JP5304326B2 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
JP5304326B2
JP5304326B2 JP2009048732A JP2009048732A JP5304326B2 JP 5304326 B2 JP5304326 B2 JP 5304326B2 JP 2009048732 A JP2009048732 A JP 2009048732A JP 2009048732 A JP2009048732 A JP 2009048732A JP 5304326 B2 JP5304326 B2 JP 5304326B2
Authority
JP
Japan
Prior art keywords
substrate
flow path
groove
heater
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009048732A
Other languages
Japanese (ja)
Other versions
JP2009160579A (en
Inventor
努 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2009048732A priority Critical patent/JP5304326B2/en
Publication of JP2009160579A publication Critical patent/JP2009160579A/en
Application granted granted Critical
Publication of JP5304326B2 publication Critical patent/JP5304326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reactor capable of preventing a leakage of a reactant such as fuel. <P>SOLUTION: By joining an upper substrate 102 to a lower substrate 103, a reforming channel part 162 is superposed on a reforming channel part 172 and a carbon monoxide removal flow passage part 165 is superposed on a carbon monoxide removal channel part 175. An electric heat pattern 106 is formed on the lower substrate 103 and a heater sealing substrate 120 is joined to the lower substrate 103, thereby the electric heat pattern 106 is stored in a burning channel part 121 of the heater sealing substrate 120. Lead wires 109, 110 are joined to both ends of the electric heat pattern 106, the lead wire 109 is passed through a passing groove 127, the lead wire 110 is passed through a passing groove 128, and a clearance of the passing grooves 128, 127 is sealed by a sealing agent 140. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、反応物を反応させる反応装置、特に、水素改質を行う小型な反応装置に関する。   The present invention relates to a reaction apparatus for reacting a reactant, and more particularly to a small-sized reaction apparatus that performs hydrogen reforming.

近年、エネルギー変換効率の高いクリーンな電源として燃料電池が注目されるようになり、燃料電池自動車や電化住宅などに幅広く実用化されてきている。また、急速に小型化の研究、開発が進められている携帯電話機やノート型パーソナルコンピュータなどといった携帯型電子機器においても、燃料電池による電源の実用化が検討されている。   In recent years, fuel cells have attracted attention as clean power sources with high energy conversion efficiency, and have been widely put into practical use in fuel cell automobiles and electrified houses. Also, in portable electronic devices such as mobile phones and notebook personal computers, which are rapidly researched and developed for miniaturization, practical application of a power source using a fuel cell is being studied.

燃料電池は水素の電気化学反応により電気エネルギーを生成するものであるので、燃料電池のほかに、燃料から水素を生成する燃料改質器も携帯型電子機器に搭載しなけれならない。水素を生成するためには熱エネルギーが必要なので、燃料改質器内にヒータを設け、ヒータの電極を燃料改質器の表面に形成し、その電極にリード線をボンディングワイヤで接続し、リード線を通じてヒータを加熱している(例えば、特許文献1参照。)。   Since the fuel cell generates electric energy by the electrochemical reaction of hydrogen, a fuel reformer that generates hydrogen from the fuel must be mounted on the portable electronic device in addition to the fuel cell. Since heat energy is required to generate hydrogen, a heater is provided in the fuel reformer, the heater electrode is formed on the surface of the fuel reformer, and the lead wire is connected to the electrode with a bonding wire. The heater is heated through the wire (for example, refer to Patent Document 1).

特開2005−154215号公報JP 2005-154215 A

ところで、ヒータを燃料改質器内に設けているので、そのヒータから燃料改質器の表面の電極まで何らかの配線を敷設しなければならないが、そのような配線の接合が十分でないと隙間を通じて燃料等が漏れてしまう虞がある。
本発明は、以上の点に鑑みてなされたものであり、燃料といった反応物の漏れを防止することができる反応装置を提供することを目的とする。
By the way, since the heater is provided in the fuel reformer, it is necessary to lay some wiring from the heater to the electrode on the surface of the fuel reformer. Etc. may leak.
This invention is made | formed in view of the above point, and it aims at providing the reaction apparatus which can prevent the leakage of the reactants, such as a fuel.

以上の課題を解決するために、本発明の請求項1にかかる反応装置は、
反応物が反応する溝又は凹部と、端子部を有する電熱パターンと、を有する第1基板と、
前記電熱パターンの前記端子部に接続されたリード線と、
前記リード線を外部に引き出す通し溝とを有する第2基板と、
前記通し溝を封着する封着剤と、
を備え、
前記反応は、前記溝又は凹部に担持された触媒を用いた触媒反応を含み、
前記リード線は、前記封着剤と前記端子部との間において、曲げ部を有し、
前記リード線の曲げ部は、前記第1基板と前記第2基板との間の、空隙を有する端子部収納室内に収納されていることを特徴とする。
In order to solve the above problems, a reaction apparatus according to claim 1 of the present invention provides:
A first substrate having a groove or a recess with which a reactant reacts, and an electrothermal pattern having a terminal portion;
A lead wire connected to the terminal portion of the electrothermal pattern;
A second substrate having a through groove for pulling out the lead wire to the outside;
A sealing agent for sealing the through groove;
With
The reaction includes a catalytic reaction using a catalyst supported in the groove or the recess,
The leads between said terminal portion and said sealing agent, have a bent portion,
The bent portion of the lead wire is housed in a terminal portion housing chamber having a gap between the first substrate and the second substrate .

このようにリード線の曲げ部が応力を分散するので、リード線の接合不良を防止できる。特に反応装置が無反応時と反応時の温度差が大きい場合、熱膨張や熱収縮を引き起こすことになり、このとき発生する応力を曲げ部が緩和するので、リード線の接合強度を維持できる。   As described above, the bending portion of the lead wire disperses the stress, so that it is possible to prevent the lead wire from being poorly bonded. In particular, when the temperature difference between the non-reacting device and the reaction device is large, thermal expansion and thermal contraction are caused, and the bending portion relieves stress generated at this time, so that the bonding strength of the lead wire can be maintained.

請求項2にかかる反応装置では
前記電熱パターンは、前記第1基板と前記第2基板との間の電熱パターン収納室に収納されていることを特徴とする。
In the reactor according to claim 2 ,
The electrothermal pattern is stored in an electrothermal pattern storage chamber between the first substrate and the second substrate.

請求項3にかかる反応装置では
前記端子部収納室は、前記溝又は凹部と重ならないように配置されていることを特徴とする。


In the reactor according to claim 3 ,
The terminal portion storage chamber is arranged so as not to overlap the groove or the recess.


本発明によれば、反応物の漏れを防止することができる。   According to the present invention, leakage of reactants can be prevented.

反応器の斜視図である。It is a perspective view of a reactor. 反応器及びヒータ封止基板を上側から示した斜視図である。It is the perspective view which showed the reactor and the heater sealing substrate from the upper side. 反応器及びヒータ封止基板を下側から示した斜視図である。It is the perspective view which showed the reactor and the heater sealing substrate from the lower side. 反応器の接合面を示した平面図である。It is the top view which showed the joint surface of the reactor. 複合型マイクロ反応装置の斜視図である。It is a perspective view of a composite type micro reactor. 複合型マイクロ反応装置の断面図である。It is sectional drawing of a composite type | mold micro reactor. 図6の切断線VII−VIIに沿った面の矢視断面図である。It is arrow sectional drawing of the surface along the cutting line VII-VII of FIG. 図6の切断線VIII−VIIIに沿った面の矢視断面図である。It is arrow sectional drawing of the surface along the cutting line VIII-VIII of FIG. 図6の切断線IX−IXに沿った面の矢視断面図である。It is arrow sectional drawing of the surface along the cutting line IX-IX of FIG. 図6の切断線X−Xに沿った接合面の矢視図である。It is an arrow view of the joint surface along the cutting line XX of FIG. 図10の断面図における電熱パターンの端部周辺の拡大図である。It is an enlarged view of the edge part periphery of the electrothermal pattern in sectional drawing of FIG. 変形例における電熱パターンの端部周辺の拡大断面図である。It is an expanded sectional view of the edge part periphery of the electrothermal pattern in a modification. 変形例における電熱パターンの端部周辺の拡大断面図である。It is an expanded sectional view of the edge part periphery of the electrothermal pattern in a modification. 発電装置のブロック図である。It is a block diagram of a power generator.

以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態および図示例に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, the embodiments described below are provided with various technically preferable limitations for carrying out the present invention, but the scope of the invention is not limited to the following embodiments and illustrated examples.

〔第1の実施の形態〕
複合型マイクロ反応装置の製造方法について説明する。
図1に示すように、発熱電気抵抗体である電熱パターン6を反応器1の表面に形成する。具体的には、反応器1の複数面のうち1つの平坦な面1aに電熱膜を成膜し、これらの電熱膜をフォトリソグラフィー法、エッチング法を用いて形状加工する。これにより、電熱パターン6を形成する。電熱パターン6は所定の電圧が印加されると発熱する特性を持ち、電熱パターン6自体の温度に依存して電気抵抗が変化する特性を持つ。そのため、電熱パターン6は、抵抗値の変化から温度の変化を読み取る温度センサとしても機能する。電熱パターン6は、抵抗値の再現性の良い金(Au)を有する発熱層と、発熱層に接し且つ発熱層が熱拡散しにくいタングステン等の高融点金属を含む拡散抑制層と、拡散抑制層と反応器1との間の密着性を向上するために介在された、タンタル、モリブデン、チタン、クロム等の金属を含む密着層と、を備える。また、反応器1が導電性部材である場合、電熱パターン6を反応器1と電気的に絶縁するために、反応器1の面1aに絶縁膜が形成されていればよく、反応器1が絶縁部材である場合、面1aの表面にさらに絶縁膜を介在させる必要はない。
[First Embodiment]
A method for manufacturing the composite microreactor will be described.
As shown in FIG. 1, an electrothermal pattern 6, which is a heat generating electric resistor, is formed on the surface of the reactor 1. Specifically, an electrothermal film is formed on one flat surface 1a among a plurality of surfaces of the reactor 1, and these electrothermal films are processed by a photolithography method and an etching method. Thereby, the electrothermal pattern 6 is formed. The electric heating pattern 6 has a characteristic of generating heat when a predetermined voltage is applied, and has an electric resistance that changes depending on the temperature of the electric heating pattern 6 itself. Therefore, the electrothermal pattern 6 also functions as a temperature sensor that reads a change in temperature from a change in resistance value. The electrothermal pattern 6 includes a heat generation layer having gold (Au) with good reproducibility of resistance values, a diffusion suppression layer containing a refractory metal such as tungsten that is in contact with the heat generation layer and is difficult to thermally diffuse, and a diffusion suppression layer And an adhesion layer containing a metal such as tantalum, molybdenum, titanium, or chromium, which is interposed in order to improve adhesion between the reactor and the reactor 1. Further, when the reactor 1 is a conductive member, in order to electrically insulate the electrothermal pattern 6 from the reactor 1, it is sufficient that an insulating film is formed on the surface 1 a of the reactor 1. In the case of an insulating member, there is no need to further interpose an insulating film on the surface 1a.

