JP2007238796A - Method for increasing viscosity of episulfide compound - Google Patents

Method for increasing viscosity of episulfide compound Download PDF

Info

Publication number
JP2007238796A
JP2007238796A JP2006063822A JP2006063822A JP2007238796A JP 2007238796 A JP2007238796 A JP 2007238796A JP 2006063822 A JP2006063822 A JP 2006063822A JP 2006063822 A JP2006063822 A JP 2006063822A JP 2007238796 A JP2007238796 A JP 2007238796A
Authority
JP
Japan
Prior art keywords
viscosity
episulfide compound
sulfur
thickening
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006063822A
Other languages
Japanese (ja)
Other versions
JP4936043B2 (en
Inventor
Mitsuteru Kondo
光輝 近藤
Motoharu Takeuchi
基晴 竹内
Masahiro Kino
正博 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006063822A priority Critical patent/JP4936043B2/en
Publication of JP2007238796A publication Critical patent/JP2007238796A/en
Application granted granted Critical
Publication of JP4936043B2 publication Critical patent/JP4936043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-viscosity body of an episulfide compound. <P>SOLUTION: The viscosity of the episulfide compound is gradually increased as follows. (A) 85-98 wt.% of the episulfide compound is mixed and reacted with (B) 2-15 wt.% of sulfur. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラスチックレンズ、プリズム、光学フィルム、光ファイバー、情報記録基板、LEDの封止材、コーティング材、光学接着剤等で使用可能な高屈折率樹脂のモノマーであるエピスルフィド化合物の増粘方法に関する。   The present invention relates to a method for thickening an episulfide compound that is a monomer of a high refractive index resin that can be used in plastic lenses, prisms, optical films, optical fibers, information recording substrates, LED sealing materials, coating materials, optical adhesives, and the like. .

プラスチック材料は軽量かつ靭性に富み、また染色が容易であることから、各種光学材料に近年多用されている。光学材料の多くに要求される性能の一つとして、高屈折率があげられる。高屈折率な光学材料については、屈折率1.7以上の光学材料を可能とするエピスルフィド化合物が多数見いだされている(特許文献1、特許文献2、特許文献3参照)。中でも、一般式(1)で表されるエピスルフィド化合物は、より高い屈折率を示すことから特に有用である。
しかしながら、一般式(1)で表されるエピスルフィド化合物は、室温においては10〜30mPa・s程度の低粘度であるため、用途によっては使用しにくいという問題があった。具体的には、フィルムや基板上に薄膜を形成する場合、はじきが生じやすい、液だれしやすいという問題があり、微粒子を分散させる場合には微粒子が沈降しやすいという問題があり、モノマーを盛上げて硬化したい場合、盛り上げが難しいといった問題があった。このような状況から、エピスルフィド化合物の高粘度化が強く望まれていた。
In recent years, plastic materials are widely used in various optical materials because they are light and tough and easy to dye. One of the performances required for many optical materials is a high refractive index. As for optical materials having a high refractive index, a large number of episulfide compounds that enable optical materials having a refractive index of 1.7 or more have been found (see Patent Document 1, Patent Document 2, and Patent Document 3). Among these, the episulfide compound represented by the general formula (1) is particularly useful because it exhibits a higher refractive index.
However, since the episulfide compound represented by the general formula (1) has a low viscosity of about 10 to 30 mPa · s at room temperature, there is a problem that it is difficult to use depending on the application. Specifically, when a thin film is formed on a film or a substrate, there are problems that repellence is likely to occur and liquid dripping easily. When it is hard to cure, there is a problem that it is difficult to raise. Under such circumstances, it has been strongly desired to increase the viscosity of the episulfide compound.

エピスルフィド化合物は上記特許に記載の塩基触媒で硬化ができる。従って、原理的にはこれらの塩基触媒を使っての増粘が可能であるが、これらの触媒を使用した場合、粘度が一気に上昇し硬化まで至るため、所望の粘度で増粘を止めることが難しいという問題があった。更に、トラブル等が発生し増粘停止が遅れた場合反応釜中で硬化が起こり、硬化物を取り出すことが困難になるという問題があった。従って、温和に増粘が進行し、且つ最終的には硬化まで至らないという増粘方法の開発が望まれていた。 The episulfide compound can be cured with the base catalyst described in the above patent. Therefore, in principle, thickening using these base catalysts is possible, but when these catalysts are used, the viscosity rises at a stretch and reaches curing, so that the thickening can be stopped at the desired viscosity. There was a problem that it was difficult. Further, when trouble or the like occurs and the thickening stop is delayed, there is a problem that curing occurs in the reaction kettle and it is difficult to take out the cured product. Accordingly, there has been a demand for the development of a thickening method in which the thickening progresses mildly and does not eventually reach curing.

エピスルフィド化合物と硫黄との組み合わせについては、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10等に記載がある。これらの特許において硫黄は屈折率向上を目的に添加されている。更に、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8ではエピスルフィド化合物と硫黄を混合し、モールド中で直接硬化する方法が開示されているだけで、増粘方法については開示されていない。また、特許文献7及び特許文献8には、エピスルフィド化合物と硫黄との反応についての記載があるが、それらの詳細な説明において、「混合にあたり、設定温度、これに要する時間等は基本的には各成分が十分に混合される条件であればよいが、過剰の温度、時間は各原料、添加剤間の好ましくない反応が起こり、さらには粘度の上昇をきたし注型操作を困難にする等適当ではない。」と記載されていることから明らかなように、増粘が起こりにくい反応方法を開示したものである。   The combination of the episulfide compound and sulfur is described in Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, Patent Literature 8, Patent Literature 9, Patent Literature 10, and the like. In these patents, sulfur is added for the purpose of improving the refractive index. Furthermore, Patent Document 4, Patent Document 5, Patent Document 6, Patent Document 7, and Patent Document 8 only disclose a method of mixing an episulfide compound and sulfur and directly curing in a mold. Not disclosed. In addition, Patent Document 7 and Patent Document 8 have a description of the reaction between an episulfide compound and sulfur. In the detailed description thereof, “the set temperature, the time required for this, etc. It is sufficient that the components are sufficiently mixed. However, excessive temperature and time are suitable, for example, an undesirable reaction between the raw materials and additives occurs, and the viscosity increases and makes the casting operation difficult. As is clear from the description, it is disclosed a reaction method in which thickening does not easily occur.

