母体であるバリウムチオガレート(BaGa)に対して、0.1〜5.0モル%の範囲で含有されることが好ましい。より好ましいCeの含有割合は0.5〜2.0モル%である。Ceの含有割合がこの範囲を外れると、発光輝度や発光色度が低下するため好ましくない。 In the phosphor of the first embodiment, Ce is a first activator (main activator) that forms a light emission center, and has a high transition probability, so that the light emission efficiency is high. Ce, which is the main activator, is preferably contained in the range of 0.1 to 5.0 mol% with respect to barium thiogallate (BaGa 2 S 4 ) which is the base material of the phosphor. A more preferable Ce content is 0.5 to 2.0 mol%. If the Ce content is out of this range, the light emission luminance and light emission chromaticity are lowered, which is not preferable.

Naは共付活剤と呼ばれるものであり、バリウムチオガレート(SrGa)に付活したCeを電荷補償するものである。Naの含有割合は、蛍光体母体であるバリウムチウムチオガレートに対して2〜5モル%の範囲とすることが好ましい。 Na is called a coactivator and compensates charge of Ce activated to barium thiogallate (SrGa 2 S 4 ). The content ratio of Na is preferably in the range of 2 to 5 mol% with respect to barium thithiogallate which is a phosphor matrix.

本発明の第1の実施形態であるセリウムおよびナトリウム付活バリウムチオガレート蛍光体は、例えば以下に示す方法で製造することができる。   The cerium and sodium activated barium thiogallate phosphors according to the first embodiment of the present invention can be produced, for example, by the method shown below.

すなわち、蛍光体の母体と付活剤(主付活剤および共付活剤)を構成する元素またはその元素を含有する化合物を含む蛍光体原料を、所望の組成(BaGa:Ce,Na)となるように秤量し、さらに必要に応じてフラックスとして炭酸ナトリウムを添加し、これらを乾式で混合する。具体的には、硫化バリウムと硫化ガリウムを所定量混合し、付活剤とフラックスを適量添加することで蛍光体の原料とする。硫化バリウムの代わりに、硫酸バリウムなどの酸性バリウム原料を使用してもよい。付活剤としては、硫化セリウムやシュウ酸セリウムを使用し、共付活剤として、炭酸ナトリウムや塩化ナトリウムなどを使用することができる。 That is, a phosphor raw material containing an element constituting the phosphor base material and an activator (main activator and coactivator) or a compound containing the element is obtained with a desired composition (BaGa 2 S 4 : Ce, Na) is weighed, and sodium carbonate is added as a flux if necessary, and these are mixed in a dry process. Specifically, a predetermined amount of barium sulfide and gallium sulfide are mixed, and an appropriate amount of activator and flux are added to obtain a phosphor material. Instead of barium sulfide, an acidic barium raw material such as barium sulfate may be used. As the activator, cerium sulfide or cerium oxalate can be used, and as the coactivator, sodium carbonate, sodium chloride or the like can be used.

次いで、このような蛍光体原料を、適当量の硫黄および活性炭素とともにアルミナるつぼなどの耐熱容器に充填する。硫黄の添加・混合においては、ブレンダなどを使用して蛍光体原料より若干多めに混合し、この混合材料を耐熱容器に充填した後、その表面を硫黄で覆うようにすることが好ましい。これを硫化水素雰囲気、硫黄蒸気雰囲気などの硫化性雰囲気、あるいは還元性雰囲気(例えば3〜5%水素−残部窒素の雰囲気)で焼成する。   Subsequently, such a phosphor raw material is filled in a heat-resistant container such as an alumina crucible together with appropriate amounts of sulfur and activated carbon. In addition and mixing of sulfur, it is preferable to mix a slightly larger amount than the phosphor raw material using a blender or the like, fill the mixed material in a heat-resistant container, and then cover the surface with sulfur. This is fired in a sulfide atmosphere such as a hydrogen sulfide atmosphere, a sulfur vapor atmosphere, or a reducing atmosphere (for example, an atmosphere of 3 to 5% hydrogen-remaining nitrogen).