電熱パターン6を形成するに際して、電熱パターン6の両端部が他の部分よりも幅広くなるよう電熱パターン6の両端部を端子部7,8にする。端子部7,8は、略矩形状で電熱パターン6が形成された面1aの縁近傍にある。   When the electrothermal pattern 6 is formed, both end portions of the electrothermal pattern 6 are made terminal portions 7 and 8 so that both end portions of the electrothermal pattern 6 are wider than other portions. The terminal portions 7 and 8 are substantially rectangular and near the edge of the surface 1a on which the electrothermal pattern 6 is formed.

反応器1は、溝又は凹部が形成された複数の基板を重ねて接合し、溝又は凹部を基板で蓋したものである。溝又は凹部が基板で蓋されることで、その溝が基板間の接合部において反応炉となる流路となり、或いは凹部が基板間の接合部において内部空間となる。反応器1の主たる材料はガラス、セラミック、金属等から適宜選択することができる。   The reactor 1 is obtained by stacking and joining a plurality of substrates on which grooves or recesses are formed and covering the grooves or recesses with the substrates. By covering the groove or the concave portion with the substrate, the groove becomes a flow path serving as a reaction furnace at the joint portion between the substrates, or the concave portion becomes an internal space at the joint portion between the substrates. The main material of the reactor 1 can be appropriately selected from glass, ceramic, metal and the like.

反応器1の溝又は凹部の壁面には、反応器1の用途に応じて触媒が担持されていても良い。例えば、反応器1を燃料電池に供給する水素を改質する水素改質器として用いる場合には、流路、内部空間を規定する溝や凹部の壁面に改質触媒(例えば、Cu/ZnO系触媒)を担持させ、反応器1を一酸化炭素除去器として用いる場合には、溝や凹部の壁面に一酸化炭素選択酸化触媒(例えば、白金、ルテニウム、パラジウム、ロジウム)を担持させ、反応器1を気化器として用いる場合には、触媒を担持させない。これら触媒は、直接反応器1に固定化されても良く、また反応器1の溝又は凹部に被膜された酸化アルミニウム等の担体によって担持されていても良い。   Depending on the use of the reactor 1, a catalyst may be supported on the wall of the groove or the recess of the reactor 1. For example, when the reactor 1 is used as a hydrogen reformer for reforming hydrogen supplied to a fuel cell, a reforming catalyst (for example, a Cu / ZnO system) is formed on the walls of grooves and recesses that define flow paths and internal spaces. Catalyst) and the reactor 1 is used as a carbon monoxide remover, a carbon monoxide selective oxidation catalyst (for example, platinum, ruthenium, palladium, rhodium) is supported on the wall surface of the groove or recess, and the reactor When 1 is used as a vaporizer, no catalyst is supported. These catalysts may be directly fixed to the reactor 1 or may be supported by a carrier such as aluminum oxide coated in a groove or a recess of the reactor 1.

また、複数の種類の触媒を反応器1の溝や凹部に担持させて、反応器1が触媒の種類に応じた複数種類の反応を引きおこす反応器の複合体でも良い。例えば、反応器1が、ある流路が燃料と水から水素を生成する改質器の反応炉になり、後続する流路が改質器で生成された生成物中の一酸化炭素を酸化させることで除去する一酸化炭素除去器の反応炉になるような複合した複合体であっても良い。
なお、図1では、反応器1は2枚の基板2,3を接合したものであり、反応器1の側面には内部の流路、内部空間に通じる導入口4及び排出口5が形成されている。この場合、基板3が第1基板に対応し、後述するヒータ封止基板20が第2基板に対応する。
Alternatively, a complex of reactors in which a plurality of types of catalysts are supported in grooves or recesses of the reactor 1 and the reactor 1 causes a plurality of types of reactions according to the type of catalyst may be used. For example, the reactor 1 becomes a reactor of a reformer in which a flow path generates hydrogen from fuel and water, and a subsequent flow path oxidizes carbon monoxide in the product generated by the reformer. The composite body which becomes a reactor of the carbon monoxide remover to be removed may be used.
In FIG. 1, the reactor 1 is obtained by joining two substrates 2 and 3, and the side surface of the reactor 1 is formed with an internal flow path, an inlet 4 and an outlet 5 leading to the internal space. ing. In this case, the substrate 3 corresponds to the first substrate, and a heater sealing substrate 20 described later corresponds to the second substrate.

電熱パターン6を形成する工程は、反応器1を組み立てる前に行っても後に行っても良い。即ち、最上部又は最下部の基板に電熱パターン6を形成した後に、最下部又は最上部の基板を接合しても良いし、最下部又は最上部の基板を接合した後に、その基板の接合面と反対面に電熱パターン6を形成しても良い。電熱パターン6は、所定温度に加熱されるべき箇所に重なるように配置されている。   The step of forming the electrothermal pattern 6 may be performed before or after the reactor 1 is assembled. That is, after the electrothermal pattern 6 is formed on the uppermost or lowermost substrate, the lowermost or uppermost substrate may be bonded, or after the lowermost or uppermost substrate is bonded, the bonding surface of the substrate The electrothermal pattern 6 may be formed on the opposite surface. The electrothermal pattern 6 is disposed so as to overlap a portion to be heated to a predetermined temperature.

電熱パターン6を形成した後、端子部7,8の部分を除いた電熱パターン6の上に保護絶縁膜(例えば、窒化シリコン、酸化シリコン)を被覆する。そして、端子部7にリード線9の端部を配置し、その上から絶縁材を挟んだ電極で加圧し、そこに通電することによる抵抗発熱を利用して抵抗溶接する。そして、端子部8にリード線10の端部を配置し、その上から絶縁材を挟んだ電極で加圧し、そこに通電することによる抵抗発熱を利用して抵抗溶接する。リード線9,10には、コバール線、鉄ニッケル合金線、ジュメット線(鉄ニッケル合金の芯材を銅で被覆したもの)等を用いることができる。なお、リード線9,10を接合する工程は、絶縁膜をパターニングする前でも後でも良い。   After the electrothermal pattern 6 is formed, a protective insulating film (for example, silicon nitride or silicon oxide) is covered on the electrothermal pattern 6 except for the terminal portions 7 and 8. And the end part of the lead wire 9 is arrange | positioned in the terminal part 7, it pressurizes with the electrode which pinched | interposed the insulating material from the top, and resistance welding is utilized using the resistance heat_generation | fever by energizing there. And the end part of the lead wire 10 is arrange | positioned in the terminal part 8, it pressurizes with the electrode which pinched | interposed the insulating material from the top, and resistance welding is utilized using the resistance heat_generation | fever by energizing there. As the lead wires 9 and 10, a Kovar wire, an iron nickel alloy wire, a dumet wire (iron nickel alloy core material covered with copper), or the like can be used. The step of joining the lead wires 9 and 10 may be before or after patterning the insulating film.

一方、図2、図3に示すようなヒータ封止基板20を準備する。このヒータ封止基板20の一方の面20aに、電熱パターン収納室となるジグザグ状の溝21をサンドブラスト法又はフォトリソグラフィー・エッチング法により凹設する。溝21を凹設するに際して、溝21の一端部をヒータ封止基板20の縁まで連ならせ、ヒータ封止基板20の一方の側端面20bにおいて溝21の一端部21aを開口させ、溝21の他端部をヒータ封止基板20の縁まで連ならせ、ヒータ封止基板20の側端面20bにおいて溝21の他端部21bを開口させる。また、この下面20aの縁部の近傍に、溝21と独立して2つの略矩形状の端子部収納室23,24を凹設し、端子部収納室23,24と溝21の間を連通する連通溝25,26を凹設し、端子部収納室23,24とヒータ封止基板20の縁面の間を連通する通し溝27,28を凹設し、通し溝27,28の端部をヒータ封止基板20の側端面20bに対向する側端面20cにおいて開口させる。連通溝25,26の幅は、いずれも電熱パターン6の配線幅よりやや長く、それぞれ端子部収納室23,24の幅より十分短く、それぞれ端子部7,8の幅より十分短い。通し溝27,28の幅は、それぞれリード線9及びリード線10の配線幅よりやや長く、それぞれ端子部収納室23,24の幅より十分短く、それぞれ端子部7,8の幅より十分短い。端子部収納室23,24の幅は、それぞれ端子部7,8の幅よりやや長く、端子部収納室23,24の長さは、それぞれ端子部7,8の長さよりやや長いため、端子部収納室23,24は、端子部7,8を内部に収容できる。端子部7,8は例えば楕円形状のように矩形以外でもよく、端子部収納室23,24は、端子部7,8を収容できるように端子部7,8より一回り大きい寸法であれば形状は限定されない。このような溝21、端子部収納室23,24、連通溝25,26及び通し溝27,28によってひとまとまりの凹部が形成される。ヒータ封止基板20の主たる材料は反応器1に合わせてガラス、セラミック、金属等から適宜選択することができる。   On the other hand, a heater sealing substrate 20 as shown in FIGS. 2 and 3 is prepared. On one surface 20a of the heater sealing substrate 20, a zigzag groove 21 serving as an electrothermal pattern storage chamber is recessed by sandblasting or photolithography / etching. When forming the groove 21, one end of the groove 21 is connected to the edge of the heater sealing substrate 20, and the one end 21 a of the groove 21 is opened on one side end surface 20 b of the heater sealing substrate 20. Are connected to the edge of the heater sealing substrate 20, and the other end 21 b of the groove 21 is opened on the side end surface 20 b of the heater sealing substrate 20. Further, in the vicinity of the edge portion of the lower surface 20 a, two substantially rectangular terminal portion storage chambers 23 and 24 are recessed independently of the groove 21, and the terminal portion storage chambers 23 and 24 and the groove 21 communicate with each other. The communication grooves 25, 26 are recessed, the through grooves 27, 28 communicating between the terminal portion storage chambers 23, 24 and the edge surface of the heater sealing substrate 20 are recessed, and the end portions of the through grooves 27, 28 are formed. Is opened on the side end face 20c opposite to the side end face 20b of the heater sealing substrate 20. The widths of the communication grooves 25 and 26 are both slightly longer than the wiring width of the electrothermal pattern 6, sufficiently shorter than the widths of the terminal portion storage chambers 23 and 24, and sufficiently shorter than the widths of the terminal portions 7 and 8, respectively. The widths of the through grooves 27 and 28 are slightly longer than the wiring widths of the lead wires 9 and 10, respectively, sufficiently shorter than the widths of the terminal portion storage chambers 23 and 24, and sufficiently shorter than the widths of the terminal portions 7 and 8, respectively. Since the widths of the terminal storage chambers 23 and 24 are slightly longer than the widths of the terminal portions 7 and 8, respectively, and the lengths of the terminal storage chambers 23 and 24 are slightly longer than the lengths of the terminal portions 7 and 8, respectively. The storage chambers 23 and 24 can store the terminal portions 7 and 8 therein. The terminal portions 7 and 8 may be other than a rectangle such as an ellipse, and the terminal portion storage chambers 23 and 24 are shaped so long as they are slightly larger than the terminal portions 7 and 8 so as to accommodate the terminal portions 7 and 8. Is not limited. A group of recesses is formed by the groove 21, the terminal housing chambers 23 and 24, the communication grooves 25 and 26, and the through grooves 27 and 28. The main material of the heater sealing substrate 20 can be appropriately selected from glass, ceramic, metal and the like according to the reactor 1.