特開平9−71580号公報JP-A-9-71580 特開平9−110979号公報Japanese Patent Laid-Open No. 9-110979 特開平9−255781号公報Japanese Patent Laid-Open No. 9-255781 特開2001−2783号公報Japanese Patent Laid-Open No. 2001-2783 特開2001−2933号公報JP 2001-2933 A 特開2002−122701号公報JP 2002-122701 A 特開2004−43526号公報JP 2004-43526 A 特開2004−237481号公報Japanese Patent Application Laid-Open No. 2004-237481 特開2004−269673号公報JP 2004-269673 A 特開2004−339329号公報JP 2004-339329 A

本発明の目的は、エピスルフィド化合物の高粘度体を提供することにある。   An object of the present invention is to provide a high viscosity product of an episulfide compound.

本発明者らは上記問題を解決すべく検討を行った結果、(A)一般式(1)で表されるエピスルフィド化合物85〜98wt%と、(B)硫黄2〜15wt%を混合し反応させることにより、エピスルフィド化合物が穏やかに増粘することを見出した。

Figure 2007238796
(ここで、mは0〜4の整数、nは0〜1の整数を表す。)
更に、(A)一般式(1)で表されるエピスルフィド化合物45〜97wt%と(B)硫黄2〜15wt%および(C)SH基を1分子中に1個以上有する化合物1〜40wt%を混合し反応させることによっても、同様にエピスルフィド化合物が穏やかに増粘することを見出し本発明に至った。 As a result of studies to solve the above problems, the present inventors have mixed (A) 85 to 98 wt% of the episulfide compound represented by the general formula (1) and (B) 2 to 15 wt% of sulfur and reacting them. As a result, it was found that the episulfide compound increases in viscosity gently.
Figure 2007238796
(Here, m represents an integer of 0 to 4, and n represents an integer of 0 to 1.)
Further, (A) 45 to 97 wt% of an episulfide compound represented by the general formula (1), (B) 2 to 15 wt% of sulfur, and (C) 1 to 40 wt% of a compound having one or more SH groups in one molecule. Similarly, the present inventors found that the episulfide compound can be gently thickened by mixing and reacting.

本発明により、高屈折率樹脂用モノマーであるエピスルフィド化合物の高粘度体の提供が可能となった。   According to the present invention, it is possible to provide a high-viscosity product of an episulfide compound that is a monomer for a high refractive index resin.

高粘度体はその粘度を高めるほど架橋反応が進行するため、操作性が悪くなる、溶剤での洗浄が困難になる等の問題が発生する。工業的に取り扱いやすい粘度としては200mPa・s〜10万mPa・s、更に取り扱いやすい粘度としては200mPa・s〜1万mPa・s、最も取り扱いやすい粘度は200mPa・s〜1千mPa・sである。
一般式(1)で表されるエピスルフィド化合物は、屈折率を考慮するとビス(β−エピチオプロピル)スルフィド(n=0)またはビス(β−エピチオプロピル)ジスルフィド(n=1、m=0)であることが好ましい。エピスルフィド化合物の純度は屈折率やその他性能を勘案すると96%以上であることが好ましい。
硫黄の添加量は増粘を行なう組成物において、2〜15wt%が好ましく、5〜12wt%が更に好ましく、7〜10wt%が最も好ましい。硫黄の添加量が2wt%より少ない場合には増粘速度が極めて遅くなる。また、10wt%より多い場合には増粘速度が速くなりすぎ制御が難しくなる、硬化物に着色が生じやすくなるといった問題が発生する。
エピスルフィド化合物と硫黄の反応温度は0℃〜100℃が好ましく、10℃〜70℃が更に好ましく、20℃〜50℃が最も好ましい。反応温度が低くすぎる場合は増粘速度が極めて遅くなり、反応温度が高すぎる場合には増粘速度が速くなりすぎ制御が難しくなる。
反応時間は所望する粘度、反応条件により異なるが、増粘の制御の容易さを考えると、0.5日〜30日が好ましく、2日〜20日が更に好ましく、4日〜10日が最も好ましい。
As the viscosity of the high-viscosity material increases, the crosslinking reaction proceeds, and thus problems such as poor operability and difficulty in washing with a solvent occur. The industrially easy-to-handle viscosity is 200 mPa · s to 100,000 mPa · s, the easy-to-handle viscosity is 200 mPa · s to 10,000 mPa · s, and the most easy-to-handle viscosity is 200 mPa · s to 1,000 mPa · s. .
In consideration of the refractive index, the episulfide compound represented by the general formula (1) is bis (β-epithiopropyl) sulfide (n = 0) or bis (β-epithiopropyl) disulfide (n = 1, m = 0). ) Is preferable. The purity of the episulfide compound is preferably 96% or more considering the refractive index and other performance.
The amount of sulfur added is preferably 2 to 15 wt%, more preferably 5 to 12 wt%, and most preferably 7 to 10 wt% in the thickening composition. When the amount of sulfur added is less than 2 wt%, the speed of thickening becomes extremely slow. On the other hand, when the amount is more than 10 wt%, there are problems that the speed of thickening becomes too fast and control becomes difficult, and the cured product is likely to be colored.
The reaction temperature of the episulfide compound and sulfur is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 70 ° C, and most preferably 20 ° C to 50 ° C. If the reaction temperature is too low, the thickening rate becomes extremely slow, and if the reaction temperature is too high, the thickening rate becomes too fast and control becomes difficult.
The reaction time varies depending on the desired viscosity and reaction conditions, but considering the ease of control of thickening, it is preferably 0.5 to 30 days, more preferably 2 to 20 days, most preferably 4 to 10 days. preferable.