焼成条件は、蛍光体母体(BaGa)の結晶構造を制御するうえで重要である。焼成温度は700〜1100℃の範囲とすることが好ましい。焼成時間は、設定した焼成温度にもよるが60〜180分とし、焼成後は焼成と同一雰囲気で冷却することが好ましい。その後、得られた焼成物をイオン交換水などで水洗し乾燥した後、必要に応じて粗大粒子を除去するための篩別などを行うことによって、セリウムおよびナトリウム付活バリウムチオガレート(BaGa:Ce,Na)蛍光体を得ることができる。 Firing conditions are important in controlling the crystal structure of the phosphor matrix (BaGa 2 S 4 ). The firing temperature is preferably in the range of 700 to 1100 ° C. Although the firing time depends on the set firing temperature, it is preferably 60 to 180 minutes, and after firing, it is preferably cooled in the same atmosphere as firing. Thereafter, the obtained fired product is washed with ion-exchanged water and dried, followed by sieving to remove coarse particles as necessary, thereby activating cerium and sodium activated barium thiogallate (BaGa 2 S). 4 : Ce, Na) phosphor can be obtained.

第1の実施形態であるセリウムおよびナトリウム付活バリウムチオガレート蛍光体は、金属ガリウムと硫化バリウムまたは硫酸バリウムなどを出発原料にしても合成が可能である。焼成は、前記した焼成条件(温度および時間)で行うことができる。   The cerium and sodium activated barium thiogallate phosphor according to the first embodiment can be synthesized using metal gallium and barium sulfide or barium sulfate as starting materials. Firing can be performed under the firing conditions (temperature and time) described above.

さらに、蛍光体原料の焼成を、以下に示すように回転式加熱炉を用いて行うことも可能である。すなわち、前記した蛍光体原料を、水平方向に対して傾斜して配置された回転する管状の加熱炉に投入し、連続的に通過させる。そして、この加熱炉内で蛍光体原料を所定の焼成温度まで急激に加熱し、かつ加熱炉の回転に応じて転動させながら炉内を上方から下方へ移動させる。こうして、蛍光体原料を必要かつ十分な時間だけ加熱して焼成する。その後、焼成物を加熱炉から連続的に排出し、排出された焼成物を急激に冷却する。   Further, the phosphor raw material can be fired using a rotary heating furnace as shown below. That is, the above-described phosphor raw material is put into a rotating tubular heating furnace that is arranged so as to be inclined with respect to the horizontal direction, and continuously passed. Then, the phosphor material is rapidly heated to a predetermined firing temperature in the heating furnace, and the furnace is moved from the upper side to the lower side while rolling according to the rotation of the heating furnace. In this way, the phosphor material is heated and fired for a necessary and sufficient time. Thereafter, the fired product is continuously discharged from the heating furnace, and the discharged fired product is rapidly cooled.

このような焼成工程において、管状の加熱炉の内部、および加熱炉から排出された焼成物の冷却部は、酸素が除去された無酸素状態に保持されていることが好ましく、特に加熱炉内を、アルゴン、窒素などの不活性ガス雰囲気や水素を含む還元性ガス雰囲気、さらには硫化水素雰囲気に保持することが望ましい。   In such a firing step, the inside of the tubular heating furnace and the cooling part of the fired product discharged from the heating furnace are preferably maintained in an oxygen-free state from which oxygen has been removed. It is desirable to maintain in an inert gas atmosphere such as argon or nitrogen, a reducing gas atmosphere containing hydrogen, or a hydrogen sulfide atmosphere.