溝21が形成された面20aは、反応器1の電熱パターン6が形成された面1aに接合される面である。図4に示すようにヒータ封止基板20と反応器1の接合面に対して垂直な方向に投影視して、端子部7が端子部収納室23の縁の内側に配置され、端子部8が端子部収納室24の縁の内側に配置され、電熱パターン6が溝21から連通溝25,26にかけてこれらの縁の内側に配置されるよう、電熱パターン6や溝21、端子部収納室23,24、連通溝25,26、通し溝27,28の形状を決める。なお、通し溝27,28は直線状でなくても良く、屈曲した形状であっても良い。   The surface 20a on which the groove 21 is formed is a surface joined to the surface 1a on which the electrothermal pattern 6 of the reactor 1 is formed. As shown in FIG. 4, the terminal portion 7 is disposed inside the edge of the terminal portion storage chamber 23 when projected in a direction perpendicular to the bonding surface between the heater sealing substrate 20 and the reactor 1, and the terminal portion 8 Is arranged inside the edge of the terminal portion storage chamber 24, and the electric heating pattern 6, the groove 21, and the terminal portion storage chamber 23 so that the electric heating pattern 6 is arranged inside these edges from the groove 21 to the communication grooves 25 and 26. , 24, the communication grooves 25, 26, and the shapes of the through grooves 27, 28 are determined. The through grooves 27 and 28 do not have to be linear and may be bent.

次に、溝21の壁面に、燃焼触媒(例えば、白金、ルテニウム、パラジウム、ロジウム)を担持させる。燃焼触媒は、燃焼ガス(例えば、水素ガス、メタノールガス、エタノールガス、ジメチルエーテルガス等)を酸化させることで燃料ガスを燃焼させる触媒である。   Next, a combustion catalyst (for example, platinum, ruthenium, palladium, rhodium) is supported on the wall surface of the groove 21. The combustion catalyst is a catalyst that burns fuel gas by oxidizing a combustion gas (for example, hydrogen gas, methanol gas, ethanol gas, dimethyl ether gas, etc.).

次に、反応器1の面1aとヒータ封止基板20の面20aを貼りあわせて燃焼触媒を備えた燃焼器が形成される。電熱パターン6を溝21、連通溝25,26に、端子部7を端子部収納室23に、端子部8を端子部収納室24に収容するとともに、通し溝27,28にリード線9,10を嵌め込むように反応器1とヒータ封止基板20の位置合わせを行い、電熱パターン6をヒータ封止基板20で覆うようにする。そして、反応器1の面1aをヒータ封止基板20の面20aに接合する。接合は、反応器1とヒータ封止基板20の材料に応じて適宜陽極接合や蝋付け等を選択することができる。ヒータ封止基板20を反応器1に接合することによって溝21、端子部収納室23,24、連通溝25,26及び通し溝27,28が蓋される。端子部収納室23,24内においてリード線9,10を弓なり状に湾曲させたり、複数回折り曲げたり、波形状に折り曲げたりすることで、リード線9,10を端子部収納室23,24内において撓ませると良い。このようにリード線9,10を撓ませることで、端子部7,8から面20aの左縁までのリード線9,10の長さを端子部7,8から面20aのまでの直線的距離の1.5倍以上とする。   Next, the surface 1a of the reactor 1 and the surface 20a of the heater sealing substrate 20 are bonded together to form a combustor including a combustion catalyst. The electric heating pattern 6 is accommodated in the groove 21, the communication grooves 25 and 26, the terminal portion 7 is accommodated in the terminal portion accommodating chamber 23, the terminal portion 8 is accommodated in the terminal portion accommodating chamber 24, and the lead wires 9 and 10 are inserted in the through grooves 27 and 28. The reactor 1 and the heater sealing substrate 20 are aligned so as to be fitted, and the electrothermal pattern 6 is covered with the heater sealing substrate 20. Then, the surface 1 a of the reactor 1 is bonded to the surface 20 a of the heater sealing substrate 20. As the bonding, anodic bonding, brazing, or the like can be appropriately selected according to the materials of the reactor 1 and the heater sealing substrate 20. By joining the heater sealing substrate 20 to the reactor 1, the groove 21, the terminal portion storage chambers 23 and 24, the communication grooves 25 and 26, and the through grooves 27 and 28 are covered. The lead wires 9 and 10 are bent in a bow shape, bent a plurality of times, or bent into a wave shape in the terminal portion storage chambers 23 and 24, whereby the lead wires 9 and 10 are bent in the terminal portion storage chambers 23 and 24. It is good to bend in By bending the lead wires 9 and 10 in this way, the length of the lead wires 9 and 10 from the terminal portions 7 and 8 to the left edge of the surface 20a is changed to a linear distance from the terminal portions 7 and 8 to the surface 20a. 1.5 times or more.

次に、挿入されたリード線9,10が端子部7,8に接合された状態で、側端面20cにおける通し溝27,28の開口に封着剤40(例えば、低融点ガラス封着剤)に注入して、通し溝27,28の開口を封着剤40でシールする。封着剤の注入に際しては、封着剤によって通し溝27,28の開口が完全に塞がれて気密性を確保するとともにリード線9,10に応力が加わったときにリード線9,10が容易に撓むことができるようなスペースを維持するために端子部収納室23,24が完全に埋まらないようにする。封着剤としてはリード線9,10の熱膨張係数に略等しい材料が望ましく、例えばリード線9,10がコバール線の場合、封着剤を低融点ガラス封着剤が好ましい。反応器1が金属であれば、膨張係数が反応器1に近似した反応器1の金属よりも低融点の材料が好ましい。   Next, in a state where the inserted lead wires 9 and 10 are joined to the terminal portions 7 and 8, a sealing agent 40 (for example, a low melting point glass sealing agent) is formed in the openings of the through grooves 27 and 28 in the side end surface 20c. And the openings of the through grooves 27 and 28 are sealed with a sealing agent 40. When the sealing agent is injected, the openings of the through grooves 27 and 28 are completely closed by the sealing agent to ensure airtightness, and the lead wires 9 and 10 are connected when stress is applied to the lead wires 9 and 10. In order to maintain a space that can be easily bent, the terminal housing chambers 23 and 24 are not completely filled. As the sealing agent, a material substantially equal to the thermal expansion coefficient of the lead wires 9 and 10 is desirable. For example, when the lead wires 9 and 10 are Kovar wires, the sealing agent is preferably a low melting point glass sealing agent. If the reactor 1 is a metal, a material having a lower melting point than the metal of the reactor 1 whose expansion coefficient approximates that of the reactor 1 is preferable.

次に、導入口4、排出口5それぞれにガラス、セラミック、金属等の反応器1に合わせた材料からなる配管を嵌め込み、溝21の両端部における開口にもそれぞれ配管を嵌め込み、これら配管を反応器1やヒータ封止基板20に接合する。配管は、反応装置で反応される反応材料を導入する管及び反応によって生じた生成材料を導出する管である。そして、10Pa以下、望ましくは1Pa以下に減圧された雰囲気の製造装置炉内で、反応器1、ヒータ封止基板20を、配管の材料に合わせてガラス、セラミック、金属等からなる断熱パッケージ内に収容し、導入口4、排出口5、溝21の開口に嵌め込んだ配管を断熱パッケージに貫通させてから配管が断熱パッケージを貫通した箇所を封着剤で封止し、更にリード線9,10も断熱パッケージに貫通させてリード線9,10が断熱パッケージを貫通した箇所を封着剤で封止する。このため、断熱パッケージ内の圧力を10Pa以下、望ましくは1Pa以下に減圧に維持できる。このような低圧雰囲気は熱伝搬性が低く、反応器1及びヒータ封止基板20を保温する効果を奏する。また、断熱パッケージの内面には、Au、Ag、Alといった赤外線領域で断熱パッケージよりも反射率の高い赤外線反射膜を成膜しておくと、熱効率が良い。   Next, pipes made of a material suitable for the reactor 1 such as glass, ceramic, and metal are fitted into the inlet 4 and the outlet 5, respectively, and pipes are fitted into the openings at both ends of the groove 21, respectively. Bonded to the vessel 1 and the heater sealing substrate 20. The pipe is a pipe for introducing a reaction material to be reacted in the reaction apparatus and a pipe for leading a product material generated by the reaction. Then, the reactor 1 and the heater sealing substrate 20 are placed in a heat insulating package made of glass, ceramic, metal, etc. in accordance with the material of the piping in a manufacturing apparatus furnace in an atmosphere reduced to 10 Pa or less, preferably 1 Pa or less. The pipe, which is accommodated and inserted into the opening of the inlet port 4, the outlet port 5 and the groove 21, is passed through the heat insulation package, and then the portion where the pipe penetrates the heat insulation package is sealed with a sealing agent, and the lead wire 9, 10 is also passed through the heat insulation package, and the portion where the lead wires 9 and 10 penetrate the heat insulation package is sealed with a sealing agent. For this reason, the pressure in the heat insulation package can be maintained at a reduced pressure of 10 Pa or less, desirably 1 Pa or less. Such a low-pressure atmosphere has low heat propagation properties, and has an effect of keeping the reactor 1 and the heater sealing substrate 20 warm. Further, if an infrared reflecting film having a higher reflectance than the heat insulating package in the infrared region such as Au, Ag, and Al is formed on the inner surface of the heat insulating package, the thermal efficiency is good.