増粘の停止剤としては酸物質、あるいはケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物が使用可能である。
酸物質は酸であれば使用できるが、操作性や高粘度体への溶解性を考慮すれば、常温で無色透明の液体である燐酸エステル、亜燐酸エステル類が好ましい。具体例としては以下の化合物を挙げることができる。メチル燐酸、ブチル燐酸、イソデシル燐酸、2−エチルヘキシル燐酸、亜燐酸ジメチル、亜燐酸ジエチル、亜燐酸ジブチル、亜燐酸ジイソプロピル、亜燐酸ジフェニル。この中で、亜燐酸ジフェニルが最も好ましい。これらは単独でも2種類以上を混合して使用してもかまわない。
ケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物の中で好ましいものは塩化物であり、より好ましくは、トリクロロまたはジクロロ化合物であり、さらに好ましくはアルキル基を有するゲルマニウム、スズ、アンチモンのトリクロロまたはジクロロ化合物である。最も好ましいものの具体例はジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、トリフェニルアンチモンジクロライドである。これらは単独でも2種類以上を混合して使用してもかまわない。
停止剤の添加量については、得られる高粘度体100重量部に対して0.001から5重量部が好ましく、好ましくは0.01から1重量部である。停止剤の量が少なすぎる場合には増粘を十分に抑えることが難しく、停止剤の量が多すぎる場合にはその後の硬化が十分に進行しなくなる。
増粘を停止させた化合物の保管条件は、−10℃〜50℃の範囲が好ましく、0℃〜30℃の範囲がより好ましく、5℃〜25℃の範囲が最も好ましい。保管温度が50℃を超える場合には増粘を十分に抑えることが難しく、保管温度が低すぎる場合には固体析出が起こる。
As the thickening terminator, an acid substance or a halide of silicon, germanium, tin, or antimony can be used.
The acid substance can be used as long as it is an acid, but in view of operability and solubility in a high-viscosity material, phosphoric acid esters and phosphites that are colorless and transparent liquids at room temperature are preferred. Specific examples include the following compounds. Methyl phosphoric acid, butyl phosphoric acid, isodecyl phosphoric acid, 2-ethylhexyl phosphoric acid, dimethyl phosphite, diethyl phosphite, dibutyl phosphite, diisopropyl phosphite, diphenyl phosphite. Of these, diphenyl phosphite is most preferred. These may be used alone or in combination of two or more.
Among the halides of silicon, germanium, tin and antimony, preferred are chlorides, more preferred are trichloro or dichloro compounds, and further preferred are germanium, tin and antimony trichloro or dichloro compounds having an alkyl group. is there. Specific examples of the most preferred are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride. These may be used alone or in combination of two or more.
About the addition amount of a terminator, 0.001 to 5 weight part is preferable with respect to 100 weight part of high viscosity bodies obtained, Preferably it is 0.01 to 1 weight part. If the amount of the terminator is too small, it is difficult to sufficiently suppress the thickening, and if the amount of the terminator is too large, subsequent curing will not proceed sufficiently.
The storage condition of the compound whose viscosity has been stopped is preferably in the range of −10 ° C. to 50 ° C., more preferably in the range of 0 ° C. to 30 ° C., and most preferably in the range of 5 ° C. to 25 ° C. When the storage temperature exceeds 50 ° C., it is difficult to sufficiently suppress thickening, and when the storage temperature is too low, solid precipitation occurs.

エピスルフィド化合物はSH基を有する化合物と一緒に重合硬化することにより耐酸化性(耐黄変性)が向上することが知られている(特開平10−298287)。本発明においては、エピスルフィド化合物、硫黄に加え、SH基を有する化合物を共存させても高粘度体を得ることが可能である。SH基を有する化合物は特開平10−298287に開示されているものがそのまま使用できるが、1分子中にSH基を2個以上有する化合物が好ましい。具体例としては、メタンジチオール、メタントリチオール、1,2−ジメルカプトエタン、ビス(2−メルカプトエチル)スルフィド、ビス(2−メルカプトエチル)エーテル、ビス(2,3−ジメルカプトプロピル)スルフィド、1,2,3−トリメルカプトプロパン、2−メルカプトメチル−1,3−ジメルカプトプロパン、2−メルカプトメチル−1,5−ジメルカプト−3−チアペンタン、4−メルカプトメチル−1,8−ジメルカプト−3,6−ジチアオクタン、2,4−ビス(メルカプトメチル)−1,5−ジメルカプト−3−チアペンタン、4,8−ビス(メルカプトメチル)−1,11−ジメルカプト−3,6,9−トリチアウンデカン、4,7−ビス(メルカプトメチル)−1,11−ジメルカプト−3,6,9−トリチアウンデカン、5,7−ビス(メルカプトメチル)−1,11−ジメルカプト−3,6,9−トリチアウンデカン、3,5−ビス(メルカプトメチルチオ)−1,7−ジメルカプト−2,6−ジチアヘプタン、1,2,7−トリメルカプト−4,6−ジチアヘプタン、1,2,9−トリメルカプト−4,6,8−トリチアノナン、1,2,6,7−テトラメルカプト−4−チアヘプタン、1,2,8,9−テトラメルカプト−4,6−ジチアノナン、1,2,10,11−テトラメルカプト−4,6,8−トリチアウンデカン、1,2,12,13−テトラメルカプト−4,6,8,10−テトラチアトリデカン、エチレングリコールビス(チオグリコレート)、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールビス(3−メルカプトプロピオネート)、トリメチロールプロパントリ(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、テトラキス(メルカプトメチル)メタン、テトラキス(4−メルカプト−2−チアブチル)メタン、テトラキス(7−メルカプト−2,5−ジチアヘプチル)メタン、トリメチロールプロパントリス(2−メルカプトアセテート)、トリメチロールプロパントリス(3−メルカプトプロピオネート)、 ペンタエリスリトールテトラキス(2−メルカプトアセテート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、2,5−ビス(メルカプトメチル)−1,4−ジチアン、ビス(4−メルカプトフェニル)スルフィド、ビス(4−メルカプトメチルフェニル)メタン、2,2−ビス(4−メルカプトメチルフェニル)プロパン、ビス(4−メルカプトメチルフェニル)エーテル、ビス(4−メルカプトメチルフェニル)スルフィド等が挙げられる。より好ましくはエチレングリコールビス(チオグリコレート)、トリメチロールプロパントリス(チオグリコレート)、ペンタエリスリトールテトラキス(チオグリコレート)、エチレングリコールビス(3−メルカプトプロピオネート)、トリメチロールプロパントリ(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ビス(2−メルカプトエチル)スルフィド、ビス(2−メルカプトエチルエーテル)、1,2,6,7−テトラメルカプト−4−チアヘプタンまたは2−メルカプトメチル−1,5−ジメルカプト−3−チアペンタン等が挙げられる。これらは単独でも2種類以上を混合して使用してもかまわない。
SH基を有する化合物の添加量は、増粘を行なう組成物において1〜40wt%が好ましく、3〜30wt%が更に好ましく、5〜20wt%が最も好ましい。1wt%以下の添加では耐酸化性は不十分であり、熱による黄変が起こりやすい。一方、40wt%以上の添加では耐酸化性自体は飽和してしまい、向上効果が認められない。
It is known that an episulfide compound is improved in oxidation resistance (yellowing resistance) by polymerization and curing together with a compound having an SH group (Japanese Patent Laid-Open No. 10-298287). In the present invention, it is possible to obtain a high-viscosity material even in the presence of a compound having an SH group in addition to an episulfide compound and sulfur. As the compound having an SH group, one disclosed in JP-A-10-298287 can be used as it is, but a compound having two or more SH groups in one molecule is preferable. Specific examples include methanedithiol, methanetrithiol, 1,2-dimercaptoethane, bis (2-mercaptoethyl) sulfide, bis (2-mercaptoethyl) ether, bis (2,3-dimercaptopropyl) sulfide, 1,2,3-trimercaptopropane, 2-mercaptomethyl-1,3-dimercaptopropane, 2-mercaptomethyl-1,5-dimercapto-3-thiapentane, 4-mercaptomethyl-1,8-dimercapto-3 , 6-dithiaoctane, 2,4-bis (mercaptomethyl) -1,5-dimercapto-3-thiapentane, 4,8-bis (mercaptomethyl) -1,11-dimercapto-3,6,9-trithiaundecane 4,7-bis (mercaptomethyl) -1,11-dimercapto-3,6,9-tritium Undecane, 5,7-bis (mercaptomethyl) -1,11-dimercapto-3,6,9-trithiaundecane, 3,5-bis (mercaptomethylthio) -1,7-dimercapto-2,6-dithiaheptane, 1,2,7-trimercapto-4,6-dithiaheptane, 1,2,9-trimercapto-4,6,8-trithianonane, 1,2,6,7-tetramercapto-4-thiaheptane, 1,2 , 8,9-tetramercapto-4,6-dithianonane, 1,2,10,11-tetramercapto-4,6,8-trithiaundecane, 1,2,12,13-tetramercapto-4,6 8,10-tetrathiatridecane, ethylene glycol bis (thioglycolate), trimethylolpropane tris (thioglycolate), pentaerythritol Trakis (thioglycolate), ethylene glycol bis (3-mercaptopropionate), trimethylolpropane tri (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), tetrakis (mercaptomethyl) methane Tetrakis (4-mercapto-2-thiabutyl) methane, tetrakis (7-mercapto-2,5-dithiaheptyl) methane, trimethylolpropane tris (2-mercaptoacetate), trimethylolpropane tris (3-mercaptopropionate) Pentaerythritol tetrakis (2-mercaptoacetate), pentaerythritol tetrakis (3-mercaptopropionate), 2,5-bis (mercaptomethyl) -1,4-dithiane, bis (4 Mercaptophenyl) sulfide, bis (4-mercaptomethylphenyl) methane, 2,2-bis (4-mercaptomethylphenyl) propane, bis (4-mercaptomethylphenyl) ether, bis (4-mercaptomethylphenyl) sulfide, etc. Can be mentioned. More preferably, ethylene glycol bis (thioglycolate), trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), ethylene glycol bis (3-mercaptopropionate), trimethylolpropane tri (3- Mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), bis (2-mercaptoethyl) sulfide, bis (2-mercaptoethyl ether), 1,2,6,7-tetramercapto-4-thiaheptane Alternatively, 2-mercaptomethyl-1,5-dimercapto-3-thiapentane and the like can be mentioned. These may be used alone or in combination of two or more.
The addition amount of the compound having an SH group is preferably 1 to 40 wt%, more preferably 3 to 30 wt%, and most preferably 5 to 20 wt% in the composition for thickening. Addition of 1 wt% or less is insufficient in oxidation resistance, and yellowing due to heat tends to occur. On the other hand, when the amount is 40 wt% or more, the oxidation resistance itself is saturated, and no improvement effect is recognized.