このような焼成方法によれば、蛍光体原料が、加熱炉内を移動する過程で転動しながら急激に加熱されるので、無酸素状態でかつ硫化水素雰囲気などで蛍光体原料に均一な熱エネルギーが加えられる結果、従来のるつぼを用いた焼成方法に比べて短時間で焼成を完了することができる。したがって、輝度低下を生じることなく、小粒径の蛍光体を得ることができる。また、蛍光体粒子の凝集を抑制することができるので、焼成後さらに粉砕を行う必要がない。したがって、粉砕工程を重ねることによる蛍光体劣化を抑制することができる。さらに、蛍光体原料は、加熱炉内を転動しながら加熱・焼成されるので、球形に近い形状で均一な粒径を有する蛍光体粒子を得ることができる。   According to such a firing method, since the phosphor material is rapidly heated while rolling in the process of moving in the heating furnace, uniform heat is applied to the phosphor material in an oxygen-free state and in a hydrogen sulfide atmosphere. As a result of energy being added, firing can be completed in a shorter time compared to a conventional firing method using a crucible. Therefore, a phosphor having a small particle diameter can be obtained without causing a decrease in luminance. Further, since aggregation of the phosphor particles can be suppressed, there is no need to further pulverize after firing. Therefore, phosphor deterioration due to repeated pulverization steps can be suppressed. Furthermore, since the phosphor material is heated and fired while rolling in the heating furnace, phosphor particles having a uniform particle size and a shape close to a sphere can be obtained.

こうして得られる第1の実施形態のセリウムおよびナトリウム付活バリウムチオガレート蛍光体は、波長370〜410nmの長波長の紫外線(近紫外線)の放射により励起されて青色に発光する蛍光体であり、良好な発光効率を有するので、高い発光輝度が得られる。したがって、青色蛍光体としてこの蛍光体を用いることで、発光輝度の高いLEDランプなどの発光装置を実現することができる。   The cerium- and sodium-activated barium thiogallate phosphor of the first embodiment thus obtained is a phosphor that emits blue light when excited by radiation of long-wavelength ultraviolet light (near ultraviolet light) having a wavelength of 370 to 410 nm. Therefore, high luminance can be obtained. Therefore, by using this phosphor as the blue phosphor, a light emitting device such as an LED lamp with high emission luminance can be realized.

次に、第1の実施形態の青色蛍光体を含む発光部を有するLEDランプ(青色LEDランプおよび白色LEDランプ)について説明する。   Next, an LED lamp (a blue LED lamp and a white LED lamp) having a light emitting unit including the blue phosphor according to the first embodiment will be described.

図1は、第2の実施形態であるLEDランプの構成を概略的に示す断面図である。図1において、符号1はカップを有するフレーム(リードフレーム)を示し、このフレーム1のカップ上に、紫外発光タイプのLEDチップ2が搭載されている。紫外発光タイプのLEDとしては、InGa1−xN系をはじめ既存のあらゆるものを使用することができるが、発光ピーク波長が370〜410nmである近紫外線を放射するものが好ましい。 FIG. 1 is a cross-sectional view schematically showing a configuration of an LED lamp according to a second embodiment. In FIG. 1, reference numeral 1 denotes a frame (lead frame) having a cup, and an ultraviolet light emitting type LED chip 2 is mounted on the cup of the frame 1. As the ultraviolet light emitting type LED, any existing one including In x Ga 1-x N can be used, but those emitting near ultraviolet rays having an emission peak wavelength of 370 to 410 nm are preferable.

そして、このLEDチップ2の裏面電極が一方のフレームの電極端子1aに電気的に接続されている。また、LEDチップ2の上面電極が他方のフレームの電極端子1bにボンディングワイヤ3を介して接続されている。LEDチップ2が配置されたカップ内には、第1の実施形態の青色蛍光体を含有する樹脂(例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂など)が充填され、蛍光体含有層4が形成されており、さらにその外側に、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂などの透明樹脂の封止層5が形成されている。   And the back surface electrode of this LED chip 2 is electrically connected to the electrode terminal 1a of one flame | frame. Further, the upper surface electrode of the LED chip 2 is connected to the electrode terminal 1b of the other frame through the bonding wire 3. The cup in which the LED chip 2 is arranged is filled with a resin (for example, acrylic resin, epoxy resin, silicone resin, polyimide resin, etc.) containing the blue phosphor of the first embodiment, and the phosphor-containing layer 4 Further, a transparent resin sealing layer 5 such as an acrylic resin, an epoxy resin, a silicone resin, or a polyimide resin is formed on the outer side.

