JP2007237052A - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP2007237052A
JP2007237052A JP2006061336A JP2006061336A JP2007237052A JP 2007237052 A JP2007237052 A JP 2007237052A JP 2006061336 A JP2006061336 A JP 2006061336A JP 2006061336 A JP2006061336 A JP 2006061336A JP 2007237052 A JP2007237052 A JP 2007237052A
Authority
JP
Japan
Prior art keywords
flow path
substrate
flow passage
passage part
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006061336A
Other languages
Japanese (ja)
Inventor
Tsutomu Terasaki
努 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006061336A priority Critical patent/JP2007237052A/en
Publication of JP2007237052A publication Critical patent/JP2007237052A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor which can be suppressed from being damaged due to the strain caused by a temperature difference. <P>SOLUTION: A fuel supplying flow passage part 161, a reforming flow passage part 162, a communicative part 163, an air supplying flow passage part 164 and a carbon monoxide removing flow passage part 165 are formed on an upper substrate 102. A burning fuel supplying flow passage part 131, an air supplying flow passage part 132, a communicative part 133, an exhaust gas discharging flow passage part 134, a combustion flow passage part 135 are formed on a middle substrate 103. The burning fuel supplying flow passage part 131, the air supplying flow passage part 132, the communicative part 133, the exhaust gas discharging flow passage part 134, the combustion flow passage part 135 are also formed on a lower substrate 120. Flow passages are made by the corresponding grooves by joining these substrates to one another. Incoming corners 11, 21, 31 and outgoing corners 12, 22, 32 on side faces of these grooves are formed into curved shapes, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、反応物を反応させる小型な反応装置に関する。   The present invention relates to a small reactor for reacting reactants.

近年、エネルギー変換効率の高いクリーンな電源として燃料電池が注目されるようになり、燃料電池自動車や電化住宅などに幅広く実用化されてきている。また、急速に小型化の研究、開発が進められている携帯電話機やノート型パーソナルコンピュータなどといった携帯型電子機器においても、燃料電池による電源の実用化が検討されている。   In recent years, fuel cells have attracted attention as clean power sources with high energy conversion efficiency, and have been widely put into practical use in fuel cell automobiles and electrified houses. Also, in portable electronic devices such as mobile phones and notebook personal computers, which are rapidly researched and developed for miniaturization, practical application of a power source using a fuel cell is being considered.

燃料電池は水素の電気化学反応により電気エネルギーを生成するものであるので、燃料電池のほかに、燃料から水素を生成する改質器も携帯型電子機器に搭載しなければならない。改質器には、例えば特許文献1に記載されているようなマイクロリアクタが用いられている。このマイクロリアクタは、溝が形成された基板に別の基板を接合したものであり、その溝に反応物を流動させることによって反応物を反応させるものである。また、反応物の反応速度を高めるために、マイクロリアクタを加熱することが行われている。
特開2001−228159号公報
Since the fuel cell generates electric energy by the electrochemical reaction of hydrogen, a reformer that generates hydrogen from the fuel must be mounted on the portable electronic device in addition to the fuel cell. As the reformer, for example, a microreactor described in Patent Document 1 is used. This microreactor is obtained by bonding another substrate to a substrate in which a groove is formed, and reacting the reactant by flowing the reactant into the groove. In order to increase the reaction rate of the reactants, the microreactor is heated.
JP 2001-228159 A

ところで、マイクロリアクタが加熱により膨張するため、マイクロリアクタの温度が均一でない場合、膨張量の違いによってマイクロリアクタの各部に熱応力が生じる。そのため、マイクロリアクタが熱応力により損傷する虞がある。
本発明は、以上の点に鑑みてなされたものであり、温度差による歪みに対して損傷を抑えることができる反応装置を提供することを目的とする。
By the way, since the microreactor expands due to heating, if the temperature of the microreactor is not uniform, thermal stress is generated in each part of the microreactor due to the difference in expansion amount. For this reason, the microreactor may be damaged by thermal stress.
This invention is made | formed in view of the above point, and it aims at providing the reactor which can suppress damage with respect to the distortion by a temperature difference.

以上の課題を解決するために、本発明においては、
基板の一方側に設けられた第1反応部と前記基板の他方側に設けられた第2反応部との間に設けられた貫通孔の入隅が丸めた状態に形成されていることを特徴とする。
また、本発明において、前記第1反応部の反応温度と前記第2反応部の反応温度は互いに異なることを特徴とする。
また、本発明において、前記第1反応部と前記第2反応部は、前記貫通孔の周囲にある連結伝熱部によって連結されていることを特徴とする。
また、本発明において、前記貫通孔の前記入隅は、応力を分散するように曲率が一定であることを特徴とする。
In order to solve the above problems, in the present invention,
A corner of a through hole provided between a first reaction part provided on one side of the substrate and a second reaction part provided on the other side of the substrate is formed in a rounded state. And
In the present invention, the reaction temperature of the first reaction part and the reaction temperature of the second reaction part are different from each other.
Moreover, in this invention, the said 1st reaction part and the said 2nd reaction part are connected by the connection heat-transfer part in the circumference | surroundings of the said through-hole.
In the present invention, the corner of the through hole has a constant curvature so as to disperse stress.

本発明によれば、貫通孔での応力を分散させ、反応装置の損傷や破壊を防止することができる。   According to the present invention, it is possible to disperse the stress in the through hole and prevent damage or destruction of the reaction apparatus.

以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態および図示例に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the embodiments described below are provided with various technically preferable limitations for carrying out the present invention, but the scope of the invention is not limited to the following embodiments and illustrated examples.

図1は複合型マイクロ反応装置100の外観斜視図であり、図2は一部破断して示した複合型マイクロ反応装置100の略断面図である。   FIG. 1 is an external perspective view of the composite microreactor 100, and FIG. 2 is a schematic cross-sectional view of the composite microreactor 100 partially cut away.

図1及び図2に示すように、熱伝導性の低いガラス製の断熱パッケージ150は中空を有した六面体状の箱体であり、熱線となる赤外線に対して高い反射性の赤外線反射膜(例えば、Au、Ag、Al)が断熱パッケージ150の内壁面に成膜され、さらに断熱パッケージ150の中空の圧力が真空圧に保たれ、例えば断熱パッケージ150内は10Pa以下、好ましくは1Pa以下としてに保たれている。したがって後述する貫通孔166、貫通孔176、貫通孔136内も断熱パッケージ150内の圧力と同じになっている。このため熱輻射や外部への熱伝導を抑えることができる。なお断熱パッケージ150は、それ自体が赤外線に対して反射性のある金属製であってもよい。   As shown in FIGS. 1 and 2, the heat insulating package 150 made of glass having low thermal conductivity is a hexahedral box having a hollow shape, and is an infrared reflective film (for example, highly reflective to infrared rays that become heat rays). , Au, Ag, Al) is formed on the inner wall surface of the heat insulation package 150, and the hollow pressure of the heat insulation package 150 is kept at a vacuum pressure. For example, the heat insulation package 150 is kept at 10 Pa or less, preferably 1 Pa or less. I'm leaning. Accordingly, the pressures in the through holes 166, the through holes 176, and the through holes 136 described later are the same as the pressure in the heat insulating package 150. For this reason, heat radiation and heat conduction to the outside can be suppressed. The heat insulation package 150 may be made of a metal that is reflective to infrared rays.

また、供給排出部材151が断熱パッケージ150を貫通している。この供給排出部材151は、燃焼排ガス排出用の排ガス排出流路管251と、改質燃料ガス供給用の燃料供給流路管252と、生成ガス排出用の生成ガス排出流路管253と、一酸化炭素除去器に供給される酸素が導入される吸気流路管254と、燃焼ガスに混合される酸素が導入される吸気流路管255と、燃焼ガス供給用の燃焼ガス供給流路管256と、を有している。断熱パッケージ150外は大気圧となっているため、供給排出部材151は、断熱パッケージ150内部と外部でほぼ1気圧の差が生じており、この圧力差に基づく応力によって変形または破壊されないように円筒状のガラス管であることが好ましく、内径が1.0mm、外径が1.6mmに設定している。   Further, the supply / discharge member 151 passes through the heat insulation package 150. The supply / exhaust member 151 includes an exhaust gas discharge channel pipe 251 for exhausting combustion exhaust gas, a fuel supply channel pipe 252 for supplying reformed fuel gas, a generated gas discharge channel pipe 253 for generating gas, An intake passage tube 254 into which oxygen supplied to the carbon oxide remover is introduced, an intake passage tube 255 into which oxygen mixed with the combustion gas is introduced, and a combustion gas supply passage tube 256 for supplying combustion gas And have. Since the outside of the heat insulation package 150 is at atmospheric pressure, the supply / discharge member 151 has a difference of almost 1 atm between the inside and the outside of the heat insulation package 150, and the cylinder is prevented from being deformed or destroyed by the stress based on this pressure difference. It is preferable that it is a glass tube having an inner diameter of 1.0 mm and an outer diameter of 1.6 mm.