本発明で得られる高粘度体は熱および光で硬化が可能である。熱硬化においては従来公知の触媒が使用できるが、好ましい具体例としては、トリエチルアミン、N,N−ジメチルシクロヘキシルアミン、N,N−ジエチルエタノールアミン、N,N−ジメチルアニリン、ピリジン、N−メチルピペリジン、ピペラジントリエチレンジアミン、イミダゾール等のアミン類、トリ−n−ブチルホスフィン、トリフェニルホスフィンの等のホスフィン類、テトラ−n−ブチルホスホニウムブロマイド、テトラ−n−ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1−n−ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。熱硬化の場合、高粘度体を20℃から200℃の温度範囲で、数分から数日間加熱して硬化する。硬化に使用できる熱源としては、電気オーブン、恒温槽、ドライヤーなどがあげられる。
また、光硬化の場合には、特願平2003−288288号、特願平2004−029979号記載の触媒が好適に使用できる。光硬化の場合、高粘度体に紫外線を照射することにより硬化を行うが、使用する紫外線源は、紫外線を発生させる装置であれば特に制限はない。具体的には、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ハイパワーメタルハライドランプ等を挙げることができる。
以上、高粘度体の硬化触媒のごく一部を例示したが、重合促進効果を発現するものであれば、これら列記化合物に限定されるものではない。また、これら触媒は単独でも2種類以上を混合して使用してもかまわない。触媒の添加量は、高粘度体100重量部に対して、0.0001〜10.0重量部であり、好ましくは0.0005〜5.0重量部である。
The high-viscosity material obtained in the present invention can be cured with heat and light. Conventionally known catalysts can be used in thermosetting, and preferred specific examples include triethylamine, N, N-dimethylcyclohexylamine, N, N-diethylethanolamine, N, N-dimethylaniline, pyridine, and N-methylpiperidine. Amines such as piperazine triethylenediamine and imidazole, phosphines such as tri-n-butylphosphine and triphenylphosphine, tetra-n-butylphosphonium bromide, tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethyl Examples include quaternary ammonium salts such as benzylammonium chloride and 1-n-dodecylpyridinium chloride, and quaternary phosphonium salts such as tetraphenylphosphonium bromide. In the case of thermosetting, the high-viscosity material is cured by heating in the temperature range of 20 ° C. to 200 ° C. for several minutes to several days. Examples of the heat source that can be used for curing include an electric oven, a thermostatic bath, and a dryer.
In the case of photocuring, catalysts described in Japanese Patent Application Nos. 2003-288288 and 2004-029979 can be suitably used. In the case of photocuring, curing is performed by irradiating a high-viscosity material with ultraviolet rays, but the ultraviolet ray source used is not particularly limited as long as it is an apparatus that generates ultraviolet rays. Specific examples include a high pressure mercury lamp, an ultra high pressure mercury lamp, a metal halide lamp, and a high power metal halide lamp.
As described above, only a part of the curing catalyst of high viscosity is exemplified, but it is not limited to these listed compounds as long as the polymerization promoting effect is exhibited. These catalysts may be used alone or in combination of two or more. The addition amount of the catalyst is 0.0001 to 10.0 parts by weight, preferably 0.0005 to 5.0 parts by weight, with respect to 100 parts by weight of the high-viscosity material.