この複合型マイクロ反応装置においては、リード線9,10の間に電圧を印加することによって、電熱パターン6が発熱する。このとき、燃焼ガスを酸素(空気)とともに配管を介して一端部21a及び他端部21bの一方から溝21の流路に送り込むことによって燃焼ガスが燃焼触媒により燃焼し、燃焼熱が発する。燃焼された排ガスは、一端部21a及び他端部21bの他方から排出される。配管を介して反応物を導入口4に送り込むことによって反応物が反応器1内の流路や内部空間を流動し、反応物がリード線9,10の熱や溝21での燃焼熱により加熱されて反応物の反応が起こる。例えば、反応器1内の触媒が改質触媒であり、反応物としてメタノールガスと水の混合気を供給した場合、次式(1)、(2)のような化学反応が起こる。また、反応器1内の触媒が一酸化炭素除去触媒であり、反応物として水素ガス、酸素ガス、一酸化炭素ガス(次式(1)、(2)の反応により生成されたもの)等を供給した場合、次式(3)のように一酸化炭素が選択的に酸化される。また、反応器1内における反応は化学反応のみならず、状態変化を伴う反応でも良い。例えば、反応器1内に触媒が担持されておらず、反応物として液体(例えば、水とメタノールの混合液)を供給した場合、液体が蒸発する。また次式(4)のように燃焼ガス及び酸素を、表面に燃焼触媒が担持された溝21によって形成された流路に送り込むことによって燃焼ガスが燃焼触媒により燃焼し、燃焼熱が発する。
CH3OH+H2O→3H2+CO2・・・(1)
2CH3OH+H2O→5H2+CO+CO2・・・(2)
2CO+O2→2CO2・・・(3)
2CH3OH+3O2→2CO2+4H2O・・・(4)
In this composite microreactor, the electrothermal pattern 6 generates heat by applying a voltage between the lead wires 9 and 10. At this time, the combustion gas is combusted by the combustion catalyst by sending the combustion gas together with oxygen (air) from one of the one end portion 21a and the other end portion 21b to the flow path of the groove 21 through a pipe, thereby generating combustion heat. The combusted exhaust gas is discharged from the other of the one end 21a and the other end 21b. By sending the reactant into the inlet 4 through the piping, the reactant flows in the flow path and the internal space in the reactor 1, and the reactant is heated by the heat of the lead wires 9 and 10 and the heat of combustion in the groove 21. Reaction of the reactant occurs. For example, when the catalyst in the reactor 1 is a reforming catalyst and a mixture of methanol gas and water is supplied as a reactant, chemical reactions such as the following formulas (1) and (2) occur. Further, the catalyst in the reactor 1 is a carbon monoxide removal catalyst, and hydrogen gas, oxygen gas, carbon monoxide gas (produced by the reaction of the following formulas (1) and (2)) and the like as reactants. When supplied, carbon monoxide is selectively oxidized as shown in the following formula (3). Moreover, the reaction in the reactor 1 may be not only a chemical reaction but also a reaction accompanied by a state change. For example, when a catalyst is not supported in the reactor 1 and a liquid (for example, a mixture of water and methanol) is supplied as a reactant, the liquid evaporates. Further, as shown in the following equation (4), the combustion gas and oxygen are sent to the flow path formed by the groove 21 having the combustion catalyst supported on the surface, so that the combustion gas is burned by the combustion catalyst and combustion heat is generated.
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
2CH 3 OH + H 2 O → 5H 2 + CO + CO 2 (2)
2CO + O 2 → 2CO 2 (3)
2CH 3 OH + 3O 2 → 2CO 2 + 4H 2 O (4)

このように本実施形態によれば、反応器1の接合面1aに電熱パターン6が形成され、その電熱パターン6がヒータ封止基板20の溝21に収容された状態でヒータ封止基板20が反応器1に接合されているので、電熱パターン6や反応器1に接するように設けられた燃焼器から発した熱輻射が直接溝21まで伝搬され、或いは断熱パッケージの内面に設けられた赤外線反射膜によって反射されて溝21に伝搬される。そのため、熱が、反応器1内における反応物の反応や、溝21内における燃焼ガスの燃焼に効率よく用いられる。   As described above, according to the present embodiment, the electrothermal pattern 6 is formed on the joint surface 1 a of the reactor 1, and the heater sealing substrate 20 is accommodated in the groove 21 of the heater sealing substrate 20. Since it is joined to the reactor 1, the heat radiation emitted from the combustor provided so as to be in contact with the electric heating pattern 6 or the reactor 1 is directly propagated to the groove 21, or the infrared reflection provided on the inner surface of the heat insulation package. It is reflected by the film and propagates to the groove 21. Therefore, heat is efficiently used for reaction of reactants in the reactor 1 and combustion of combustion gas in the groove 21.

また、反応器1の表面に形成された電熱パターン6がヒータ封止基板20の溝21、連通溝25,26等に収容されるので、ヒータ封止基板20と反応器1の密着度が高まる。また、通し溝27,28がヒータ封止基板20の縁まで連なってその縁において開口し、リード線9,10が通し溝27,28を通っているので、ヒータ封止基板20と反応器1の密着度がリード線9,10によって低下することがない。このようにヒータ封止基板20と反応器1の密着度が高いので、電熱パターン6の熱や溝21内の燃焼ガスが漏れない。   Further, since the electrothermal pattern 6 formed on the surface of the reactor 1 is accommodated in the groove 21 and the communication grooves 25 and 26 of the heater sealing substrate 20, the degree of adhesion between the heater sealing substrate 20 and the reactor 1 is increased. . Further, since the through grooves 27 and 28 continue to the edge of the heater sealing substrate 20 and open at the edge, and the lead wires 9 and 10 pass through the through grooves 27 and 28, the heater sealing substrate 20 and the reactor 1. Is not reduced by the lead wires 9 and 10. Thus, since the adhesion degree of the heater sealing substrate 20 and the reactor 1 is high, the heat of the electrothermal pattern 6 and the combustion gas in the groove 21 do not leak.

また、通し溝27,28の端の開口が封着剤によってシールされているので、電熱パターン6で発した熱が逃げず、その熱が反応器1における反応物の反応に効率よく用いられる。また、溝21に燃焼ガスが供給されるので、電熱パターン6の熱が燃焼ガスの触媒燃焼にも利用される。特に電熱パターン6がその溝21内において露出しているから、電熱パターン6の発熱を燃焼ガスの触媒燃焼に効率よく用いることができる。そして、通し溝27,28の端の開口が封着剤によってシールされているから、溝21に供給された燃焼ガスがその開口からリークしない。   Further, since the openings at the ends of the through grooves 27 and 28 are sealed with the sealing agent, the heat generated by the electrothermal pattern 6 does not escape, and the heat is efficiently used for the reaction of the reactants in the reactor 1. Moreover, since combustion gas is supplied to the groove | channel 21, the heat | fever of the electrothermal pattern 6 is utilized also for catalytic combustion of combustion gas. In particular, since the electrothermal pattern 6 is exposed in the groove 21, the heat generated by the electrothermal pattern 6 can be efficiently used for catalytic combustion of combustion gas. Since the openings at the ends of the through grooves 27 and 28 are sealed with the sealing agent, the combustion gas supplied to the grooves 21 does not leak from the openings.

〔第2の実施の形態〕
第2実施形態について説明する。
図5は燃料電池に供給する水素を改質する複合型マイクロ反応装置100の外観斜視図であり、図6は破断して示した複合型マイクロ反応装置100の正面断面図である。
[Second Embodiment]
A second embodiment will be described.
FIG. 5 is an external perspective view of the composite microreactor 100 for reforming hydrogen supplied to the fuel cell, and FIG. 6 is a front sectional view of the composite microreactor 100 shown broken.

図5及び図6に示すように、ガラス製又は金属製の断熱パッケージ150は中空を有した六面体状の箱体であり、断熱パッケージ150の内壁面には、赤外線のような熱源となる電磁波に対して断熱パッケージ150よりも高い反射性の赤外線反射膜(例えば、Au、Ag、Al)が成膜され、断熱パッケージ150の中空の圧力が10Pa以下、望ましくは1Pa以下に減圧された状態に保たれている。   As shown in FIGS. 5 and 6, the heat insulating package 150 made of glass or metal is a hexahedral box having a hollow, and the inner wall surface of the heat insulating package 150 is exposed to electromagnetic waves that are heat sources such as infrared rays. On the other hand, a reflective infrared reflective film (for example, Au, Ag, Al) having a higher reflectivity than that of the heat insulation package 150 is formed, and the hollow pressure of the heat insulation package 150 is kept at 10 Pa or less, preferably 1 Pa or less. I'm leaning.