また、リード線109〜112が断熱パッケージ150を貫通している。供給排出部材151、リード線109〜112が断熱パッケージ150を貫通した箇所は封着剤によってシーリングされている。封着剤は断熱パッケージ150と熱膨張係数を近づけるため、低融点ガラスを用いることが好ましく、リード線109〜112は低融点ガラスと熱膨張係数が近いコバール線が好ましいが、鉄ニッケル合金線または、鉄ニッケル合金の心材の周囲を銅層で被覆したジュメット線であってもよい。リード線109〜112の直径は、熱効率の観点から小さいことが好ましく0.2mmに設定している。   Further, the lead wires 109 to 112 penetrate the heat insulating package 150. The portions where the supply / discharge member 151 and the lead wires 109 to 112 penetrate the heat insulating package 150 are sealed with a sealant. Since the sealing agent has a thermal expansion coefficient close to that of the heat insulating package 150, it is preferable to use a low melting glass, and the lead wires 109 to 112 are preferably Kovar wires having a thermal expansion coefficient close to that of the low melting glass. Further, it may be a jumet wire in which the core of iron-nickel alloy is covered with a copper layer. The diameter of the lead wires 109 to 112 is preferably small from the viewpoint of thermal efficiency, and is set to 0.2 mm.

断熱パッケージ150内には、上から順に上基板102、中基板103、下基板120を接合した接合体101が断熱パッケージ150内に収容されている。上基板102、中基板103、下基板120はともに、封着剤や断熱パッケージ150と同等の熱膨張係数であることが好ましく、例えばガラス基板によって形成されている。なお、上基板102と中基板103を接合したものが改質器と一酸化炭素除去器の複合体とであり、中基板103に下基板120を接合したものが燃焼器である。   In the heat insulation package 150, the joined body 101 in which the upper substrate 102, the middle substrate 103, and the lower substrate 120 are joined in order from the top is accommodated in the heat insulation package 150. The upper substrate 102, the middle substrate 103, and the lower substrate 120 all preferably have the same thermal expansion coefficient as that of the sealant or the heat insulating package 150, and are formed of, for example, a glass substrate. A combination of the upper substrate 102 and the middle substrate 103 is a complex of a reformer and a carbon monoxide remover, and a combination of the lower substrate 120 and the middle substrate 103 is a combustor.

図3は、図2の切断線III−IIIに沿った面の矢視断面図である。図3に示すように、上基板102の両面のうち中基板103との接合面には、葛折り状の反応物流動溝が凹設されている。反応物流動溝は、燃料供給流路部161と、改質流路部162と、連通部163と、空気供給流路部164と、一酸化炭素除去流路部165とを有している。更に、上基板102の中央部において矩形状の貫通孔166が形成され、上基板102の中基板103との接合面が貫通孔166よりも左側の領域と貫通孔166よりも右側の領域に分けられ、改質流路部162は貫通孔166よりも左側の領域に形成され、一酸化炭素除去流路部165は貫通孔166よりも右側の領域に形成されている。上基板102は、例えば、右縁102a、左縁102dの長さが27mm、前縁102b、後縁102cの長さが46mmとなっている。   FIG. 3 is a cross-sectional view taken along the line III-III in FIG. As shown in FIG. 3, a convoluted reactant flow groove is recessed in the joint surface between the upper substrate 102 and the middle substrate 103. The reactant flow groove has a fuel supply flow channel portion 161, a reforming flow channel portion 162, a communication portion 163, an air supply flow channel portion 164, and a carbon monoxide removal flow channel portion 165. Further, a rectangular through hole 166 is formed at the center of the upper substrate 102, and the bonding surface with the middle substrate 103 of the upper substrate 102 is divided into a region on the left side of the through hole 166 and a region on the right side of the through hole 166. The reforming flow path portion 162 is formed in a region on the left side of the through hole 166, and the carbon monoxide removal flow path portion 165 is formed in a region on the right side of the through hole 166. In the upper substrate 102, for example, the length of the right edge 102a and the left edge 102d is 27 mm, and the length of the front edge 102b and the rear edge 102c is 46 mm.

燃料供給流路部161が上基板102の右縁102aから前縁102bにかけて沿うように形成され、燃料供給流路部161の一端部が上基板102の右縁102aまで連なり、燃料供給流路部161の他端部が改質流路部162の一端部に連なっている。改質流路部162は燃料供給流路部161よりも幅広な溝であって蛇行した状態に形成されている。連通部163は、燃料供給流路部161と同程度の幅の溝であって、貫通孔166の後ろ側において上基板102の後縁102cに沿って形成され、連通部163の一端部が改質流路部162の他端部に連なり、連通部163の他端部が空気供給流路部164及び一酸化炭素除去流路部165に合流している。空気供給流路部164は上基板102の右縁102aから後縁102cにかけて沿うように形成され、空気供給流路部164の一端部が上基板102の右縁102aまで連なり、空気供給流路部164の他端部が連通部163及び一酸化炭素除去流路部165に連なっている。一酸化炭素除去流路部165は蛇行した状態に形成され、一酸化炭素除去流路部165の一端部が上基板102の右縁102aまで連なり、一酸化炭素除去流路部165の他端部が連通部163及び空気供給流路部164に連なっている。上基板102の右縁102aには、供給排出部材151に嵌合する溝201,205,206が凹設されている。相対的に高温の改質流路部162に加えられた熱の一部が、連結伝熱部102eを介して相対的に低温の一酸化炭素除去流路部165に伝搬されて選択酸化反応に適した温度になるように設定されている。このときの改質反応の設定温度と選択酸化反応の設定温度の差は、改質流路部162と一酸化炭素除去流路部165との間の連結伝熱部102eの長さYによって設定することができる。   The fuel supply flow path portion 161 is formed so as to extend from the right edge 102a to the front edge 102b of the upper substrate 102. One end portion of the fuel supply flow path portion 161 is connected to the right edge 102a of the upper substrate 102, and the fuel supply flow path portion The other end portion of 161 is connected to one end portion of the reforming flow path portion 162. The reforming flow path portion 162 is a groove wider than the fuel supply flow path portion 161 and is formed in a meandering state. The communication portion 163 is a groove having the same width as that of the fuel supply flow path portion 161 and is formed along the rear edge 102c of the upper substrate 102 on the rear side of the through-hole 166. One end portion of the communication portion 163 is modified. The other end of the communication portion 163 is joined to the air supply passage portion 164 and the carbon monoxide removal passage portion 165. The air supply channel portion 164 is formed so as to extend from the right edge 102a to the rear edge 102c of the upper substrate 102, and one end portion of the air supply channel portion 164 is connected to the right edge 102a of the upper substrate 102. The other end portion of 164 is connected to the communication portion 163 and the carbon monoxide removal flow path portion 165. The carbon monoxide removal channel 165 is formed in a meandering state, and one end of the carbon monoxide removal channel 165 is connected to the right edge 102 a of the upper substrate 102, and the other end of the carbon monoxide removal channel 165. Is connected to the communication part 163 and the air supply flow path part 164. Grooves 201, 205, and 206 that fit into the supply / discharge member 151 are recessed in the right edge 102 a of the upper substrate 102. Part of the heat applied to the relatively high temperature reforming flow path 162 is propagated to the relatively low temperature carbon monoxide removal flow path 165 via the coupled heat transfer section 102e, and undergoes a selective oxidation reaction. It is set to a suitable temperature. The difference between the set temperature of the reforming reaction and the set temperature of the selective oxidation reaction at this time is set by the length Y of the connected heat transfer section 102e between the reforming flow path section 162 and the carbon monoxide removal flow path section 165. can do.

また、上基板102に形成された反応物流動溝は、曲がった部分や幅が変わった部分の側面に入隅11、出隅12が形成されており、全ての入隅11及び全ての出隅12が丸めた状態に形成されている。なお、全ての入隅11が丸めた状態でなくとも、これら入隅11のうち少なくとも1つが丸めた状態であれば良い。全ての出隅12が丸めた状態でなくとも、これら出隅12のうち少なくとも1つが丸めた状態であれば良い。   The reactant flow grooves formed in the upper substrate 102 are formed with an entrance corner 11 and an exit corner 12 on the side surfaces of the bent portion and the width changed portion, and all the entrance corners 11 and all the exit corners are formed. 12 is formed in a rounded state. In addition, even if not all the corners 11 are rounded, it is sufficient that at least one of these corners 11 is rounded. Even if all the protruding corners 12 are not in a rounded state, it is sufficient that at least one of these protruding corners 12 is in a rounded state.