エピスルフィドと硫黄の反応が遅く増粘がしにくい場合には、特開2004−269673号公報に開示されている反応促進剤を使用できる。この中で好ましい化合物は、2 − メルカプト− 1 − メチルイミダゾール、トリフェニルホスフィン、3 , 5 − ジメチルピラゾール、N − シクロヘキシル− 2 − ベンゾチアゾリルスルフェンアミド、ジペンタメチレンチウラムテトラスルフィド、テトラブチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、1 , 2 , 3 − トリフェニルグアニジン、1 , 3 − ジフェニルグアニジン、1 , 1 , 3 , 3 − テトラメチレングアニジン、アミノグアニジン硫酸塩、トリメチルチオ尿素、テトラエチルチオ尿素、ジメチルエチルチオ尿素、ジブチルジチオカルバミン酸亜鉛、ジベンジルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸亜鉛、ジエチルジチオカルバミン酸亜鉛、ピペコリルジチオカルバミン酸ピペコリウム、チオウレタン類である。反応促進剤の使用量は、増粘を行なう組成物100重量部に対して、0 .001 〜 5 重量部であり、好ましくは0 .005 〜 2 重量部であり、より好ましくは0.01 〜 1重量部である
When the reaction between episulfide and sulfur is slow and it is difficult to increase the viscosity, a reaction accelerator disclosed in JP-A No. 2004-269673 can be used. Among these, preferred compounds are 2-mercapto-1-methylimidazole, triphenylphosphine, 3,5-dimethylpyrazole, N-cyclohexyl-2-benzothiazolylsulfenamide, dipentamethylenethiuram tetrasulfide, tetrabutylthiuram. Disulfide, tetraethylthiuram disulfide, 1,2,3-triphenylguanidine, 1,3-diphenylguanidine, 1,1,3,3-tetramethyleneguanidine, aminoguanidine sulfate, trimethylthiourea, tetraethylthiourea, dimethylethyl Thiourea, zinc dibutyldithiocarbamate, zinc dibenzyldithiocarbamate, zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, pipecoryldithiocarbamate Corium, is a thio urethanes. The reaction accelerator is used in an amount of 0.001 to 5 parts by weight, preferably 0.1 to 0.1 parts by weight, based on 100 parts by weight of the thickening composition. 005 to 2 parts by weight, more preferably 0.01 to 1 part by weight.

さらに、高粘度体の性能を所望に調整するために、必要に応じて、組成物成分の一部もしくは全部と反応可能な化合物を添加することも可能である。組成物成分の一部もしくは全部と反応可能な化合物としては、エポキシ化合物類、イソ(チオ)シアネート類、カルボン酸類、カルボン酸無水物類、フェノール類、アミン類、ビニル化合物類、アリル化合物類、アクリル化合物類、メタクリル化合物類などが挙げられる。組成物成分の一部もしくは全部と反応可能な化合物を使用する場合の添加量は、高粘度体100重量部に対して、1〜200重量部である。
この他、本発明の高粘度体は、酸化防止剤、ブルーイング剤、紫外線吸収剤、密着性改善剤、濡れ性改善剤、離型性改善剤、帯電防止剤等の各種性能改良添加剤を加えて、得られる光学素子の実用性をより向上せしめることはもちろん可能である。
Furthermore, in order to adjust the performance of the high-viscosity body as desired, it is possible to add a compound capable of reacting with some or all of the composition components as necessary. Compounds that can react with a part or all of the composition components include epoxy compounds, iso (thio) cyanates, carboxylic acids, carboxylic anhydrides, phenols, amines, vinyl compounds, allyl compounds, Examples include acrylic compounds and methacrylic compounds. The addition amount in the case of using the compound which can react with a part or all of a composition component is 1-200 weight part with respect to 100 weight part of high viscosity bodies.
In addition, the high-viscosity material of the present invention contains various performance improving additives such as antioxidants, bluing agents, ultraviolet absorbers, adhesion improvers, wettability improvers, releasability improvers, and antistatic agents. In addition, it is of course possible to further improve the practicality of the obtained optical element.

高粘度体の取り扱いは、ゴミや異物など混入を避けるためにクリーンルームで行うのが好ましく、また、硬化は、雰囲気を窒素やヘリウムなどの不活性ガス気流下、適宜フィルムなどで覆って行っても構わない。
高粘度体を重合硬化させる前に、あらかじめ脱気処理およびろ過処理を行うことは、光学素子の高度な透明性を達成する面から好ましい。脱気処理は、通常、0.001〜50torrの減圧下、1分間〜24時間、0℃〜100℃で行う。ろ過処理は、0.05〜10μm程度の孔径を有するPTFEやPETなどのフィルターを通過させて行う。
It is preferable to handle high-viscosity materials in a clean room to avoid contamination such as dust and foreign substances, and curing can be performed by covering the atmosphere with an appropriate film in an inert gas stream such as nitrogen or helium. I do not care.
It is preferable to perform a deaeration process and a filtration process before polymerizing and curing the high-viscosity material from the viewpoint of achieving high transparency of the optical element. The deaeration treatment is usually performed at 0 to 100 ° C. under a reduced pressure of 0.001 to 50 torr for 1 minute to 24 hours. The filtration treatment is performed by passing through a filter such as PTFE or PET having a pore size of about 0.05 to 10 μm.

本発明のエピスルフィド化合物と硫黄の反応による増粘法を操作の順に従い説明する。
エピスルフィド化合物に硫黄、更に必要な場合にはSH基を1分子中に1個以上有する化合物を添加し、撹拌下または非撹拌下、0 ℃ 〜 100 ℃ で、1 分間〜2 時間かけて硫黄を完全に溶解させる。この時の温度は硫黄が完全に溶けきる温度であればよいが、0 ℃ 〜 1 0 0 ℃ が好ましく、1 0 ℃ 〜 80 ℃ がより好ましく、2 0 ℃ 〜 60 ℃ が最も好ましい。硫黄の溶解時間は1 分間〜2 時間であるが、5分〜1.5時間が好ましく、10分〜1時間が最も好ましい。また、硫黄を溶解させる際に、反応促進剤を添加していてもよい。
エピスルフィド化合物と硫黄の反応による増粘は、撹拌下または非撹拌下、0℃〜100℃、0.5日〜30日で行なう。この後、酸物質、あるいはケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物を添加し、増粘の停止を行なう。得られた高粘度体の保管は−10℃〜50℃で行なう。
以上の全ての操作は、大気中で行なってもよいが、不活性ガス雰囲気下で実施することが望ましい。
高粘度体の硬化は、高粘度体に重合触媒ならびに各種性能改善剤を添加後、熱または光で行なう。
The thickening method by the reaction of the episulfide compound of the present invention with sulfur will be described in the order of operation.
Add sulfur to the episulfide compound, and if necessary, a compound having one or more SH groups in one molecule, and add sulfur with stirring or non-stirring at 0 ° C. to 100 ° C. for 1 minute to 2 hours. Dissolve completely. The temperature at this time may be a temperature at which sulfur can be completely dissolved, but is preferably 0 ° C to 100 ° C, more preferably 10 ° C to 80 ° C, and most preferably 20 ° C to 60 ° C. The sulfur dissolution time is 1 minute to 2 hours, preferably 5 minutes to 1.5 hours, and most preferably 10 minutes to 1 hour. Moreover, when dissolving sulfur, a reaction accelerator may be added.
Thickening due to the reaction between the episulfide compound and sulfur is carried out at 0 ° C. to 100 ° C. for 0.5 to 30 days with or without stirring. Thereafter, an acid substance or a halide of silicon, germanium, tin, or antimony is added to stop the thickening. The obtained high viscosity body is stored at -10 ° C to 50 ° C.
All of the above operations may be performed in the air, but it is desirable to perform in an inert gas atmosphere.
The high-viscosity material is cured by heat or light after adding a polymerization catalyst and various performance improvers to the high-viscosity material.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、粘度および屈折率の測定は以下の方法により行った。
粘度測定:ブルックフィールド社製コーンプレート粘度計モデルDV−IIを用い、25℃の粘度を測定した。
屈折率(nd):アッベ屈折計を用いて25℃で測定した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The viscosity and refractive index were measured by the following method.
Viscosity measurement: The viscosity at 25 ° C. was measured using a corn plate viscometer model DV-II manufactured by Brookfield.
Refractive index (nd): measured at 25 ° C. using an Abbe refractometer.