このような実施形態のLEDランプを製造するには、予め所定量を秤取した青色蛍光体を、アセトンやトルエンのような有機溶剤などで希釈したアクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂などの透明樹脂に混合した液を、例えばディスペンサを用いてLEDチップ2の上に滴下して塗布する。次いで、塗布層を乾燥し硬化させた後、その上にエポキシ樹脂などの透明樹脂により形成されたキャップを取り付けるなどの方法で透明樹脂封止層5を形成し、LEDランプを完成する。   To manufacture the LED lamp of such an embodiment, an acrylic resin, an epoxy resin, a silicone resin, a polyimide resin, or the like obtained by diluting a predetermined amount of a blue phosphor with an organic solvent such as acetone or toluene. The liquid mixed in the transparent resin is dropped onto the LED chip 2 using, for example, a dispenser and applied. Next, after the coating layer is dried and cured, the transparent resin sealing layer 5 is formed thereon by a method such as attaching a cap formed of a transparent resin such as an epoxy resin, thereby completing the LED lamp.

このように製造される第2の実施形態のLEDランプにおいては、印加された電気エネルギーがLEDチップ2で波長370〜410nmの長波長の紫外線(近紫外線)に変換され、この近紫外線が蛍光体含有層4に含まれた第1の実施形態の青色蛍光体でより長波長の光に変換され、青色光が放出される。そして、青色蛍光体が、化学式:BaGa:Ce,Naで実質的に表されるCeおよびNa付活バリウムチオガレートを主体とし、波長350〜420nmに亘る幅広い吸収帯を有するので、高輝度の青色光が発光される。 In the LED lamp of the second embodiment manufactured as described above, the applied electric energy is converted into long wavelength ultraviolet light (near ultraviolet light) having a wavelength of 370 to 410 nm by the LED chip 2, and the near ultraviolet light is converted into a phosphor. The blue phosphor of the first embodiment contained in the containing layer 4 is converted into light having a longer wavelength, and blue light is emitted. Since the blue phosphor is mainly composed of Ce and Na-activated barium thiogallate substantially represented by the chemical formula: BaGa 2 S 4 : Ce, Na, and has a wide absorption band over a wavelength of 350 to 420 nm, Luminous blue light is emitted.

実施形態のLEDランプにおいては、発光部である蛍光体含有層4に、第1の実施形態の青色蛍光体とともに、近紫外線の放射により励起されて黄色光ないし橙色光を発光する黄色系蛍光体を含有させることにより、白色LEDランプを得ることができる。ここで、黄色ないし橙色発光蛍光体としては、例えばRE(Al,Ga)12:Ce蛍光体(REはY、GdおよびLaから選ばれる少なくとも1種を示す。)などのYAG蛍光体、AESiO:Eu蛍光体(AEはSr、Ba、Caなどのアルカリ土類元素である。)などの珪酸塩蛍光体が用いられる。このようなLEDランプでは、青色蛍光体から発光される青色光と黄色系蛍光体から発光される黄色光ないし橙色光との混色によって、白色光が発光される。 In the LED lamp of the embodiment, the phosphor-containing layer 4 which is a light-emitting portion, together with the blue phosphor of the first embodiment, is excited by near-ultraviolet radiation and emits yellow light or orange light. By containing the white LED lamp can be obtained. Here, as the yellow to orange light-emitting phosphor, for example, a YAG phosphor such as RE 3 (Al, Ga) 5 O 12 : Ce phosphor (RE represents at least one selected from Y, Gd, and La). Silicate phosphors such as AE 2 SiO 4 : Eu phosphor (AE is an alkaline earth element such as Sr, Ba, Ca, etc.). In such an LED lamp, white light is emitted by a mixture of blue light emitted from the blue phosphor and yellow light or orange light emitted from the yellow phosphor.