貫通孔166の内壁面における全ての入隅13が丸めた状態に形成されている。   All the corners 13 on the inner wall surface of the through hole 166 are formed in a rounded state.

溝201,205,206の側面における全ての入隅も丸めた状態に形成されている。なお、溝201,205,206の側面における全ての入隅が丸めた状態でなくとも、これらの入隅のうち1つでも丸めた状態としても良い。   All the corners on the side surfaces of the grooves 201, 205, and 206 are also rounded. In addition, even if not all the corners in the side surfaces of the grooves 201, 205, and 206 are rounded, one of these corners may be rounded.

図4は、図2の切断線IV−IVに沿った面の矢視断面図である。図4に示すように、中基板103の両面のうち上基板102との接合面には、葛折り状の反応物流動溝が凹設されている。反応物流動溝は、燃料供給流路部171と、改質流路部172と、連通部173と、空気供給流路部174と、一酸化炭素除去流路部175とを有している。更に、中基板103の中央部において矩形状の貫通孔176が形成され、中基板103の上基板102との接合面が貫通孔176よりも左側の領域と貫通孔176よりも右側の領域に分けられ、改質流路部172は貫通孔176よりも左側の領域に形成され、一酸化炭素除去流路部175は貫通孔176よりも右側の領域に形成されている。中基板103は、上基板102と同一のサイズであり、複合型マイクロ反応装置100の上方から平面視して接合された中基板103の右縁103a、前縁103b、後縁103c、左縁103dの位置がそれぞれ上基板102の右縁102a、前縁102b、後縁102c、左縁102dの位置に一致しており、貫通孔176の周縁の位置は、貫通孔166の周縁の位置と一致している。   FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. As shown in FIG. 4, a convoluted reactant flow groove is recessed in the joint surface between the middle substrate 103 and the upper substrate 102. The reactant flow groove has a fuel supply flow path section 171, a reforming flow path section 172, a communication section 173, an air supply flow path section 174, and a carbon monoxide removal flow path section 175. Further, a rectangular through hole 176 is formed at the center of the middle substrate 103, and the bonding surface of the middle substrate 103 with the upper substrate 102 is divided into a region on the left side of the through hole 176 and a region on the right side of the through hole 176. The reforming flow path portion 172 is formed in a region on the left side of the through hole 176, and the carbon monoxide removal flow path portion 175 is formed in a region on the right side of the through hole 176. The middle substrate 103 has the same size as the upper substrate 102, and the right edge 103a, the front edge 103b, the rear edge 103c, and the left edge 103d of the middle substrate 103 joined in plan view from above the composite microreactor 100. Are aligned with the positions of the right edge 102a, the front edge 102b, the rear edge 102c, and the left edge 102d of the upper substrate 102, respectively, and the position of the periphery of the through hole 176 is aligned with the position of the periphery of the through hole 166. ing.

中基板103と上基板102の接合面に関して、燃料供給流路部171と燃料供給流路部161は互いに面対称であり、同様に、改質流路部172と改質流路部162が、連通部173と連通部163が、空気供給流路部174と空気供給流路部164が、一酸化炭素除去流路部175と一酸化炭素除去流路部165が、貫通孔176と貫通孔166が互いに面対称である。また、中基板103の右縁103aには、供給排出部材151の排ガス排出流路管251に嵌合するノッチ211と、燃料供給流路管252に嵌合するノッチ212と、生成ガス排出流路管253に嵌合するノッチ213と、吸気流路管254に嵌合するノッチ214と、吸気流路管255に嵌合するノッチ215と、燃焼ガス供給流路管256に嵌合するノッチ216が形成されている。燃料供給流路部171、空気供給流路部174、一酸化炭素除去流路部175は中基板103の右縁103aまで連なっていないが、燃料供給流路部171の端部がノッチ211の近くに、空気供給流路部174の端部がノッチ214の近くに、一酸化炭素除去流路部175がノッチ213の近くにある。   With respect to the joint surface between the middle substrate 103 and the upper substrate 102, the fuel supply channel portion 171 and the fuel supply channel portion 161 are plane-symmetric with each other. Similarly, the reforming channel portion 172 and the reforming channel portion 162 are The communication part 173 and the communication part 163 are the air supply channel part 174 and the air supply channel part 164, the carbon monoxide removal channel part 175 and the carbon monoxide removal channel part 165 are the through hole 176 and the through hole 166. Are plane-symmetric with each other. Further, at the right edge 103a of the middle substrate 103, a notch 211 that fits into the exhaust gas discharge passage pipe 251 of the supply / discharge member 151, a notch 212 that fits into the fuel supply passage pipe 252, and a generated gas discharge passage A notch 213 fitted to the pipe 253, a notch 214 fitted to the intake flow pipe 254, a notch 215 fitted to the intake flow pipe 255, and a notch 216 fitted to the combustion gas supply flow pipe 256. Is formed. The fuel supply channel 171, the air supply channel 174, and the carbon monoxide removal channel 175 are not connected to the right edge 103 a of the middle substrate 103, but the end of the fuel supply channel 171 is near the notch 211. In addition, the end of the air supply flow path 174 is near the notch 214, and the carbon monoxide removal flow path 175 is near the notch 213.

また、中基板103に形成された反応物流動溝の側面における全ての入隅21が丸めた状態に形成され、反応物流動溝の側面における全ての出隅22が丸めた状態に形成されている。なお、全ての入隅21が丸めた状態でなくとも、これら入隅21のうち少なくとも1つが丸めた状態であれば良い。全ての出隅22が丸めた状態でなくとも、これら出隅22のうち少なくとも1つが丸めた状態であれば良い。   Further, all the entrance corners 21 on the side surface of the reactant flow groove formed in the middle substrate 103 are formed in a rounded state, and all the output corners 22 on the side surface of the reactant flow groove are formed in a rounded state. . In addition, even if not all the corners 21 are rounded, it is sufficient that at least one of the corners 21 is rounded. Even if all the protruding corners 22 are not in a rounded state, it is sufficient that at least one of these protruding corners 22 is in a rounded state.

貫通孔176の内壁面における全ての入隅23が丸めた状態に形成されている。   All the entrance corners 23 on the inner wall surface of the through hole 176 are formed in a rounded state.

ノッチ213〜215の内側面における全ての入隅も丸めた状態に形成されている。なお、ノッチ213〜215の内側面における全ての入隅が丸めた状態でなくとも、これらの入隅のうち1つでも丸めた状態としても良い。   All the corners on the inner side surfaces of the notches 213 to 215 are also rounded. In addition, even if not all the corners on the inner side surfaces of the notches 213 to 215 are rounded, one of these corners may be rounded.

改質流路部162,172の壁面には、アルミナを担体として改質触媒(例えば、Cu/ZnO系触媒)が担持され、一酸化炭素除去流路部165,175の壁面には、アルミナを担体として一酸化炭素選択酸化触媒(例えば、白金)が担持されている。なお、これら触媒は、アルミナゾルを塗布した後にウォッシュコート法で形成したものである。   A reforming catalyst (for example, Cu / ZnO-based catalyst) is supported on the wall surfaces of the reforming flow path portions 162 and 172 using alumina as a carrier, and alumina is supported on the wall surfaces of the carbon monoxide removal flow path portions 165 and 175. A carbon monoxide selective oxidation catalyst (for example, platinum) is supported as a carrier. These catalysts are formed by a wash coat method after applying an alumina sol.

上基板102が中基板103に接合されており、燃料供給流路部171と燃料供給流路部161が重なっており、同様に、改質流路部172と改質流路部162が、連通部173と連通部163が、空気供給流路部174と空気供給流路部164が、一酸化炭素除去流路部175と一酸化炭素除去流路部165が、貫通孔176と貫通孔166とが重なっている。   The upper substrate 102 is joined to the middle substrate 103, and the fuel supply channel 171 and the fuel supply channel 161 are overlapped. Similarly, the reforming channel 172 and the reforming channel 162 communicate with each other. Part 173 and communication part 163, air supply channel part 174 and air supply channel part 164, carbon monoxide removal channel part 175 and carbon monoxide removal channel part 165, through-hole 176 and through-hole 166 Are overlapping.