実施例1
硫黄添加による増粘
フラスコにビス(β−エピチオプロピル)スルフィド93g、硫黄7gを仕込み、フラスコ内を窒素置換した。この溶液を攪拌しながら50℃まで昇温し硫黄を完全に溶解させた。その後、溶液を室温まで戻し、溶液約1gをサンプリングし粘度を測定した。この時の粘度は12mPa・sであった。
フラスコを再び窒素置換後、温度が25℃に保たれた保管庫内に静置した。所定の経過日数後、サンプリングを行い、上記と同様に粘度を測定した。結果を図1に示した。図1に示すように、粘度はゆっくりと増加した。
更に、30日後溶液を観察したところ、溶液はゲル状になっていた。
Example 1
A thickening flask by addition of sulfur was charged with 93 g of bis (β-epithiopropyl) sulfide and 7 g of sulfur, and the atmosphere in the flask was replaced with nitrogen. The solution was heated to 50 ° C. with stirring to completely dissolve sulfur. Thereafter, the solution was returned to room temperature, about 1 g of the solution was sampled, and the viscosity was measured. The viscosity at this time was 12 mPa · s.
The flask was again purged with nitrogen and then allowed to stand in a storage kept at 25 ° C. Sampling was performed after a predetermined number of elapsed days, and the viscosity was measured in the same manner as described above. The results are shown in FIG. As shown in FIG. 1, the viscosity increased slowly.
Furthermore, when the solution was observed after 30 days, the solution was in a gel form.

比較例1
フラスコにビス(β−エピチオプロピル)スルフィド100gおよびエピスルフィド化合物の一般的な硬化触媒であるテトラ(n−ブチル)ホスホニウムブロミドを0.02g仕込み、フラスコ内を窒素置換後攪拌し触媒を完全に溶解させた。この溶液約1gをサンプリングし粘度測定を行なった。この時の粘度は11mPa・sであった。
フラスコを再び窒素置換後、温度が25℃に保たれた保管庫内に静置した。所定の経過日数後、サンプリングを行い、上記と同様に粘度を測定した。結果を図1に示した。硬化触媒を微量使用したにもかかわらず粘度上昇が一気に起こり、従来の硬化触媒では粘度制御が難しいことが分かった。更に、4日後溶液を観察したところ、溶液は固化していた。
Comparative Example 1
The flask was charged with 100 g of bis (β-epithiopropyl) sulfide and 0.02 g of tetra (n-butyl) phosphonium bromide, which is a general curing catalyst for episulfide compounds, and the inside of the flask was purged with nitrogen and stirred to completely dissolve the catalyst. I let you. About 1 g of this solution was sampled and the viscosity was measured. The viscosity at this time was 11 mPa · s.
The flask was again purged with nitrogen and then allowed to stand in a storage kept at 25 ° C. Sampling was performed after a predetermined number of elapsed days, and the viscosity was measured in the same manner as described above. The results are shown in FIG. Despite the use of a small amount of the curing catalyst, the viscosity increased at a stretch, and it was found that it was difficult to control the viscosity with the conventional curing catalyst. Furthermore, when the solution was observed after 4 days, the solution was solidified.

実施例2
SH化合物共存下の硫黄添加による増粘
フラスコにビス(β−エピチオプロピル)スルフィド87g、ジメルカプトエチルスルフィド5gならびに硫黄8gを仕込み、フラスコ内を窒素置換した。この溶液を攪拌しながら50℃まで昇温し硫黄を完全に溶解させた。その後、溶液を室温まで戻し、温度が25℃に保たれた保管庫内に静置した。7日後サンプリングを行い粘度を測定した。この時の粘度は770mPa・sであった。
Example 2
87 g of bis (β-epithiopropyl) sulfide, 5 g of dimercaptoethyl sulfide and 8 g of sulfur were charged into a thickening flask by addition of sulfur in the presence of an SH compound , and the atmosphere in the flask was replaced with nitrogen. The solution was heated to 50 ° C. with stirring to completely dissolve sulfur. Thereafter, the solution was returned to room temperature and allowed to stand in a storage kept at 25 ° C. After 7 days, sampling was performed to measure the viscosity. The viscosity at this time was 770 mPa · s.