また、断熱パッケージ150と同じ材料で形成された供給排出部材151が断熱パッケージ150を貫通している。この供給排出部材151内には、改質燃料ガス供給用の燃料供給流路と、空気供給用の2つの吸気流路と、燃焼ガス供給用の燃焼ガス供給流路と、生成ガス排出用の生成ガス排出流路と、燃焼排ガス排出用の排ガス排出流路とが形成されている。   Further, a supply / discharge member 151 formed of the same material as that of the heat insulation package 150 penetrates the heat insulation package 150. The supply / discharge member 151 includes a fuel supply passage for supplying reformed fuel gas, two intake passages for supplying air, a combustion gas supply passage for supplying combustion gas, and a product gas discharge passage. A product gas discharge channel and an exhaust gas discharge channel for exhausting combustion exhaust gas are formed.

また、リード線109〜112が断熱パッケージ150を貫通している。リード線109〜112にはコバール線、鉄ニッケル合金線又はジュメット線が用いられている。供給排出部材151、リード線109〜112が断熱パッケージ150を貫通した箇所は封着剤によってシーリングされている。   Further, the lead wires 109 to 112 penetrate the heat insulating package 150. For the lead wires 109 to 112, Kovar wire, iron-nickel alloy wire or dumet wire is used. The portions where the supply / discharge member 151 and the lead wires 109 to 112 penetrate the heat insulating package 150 are sealed with a sealant.

断熱パッケージ150内には、第1基板としての下基板103と上基板102を接合してなる反応器101が収容され、更に反応器101の下面、即ち下基板103の下面に接合した第2基板としてのヒータ封止基板120も断熱パッケージ150内に収容されている。なお、反応器101が改質器と一酸化炭素除去器の複合体となり、下基板103に接合した状態のヒータ封止基板120が燃焼器となる。このようにリード線109〜112のうち、燃焼器内に配置されている部分は、燃焼器によって加熱されるのに対し、燃焼器外、特に断熱パッケージ150から外部に露出されている部分は、燃焼器で加熱される温度より低いため、燃焼器内の熱がリード線109〜112を介して燃焼器の外に漏洩しやすい。このため、リード線109〜112の直径は、熱効率の観点から0.2mm以下として熱容量及び断面積を小さくすることが好ましい。   The heat insulation package 150 accommodates a reactor 101 formed by bonding a lower substrate 103 and an upper substrate 102 as a first substrate, and further a second substrate bonded to the lower surface of the reactor 101, that is, the lower surface of the lower substrate 103. The heater sealing substrate 120 is also accommodated in the heat insulation package 150. In addition, the reactor 101 becomes a complex of the reformer and the carbon monoxide remover, and the heater sealing substrate 120 bonded to the lower substrate 103 becomes the combustor. As described above, among the lead wires 109 to 112, the portion disposed in the combustor is heated by the combustor, whereas the portion exposed to the outside of the combustor, particularly from the heat insulating package 150, Since it is lower than the temperature heated by the combustor, the heat in the combustor tends to leak out of the combustor via the lead wires 109 to 112. For this reason, it is preferable that the diameter of the lead wires 109 to 112 is 0.2 mm or less from the viewpoint of thermal efficiency to reduce the heat capacity and the cross-sectional area.

図7は、図6の切断線VII−VIIに沿った面の上基板102の矢視断面図である。図7に示すように、上基板102の両面のうち下基板103との接合面には、いずれも溝部又は凹部である、燃料供給流路部161と、改質反応炉となる改質流路部162と、連通溝163と、空気供給流路部164と、一酸化炭素除去反応炉となる一酸化炭素除去流路部165とが凹設されている。更に、上基板102の中央部において厚さ方向に貫通した矩形状の貫通孔166が形成されている。配管と連結される上基板102に設けられた溝等の複数の端部は、上基板102の一方の縁102aにのみ形成されている。燃料供給流路部161が、上基板102の縁102aから縁102aに隣接する縁102bにかけて沿うように形成され、燃料供給流路部161の一端部が上基板102の縁102aまで連なり、燃料供給流路部161の他端部が改質流路部162の一端部に連なっている。改質流路部162は、貫通孔166の左側においてジグザグ状に形成されている。連通溝163は貫通孔166の後ろ側において上基板102の縁102bに対向する縁102cに沿って形成され、連通溝163の一端部が改質流路部162の他端部に連なり、連通溝163の他端部が空気供給流路部164及び一酸化炭素除去流路部165に合流している。空気供給流路部164は上基板102の縁102aから縁102cにかけて沿うように形成され、空気供給流路部164の一端部が上基板102の縁102aまで連なり、空気供給流路部164の他端部が連通溝163及び一酸化炭素除去流路部165に連なっている。一酸化炭素除去流路部165は貫通孔166の右側においてジグザグ状に形成され、一酸化炭素除去流路部165の一端部が上基板102の縁102aまで連なり、一酸化炭素除去流路部165の他端部が連通溝163及び空気供給流路部164に連なっている。なお、空気供給流路部164の一端部及び一酸化炭素除去流路部165の一端部は、ともに供給排出部材151の一部と嵌合し、さらに上基板102の縁102aには、供給排出部材151に嵌合する溝201,205,206が凹設されている。   7 is a cross-sectional view of the upper substrate 102 taken along the cutting line VII-VII in FIG. As shown in FIG. 7, a fuel supply flow path portion 161 that is a groove or a recess, and a reforming flow path that serves as a reforming reactor, are formed on both surfaces of the upper substrate 102 on the joint surface with the lower substrate 103. The part 162, the communication groove 163, the air supply flow path part 164, and the carbon monoxide removal flow path part 165 serving as a carbon monoxide removal reaction furnace are recessed. Further, a rectangular through-hole 166 is formed through the central portion of the upper substrate 102 in the thickness direction. A plurality of ends such as grooves provided in the upper substrate 102 connected to the pipe are formed only on one edge 102 a of the upper substrate 102. The fuel supply flow path portion 161 is formed so as to extend from the edge 102a of the upper substrate 102 to the edge 102b adjacent to the edge 102a, and one end portion of the fuel supply flow path portion 161 is connected to the edge 102a of the upper substrate 102 to supply fuel. The other end portion of the flow path portion 161 is connected to one end portion of the reforming flow path portion 162. The reforming channel portion 162 is formed in a zigzag shape on the left side of the through hole 166. The communication groove 163 is formed along the edge 102 c facing the edge 102 b of the upper substrate 102 on the rear side of the through hole 166, and one end portion of the communication groove 163 is connected to the other end portion of the reforming channel portion 162. The other end of 163 merges with the air supply channel 164 and the carbon monoxide removal channel 165. The air supply channel portion 164 is formed so as to extend from the edge 102 a to the edge 102 c of the upper substrate 102, and one end portion of the air supply channel portion 164 is connected to the edge 102 a of the upper substrate 102. The end portion is connected to the communication groove 163 and the carbon monoxide removal flow path portion 165. The carbon monoxide removal flow path portion 165 is formed in a zigzag shape on the right side of the through-hole 166, and one end of the carbon monoxide removal flow path portion 165 is connected to the edge 102 a of the upper substrate 102, and the carbon monoxide removal flow path portion 165. Is connected to the communication groove 163 and the air supply flow path portion 164. Note that one end of the air supply channel 164 and one end of the carbon monoxide removal channel 165 are both fitted with a part of the supply / discharge member 151, and the supply / discharge is further discharged to the edge 102 a of the upper substrate 102. Grooves 201, 205, 206 that fit into the member 151 are recessed.

図8は、図6の切断線VIII−VIIIに沿った面の下基板103の矢視投影断面図である。図8に示すように、下基板103の両面のうち上基板102との接合面には、いずれも溝部又は凹部である、燃料供給流路部171と、改質反応炉となる改質流路部172と、連通溝173と、空気供給流路部174と、一酸化炭素除去反応炉となる一酸化炭素除去流路部175とが凹設されている。更に、下基板103の中央部において矩形状の貫通孔176が形成されている。下基板103と上基板102の接合面に関して、燃料供給流路部171と燃料供給流路部161は互いに面対称であり、同様に、改質流路部172と改質流路部162が、連通溝173と連通溝163が、空気供給流路部174と空気供給流路部164が、貫通孔176と貫通孔166が互いに面対称である。下基板103は、上基板102の縁102a、縁102b、縁102c、縁102dに対応する縁103a、縁103b、縁103c、縁103dが形成されている。一酸化炭素除去流路部165の一端部が上基板102の縁102aまで連なっているのに対して、一酸化炭素除去流路部175の一端部が、上基板102の縁102aに対応する下基板103の縁103aに達していないことを除き、一酸化炭素除去流路部175と一酸化炭素除去流路部165は、互いに面対称である。また、下基板103の縁103aには、供給排出部材151に嵌合する切り欠き211〜216が凹設されている。燃料供給流路部171、空気供給流路部174、一酸化炭素除去流路部175は下基板103の縁103aまで連なっていないが、燃焼供給流路部171の端部が切欠き212の近くに、空気供給流路部174の端部が切欠き214の近くに、一酸化炭素除去流路部175が切欠き213の近くにある。   FIG. 8 is a cross-sectional view of the lower substrate 103 taken along the cutting plane VIII-VIII in FIG. As shown in FIG. 8, the fuel supply flow path portion 171, which is a groove portion or a concave portion, and a reforming flow path serving as a reforming reactor are formed on both surfaces of the lower substrate 103 on the joint surface with the upper substrate 102. A part 172, a communication groove 173, an air supply flow path part 174, and a carbon monoxide removal flow path part 175 serving as a carbon monoxide removal reaction furnace are recessed. Further, a rectangular through hole 176 is formed at the center of the lower substrate 103. With respect to the joint surface between the lower substrate 103 and the upper substrate 102, the fuel supply channel portion 171 and the fuel supply channel portion 161 are plane-symmetric with each other, and similarly, the reforming channel portion 172 and the reforming channel portion 162 are The communication groove 173 and the communication groove 163 are plane-symmetric with each other, the air supply channel portion 174 and the air supply channel portion 164 are plane-symmetric with each other. The lower substrate 103 has edges 103a, 103b, 103c, and 103d corresponding to the edges 102a, 102b, 102c, and 102d of the upper substrate 102. One end of the carbon monoxide removal channel 165 continues to the edge 102a of the upper substrate 102, whereas one end of the carbon monoxide removal channel 175 corresponds to the lower edge 102a of the upper substrate 102. Except for not reaching the edge 103a of the substrate 103, the carbon monoxide removal channel 175 and the carbon monoxide removal channel 165 are plane-symmetric with each other. In addition, notches 211 to 216 that fit into the supply / discharge member 151 are recessed in the edge 103 a of the lower substrate 103. Although the fuel supply channel 171, the air supply channel 174, and the carbon monoxide removal channel 175 are not connected to the edge 103 a of the lower substrate 103, the end of the combustion supply channel 171 is near the notch 212. In addition, the end of the air supply channel 174 is near the notch 214, and the carbon monoxide removal channel 175 is near the notch 213.