上基板102と中基板103は熱伝導性を低くするためにガラス材料からなり、特に可動イオンとなるアルカリ金属(例えば、Na、Li等)を含有したガラス材料からなる。また、上基板102と中基板103が陽極接合法により接合するために、上基板102と中基板103のどちらか一方の接合面には金属膜又はシリコン膜が気相成長法(例えば、スパッタリング法、蒸着法)により成膜されている。なお、上基板102と中基板103のうちのどちらか一方がガラス材料ではなく金属又はシリコンからなるものとしても良い。これにより、上基板102と中基板103が陽極接合により接合することができる。   The upper substrate 102 and the middle substrate 103 are made of a glass material in order to lower the thermal conductivity, and in particular, are made of a glass material containing an alkali metal (for example, Na, Li, etc.) that becomes mobile ions. In addition, since the upper substrate 102 and the middle substrate 103 are bonded by an anodic bonding method, a metal film or a silicon film is formed on the bonding surface of either the upper substrate 102 or the middle substrate 103 by a vapor deposition method (for example, a sputtering method). , Vapor deposition method). Note that one of the upper substrate 102 and the middle substrate 103 may be made of metal or silicon instead of a glass material. Thereby, the upper substrate 102 and the middle substrate 103 can be bonded by anodic bonding.

上基板102と中基板103の接合体のうち、貫通孔166,176よりも左側の部分が、燃料と水の混合気から水素を生成する改質器となり、貫通孔166,176よりも右側の部分が、その改質器で生成された生成物の中に含まれる一酸化炭素を優先的に酸化させることで除去する一酸化炭素除去器となる。
上基板102と中基板103の接合体では、燃料供給流路管252から供給される燃料(水を含んでいてもよい)が、燃料供給流路部161、171によって形成された流路に流れ、改質流路部171、172によって形成された流路に送られる。改質流路部171、172内の流路で改質された流体は、連通部163、173によって形成された流路に流れる。吸気流路管254から取り込まれる空気は、空気供給流路部164、174に流れ、連通部163、173によって形成された流路との合流部分で、改質された流体と混合される。混合された流体は、合流部分で分岐された一酸化炭素除去流路部165、175によって形成された流路に流れる際に微量に含まれている一酸化炭素が除去され、生成ガス排出流路管253から複合型マイクロ反応装置100の外部に排出される。
Of the joined body of the upper substrate 102 and the middle substrate 103, a portion on the left side of the through holes 166, 176 becomes a reformer that generates hydrogen from a mixture of fuel and water, and is located on the right side of the through holes 166, 176. The portion becomes a carbon monoxide remover that removes carbon monoxide contained in the product produced by the reformer by preferentially oxidizing it.
In the joined body of the upper substrate 102 and the middle substrate 103, the fuel (which may contain water) supplied from the fuel supply flow channel tube 252 flows into the flow channel formed by the fuel supply flow channel parts 161 and 171. , And sent to the flow path formed by the reforming flow path portions 171 and 172. The fluid modified in the flow paths in the reforming flow path portions 171 and 172 flows into the flow paths formed by the communication portions 163 and 173. The air taken in from the intake passage pipe 254 flows into the air supply passage portions 164 and 174, and is mixed with the reformed fluid at the joining portion with the passage formed by the communication portions 163 and 173. When the mixed fluid flows in the flow path formed by the carbon monoxide removal flow path portions 165 and 175 branched at the joining portion, carbon monoxide contained in a trace amount is removed, and the product gas discharge flow path It is discharged from the tube 253 to the outside of the composite microreactor 100.

図5は、図2の切断線V−Vに沿った面の矢視断面図である。図5に示すように、下基板120の両面のうち中基板103との接合面には、葛折り状の反応物流動溝が凹設されている。反応物流動溝は、燃焼燃料供給流路部131と、空気供給流路部132と、連通部133と、排ガス排出流路部134と、燃焼流路部135と、リード線接続部137,137と、リード線接続部138,138と、燃焼流路部140と、を有している。更に、下基板120の中央部において矩形状の貫通孔136が形成され、下基板120の中基板103との接合面が貫通孔136よりも左側の領域と貫通孔136よりも右側の領域に分けられ、燃焼流路部135は貫通孔136よりも左側の領域に形成されている。下基板120は、中基板103と同一のサイズであり、複合型マイクロ反応装置100の上方から平面視して接合された下基板120の右縁120a、前縁120b、後縁120c、左縁120dの位置がそれぞれ中基板103の右縁103a、前縁103b、後縁103c、左縁103dの位置に一致しており、貫通孔136の周縁の位置は、貫通孔176の周縁の周縁の位置と一致している。
また、下基板120の右縁120aには、供給排出部材151に嵌合する溝222,223,224が凹設されている。リード線接続部137,137は、一端が燃焼流路部135に連通し、他端が左縁120dにまで連通している。リード線接続部138,138は、一端が燃焼流路部140に連通し、他端が右縁120aにまで連通している。
FIG. 5 is a cross-sectional view taken along the line VV in FIG. As shown in FIG. 5, a convoluted reactant flow groove is recessed in the joint surface of the lower substrate 120 with the middle substrate 103. The reactant flow grooves include the combustion fuel supply flow path 131, the air supply flow path 132, the communication part 133, the exhaust gas discharge flow path 134, the combustion flow path 135, and the lead wire connection parts 137 and 137. And lead wire connecting portions 138 and 138 and a combustion flow path portion 140. Further, a rectangular through hole 136 is formed at the center of the lower substrate 120, and the bonding surface with the middle substrate 103 of the lower substrate 120 is divided into a region on the left side of the through hole 136 and a region on the right side of the through hole 136. The combustion channel part 135 is formed in a region on the left side of the through hole 136. The lower substrate 120 has the same size as that of the middle substrate 103, and the right edge 120a, the front edge 120b, the rear edge 120c, and the left edge 120d of the lower substrate 120 joined in plan view from above the composite microreactor 100. Are aligned with the positions of the right edge 103a, the front edge 103b, the rear edge 103c, and the left edge 103d of the middle substrate 103, respectively, and the position of the periphery of the through hole 136 is the same as the position of the periphery of the periphery of the through hole 176. Match.
In addition, grooves 222, 223, and 224 that fit into the supply / discharge member 151 are recessed in the right edge 120 a of the lower substrate 120. One end of each of the lead wire connecting portions 137 and 137 communicates with the combustion flow path portion 135 and the other end communicates with the left edge 120d. One end of each of the lead wire connecting portions 138 and 138 communicates with the combustion flow path portion 140 and the other end communicates with the right edge 120a.

排ガス排出流路部134が下基板120の右縁120aから前縁120bにかけて沿うように形成され、排ガス排出流路部134の一端部が下基板120の右縁120aまで連なり、排ガス排出流路部134の他端部が燃焼流路部135の一端部に連なっている。燃焼流路部135は、蛇行した状態に形成されている。連通部133は貫通孔166の後ろ側において下基板120の後縁120cから右縁120aにかけて沿うように形成され、連通部133の一端部が燃焼流路部135の他端部に連なり、連通部133の他端部が燃焼燃料供給流路部131及び空気供給流路部132に合流している。燃焼燃料供給流路部131の他端部が下基板120の右縁120aまで連なり、空気供給流路部132の他端部が下基板120の右縁120aまで連なる。   The exhaust gas discharge flow path part 134 is formed so as to extend from the right edge 120a to the front edge 120b of the lower substrate 120, and one end of the exhaust gas discharge flow path part 134 is connected to the right edge 120a of the lower substrate 120. The other end portion of 134 is connected to one end portion of the combustion flow path portion 135. The combustion flow path part 135 is formed in the meandering state. The communication portion 133 is formed on the rear side of the through hole 166 so as to extend from the rear edge 120c to the right edge 120a of the lower substrate 120. One end portion of the communication portion 133 is connected to the other end portion of the combustion flow path portion 135, and the communication portion The other end of 133 joins the combustion fuel supply flow path 131 and the air supply flow path 132. The other end of the combustion fuel supply flow path 131 is connected to the right edge 120a of the lower substrate 120, and the other end of the air supply flow path 132 is connected to the right edge 120a of the lower substrate 120.

接合面に関して、燃焼流路部135と改質流路部172は互いにほぼ面対称である。燃焼流路部135の壁面には、アルミナを担体として燃焼触媒(例えば、白金)が担持されている。   With respect to the joining surface, the combustion channel portion 135 and the reforming channel portion 172 are substantially plane-symmetric with respect to each other. A combustion catalyst (for example, platinum) is supported on the wall surface of the combustion flow path portion 135 using alumina as a carrier.

下基板120も特に可動イオンとなるアルカリ金属(例えば、Na、Li等)を含有したガラス材料からなる。また、下基板120と中基板103が陽極接合法により接合するために、下基板120と中基板103のどちらか一方の接合面には金属膜又はシリコン膜が気相成長法(例えば、スパッタリング法、蒸着法)により成膜されている。なお、下基板120、上基板102及び中基板103の材料としてパイレックス(登録商標)ガラスを用いた場合、熱膨張率は33×10-7/℃である。 The lower substrate 120 is also made of a glass material containing an alkali metal (for example, Na, Li, etc.) that becomes a mobile ion. In addition, since the lower substrate 120 and the middle substrate 103 are bonded by an anodic bonding method, a metal film or a silicon film is formed on the bonding surface of one of the lower substrate 120 and the middle substrate 103 by a vapor deposition method (for example, a sputtering method). , Vapor deposition method). When Pyrex (registered trademark) glass is used as the material of the lower substrate 120, the upper substrate 102, and the middle substrate 103, the thermal expansion coefficient is 33 × 10 −7 / ° C.