また、第1の実施形態の青色蛍光体と、近紫外線の放射により励起されて緑色光を発光する緑色蛍光体および近紫外線の放射により励起されて赤色光を発光する赤色蛍光体を、白色光が得られるように所定の割合で混合したBGR白色LED用蛍光体を使用して蛍光体含有層4を構成することにより、白色LEDランプを得ることができる。ここで、緑色蛍光体としては、例えば(Ba,Mg)Al1017:Eu,Mn蛍光体のようなアルミン酸塩蛍光体等を用いることができる。また赤色蛍光体としては、LaS:Eu蛍光体のような酸硫化物蛍光体等を用いることができる。このようなLEDランプでは、青色蛍光体から発光される青色光と緑色蛍光体から発光される緑色光および赤色蛍光体から発光される赤色光の混色によって、白色光が発光される。 Further, the blue phosphor of the first embodiment, the green phosphor that emits green light when excited by near ultraviolet radiation, and the red phosphor that emits red light when excited by near ultraviolet radiation are converted into white light. The white LED lamp can be obtained by configuring the phosphor-containing layer 4 using the phosphor for BGR white LED mixed at a predetermined ratio so as to obtain the above. Here, as the green phosphor, for example, an aluminate phosphor such as a (Ba, Mg) Al 10 O 17 : Eu, Mn phosphor can be used. As the red phosphor, an oxysulfide phosphor such as a La 2 O 2 S: Eu phosphor can be used. In such an LED lamp, white light is emitted by a mixture of blue light emitted from the blue phosphor, green light emitted from the green phosphor, and red light emitted from the red phosphor.

以下、本発明の具体的な実施例について記載する。   Hereinafter, specific examples of the present invention will be described.

実施例1(青色LEDランプ)
蛍光体の母体および付活剤を構成する元素またはその元素を含有する化合物を含む原料を、以下の組成(BaGa:Ce含有割合0.6モル%、Na含有割合5.0モル%)となるように秤量し、さらに過剰の炭酸ナトリウムをフラックスとして添加して十分に混合した。得られた蛍光体原料に、硫黄および活性炭素を適当量添加して石英るつぼ内に充填し、これを硫化水素雰囲気で焼成した。焼成条件は850℃×60分とし、得られた焼成物を1050℃×60分の条件でさらに焼成した。
Example 1 (blue LED lamp)
A raw material containing an element constituting the phosphor base material and an activator or a compound containing the element has the following composition (BaGa 2 S 4 : Ce content ratio: 0.6 mol%, Na content ratio: 5.0 mol% ), And excess sodium carbonate was added as a flux and mixed well. Appropriate amounts of sulfur and activated carbon were added to the obtained phosphor material, filled in a quartz crucible, and fired in a hydrogen sulfide atmosphere. The firing conditions were 850 ° C. × 60 minutes, and the obtained fired product was further fired under the conditions of 1050 ° C. × 60 minutes.

その後、得られた焼成物を水洗および乾燥しさらに篩別することによって、CeおよびNa付活バリウムチオガレート蛍光体(BaGa:Ce,Na)を得た。 Then, the obtained fired product was washed with water, dried, and further sieved to obtain Ce and Na-activated barium thiogallate phosphor (BaGa 2 S 4 : Ce, Na).

次いで、こうして得られた蛍光体を用い、以下に示すようにして図1に示す青色LEDランプを作製した。すなわち、前記したCeおよびNa付活バリウムチオガレート蛍光体を、エポキシ樹脂と酸無水物系硬化剤との混合液に混合したものを、波長380〜390nmに発光ピークを有する紫外発光タイプのLEDチップ(0.4mm角)の上にディスペンサを用いて滴下し、エポキシ樹脂を硬化させた後、その上に半球形の透明なエポキシ樹脂キャップを被覆した。   Next, using the phosphor thus obtained, a blue LED lamp shown in FIG. 1 was produced as follows. That is, an ultraviolet light emitting type LED chip having a light emission peak at a wavelength of 380 to 390 nm obtained by mixing the above-described Ce and Na-activated barium thiogallate phosphor in a mixed liquid of an epoxy resin and an acid anhydride curing agent. After dropping by using a dispenser on (0.4 mm square) to cure the epoxy resin, a hemispherical transparent epoxy resin cap was coated thereon.