改質流路部162,172の壁面には、アルミナを担体として改質触媒(例えば、Cu/ZnO系触媒)が担持され、一酸化炭素除去流路部165,175の壁面には、アルミナを担体として一酸化炭素選択酸化触媒(例えば、白金、ルテニウム、パラジウム、ロジウム)が担持されている。なお、これら触媒は、アルミナゾルを塗布した後にウォッシュコート法で形成したものである。   A reforming catalyst (for example, Cu / ZnO-based catalyst) is supported on the wall surfaces of the reforming flow path portions 162 and 172 using alumina as a carrier, and alumina is supported on the wall surfaces of the carbon monoxide removal flow path portions 165 and 175. A carbon monoxide selective oxidation catalyst (for example, platinum, ruthenium, palladium, rhodium) is supported as a carrier. These catalysts are formed by a wash coat method after applying an alumina sol.

上基板102が下基板103に接合されており、燃料供給流路部171と燃料供給流路部161が重なっており、同様に、改質流路部172と改質流路部162が、連通溝173と連通溝163が、空気供給流路部174と空気供給流路部164が、一酸化炭素除去流路部175と一酸化炭素除去流路部165が、貫通孔176と貫通孔166とが重なっている。   The upper substrate 102 is joined to the lower substrate 103, and the fuel supply channel portion 171 and the fuel supply channel portion 161 overlap each other. Similarly, the reforming channel portion 172 and the reforming channel portion 162 communicate with each other. The groove 173, the communication groove 163, the air supply channel 174 and the air supply channel 164, the carbon monoxide removal channel 175 and the carbon monoxide removal channel 165, the through-hole 176 and the through-hole 166 Are overlapping.

上基板102と下基板103は例えば、ガラス材料からなり、特に熱膨張係数が33×10-7/℃程度で可動イオンとなるアルカリ金属(例えば、Na、Li等)を含有したガラス材料からなる。また、上基板102と下基板103が陽極接合法により接合する場合は、上基板102と下基板103のどちらか一方の接合面には陽極接合のために他方のガラスに含まれる酸素原子と結合する金属膜又はシリコン膜を有する陽極接合用膜が気相成長法(例えば、スパッタリング法、蒸着法)により成膜されている。なお、上基板102と下基板103のうちのどちらか一方がガラス材料ではなく金属又はシリコンからなるものとしても良い。上基板102には、縁102aに対向する縁102dと、縁102cとの間の角部を切り欠いた面取縁102eが形成されており、下基板103の接合面に陽極接合用膜が成膜されている場合、この陽極接合用膜が面取縁102eによって一部露出されるので陽極接合時に電圧を印加する電極端子に容易に接続しやすくなる。これにより、上基板102と下基板103が容易に陽極接合を行うことができる。 The upper substrate 102 and the lower substrate 103 are made of, for example, a glass material, and in particular, a glass material containing an alkali metal (for example, Na, Li, etc.) that becomes a mobile ion with a thermal expansion coefficient of about 33 × 10 −7 / ° C. . When the upper substrate 102 and the lower substrate 103 are bonded by an anodic bonding method, one of the bonding surfaces of the upper substrate 102 and the lower substrate 103 is bonded to oxygen atoms contained in the other glass for anodic bonding. An anodic bonding film having a metal film or a silicon film to be formed is formed by a vapor deposition method (for example, a sputtering method or a vapor deposition method). Note that one of the upper substrate 102 and the lower substrate 103 may be made of metal or silicon instead of a glass material. On the upper substrate 102, an edge 102d facing the edge 102a and a chamfered edge 102e formed by notching a corner between the edge 102c are formed, and an anodic bonding film is formed on the bonding surface of the lower substrate 103. In the case where the film is formed, the anodic bonding film is partially exposed by the chamfered edge 102e, so that it is easy to connect to the electrode terminal to which a voltage is applied during anodic bonding. Thereby, the upper substrate 102 and the lower substrate 103 can be easily anodic bonded.

上基板102と下基板103の接合体である反応器101のうち、貫通孔166,176よりも左側に位置する改質流路部162及び改質流路部172で囲まれた流路での部分が、燃料と水の混合気から水素を生成する改質反応が行われる改質器となり、貫通孔166,176よりも右側に位置する一酸化炭素除去流路部165及び一酸化炭素除去流路部175で囲まれた流路での部分が、その改質器で生成された生成物の中に含まれる一酸化炭素を優先的に酸化させることで除去する一酸化炭素除去器となる。具体的には改質流路部162及び改質流路部172で囲まれた流路で、燃料と水の混合気から水素を生成する改質反応が行われ、一酸化炭素除去流路部165及び一酸化炭素除去流路部175で囲まれた流路で、改質反応時に生成された生成物の中に含まれる一酸化炭素を酸化させる。   Of the reactor 101 that is a joined body of the upper substrate 102 and the lower substrate 103, a reforming channel portion 162 located on the left side of the through holes 166 and 176 and a channel surrounded by the reforming channel portion 172. The portion becomes a reformer in which a reforming reaction for generating hydrogen from a mixture of fuel and water is performed, and the carbon monoxide removal flow path portion 165 and the carbon monoxide removal flow located on the right side of the through holes 166 and 176. The portion in the flow path surrounded by the path portion 175 becomes a carbon monoxide remover that removes carbon monoxide contained in the product produced by the reformer by preferentially oxidizing it. Specifically, the reforming reaction for generating hydrogen from the mixture of fuel and water is performed in the channel surrounded by the reforming channel unit 162 and the reforming channel unit 172, and the carbon monoxide removal channel unit. In the channel surrounded by 165 and the carbon monoxide removal channel section 175, carbon monoxide contained in the product generated during the reforming reaction is oxidized.

図9は、下基板103の両面のうちヒータ封止基板120との接合面を示した図面であって、図6の切断線IX−IXに沿った面の矢視図である。図9に示すように、下基板103の両面のうちヒータ封止基板120との接合面には、電熱パターン106及び電熱パターン136が形成されている。また、電熱パターン106の形成面に対して垂直な方向に投影視して、電熱パターン106が改質流路部172に重なり、電熱パターン136が一酸化炭素除去流路部175に重なっている。電熱パターン106の両端部の端子部107,108が他の部分よりも幅広く、電熱パターン136の両端部の端子部137,138が他の部分よりも幅広い。端子部107,108は、縁103aに対向する縁103d近傍にあり、端子部137,138は縁103a近傍にあり、端子部107,108から縁103dまでの距離は2〜4mmであり、端子部137,138から縁103aまでの距離は2〜4mmと短くすることで下基板103のヒータ封止基板120との接合面で電熱パターン106を広く引き回すことができる。端子部107にリード線109が接合され、端子部108にリード線110が接合され、端子部137にリード線111が接合され、端子部138にリード線112が接合されている。接合方法としては、リード線を端子部に接するように配置させてから、絶縁材を挟んだ電極で加圧し、そこに通電することによって生じる抵抗発熱を利用して抵抗溶接することで、端子部107,108をそれぞれリード線109,110と電気的に接続させる。そして、リード線111及びリード線112をそれぞれ端子部137、端子部138に接するように配置させてから、リード線111及びリード線112に電圧を印加し、電熱パターン136及び端子部137,138を通電して加熱する抵抗溶接によって、端子部137,138をそれぞれリード線111,112と電気的に接続するように接合する。電熱パターン106,136は、端子部107,108,137,138の部分を除いて保護絶縁膜によって被覆されている。なお、電熱パターン106及び電熱パターン136は、成膜時に下基板103に応力を加わってしまい、応力が大きすぎると下基板103が歪んでしまい接合が困難になる。電熱パターン106及び電熱パターン136の厚さは、下基板103に加わる応力を抑えるために絶縁膜の厚さを含めて600nm以下と薄く成膜されることが望ましい。また、端子部107,108のサイズは、接合しやすさから長さ、幅が1mm×3mmであるのが望ましく、端子部137,138のサイズは、幅、長さが1mm×3mmであるのが望ましい。なお、下基板103が金属板等のように導電性を有する場合には、電熱パターン106,136の下層に絶縁膜が成膜されている。この絶縁膜は、下基板103におけるヒータ封止基板120との接合面には形成されていない。下基板103における改質流路部172が設けられている部分の厚みは、0.2mm〜0.3mm程度に設定されている。   FIG. 9 is a view showing a joint surface with the heater sealing substrate 120 among both surfaces of the lower substrate 103, and is a view taken along the line IX-IX in FIG. As shown in FIG. 9, an electrothermal pattern 106 and an electrothermal pattern 136 are formed on the joint surface of the lower substrate 103 with the heater sealing substrate 120. Further, the electrothermal pattern 106 overlaps with the reforming flow path portion 172 and the electrothermal pattern 136 overlaps with the carbon monoxide removal flow path portion 175 as projected in a direction perpendicular to the surface on which the electrothermal pattern 106 is formed. The terminal portions 107 and 108 at both ends of the electric heating pattern 106 are wider than the other portions, and the terminal portions 137 and 138 at both ends of the electric heating pattern 136 are wider than the other portions. The terminal portions 107 and 108 are in the vicinity of the edge 103d facing the edge 103a, the terminal portions 137 and 138 are in the vicinity of the edge 103a, and the distance from the terminal portions 107 and 108 to the edge 103d is 2 to 4 mm. By shortening the distance from 137, 138 to the edge 103a to 2 to 4 mm, the electrothermal pattern 106 can be widely drawn on the joint surface of the lower substrate 103 with the heater sealing substrate 120. The lead wire 109 is joined to the terminal portion 107, the lead wire 110 is joined to the terminal portion 108, the lead wire 111 is joined to the terminal portion 137, and the lead wire 112 is joined to the terminal portion 138. As a joining method, the lead wire is disposed so as to be in contact with the terminal portion, and then the terminal portion is formed by pressurizing with an electrode sandwiching an insulating material and resistance welding using resistance heating generated by energizing the electrode. 107 and 108 are electrically connected to lead wires 109 and 110, respectively. Then, after the lead wire 111 and the lead wire 112 are arranged so as to be in contact with the terminal portion 137 and the terminal portion 138, respectively, a voltage is applied to the lead wire 111 and the lead wire 112, and the electric heating pattern 136 and the terminal portions 137 and 138 are connected. The terminal portions 137 and 138 are joined so as to be electrically connected to the lead wires 111 and 112 by resistance welding that is energized and heated, respectively. The electrothermal patterns 106 and 136 are covered with a protective insulating film except for the portions of the terminal portions 107, 108, 137 and 138. Note that the electrothermal pattern 106 and the electrothermal pattern 136 apply stress to the lower substrate 103 during film formation, and if the stress is too large, the lower substrate 103 is distorted and bonding becomes difficult. The thickness of the electrothermal pattern 106 and the electrothermal pattern 136 is preferably as thin as 600 nm or less including the thickness of the insulating film in order to suppress the stress applied to the lower substrate 103. The terminal portions 107 and 108 are preferably 1 mm × 3 mm in length and width for ease of joining, and the terminal portions 137 and 138 have a width and length of 1 mm × 3 mm. Is desirable. When the lower substrate 103 has conductivity such as a metal plate, an insulating film is formed under the electrothermal patterns 106 and 136. This insulating film is not formed on the bonding surface of the lower substrate 103 with the heater sealing substrate 120. The thickness of the portion of the lower substrate 103 where the reforming channel portion 172 is provided is set to about 0.2 mm to 0.3 mm.