また、中基板103の両面のうち下基板120との接合面には、電熱パターン106及び電熱パターン139が形成されている。また、電熱パターン106の形成面に対して垂直な方向に投影視して、電熱パターン106が改質流路部172に重なり、電熱パターン139が一酸化炭素除去流路部175に重なっている。そして、中基板103と下基板120が接合された状態では、電熱パターン106は、一端部106b及び他端部106aを除いて燃焼流路部135に収納され、一端部106b及び他端部106aがリード線接続部137,137に収納されている。電熱パターン106の一端部106bはリード線接続部137でリード線109に接合され、電熱パターン106の他端部106aはリード線接続部137でリード線110に接合され、接合後、リード線接続部137,137の各他端は低融点ガラスを含む封着剤113,113によって封止されるので、燃焼流路部135内の流体が左縁120dから漏洩することはない。中基板103と下基板120が接合された状態では、電熱パターン139は、一端部139b及び他端部139aを除いて電熱パターン配置溝140に収納され、一端部106b及び他端部106aがリード線接続部138,138に収納されている。電熱パターン139の一端部139bにリード線111が接合され、電熱パターン139の他端部139aにリード線112が接合されている。   In addition, an electrothermal pattern 106 and an electrothermal pattern 139 are formed on the joint surface of the middle substrate 103 with the lower substrate 120. Further, the electrothermal pattern 106 overlaps with the reforming flow path portion 172 and the electrothermal pattern 139 overlaps with the carbon monoxide removal flow path portion 175 as viewed in a direction perpendicular to the formation surface of the electrothermal pattern 106. In the state where the middle substrate 103 and the lower substrate 120 are joined, the electrothermal pattern 106 is stored in the combustion flow path portion 135 except for the one end portion 106b and the other end portion 106a, and the one end portion 106b and the other end portion 106a are The lead wire connecting portions 137 and 137 are accommodated. One end portion 106b of the electrothermal pattern 106 is joined to the lead wire 109 by the lead wire connecting portion 137, and the other end portion 106a of the electrothermal pattern 106 is joined to the lead wire 110 by the lead wire connecting portion 137. Since the other ends of 137 and 137 are sealed by the sealing agents 113 and 113 containing low melting point glass, the fluid in the combustion flow path portion 135 does not leak from the left edge 120d. In the state where the middle substrate 103 and the lower substrate 120 are joined, the electrothermal pattern 139 is accommodated in the electrothermal pattern placement groove 140 except for the one end 139b and the other end 139a, and the one end 106b and the other end 106a are connected to the lead wire. It is accommodated in the connecting portions 138 and 138. The lead wire 111 is joined to one end portion 139b of the electric heating pattern 139, and the lead wire 112 is joined to the other end portion 139a of the electric heating pattern 139.

貫通孔136の横幅が8mm、連結伝熱部120e、102e、103eの幅を3mm、上基板、中基板、下基板の合計の厚みが2.8mmのとき、貫通孔166,176と、一酸化炭素除去流路部165,175との間の距離Xaおよび、貫通孔136と電熱パターン配置溝140との間の距離Zaが1mm以上ある場合、右縁102a、103a、120a側の二つの入隅13、23、33の曲率半径は1mm以上で十分な強度を示すことが確認された。貫通孔166,176と燃料供給流路部161,171との間の距離Xbおよび、貫通孔136と排ガス排出流路部134との間の距離Zbが1mm以上ある場合、前縁102b,103b、120b側の二つの入隅13,23、33の曲率半径は1mm以上で十分な強度を示すことが確認された。貫通孔166,176と連通部163,173との距離Xcおよび、貫通孔136と連通部133との間の距離Zcが1mm以上ある場合、後縁102c、103c、120c側の二つの入隅13,23、33の曲率半径は1mm以上で十分な強度を示すことが確認された。貫通孔166,176と改質流路部162,172との間の距離Xdおよび、貫通孔136と燃焼流路部135との間の距離Zdが1mm以上ある場合、左縁102d,103d、120d側の二つの入隅13,23、33の曲率半径は1mm以上で十分な強度を示すことが確認された。
ただし、これら貫通孔166,176、136の入隅13,23、33の曲率半径が4mmを越えると、改質流路部162,172と一酸化炭素除去流路部165,175との間の連結伝熱部102e、103e、および、燃焼流路部135と電熱パターン配置溝140との間の連結伝熱部120eの断面積が増大してしまい、改質流路部162,172、燃焼流路部135から一酸化炭素除去流路部165,175、電熱パターン配置溝140に熱伝搬しやすく改質流路部162、172と一酸化炭素除去流路部165、175との温度差が小さくなりやすい構造となってしまうために、改質流路部162、172での改質反応に要する温度範囲(250℃〜350℃)に対して一酸化炭素除去流路部165、175での選択酸化反応に要する温度範囲(100℃〜180℃)に設定するためには、貫通孔166,176、136の入隅13、23、33が直角の場合に比べて、連結伝熱部102e、103e、120eの長さYを2割以上長くしなければならず、装置が大きくなってしまう。
したがって、複合型マイクロ反応装置100が27mm×46mmの寸法であれば、貫通孔166,176、136の入隅13、23、33の曲率半径は1mm以上4mm以下が好ましい。距離Xa〜Xd及び距離Za〜Zdは、1mmより短くすると、損壊しやすくなるため1mm以上あることが好ましい。入隅13,23,33が全て同じ曲率半径である必要はなく、左側と右側で異なっていても良い。
上述のように、連結伝熱部102e、連結伝熱部103e及び連結伝熱部120eでは、左側と右側で温度勾配が大きく、換言すれば熱膨張の差、冷却収縮の差が大きく、応力が貫通孔166、貫通孔176、貫通孔136の角に集中しやすい。また通穴166、貫通孔176、貫通孔136が基板102,103,120に対して貫通しているために最も機械強度が弱く損壊しやすい。特にガラスの場合、金属に比べて柔軟性がないので歪みによりヒビが入りやすい。このため、入隅13,23,33が直角ではなく丸みを帯びさせることで応力を分散し破損しにくいようにすることができる。
When the lateral width of the through hole 136 is 8 mm, the width of the connecting heat transfer portions 120e, 102e, and 103e is 3 mm, and the total thickness of the upper substrate, the middle substrate, and the lower substrate is 2.8 mm, the through holes 166 and 176 When the distance Xa between the carbon removal flow path portions 165 and 175 and the distance Za between the through hole 136 and the electric heating pattern placement groove 140 are 1 mm or more, the two corners on the right edge 102a, 103a, 120a side It was confirmed that the radii of curvature of Nos. 13, 23, and 33 show a sufficient strength when the radius is 1 mm or more. When the distance Xb between the through holes 166, 176 and the fuel supply flow path portions 161, 171 and the distance Zb between the through hole 136 and the exhaust gas discharge flow path portion 134 are 1 mm or more, the leading edges 102b, 103b, It was confirmed that the radius of curvature of the two corners 13, 23, 33 on the 120b side is 1 mm or more and shows sufficient strength. When the distance Xc between the through holes 166 and 176 and the communication portions 163 and 173 and the distance Zc between the through hole 136 and the communication portion 133 are 1 mm or more, the two corners 13 on the rear edges 102c, 103c, and 120c side , 23, and 33 have a curvature radius of 1 mm or more, and it was confirmed that sufficient strength was exhibited. When the distance Xd between the through holes 166 and 176 and the reforming flow path parts 162 and 172 and the distance Zd between the through hole 136 and the combustion flow path part 135 are 1 mm or more, the left edges 102d, 103d, and 120d It was confirmed that the curvature radii of the two corners 13, 23 and 33 on the side were 1 mm or more and showed sufficient strength.
However, if the curvature radii of the corners 13, 23, and 33 of the through holes 166, 176, and 136 exceed 4 mm, there is a gap between the reforming flow path portions 162 and 172 and the carbon monoxide removal flow path portions 165 and 175. The cross-sectional area of the coupled heat transfer sections 102e and 103e and the coupled heat transfer section 120e between the combustion flow path section 135 and the electric heating pattern placement groove 140 increases, and the reforming flow path sections 162 and 172, the combustion flow The temperature difference between the reforming channel portions 162 and 172 and the carbon monoxide removing channel portions 165 and 175 is small because heat can easily propagate from the channel portion 135 to the carbon monoxide removing channel portions 165 and 175 and the electric heating pattern placement groove 140. In order to become a structure that tends to occur, the selection in the carbon monoxide removal flow path portions 165 and 175 with respect to the temperature range (250 ° C. to 350 ° C.) required for the reforming reaction in the reforming flow path portions 162 and 172 Necessary for oxidation reaction In order to set the temperature range (100 ° C. to 180 ° C.), the connecting heat transfer portions 102e, 103e, and 120e are compared with the case in which the corners 13, 23, and 33 of the through holes 166, 176, and 136 are at right angles. The length Y must be increased by 20% or more, and the apparatus becomes large.
Therefore, if the composite microreactor 100 has a size of 27 mm × 46 mm, the radius of curvature of the corners 13, 23, 33 of the through holes 166, 176, 136 is preferably 1 mm or more and 4 mm or less. If the distances Xa to Xd and the distances Za to Zd are shorter than 1 mm, the distances Xa to Xd are preferably 1 mm or more because they are easily damaged. The entering corners 13, 23, and 33 do not have to have the same radius of curvature, and may be different on the left side and the right side.
As described above, in the connected heat transfer unit 102e, the connected heat transfer unit 103e, and the connected heat transfer unit 120e, the temperature gradient is large between the left side and the right side, in other words, the difference in thermal expansion and the difference in cooling shrinkage are large, and the stress is high. It tends to concentrate on the corners of the through hole 166, the through hole 176, and the through hole 136. Further, since the through-hole 166, the through-hole 176, and the through-hole 136 penetrate the substrate 102, 103, 120, the mechanical strength is weakest and is easily damaged. In particular, in the case of glass, since it is not flexible compared to metal, it is liable to crack due to distortion. For this reason, by making the corners 13, 23 and 33 round rather than perpendicular, the stress can be dispersed and not easily damaged.