また比較例1として、BaMgAl1017:Eu蛍光体を青色発光蛍光体として使用した他は、実施例1と同様にして青色LEDランプを作製した。 As Comparative Example 1, a blue LED lamp was produced in the same manner as in Example 1 except that BaMgAl 10 O 17 : Eu phosphor was used as a blue light-emitting phosphor.

次いで、実施例1および比較例1で得られた青色LEDランプの発光輝度および発光色度を測定した。そして、比較例1のLEDランプの発光輝度を100%としたときの相対値として発光輝度を求めた。発光輝度および発光色度の測定結果を表1に示す。

Figure 2007238815
Next, the light emission luminance and light emission chromaticity of the blue LED lamps obtained in Example 1 and Comparative Example 1 were measured. And the light emission luminance was calculated | required as a relative value when the light emission luminance of the LED lamp of the comparative example 1 was made into 100%. Table 1 shows the measurement results of emission luminance and emission chromaticity.
Figure 2007238815

表1から明らかなように、実施例1で得られたLEDランプは、比較例1で得られたLEDランプに比べて青色発光の輝度が大幅に向上しており、しかも十分に良好な発光色度を有している。   As is apparent from Table 1, the LED lamp obtained in Example 1 has a significantly improved luminance of blue light emission compared to the LED lamp obtained in Comparative Example 1, and has a sufficiently good emission color. Have a degree.

実施例2(白色LEDランプ)
実施例1で調製したCeおよびNa付活バリウムチオガレート蛍光体(BaGa:Ce,Na)を青色蛍光体として使用し、下記の緑色蛍光体および赤色蛍光体とともに白色となるように混合した。
緑色蛍光体;BaMgAl1017:Eu,Mn蛍光体
赤色蛍光体;LaS:Eu蛍光体
Example 2 (white LED lamp)
The Ce and Na-activated barium thiogallate phosphor (BaGa 2 S 4 : Ce, Na) prepared in Example 1 was used as a blue phosphor and mixed with the following green phosphor and red phosphor so as to be white. did.
BaMgAl 10 O 17 : Eu, Mn phosphor red phosphor; La 2 O 2 S: Eu phosphor

このBGR白色LED用蛍光体を、エポキシ樹脂と酸無水物系硬化剤との混合液に混合し、その液を波長380〜390nmに発光ピークを有する紫外発光タイプのLEDチップ(0.4mm角)の上にディスペンサを用いて滴下しエポキシ樹脂を硬化させた後、その上に半球形の透明なエポキシ樹脂キャップを被覆した。   This phosphor for BGR white LED is mixed with a mixed liquid of an epoxy resin and an acid anhydride curing agent, and the liquid is an ultraviolet light emitting LED chip having a light emission peak at a wavelength of 380 to 390 nm (0.4 mm square). The epoxy resin was dropped by using a dispenser to cure the epoxy resin, and then a hemispherical transparent epoxy resin cap was coated thereon.

また比較例2として、BaMgAl1017:Eu蛍光体を青色蛍光体として使用した他は実施例2と同様にして、白色LEDランプを作製した。 As Comparative Example 2, a white LED lamp was produced in the same manner as in Example 2 except that BaMgAl 10 O 17 : Eu phosphor was used as the blue phosphor.

次に、実施例2および比較例2で得られた白色LEDランプの発光輝度を測定した。そして、比較例2のLEDランプの発光輝度を100%としたときの相対値として発光輝度を求めた。測定結果を表2に示す。

Figure 2007238815
Next, the light emission luminance of the white LED lamps obtained in Example 2 and Comparative Example 2 was measured. And the light emission luminance was calculated | required as a relative value when the light emission luminance of the LED lamp of the comparative example 2 was set to 100%. The measurement results are shown in Table 2.
Figure 2007238815

表2から明らかなように、実施例2で得られた白色LEDランプは、比較例2で得られた白色LEDランプに比べて白色発光の輝度が向上している。   As is clear from Table 2, the white LED lamp obtained in Example 2 has improved white light emission brightness as compared with the white LED lamp obtained in Comparative Example 2.