図10は、図6の切断線X−Xに沿った面の矢視断面図である。図10に示すように、ヒータ封止基板120の両面のうち下基板103との接合面には、いずれも溝部又は凹部であり、電熱パターン106を収納する電熱パターン収納室であり、燃焼反応炉となる燃焼流路部121と、燃焼流路部121と独立して端子部収納室123,124と、燃焼流路部121と端子部収納室123,124との間を連通する連通溝125,126と、リード線を外部に引き出す通し溝127,128と、電熱パターン136を収納する電熱パターン収納室であるヒータ収容溝129と、燃焼燃料供給流路部131と、空気供給流路部132と、連通溝133と、排ガス排出流路部134とが凹設されている。ヒータ封止基板120は、下基板103の縁103a、縁103b、縁103c、縁103dに対応する縁120a、縁120b、縁120c、縁120dが形成されている。更に、ヒータ封止基板120の中央部において矩形状の貫通孔156が形成されている。また、ヒータ封止基板120の縁120aには、供給排出部材151に嵌合する溝222,223,224が凹設されている。ヒータ封止基板120には、ヒータ収容溝129の両端からヒータ封止基板120の縁120aまで連通する通し溝141、142が設けられている。なお、燃焼流路部121、端子部収納室123,124、連通溝125,126、通し溝127,128、ヒータ収容溝129、燃焼燃料供給流路部131、空気供給流路部132、連通溝133、排ガス排出流路部134の深さが約5μmであるのが望ましい。上基板102、下基板103及びヒータ封止基板120は、互いに同一形状、同一寸法であり、上基板102の縁102aの位置は、下基板103の縁103aの位置、ヒータ封止基板120の縁120aの位置に合わせており、上基板102の縁102bの位置は、下基板103の縁103bの位置、ヒータ封止基板120の縁120bの位置に合わされており、上基板102の縁102cの位置は、下基板103の縁103cの位置、ヒータ封止基板120の縁120cの位置に合わせており、上基板102の縁102dの位置は、下基板103の縁103dの位置、ヒータ封止基板120の縁120dの位置に合わされている。   FIG. 10 is a cross-sectional view taken along the line XX in FIG. As shown in FIG. 10, of both surfaces of the heater sealing substrate 120, the bonding surface with the lower substrate 103 is a groove or a recess, and is an electric heating pattern storage chamber that stores the electric heating pattern 106. A combustion flow path portion 121, a terminal portion storage chamber 123, 124 independent of the combustion flow passage portion 121, and a communication groove 125 communicating between the combustion flow passage portion 121 and the terminal portion storage chambers 123, 124. 126, through-grooves 127 and 128 for leading the lead wires to the outside, a heater housing groove 129 that is an electric heating pattern storage chamber for storing the electric heating pattern 136, a combustion fuel supply flow path section 131, and an air supply flow path section 132 The communication groove 133 and the exhaust gas discharge flow path 134 are recessed. The heater sealing substrate 120 has edges 120a, 120b, 120c, and 120d corresponding to the edges 103a, 103b, 103c, and 103d of the lower substrate 103. Further, a rectangular through hole 156 is formed at the center of the heater sealing substrate 120. In addition, grooves 222, 223, and 224 that fit into the supply / discharge member 151 are recessed in the edge 120 a of the heater sealing substrate 120. The heater sealing substrate 120 is provided with through grooves 141 and 142 communicating from both ends of the heater housing groove 129 to the edge 120 a of the heater sealing substrate 120. The combustion channel 121, the terminal housing chambers 123 and 124, the communication grooves 125 and 126, the through grooves 127 and 128, the heater storage groove 129, the combustion fuel supply channel 131, the air supply channel 132, and the communication groove 133, the depth of the exhaust gas discharge passage 134 is preferably about 5 μm. The upper substrate 102, the lower substrate 103, and the heater sealing substrate 120 have the same shape and the same dimensions, and the position of the edge 102a of the upper substrate 102 is the position of the edge 103a of the lower substrate 103, the edge of the heater sealing substrate 120. The position of the edge 102b of the upper substrate 102 is aligned with the position of the edge 103b of the lower substrate 103 and the position of the edge 120b of the heater sealing substrate 120, and the position of the edge 102c of the upper substrate 102. Are aligned with the position of the edge 103c of the lower substrate 103 and the position of the edge 120c of the heater sealing substrate 120, and the position of the edge 102d of the upper substrate 102 is the position of the edge 103d of the lower substrate 103 and the heater sealing substrate 120. Is aligned with the position of the edge 120d.

排ガス排出流路部134がヒータ封止基板120の縁120aから縁120bにかけて沿うように形成され、排ガス排出流路部134の一端部がヒータ封止基板120の縁120aまで連なり、排ガス排出流路部134の他端部が燃焼流路部121の一端部に連なっている。燃焼流路部121は、貫通孔156の左側においてジグザグ状に形成されている。連通溝133は貫通孔156の周縁の一辺側においてヒータ封止基板120の縁120cから縁120aにかけて沿うように形成され、連通溝133の一端部が燃焼流路部121の他端部に連なり、連通溝133の他端部が燃焼燃料供給流路部131及び空気供給流路部132に合流している。燃焼燃料供給流路部131の他端部がヒータ封止基板120の縁120aまで連なり、空気供給流路部132の他端部がヒータ封止基板120の縁120aまで連なる。端子部収納室123,124はヒータ封止基板120の縁120d近傍に凹設され、端子部収納室123,124と燃焼流路部121が連通溝125,126によって通じ、端子部収納室123,124とヒータ封止基板120の縁120dが通し溝127,128によって通じ、通し溝127,128の端部がヒータ封止基板120の側端面において開口している。このように燃焼流路部121、端子部収納室123,124、連通溝125,126、通し溝127,128、燃焼燃料供給流路部131、空気供給流路部132、連通溝133及び排ガス排出流路部134によってひとまとまりの凹部が形成される。   The exhaust gas discharge flow path 134 is formed so as to extend from the edge 120a to the edge 120b of the heater sealing substrate 120, and one end of the exhaust gas discharge flow path 134 is connected to the edge 120a of the heater sealing substrate 120. The other end portion of the portion 134 is connected to one end portion of the combustion flow path portion 121. The combustion channel 121 is formed in a zigzag shape on the left side of the through hole 156. The communication groove 133 is formed on one side of the peripheral edge of the through-hole 156 so as to extend from the edge 120 c to the edge 120 a of the heater sealing substrate 120, and one end portion of the communication groove 133 is connected to the other end portion of the combustion flow path portion 121. The other end of the communication groove 133 joins the combustion fuel supply flow path 131 and the air supply flow path 132. The other end of the combustion fuel supply flow path 131 is connected to the edge 120a of the heater sealing substrate 120, and the other end of the air supply flow path 132 is connected to the edge 120a of the heater sealing substrate 120. The terminal portion storage chambers 123 and 124 are recessed in the vicinity of the edge 120d of the heater sealing substrate 120, and the terminal portion storage chambers 123 and 124 and the combustion flow path portion 121 communicate with each other through the communication grooves 125 and 126. 124 and the edge 120 d of the heater sealing substrate 120 communicate with each other through the through grooves 127 and 128, and the end portions of the through grooves 127 and 128 are open on the side end surface of the heater sealing substrate 120. Thus, the combustion channel 121, the terminal housing chambers 123 and 124, the communication grooves 125 and 126, the through grooves 127 and 128, the combustion fuel supply channel 131, the air supply channel 132, the communication groove 133, and the exhaust gas discharge A set of recesses is formed by the flow path part 134.