次に、複合型マイクロ反応装置100の製造方法について説明する。
まず、上基板102、中基板103、下基板120を準備し、これらの接合面の一方に必要に応じて金属膜又はシリコン膜を気相成長法により成膜する。中基板103の下面には、電熱膜を成膜し、その電熱膜をフォトリソグラフィー・エッチング法により形状加工することによって、電熱パターン106,139をパターニングする。そして、電熱パターン106,139の両端部を除いて電熱パターン106,139を絶縁膜によって被覆する。次に、上基板102に、燃料供給流路部161、改質流路部162、連通部163、空気供給流路部164、一酸化炭素除去流路部165、貫通孔166及び溝201,205,206をフォトリソグラフィー法およびサンドブラスト法またはエッチング法により形成する。燃料供給流路部161、改質流路部162、連通部163、空気供給流路部164、一酸化炭素除去流路部165、貫通孔166及び溝201,205,206を形成するに際しては、入隅11、出隅12、入隅13を丸めるよう形成する。
Next, a method for manufacturing the composite microreaction apparatus 100 will be described.
First, the upper substrate 102, the middle substrate 103, and the lower substrate 120 are prepared, and a metal film or a silicon film is formed on one of the bonding surfaces as needed by a vapor deposition method. An electrothermal film is formed on the lower surface of the middle substrate 103, and the electrothermal patterns 106 and 139 are patterned by processing the shape of the electrothermal film by a photolithography etching method. The electrothermal patterns 106 and 139 are covered with an insulating film except for both ends of the electrothermal patterns 106 and 139. Next, on the upper substrate 102, the fuel supply flow path part 161, the reforming flow path part 162, the communication part 163, the air supply flow path part 164, the carbon monoxide removal flow path part 165, the through hole 166, and the grooves 201 and 205. , 206 are formed by photolithography and sandblasting or etching. When forming the fuel supply flow path part 161, the reforming flow path part 162, the communication part 163, the air supply flow path part 164, the carbon monoxide removal flow path part 165, the through-hole 166, and the grooves 201, 205, 206, The entrance corner 11, the exit corner 12, and the entrance corner 13 are formed to be rounded.

中基板103にも、燃料供給流路部171、改質流路部172、連通部173、空気供給流路部174、一酸化炭素除去流路部175、貫通孔176及びノッチ211〜216をフォトリソグラフィー法およびサンドブラスト法またはエッチング法により形成する。燃料供給流路部171、改質流路部172、連通部173、空気供給流路部174、一酸化炭素除去流路部175、貫通孔176及びノッチ211〜216を形成するに際しては、入隅21、出隅22,入隅23を丸めるよう形成する。   The intermediate substrate 103 also has a fuel supply channel 171, a reforming channel 172, a communication unit 173, an air supply channel 174, a carbon monoxide removal channel 175, a through hole 176, and notches 211 to 216. It is formed by lithography and sandblasting or etching. When forming the fuel supply channel 171, the reforming channel 172, the communication unit 173, the air supply channel 174, the carbon monoxide removal channel 175, the through-hole 176 and the notches 211 to 216, 21, the outgoing corner 22 and the incoming corner 23 are formed to be rounded.

また、下基板120に、燃焼燃料供給流路部131、空気供給流路部132、連通部133、排ガス排出流路部134、貫通孔136、燃焼流路部135、リード線接続部137,137、リード線接続部138,138、電熱パターン配置溝140及び溝222,223,224をフォトリソグラフィー法およびサンドブラスト法またはエッチング法により形成する。燃焼燃料供給流路部131、空気供給流路部132、連通部133、排ガス排出流路部134、貫通孔136、燃焼流路部135及び溝222,223,224を形成するに際しては、入隅31、出隅32、入隅33を丸めるよう形成する。   In addition, the lower substrate 120 is provided with a combustion fuel supply channel 131, an air supply channel 132, a communication unit 133, an exhaust gas discharge channel 134, a through hole 136, a combustion channel 135, and lead wire connection units 137 and 137. The lead wire connecting portions 138 and 138, the electrothermal pattern arrangement grooves 140, and the grooves 222, 223 and 224 are formed by a photolithography method, a sand blast method, or an etching method. When forming the combustion fuel supply flow path part 131, the air supply flow path part 132, the communication part 133, the exhaust gas discharge flow path part 134, the through hole 136, the combustion flow path part 135, and the grooves 222, 223, and 224 31, the exit corner 32, and the entrance corner 33 are formed to be rounded.

次に、改質流路部162及び改質流路部172にアルミナゾルを塗布し、更にウォッシュコート法により改質触媒を形成する。また、一酸化炭素除去流路部165及び一酸化炭素除去流路部175にアルミナゾルを塗布し、更にウォッシュコート法により一酸化炭素除去触媒を形成する。また、燃焼流路部135にアルミナゾルを塗布し、更にウォッシュコート法により燃焼触媒を形成する。   Next, alumina sol is applied to the reforming flow path portion 162 and the reforming flow path portion 172, and a reforming catalyst is formed by a wash coat method. Further, an alumina sol is applied to the carbon monoxide removal flow path portion 165 and the carbon monoxide removal flow path portion 175, and a carbon monoxide removal catalyst is formed by a wash coat method. Further, alumina sol is applied to the combustion flow path portion 135, and a combustion catalyst is formed by a wash coat method.

次に、電熱パターン106の両端部それぞれにリード線109,110を接合し、電熱パターン139の両端部それぞれにリード線111,112を接合する。その後、上基板102及び中基板103を陽極接合法により接合する。   Next, lead wires 109 and 110 are bonded to both ends of the electrothermal pattern 106, and lead wires 111 and 112 are bonded to both ends of the electrothermal pattern 139. Thereafter, the upper substrate 102 and the middle substrate 103 are bonded by an anodic bonding method.

次に、中基板103と下基板120を貼りあわせ、中基板103と下基板120の位置合わせを行って電熱パターン106を燃焼流路部135に収容し、中基板103に下基板120を陽極接合法により接合する。   Next, the middle substrate 103 and the lower substrate 120 are bonded together, the middle substrate 103 and the lower substrate 120 are aligned, the electrothermal pattern 106 is accommodated in the combustion flow path portion 135, and the lower substrate 120 is anode-contacted to the middle substrate 103. Join by law.

その後、左縁120d側のリード線接続部137,137の開放端を封着剤113,113によって封止する。   Thereafter, the open ends of the lead wire connecting portions 137 and 137 on the left edge 120d side are sealed with sealants 113 and 113, respectively.