本発明の発光装置用蛍光体によれば、紫外線(例えば、波長370〜410nmの近紫外線)の励起により高輝度の青色光を発光する。したがって、この蛍光体を用いることで、発光輝度の高いLEDランプなどの発光装置を実現することができる。   According to the phosphor for a light emitting device of the present invention, high-intensity blue light is emitted by excitation of ultraviolet rays (for example, near ultraviolet rays having a wavelength of 370 to 410 nm). Therefore, by using this phosphor, it is possible to realize a light emitting device such as an LED lamp with high emission luminance.

本発明の第2の実施形態であるLEDランプを概略的に示す断面図である。It is sectional drawing which shows schematically the LED lamp which is the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…フレーム、2…LEDチップ、3…ボンディングワイヤ、4…蛍光体含有層、5…透明樹脂封止層。   DESCRIPTION OF SYMBOLS 1 ... Frame, 2 ... LED chip, 3 ... Bonding wire, 4 ... Phosphor containing layer, 5 ... Transparent resin sealing layer.

Claims (5)

化学式:BaGa:Ce,Na
で実質的に表されるセリウム(Ce)およびナトリウム(Na)で付活されたチオガレート蛍光体を主体とし、紫外線の放射により励起されて青色光を発光する青色蛍光体であることを特徴とする発光装置用蛍光体。
Chemical formula: BaGa 2 S 4 : Ce, Na
A thiogallate phosphor activated by cerium (Ce) and sodium (Na) substantially represented by the formula (1), which is a blue phosphor that emits blue light when excited by ultraviolet radiation. Phosphor for light emitting device.
前記紫外線が波長370〜410nmの近紫外線であることを特徴とする請求項1記載の発光装置用蛍光体。   The phosphor for a light-emitting device according to claim 1, wherein the ultraviolet light is near ultraviolet light having a wavelength of 370 to 410 nm. 紫外線を放射する発光素子と、請求項1記載の発光装置用蛍光体を含む発光部を具備することを特徴とする発光装置。   A light emitting device comprising: a light emitting element that emits ultraviolet light; and a light emitting portion including the phosphor for a light emitting device according to claim 1. 前記発光素子は、波長370〜410nmの近紫外線を放射する発光ダイオード(LED)チップを有し、前記発光部は、請求項1記載の発光装置用蛍光体と、前記近紫外線の放射により励起されて黄色光ないし橙色光を発光する黄色系蛍光体をそれぞれ含有し、白色光を発光することを特徴とする請求項3記載の発光装置。   The light emitting element includes a light emitting diode (LED) chip that emits near ultraviolet rays having a wavelength of 370 to 410 nm, and the light emitting portion is excited by the phosphor for a light emitting device according to claim 1 and the radiation of the near ultraviolet rays. 4. The light emitting device according to claim 3, further comprising yellow phosphors that emit yellow light or orange light, and emits white light. 前記発光素子は、波長370〜410nmの近紫外線を放射する発光ダイオード(LED)チップを有し、前記発光部は、請求項1記載の発光装置用蛍光体と、前記近紫外線の放射により励起されて緑色光を発光する緑色蛍光体と、前記近紫外線の放射により励起されて赤色光を発光する赤色蛍光体をそれぞれ含有し、白色光を発光することを特徴とする請求項3記載の発光装置。   The light emitting element includes a light emitting diode (LED) chip that emits near ultraviolet rays having a wavelength of 370 to 410 nm, and the light emitting portion is excited by the phosphor for a light emitting device according to claim 1 and the radiation of the near ultraviolet rays. 4. A light emitting device according to claim 3, further comprising a green phosphor that emits green light and a red phosphor that emits red light when excited by the near-ultraviolet radiation, and emits white light. .
JP2006064618A 2006-03-09 2006-03-09 Phosphor for light emitting device and light emitting device Withdrawn JP2007238815A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006064618A JP2007238815A (en) 2006-03-09 2006-03-09 Phosphor for light emitting device and light emitting device
PCT/JP2007/000187 WO2007102276A1 (en) 2006-03-09 2007-03-09 Phosphor for light-emitting device and light-emitting device
TW096108284A TW200745312A (en) 2006-03-09 2007-03-09 Phosphor for light-emitting device and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064618A JP2007238815A (en) 2006-03-09 2006-03-09 Phosphor for light emitting device and light emitting device