実施例3
酸による増粘停止、保管および硬化物の作製
実施例1と全く同様に(β−エピチオプロピル)スルフィドを増粘させた。溶液粘度がおよそ500mPa・sとなった時点で、高粘度体100重量部に対し増粘停止剤として亜燐酸ジフェニルを0.1重量部を加え十分に攪拌し溶解させた。この時の粘度は510mPa・sであった。フラスコを窒素置換後、温度が10℃に保たれた保管庫内に静置した。23日後、再び粘度を測定したところ520mPa・sであり、粘度変化はほとんど認められなかった。
保管後の高粘度体100重量部に対して硬化触媒テトラ(n−ブチル)ホスホニウムブロミド0.4重量部を加え十分に攪拌し溶解させた。この溶液をガラスモールドに注入し、下記の温度パターンで硬化させた。硬化物を110℃で1時間アニールした後、屈折率を測定したところ1.72(d線)であった。
硬化温度パターン:30℃で10時間保持、30℃から100℃まで10時間で昇温、100℃で1時間保持
Example 3
Stopping thickening with acid, storage and preparation of cured product (β-epithiopropyl) sulfide was thickened in exactly the same manner as in Example 1. When the solution viscosity reached approximately 500 mPa · s, 0.1 part by weight of diphenyl phosphite as a thickening stop agent was added to 100 parts by weight of the high-viscosity material, and the mixture was sufficiently stirred and dissolved. The viscosity at this time was 510 mPa · s. After replacing the flask with nitrogen, the flask was left in a storage cabinet maintained at a temperature of 10 ° C. After 23 days, when the viscosity was measured again, it was 520 mPa · s, and almost no change in viscosity was observed.
To 100 parts by weight of the high-viscosity material after storage, 0.4 parts by weight of the curing catalyst tetra (n-butyl) phosphonium bromide was added and sufficiently stirred to dissolve. This solution was poured into a glass mold and cured with the following temperature pattern. After the cured product was annealed at 110 ° C. for 1 hour, the refractive index was measured to be 1.72 (d line).
Curing temperature pattern: 10 hours at 30 ° C, 10 hours from 30 ° C to 100 ° C, 1 hour at 100 ° C

実施例4
塩素化合物による増粘停止、保管および硬化物の作製
実施例1と全く同様に(β−エピチオプロピル)スルフィドを増粘させた。溶液粘度がおよそ1000mPa・sとなった時点で、高粘度体100重量部に対し増粘停止剤としてジブチルスズジクロライド0.1重量部を加え十分に攪拌し溶解させた。この時の粘度は1200mPa・sであった。フラスコを窒素置換後、温度が10℃に保たれた保管庫内に静置した。21日後、再び粘度を測定したところ1340mPa・sであり、粘度は微増しただけであった。
保管後の高粘度体100重量部に対し硬化触媒テトラ(n−ブチル)ホスホニウムブロミド0.4重量部を加え十分に攪拌し溶解させた。この溶液をガラスモールドに注入し、実施例3と同様の温度パターンで硬化させた。硬化物を110℃で1時間アニールした後、硬化物の屈折率を測定したところ1.72(d線)であった。
Example 4
Stopping thickening with chlorine compound, storage and preparation of cured product (β-epithiopropyl) sulfide was thickened in exactly the same manner as in Example 1. When the solution viscosity reached approximately 1000 mPa · s, 0.1 part by weight of dibutyltin dichloride was added as a thickening stop agent to 100 parts by weight of the high-viscosity material, and the mixture was sufficiently stirred and dissolved. The viscosity at this time was 1200 mPa · s. After replacing the flask with nitrogen, the flask was left in a storage cabinet maintained at a temperature of 10 ° C. After 21 days, when the viscosity was measured again, it was 1340 mPa · s, and the viscosity only increased slightly.
To 100 parts by weight of the high-viscosity material after storage, 0.4 parts by weight of the curing catalyst tetra (n-butyl) phosphonium bromide was added and sufficiently stirred to dissolve. This solution was poured into a glass mold and cured with the same temperature pattern as in Example 3. After the cured product was annealed at 110 ° C. for 1 hour, the refractive index of the cured product was measured and found to be 1.72 (d line).

比較例2
フラスコにビス(β−エピチオプロピル)スルフィド93g、硫黄7gを仕込み、フラスコ内を窒素置換した。この溶液を攪拌しながら50℃まで昇温し硫黄を完全に溶解させた。その後、溶液を室温まで戻し、この溶液に対して硬化触媒テトラ(n−ブチル)ホスホニウムブロミド0.1gを加え十分に攪拌し溶解させた。この溶液をガラスモールドに注入し、実施例3と同様の温度パターンで硬化させた。硬化物を110℃で1時間アニールした後、硬化物の屈折率を測定したところ1.72(d線)であった。
この結果より、本比較例で得られた硬化物と実施例2,3で得られた硬化物は物性的に同等であることが確認できた。
Comparative Example 2
The flask was charged with 93 g of bis (β-epithiopropyl) sulfide and 7 g of sulfur, and the atmosphere in the flask was replaced with nitrogen. The solution was heated to 50 ° C. with stirring to completely dissolve sulfur. Thereafter, the solution was returned to room temperature, and 0.1 g of a curing catalyst tetra (n-butyl) phosphonium bromide was added to this solution and sufficiently stirred and dissolved. This solution was poured into a glass mold and cured with the same temperature pattern as in Example 3. After the cured product was annealed at 110 ° C. for 1 hour, the refractive index of the cured product was measured and found to be 1.72 (d line).
From this result, it was confirmed that the cured product obtained in this Comparative Example and the cured products obtained in Examples 2 and 3 were physically equivalent.

Claims (7)

(A)下記一般式(1)で表されるエピスルフィド化合物85〜98wt%と(B)硫黄2〜15wt%を混合し反応させることを特徴とするエピスルフィド化合物の増粘方法。
Figure 2007238796
(ここで、mは0〜4の整数、nは0〜1の整数を表す。)
(A) A method for thickening an episulfide compound, comprising mixing and reacting 85 to 98 wt% of an episulfide compound represented by the following general formula (1) and 2 to 15 wt% of sulfur (B).
Figure 2007238796
(Here, m represents an integer of 0 to 4, and n represents an integer of 0 to 1.)
(A)下記一般式(1)で表されるエピスルフィド化合物45〜97wt%と(B)硫黄2〜15wt%および(C)SH基を1分子中に1個以上有する化合物1〜40wt%を混合し反応させることを特徴とするエピスルフィド化合物の増粘方法。
Figure 2007238796
(ここで、mは0〜4の整数、nは0〜1の整数を表す。)
(A) 45 to 97 wt% of an episulfide compound represented by the following general formula (1), (B) 2 to 15 wt% of sulfur, and (C) 1 to 40 wt% of a compound having one or more SH groups in one molecule are mixed. And a method for increasing the viscosity of the episulfide compound.
Figure 2007238796
(Here, m represents an integer of 0 to 4, and n represents an integer of 0 to 1.)
請求項1または2記載の組成物に酸物質若しくはケイ素、ゲルマニウム、スズ又はアンチモンのハロゲン化物を添加することを特徴とする増粘停止法。 3. A method for stopping thickening, comprising adding an acid substance or a halide of silicon, germanium, tin or antimony to the composition according to claim 1 or 2. 請求項3記載の方法によって得られる高粘度体。 A high-viscosity body obtained by the method according to claim 3. 請求項4記載の高粘度体を−10℃〜50℃において保管する保管方法。 The storage method which stores the high-viscosity body of Claim 4 in -10 degreeC-50 degreeC. 請求項4記載の高粘度体を重合硬化して得られる樹脂。 A resin obtained by polymerizing and curing the high-viscosity material according to claim 4. 請求項6記載の樹脂より得られる光学材料。 An optical material obtained from the resin according to claim 6.
JP2006063822A 2006-03-09 2006-03-09 Method for thickening episulfide compounds Active JP4936043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063822A JP4936043B2 (en) 2006-03-09 2006-03-09 Method for thickening episulfide compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063822A JP4936043B2 (en) 2006-03-09 2006-03-09 Method for thickening episulfide compounds