次に、上基板102、中基板103、下基板120の接合体の右端面の開口(溝201、ノッチ211、排ガス排出流路部134の端部を重なり部分等)に供給排出部材151を嵌め込み、封着剤でシーリングする。それにより、改質燃料ガス供給用の部材252を燃料供給流路部161に繋がるように接続され、1つの空気供給用の部材254を空気供給流路部164に繋がるよう接続され、もう1つの空気供給用の部材255を空気供給流路部132に繋がるよう接続され、燃焼ガス供給用の部材256を燃焼燃料供給流路部131に繋がるよう接続され、生成ガス排出用の部材253を一酸化炭素除去流路部165に繋がるよう接続され、燃焼排ガス排出用の部材251を排ガス排出流路部134に繋がるよう接続される。   Next, the supply / discharge member 151 is fitted into the opening (the groove 201, the notch 211, the end portion of the exhaust gas discharge flow path portion 134 overlapped) of the right end surface of the joined body of the upper substrate 102, the middle substrate 103, and the lower substrate 120. Seal with sealant. Accordingly, the reformed fuel gas supply member 252 is connected so as to be connected to the fuel supply flow path portion 161, and one air supply member 254 is connected so as to be connected to the air supply flow path portion 164. The air supply member 255 is connected to the air supply flow path 132, the combustion gas supply member 256 is connected to the combustion fuel supply flow path 131, and the product gas discharge member 253 is oxidized. It is connected so as to be connected to the carbon removal flow path part 165, and is connected so as to connect the member 251 for exhausting combustion exhaust gas to the exhaust gas discharge flow path part 134.

次に、断熱パッケージ150を準備し、その断熱パッケージ150の内面に赤外線反射膜を成膜する。そして、上基板102、中基板103、下基板120の接合体を断熱パッケージ150内に収容し、供給排出部材151を断熱パッケージ150に貫通させ、リード線109,110,111,112を断熱パッケージ150に貫通させる。そして、供給排出部材151、リード線109,110,111,112の貫通箇所を封着剤でシーリングする。   Next, the heat insulation package 150 is prepared, and an infrared reflection film is formed on the inner surface of the heat insulation package 150. The joined body of the upper substrate 102, the middle substrate 103, and the lower substrate 120 is accommodated in the heat insulation package 150, the supply / discharge member 151 is passed through the heat insulation package 150, and the lead wires 109, 110, 111, and 112 are connected to the heat insulation package 150. To penetrate. And the penetration part of the supply / discharge member 151 and the lead wires 109, 110, 111, and 112 is sealed with a sealing agent.

複合型マイクロ反応装置100においては、リード線109,110の間に電圧を印加すると電熱パターン106が発熱し、リード線111,112の間に電圧を印加すると電熱パターン139が発熱する。このとき、燃焼ガス(例えば、水素ガス、メタノールガス、エタノールガス、ジメチルエーテルガス)を燃焼燃料供給流路部131に送り込み、空気(酸素)を空気供給流路部132に送り込むと、燃焼ガスと空気の混合気が燃焼流路部135を流動し、燃焼ガスが燃焼触媒により燃焼し、燃焼熱が発する。また、燃料(例えば、メタノール、エタノール、ジメチルエーテル)と水の混合気を燃料供給流路部161に供給すると、混合気が改質流路部162を流れているときに改質触媒により反応して水素ガスが生成され、僅かながら一酸化炭素ガスも生成される(燃料がメタノールの場合には、下記化学式(1)、(2)を参照。)。空気供給流路部164に空気を供給すると、水素ガス、一酸化炭素ガス、空気等が混合した状態で一酸化炭素除去流路部165を流れる。このとき、一酸化炭素ガスが一酸化炭素除去触媒により優先的に酸化する選択酸化反応が起こり、一酸化炭素ガスが除去される(下記化学式(3)参照。)。そして、水素ガス等を含むガスが一酸化炭素除去流路部165から排出される。
CH3OH+H2O→3H2+CO2・・・(1)
2+CO2→H2O+CO・・・(2)
2CO+O2→2CO2・・・(3)
In the composite microreactor 100, when a voltage is applied between the lead wires 109 and 110, the electrothermal pattern 106 generates heat, and when a voltage is applied between the lead wires 111 and 112, the electrothermal pattern 139 generates heat. At this time, if combustion gas (for example, hydrogen gas, methanol gas, ethanol gas, dimethyl ether gas) is sent to the combustion fuel supply flow path 131 and air (oxygen) is sent to the air supply flow path 132, the combustion gas and air The air-fuel mixture flows through the combustion flow path portion 135, the combustion gas is burned by the combustion catalyst, and combustion heat is generated. Further, when a mixture of fuel (for example, methanol, ethanol, dimethyl ether) and water is supplied to the fuel supply channel 161, the mixture reacts with the reforming catalyst when the mixture is flowing through the reforming channel 162. Hydrogen gas is generated, and a small amount of carbon monoxide gas is also generated (when the fuel is methanol, refer to the following chemical formulas (1) and (2)). When air is supplied to the air supply flow path portion 164, it flows through the carbon monoxide removal flow path portion 165 in a state where hydrogen gas, carbon monoxide gas, air, and the like are mixed. At this time, a selective oxidation reaction in which the carbon monoxide gas is preferentially oxidized by the carbon monoxide removal catalyst occurs, and the carbon monoxide gas is removed (see the following chemical formula (3)). Then, a gas containing hydrogen gas or the like is discharged from the carbon monoxide removal flow path portion 165.
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
H 2 + CO 2 → H 2 O + CO (2)
2CO + O 2 → 2CO 2 (3)

貫通孔136,166,176よりも左側の部分の温度が300℃以上になるように、貫通孔136,166,176よりも右側の部分は左側の部分よりも低くなるように、電熱パターン106,139の発熱量や燃焼ガスの燃焼熱量を調整すると良い。ここで、貫通孔136,166,176が形成されているので、貫通孔136,166,176よりも右側の部分と左側の部分の温度差が生じるようになっている。   The electrothermal pattern 106, so that the portion on the right side of the through holes 136, 166, and 176 is lower than the portion on the left side so that the temperature of the portion on the left side of the through holes 136, 166, and 176 is 300 ° C. or higher. It is preferable to adjust the heat generation amount of 139 and the combustion heat amount of the combustion gas. Here, since the through holes 136, 166, and 176 are formed, a temperature difference between the right side portion and the left side portion of the through holes 136, 166, and 176 is generated.

なお、燃料(例えば、メタノール、エタノール、ジメチルエーテル)と空気(酸素)の混合気を燃料供給流路部161に供給するようにしても良い。この場合、燃料が部分酸化改質反応を起こして水素ガスが生成されるが、その場合、改質流路部162,172の壁面に担持させる触媒は部分酸化改質触媒とする。改質流路部162,172の担持させる触媒を2種類にし、部分酸化改質反応と水蒸気改質反応(上記式(1))を組み合わせても良い。   Note that an air-fuel mixture of fuel (for example, methanol, ethanol, dimethyl ether) and air (oxygen) may be supplied to the fuel supply channel 161. In this case, the fuel undergoes a partial oxidation reforming reaction to generate hydrogen gas. In this case, the catalyst supported on the wall surfaces of the reforming flow path portions 162 and 172 is a partial oxidation reforming catalyst. Two types of catalysts may be supported on the reforming flow path portions 162 and 172, and a partial oxidation reforming reaction and a steam reforming reaction (the above formula (1)) may be combined.

複合型マイクロ反応装置100の用途について説明する。
この複合型マイクロ反応装置100は、図6に示すような発電装置900に用いることができる。この発電装置900は、燃料と水を液体の状態で貯留した燃料パッケージ901と、燃料パッケージ901から供給された燃料と水を気化させる気化器902と、複合型マイクロ反応装置100と、複合型マイクロ反応装置100から供給された水素ガスにより電気エネルギーを生成する燃料電池903とを備える。気化器902で気化した燃料と水は燃料供給流路部161,171(改質器)に流れ込み、一酸化炭素除去流路部165,175(一酸化炭素除去器)から流れ出た水素ガス等は燃料電池903の燃料極に供給され、燃料電池903の酸素極には空気が供給され、燃料電池903における電気化学反応により電気エネルギーが生成される。ここで、燃料電池903の燃料極に供給された水素ガスは全てが反応するわけでなく、残留した水素ガスもあるので、その水素ガスが燃焼燃料供給流路部131(燃焼器)に供給される。
The use of the composite microreaction apparatus 100 will be described.
This composite microreaction apparatus 100 can be used in a power generation apparatus 900 as shown in FIG. The power generation device 900 includes a fuel package 901 that stores fuel and water in a liquid state, a vaporizer 902 that vaporizes fuel and water supplied from the fuel package 901, a composite microreactor 100, and a composite microreactor. And a fuel cell 903 that generates electrical energy from hydrogen gas supplied from the reactor 100. The fuel and water vaporized in the vaporizer 902 flow into the fuel supply flow path portions 161 and 171 (reformers), and hydrogen gas and the like flowing out from the carbon monoxide removal flow path portions 165 and 175 (carbon monoxide remover) Air is supplied to the fuel electrode of the fuel cell 903, air is supplied to the oxygen electrode of the fuel cell 903, and electric energy is generated by an electrochemical reaction in the fuel cell 903. Here, not all of the hydrogen gas supplied to the fuel electrode of the fuel cell 903 reacts and some hydrogen gas remains, so that the hydrogen gas is supplied to the combustion fuel supply flow path 131 (combustor). The