Publications (1)

Publication Number Publication Date
JP2007238815A true JP2007238815A (en) 2007-09-20

Family

ID=38474718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064618A Withdrawn JP2007238815A (en) 2006-03-09 2006-03-09 Phosphor for light emitting device and light emitting device

Country Status (3)

Country Link
JP (1) JP2007238815A (en)
TW (1) TW200745312A (en)
WO (1) WO2007102276A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321139A (en) * 2006-06-05 2007-12-13 National Univ Corp Shizuoka Univ Method for producing fluorophor, the resultant fluorophor, light-emitting device, light emitter, image display, and illuminator
JP2009076749A (en) * 2007-09-21 2009-04-09 Toyoda Gosei Co Ltd Led apparatus, and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3442918B2 (en) * 1995-11-09 2003-09-02 シャープ株式会社 Thin-film electroluminescence panel
FR2755122B1 (en) * 1996-10-31 1998-11-27 Rhodia Chimie Sa COMPOUND BASED ON AN ALKALINE EARTH, SULFUR AND ALUMINUM, GALLIUM OR INDIUM, METHOD FOR PREPARING SAME AND USE THEREOF AS LUMINOPHORE
TW200512949A (en) * 2003-09-17 2005-04-01 Nanya Plastics Corp A method to provide emission of white color light by the principle of secondary excitation and its product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321139A (en) * 2006-06-05 2007-12-13 National Univ Corp Shizuoka Univ Method for producing fluorophor, the resultant fluorophor, light-emitting device, light emitter, image display, and illuminator
JP2009076749A (en) * 2007-09-21 2009-04-09 Toyoda Gosei Co Ltd Led apparatus, and method of manufacturing the same

Also Published As

Publication number Publication date
WO2007102276A1 (en) 2007-09-13
TW200745312A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP4418758B2 (en) Irradiation system having a radiation source and a light emitter
JP5186016B2 (en) Phosphor conversion light emitting device
US7274045B2 (en) Borate phosphor materials for use in lighting applications
JP5330263B2 (en) Phosphor and LED light emitting device using the same
JP4779384B2 (en) Ce-activated rare earth aluminate-based phosphor and light emitting device using the same
JP2006520836A (en) Illumination system having radiation source and fluorescent material
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
JP2008508742A (en) White LED with adjustable color rendering index
JP2008538455A (en) Red phosphor for LED-based lighting
CN1922286A (en) Garnet phosphor materials having enhanced spectral characteristics
JP2009055052A (en) Light emitting device
JP5813096B2 (en) Phosphor for light emitting device, method for producing the same, and light emitting device using the same
JP2005139449A (en) Red phosphor, method for producing the same, red led element given by utilizing the same, white led element, and active light-emitting-type liquid crystal display element
CN107636113B (en) Phosphor, method for producing same, and LED lamp
JP2010155891A (en) Nitride red phosphor and white light emitting diode utilizing the same
JP2008506790A (en) Light emitting device having phosphor mixture
JP5912895B2 (en) Phosphor, manufacturing method thereof, and light emitting device using the same
JP2008255356A (en) Ba-Sr-Ca CONTAINING COMPOUND AND WHITE LIGHT EMITTING DEVICE CONTAINING THIS
JP2007238815A (en) Phosphor for light emitting device and light emitting device
JP5405156B2 (en) Red light emitting phosphor and light emitting device using the same
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor
JP5989775B2 (en) Phosphor, method for manufacturing the same, and light emitting device using the same
JP2004292569A (en) Green-emitting phosphor, fluorescent lamp, and luminescent element
JP2004111344A (en) Light emitting element
JP2004269834A (en) Red color light-emitting fluorescent material and light-emitting element by using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512