Publications (2)

Publication Number Publication Date
JP2007238796A true JP2007238796A (en) 2007-09-20
JP4936043B2 JP4936043B2 (en) 2012-05-23

Family

ID=38584645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063822A Active JP4936043B2 (en) 2006-03-09 2006-03-09 Method for thickening episulfide compounds

Country Status (1)

Country Link
JP (1) JP4936043B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249564A (en) * 2008-04-09 2009-10-29 Mitsubishi Gas Chem Co Inc Method for producing optical material
WO2010073613A1 (en) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール Optical resin composition, optical lens, and eyeglass plastic lens
WO2010131631A1 (en) * 2009-05-14 2010-11-18 三菱瓦斯化学株式会社 Composition for use in optical material with high refractive index and high strength
EP2072560A3 (en) * 2007-12-17 2010-11-24 Seiko Epson Corporation Manufacturing method and apparatus of optical material
JP2010278240A (en) * 2009-05-28 2010-12-09 Kyocera Corp Light emitting device and exposure device with the same, image forming apparatus, and light irradiation head
KR20130100714A (en) * 2012-03-01 2013-09-11 미츠비시 가스 가가쿠 가부시키가이샤 Method for terminating polymerization reaction of composition for resin
JP2013209627A (en) * 2012-03-01 2013-10-10 Mitsubishi Gas Chemical Co Inc Method for terminating polymerization of composition for resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002783A (en) * 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc Composition for optical material
JP2002332350A (en) * 2001-05-10 2002-11-22 Mitsubishi Gas Chem Co Inc Composition for resin
JP2004043526A (en) * 2002-07-08 2004-02-12 Mitsubishi Gas Chem Co Inc Composition for optical material
JP2004137481A (en) * 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc Method for producing optical material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001002783A (en) * 1999-04-23 2001-01-09 Mitsubishi Gas Chem Co Inc Composition for optical material
JP2002332350A (en) * 2001-05-10 2002-11-22 Mitsubishi Gas Chem Co Inc Composition for resin
JP2004043526A (en) * 2002-07-08 2004-02-12 Mitsubishi Gas Chem Co Inc Composition for optical material
JP2004137481A (en) * 2002-09-27 2004-05-13 Mitsubishi Gas Chem Co Inc Method for producing optical material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072560A3 (en) * 2007-12-17 2010-11-24 Seiko Epson Corporation Manufacturing method and apparatus of optical material
US8013084B2 (en) 2007-12-17 2011-09-06 Seiko Epson Corporation Manufacturing method and apparatus of optical material
JP2009249564A (en) * 2008-04-09 2009-10-29 Mitsubishi Gas Chem Co Inc Method for producing optical material
WO2010073613A1 (en) * 2008-12-24 2010-07-01 株式会社ニコン・エシロール Optical resin composition, optical lens, and eyeglass plastic lens
WO2010131631A1 (en) * 2009-05-14 2010-11-18 三菱瓦斯化学株式会社 Composition for use in optical material with high refractive index and high strength
JP5720565B2 (en) * 2009-05-14 2015-05-20 三菱瓦斯化学株式会社 Composition for optical materials with high refractive index and high strength
US9150694B2 (en) 2009-05-14 2015-10-06 Mitsubishi Gas Chemical Company, Inc. Composition for use in optical material with high refractive index and high strength
JP2010278240A (en) * 2009-05-28 2010-12-09 Kyocera Corp Light emitting device and exposure device with the same, image forming apparatus, and light irradiation head
KR20130100714A (en) * 2012-03-01 2013-09-11 미츠비시 가스 가가쿠 가부시키가이샤 Method for terminating polymerization reaction of composition for resin
JP2013209627A (en) * 2012-03-01 2013-10-10 Mitsubishi Gas Chemical Co Inc Method for terminating polymerization of composition for resin

Also Published As

Publication number Publication date
JP4936043B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
TWI707838B (en) Isocyanate composition with improved stability and reactivity, and optical lens using the same
JP4936043B2 (en) Method for thickening episulfide compounds
BR112016022846B1 (en) COMPOSITION FOR OPTICAL MATERIALS, METHODS FOR PRODUCING AN OPTICAL MATERIAL AND A RAW MATERIAL FOR OPTICAL MATERIALS, OPTICAL MATERIAL, AND, OPTICAL LENSES
JP6929930B2 (en) Aromatic polythiol compounds for optical materials
KR20120130000A (en) Composition for optical materials, process for production thereof, and optical materials made from the composition
TWI647244B (en) Polymerizable composition for optical materials mainly based on polythiocarbamate
TWI309603B (en) Process for producing plastic lens and plastic lens
JPWO2016010065A1 (en) Polythiol composition and method for producing the same
TWI691519B (en) Polymerizable composition for an optical material
JP6563534B2 (en) Polythiol composition for plastic lens
US10526452B2 (en) Method for producing cured product of episulfide-based resin
JP6098112B2 (en) Method for producing episulfide resin cured product
JP6089747B2 (en) Polymerizable composition for optical material
JP2010037304A (en) New metal-containing compound
JP5157737B2 (en) New metal-containing compounds
JP6142565B2 (en) Method for stopping polymerization of resin composition
JP5986446B2 (en) (Meth) acrylate compound, polymerizable composition and resin using the same
JP4911043B2 (en) Cleaning method for compounding equipment for optical materials
JP4957629B2 (en) Manufacturing method of optical material
TW201738287A (en) Resin composition for optical material, resin for optical material, and optical lens made therefrom
EP4160279A1 (en) Composition for optical material
JP5347374B2 (en) New metal-containing compounds
JP6089744B2 (en) Method for producing polymerizable composition for optical material
KR20200025517A (en) Stabilizer for thioepoxy based optical material having high refractive index, composition for optical material comprising it and method of preparing the optical material
KR20200025927A (en) Stabilizer for thioepoxy based optical material having high refractive index, composition for optical material comprising it and method of preparing the optical material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4936043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3