このような本実施形態においては、上基板102、中基板103、下基板120の接合体101が燃焼熱や電熱によって加熱されると、接合体101が膨張する。特に貫通孔136,166,176によって右側の部分と左側の部分の温度差が生じ、に貫通孔136,166,176よりも左側の部分が右側の部分よりも膨張する。このような膨張により入隅13,23,33に応力が集中するので、入隅13,23,33を丸めた状態に形成すると、入隅13,23,33に集中する応力を分散させることができる。そのため、接合体101の損傷や破壊を防止することができる。   In this embodiment, when the joined body 101 of the upper substrate 102, the middle substrate 103, and the lower substrate 120 is heated by combustion heat or electric heat, the joined body 101 expands. In particular, the temperature difference between the right part and the left part is caused by the through holes 136, 166, and 176, and the left part of the through holes 136, 166, and 176 expands more than the right part. Since stress concentrates on the corners 13, 23, and 33 due to such expansion, if the corners 13, 23, and 33 are formed in a rounded state, stress concentrated on the corners 13, 23, and 33 can be dispersed. it can. Therefore, damage and destruction of the bonded body 101 can be prevented.

また、上基板102、中基板103、下基板120の接合体101が真空圧の断熱パッケージ150に収容されているため、膨張するような力が接合体に作用し、接合体内部に形成された入隅11,21,31や出隅12,22,32に応力が集中する。それら入隅11,21,31や出隅12,22,32を丸めた状態に形成すると、入隅11,21,31や出隅12,22,32に集中する応力を分散させ、接合体101の損傷や破壊を防止することができる。   In addition, since the joined body 101 of the upper substrate 102, the middle substrate 103, and the lower substrate 120 is accommodated in the heat insulating package 150 having a vacuum pressure, an expanding force acts on the joined body and is formed inside the joined body. Stress concentrates on the entrance corners 11, 21, 31 and the exit corners 12, 22, 32. When the entrance corners 11, 21, 31 and the exit corners 12, 22, 32 are formed in a rounded state, the stress concentrated on the entrance corners 11, 21, 31 and the exit corners 12, 22, 32 is dispersed, and the joined body 101. Can be prevented from being damaged or destroyed.

また、中基板103の下面に電熱パターン106が形成され、その電熱パターン106が下基板120の燃焼流路部135に収容された状態で下基板120が中基板103に接合されているので、電熱パターン106から発した熱が燃焼流路部135内に籠もる。そのため、電熱パターン106で発した熱が、改質流路部162,172内における燃料の改質反応や、燃焼流路部135内における燃焼ガスの燃焼に効率よく用いられる。   In addition, since the electrothermal pattern 106 is formed on the lower surface of the middle substrate 103, and the lower substrate 120 is joined to the middle substrate 103 in a state where the electrothermal pattern 106 is accommodated in the combustion flow path portion 135 of the lower substrate 120, Heat generated from the pattern 106 is trapped in the combustion flow path portion 135. Therefore, the heat generated by the electrothermal pattern 106 is efficiently used for the reforming reaction of the fuel in the reforming flow path portions 162 and 172 and the combustion of the combustion gas in the combustion flow path portion 135.

複合型マイクロ反応装置の斜視図である。It is a perspective view of a composite type micro reactor. 複合型マイクロ反応装置の部分断面図である。It is a fragmentary sectional view of a composite type | mold micro reactor. 図2の切断線III−IIIに沿った面の矢視断面図であるFIG. 3 is a cross-sectional view taken along the line III-III in FIG. 図2の切断線IV−IVに沿った面の矢視断面図であるFIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 図2の切断線V−Vに沿った面の矢視断面図であるFIG. 5 is a cross-sectional view taken along the line VV in FIG. 発電装置のブロック図である。It is a block diagram of a power generator.

符号の説明Explanation of symbols

100 複合型マイクロ反応装置
102 上基板
103 中基板
120 下基板
11、13、21、23、31、33 入隅
12、22、32 出隅
161〜165、171〜175、131〜135 溝
136、166、176 貫通孔
DESCRIPTION OF SYMBOLS 100 Composite type micro reaction apparatus 102 Upper substrate 103 Middle substrate 120 Lower substrate 11, 13, 21, 23, 31, 33 Incoming corner 12, 22, 32 Outer corner 161-165, 171-175, 131-135 Groove 136, 166 176 Through hole

Claims (4)

基板の一方側に設けられた第1反応部と前記基板の他方側に設けられた第2反応部との間に設けられた貫通孔の入隅が丸めた状態に形成されていることを特徴とする反応装置。   A corner of a through hole provided between a first reaction part provided on one side of the substrate and a second reaction part provided on the other side of the substrate is formed in a rounded state. Reactor. 前記第1反応部の反応温度と前記第2反応部の反応温度は互いに異なることを特徴とする請求項1に記載の反応装置。   The reaction apparatus according to claim 1, wherein a reaction temperature of the first reaction unit and a reaction temperature of the second reaction unit are different from each other. 前記第1反応部と前記第2反応部は、前記貫通孔の周囲にある連結伝熱部によって連結されていることを特徴とする請求項1又は2に記載の反応装置。   The reaction apparatus according to claim 1, wherein the first reaction unit and the second reaction unit are connected by a connection heat transfer unit around the through hole. 前記貫通孔の前記入隅は、応力を分散するように曲率が一定であることを特徴とする請求項1〜請求項3のいずれかに記載の反応装置。   The reactor according to any one of claims 1 to 3, wherein the corner of the through hole has a constant curvature so as to disperse stress.
JP2006061336A 2006-03-07 2006-03-07 Reactor Pending JP2007237052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061336A JP2007237052A (en) 2006-03-07 2006-03-07 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061336A JP2007237052A (en) 2006-03-07 2006-03-07 Reactor

Publications (1)

Publication Number Publication Date
JP2007237052A true JP2007237052A (en) 2007-09-20

Family

ID=38583122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061336A Pending JP2007237052A (en) 2006-03-07 2006-03-07 Reactor

Country Status (1)

Country Link
JP (1) JP2007237052A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154044A (en) * 1999-11-30 2001-06-08 Kyocera Corp Optical waveguide substrate
JP2005314207A (en) * 2004-03-31 2005-11-10 Casio Comput Co Ltd Reaction apparatus
JP2007190458A (en) * 2006-01-17 2007-08-02 Casio Comput Co Ltd Reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154044A (en) * 1999-11-30 2001-06-08 Kyocera Corp Optical waveguide substrate
JP2005314207A (en) * 2004-03-31 2005-11-10 Casio Comput Co Ltd Reaction apparatus
JP2007190458A (en) * 2006-01-17 2007-08-02 Casio Comput Co Ltd Reactor

Similar Documents

Publication Publication Date Title
US7560081B2 (en) Reactor and production thereof, reformer, and power supply system including paired channels having a heat exchanger formed thereon
KR100824472B1 (en) Reactor device
JP5055734B2 (en) Fuel reformer for fuel cell
JP4492534B2 (en) REACTOR AND METHOD FOR PRODUCING REACTOR
JP4315193B2 (en) Reactor, power generator and electronic equipment
US7879298B2 (en) Microreactor
WO2008026654A1 (en) Reaction device, fuel cell system, and electronic apparatus
JP2007237052A (en) Reactor
JP4324741B2 (en) Reactor
JP5304326B2 (en) Reactor
JP4939148B2 (en) Reactor, fuel cell system and electronic device
US8382865B2 (en) Reaction apparatus, fuel cell system and electronic device
JP4984760B2 (en) Reactor
JP5040177B2 (en) Microreactor, microreactor manufacturing method, power generation device using the microreactor, and electronic device
JP4887102B2 (en) Reactor, fuel cell system and electronic device
JP5197940B2 (en) Reactor, fuel cell system and electronic device
JP5132106B2 (en) Reactor, fuel cell system and electronic device
JP2008056527A (en) Reactor, fuel cell system and electronic equipment
WO2008026656A1 (en) Reaction device, fuel battery system, and electronic device
JP2008056524A (en) Reactor, fuel cell system and electronic device
JP4240069B2 (en) Reactor
JP5309482B2 (en) Reactor, power generator and electronic device
KR20060108111A (en) Reformer for fuel cell system
JP2009056430A (en) Reaction apparatus and fuel cell
JP2007084404A (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518