溝206、切欠き216、燃焼燃料供給流路部131は、上基板102、下基板103及びヒータ封止基板120を重ね合わせることによって燃焼燃料供給口となり、溝205、切欠き215、空気供給流路部132は、上基板102、下基板103及びヒータ封止基板120を重ね合わせることによって燃焼器の空気供給口となり、空気供給流路部164の一端部、切欠き214、溝224は、上基板102、下基板103及びヒータ封止基板120を重ね合わせることによって一酸化炭素除去器の空気供給口となり、一酸化炭素除去流路部165の一端部、切欠き213、溝223は、上基板102、下基板103及びヒータ封止基板120を重ね合わせることによって水素排出口となり、燃料供給流路部161の一端部、切欠き212、溝222は、上基板102、下基板103及びヒータ封止基板120を重ね合わせることによって燃料供給口となり、溝201、切欠き211、排ガス排出流路部134の一端部は、上基板102、下基板103及びヒータ封止基板120を重ね合わせることによって燃焼器の排ガス排出口となる。供給排出部材151は、燃焼燃料供給口、燃焼器の空気供給口、一酸化炭素除去器の空気供給口、水素排出口、燃焼器の排ガス排出口にそれぞれ挿入される配管部151a、151b、151c、151d、151eが設けられている。配管部151a、151b、151c、151d、151eは、内径が0.8mm〜1.2mm、厚さ方向の外径が、1.4mm〜1.6mmに設定されている。   The groove 206, the notch 216, and the combustion fuel supply flow path 131 serve as a combustion fuel supply port by overlapping the upper substrate 102, the lower substrate 103, and the heater sealing substrate 120. The groove 205, the notch 215, the air supply flow The passage portion 132 becomes an air supply port of the combustor by overlapping the upper substrate 102, the lower substrate 103, and the heater sealing substrate 120, and one end portion of the air supply passage portion 164, the notch 214, and the groove 224 are formed on the upper portion. By superposing the substrate 102, the lower substrate 103, and the heater sealing substrate 120, an air supply port of the carbon monoxide remover is formed, and one end of the carbon monoxide removal flow path portion 165, the notch 213, and the groove 223 are formed on the upper substrate. 102, the lower substrate 103, and the heater sealing substrate 120 are overlapped to form a hydrogen discharge port, and one end portion of the fuel supply passage portion 161, a notch 212. The groove 222 becomes a fuel supply port by overlapping the upper substrate 102, the lower substrate 103, and the heater sealing substrate 120. One end of the groove 201, the notch 211, and the exhaust gas discharge passage portion 134 By overlapping the substrate 103 and the heater sealing substrate 120, an exhaust gas exhaust port of the combustor is obtained. The supply / exhaust member 151 includes piping sections 151a, 151b, and 151c inserted into the combustion fuel supply port, the air supply port of the combustor, the air supply port of the carbon monoxide remover, the hydrogen discharge port, and the exhaust gas discharge port of the combustor, respectively. , 151d, 151e are provided. The piping portions 151a, 151b, 151c, 151d, and 151e have an inner diameter of 0.8 mm to 1.2 mm and an outer diameter in the thickness direction of 1.4 mm to 1.6 mm.

ヒータ収容溝129は貫通孔156の右側においてジグザグ状に形成され、ヒータ収容溝129の一端部が突き当たった状態とされ、ヒータ収容溝129の他端部が二股に分かれてヒータ封止基板120の縁120aまで連なっている。
接合面に関して、燃焼流路部121と改質流路部172は互いにほぼ面対称であり、ヒータ収容溝129と一酸化炭素除去流路部175がほぼ面対称である。
The heater housing groove 129 is formed in a zigzag shape on the right side of the through hole 156, and one end portion of the heater housing groove 129 is in contact with the other end portion of the heater housing groove 129. It continues to the edge 120a.
With respect to the joining surface, the combustion channel 121 and the reforming channel 172 are substantially plane-symmetric with each other, and the heater housing groove 129 and the carbon monoxide removal channel 175 are substantially plane-symmetric.

燃焼流路部121の壁面には、アルミナを担体として燃焼触媒(例えば、白金)が担持されている。   A combustion catalyst (for example, platinum) is supported on the wall surface of the combustion flow path 121 using alumina as a carrier.

ヒータ封止基板120も特に可動イオンとなるアルカリ金属(例えば、Na、Li等)を含有したガラス材料からなる。また、ヒータ封止基板120と下基板103が陽極接合法により接合するために、ヒータ封止基板120と下基板103のどちらか一方の接合面には金属膜又はシリコン膜が気相成長法(例えば、スパッタリング法、蒸着法)により成膜されている。なお、ヒータ封止基板120、上基板102及び下基板103の材料としてパイレックス(登録商標)ガラスを用いた場合、熱膨張率は33×10-7/℃である。ヒータ封止基板120には、縁120aに対向する縁120dと、縁120bとの間の角部を切り欠いた面取縁120eが形成されており、下基板103の接合面に陽極接合用膜が成膜されている場合、この陽極接合用膜が面取縁120eによって一部露出されるので陽極接合時に電圧を印加する電極端子に容易に接続しやすくなる。 The heater sealing substrate 120 is also made of a glass material containing an alkali metal (for example, Na, Li, etc.) that becomes a mobile ion. Further, since the heater sealing substrate 120 and the lower substrate 103 are bonded by an anodic bonding method, a metal film or a silicon film is formed on the bonding surface of one of the heater sealing substrate 120 and the lower substrate 103 by a vapor deposition method ( For example, the film is formed by sputtering or vapor deposition. When Pyrex (registered trademark) glass is used as the material for the heater sealing substrate 120, the upper substrate 102, and the lower substrate 103, the coefficient of thermal expansion is 33 × 10 −7 / ° C. The heater sealing substrate 120 is formed with a chamfered edge 120e formed by notching a corner between the edge 120d facing the edge 120a and the edge 120b, and an anodic bonding film on the bonding surface of the lower substrate 103. When this film is formed, this anodic bonding film is partially exposed by the chamfered edge 120e, so that it is easy to easily connect to an electrode terminal to which a voltage is applied during anodic bonding.

下基板103とヒータ封止基板120が接合された状態では、電熱パターン106が燃焼流路部121、連通溝125,126に収納され、端子部107が端子部収納室123に収納され、端子部108が端子部収納室124に収容され、リード線109,110が通し溝127,128に嵌め込まれている。電熱パターン136がヒータ収容溝129に収容され、リード線111,112が通し溝142、141を介してヒータ収容溝129の端部に嵌め込まれている。図11に示すようにリード線110は端子部収納室124内において弧状に撓んでいる曲げ部110aを有しており、リード線109も同様に端子部収納室123内において弧状に撓んでいる曲げ部109aを有している。このようにリード線109,110がリード線109,110の長手方向と異なる方向に婉曲するように撓むことで、端子部107,108から、リード線109,110が導出している縁103d、120dまでのリード線109,110の長さが、端子部107,108から縁103d、120dまでの直線的距離の1.1倍〜5.0倍、好ましくは1.5倍となっている。   In a state where the lower substrate 103 and the heater sealing substrate 120 are joined, the electrothermal pattern 106 is stored in the combustion flow path portion 121 and the communication grooves 125 and 126, the terminal portion 107 is stored in the terminal portion storage chamber 123, and the terminal portion 108 is accommodated in the terminal portion accommodating chamber 124, and the lead wires 109 and 110 are fitted in the through grooves 127 and 128. The electric heating pattern 136 is accommodated in the heater accommodating groove 129, and the lead wires 111 and 112 are fitted into the end portions of the heater accommodating groove 129 via the through grooves 142 and 141. As shown in FIG. 11, the lead wire 110 has a bent portion 110 a that is bent in an arc shape in the terminal portion storage chamber 124, and the lead wire 109 is also bent in an arc shape in the terminal portion storage chamber 123. Part 109a. In this way, the lead wires 109 and 110 are bent so as to bend in a direction different from the longitudinal direction of the lead wires 109 and 110, whereby the edge 103d from which the lead wires 109 and 110 are led out from the terminal portions 107 and 108, The lengths of the lead wires 109 and 110 up to 120d are 1.1 to 5.0 times, preferably 1.5 times the linear distance from the terminal portions 107 and 108 to the edges 103d and 120d.

また、図11に示すように、通し溝128の開口においてリード線110の周りに封着剤140が形成され、通し溝128の開口が封着剤140により閉塞され、リード線110と通し溝128の間の隙間が封着剤140によってシールされている。同様に、通し溝127の開口においてリード線109の周りに封着剤が形成され、通し溝127の開口が封着剤により閉塞され、リード線109と通し溝127の間の隙間が封着剤によってシールされている。このため、燃焼流路部121による流路は通し溝127,128から閉塞されるので、燃焼流路部121の流体が通し溝127,128から漏洩することはない。封着剤としては下基板103、ヒータ封止基板120のいずれかの材料の膨張係数に近似していることが好ましく、下基板103、ヒータ封止基板120がともにガラス材料で形成されていれば低融点ガラス封着剤を用いると良く、金属でできていれば、ろう材として金属であってもよい。なお、リード線111,112が端子部137,138に接続している状態で、通し溝141,142が封着剤によって封止されている場合、同様にリード線111,112もそれぞれヒータ収容溝129内においてリード線111,112の長手方向と異なる方向に婉曲するように撓んでいる曲げ部を有していることが好ましい。このとき、電熱パターン136の各端部から、リード線111,112が導出している縁103a、120aまでのリード線111,112の長さが、電熱パターン136の各端部から縁103a、120aまでの直線的距離の1.1倍〜5.0倍、好ましくは1.5倍となっている。曲げ部は、封着剤での封着箇所に位置すると応力分散しにくくなるので、封着箇所以外に設けられていることが好ましい。   Further, as shown in FIG. 11, the sealant 140 is formed around the lead wire 110 at the opening of the through groove 128, the opening of the through groove 128 is blocked by the sealant 140, and the lead wire 110 and the through groove 128 are closed. Is sealed with a sealant 140. Similarly, a sealing agent is formed around the lead wire 109 at the opening of the through groove 127, the opening of the through groove 127 is closed with the sealing agent, and a gap between the lead wire 109 and the through groove 127 is sealed. Is sealed by. For this reason, since the flow path by the combustion flow path part 121 is closed from the through grooves 127 and 128, the fluid in the combustion flow path part 121 does not leak from the through grooves 127 and 128. As the sealing agent, it is preferable to approximate the expansion coefficient of either the lower substrate 103 or the heater sealing substrate 120. If both the lower substrate 103 and the heater sealing substrate 120 are formed of a glass material, A low-melting-point glass sealant may be used, and the brazing material may be a metal as long as it is made of a metal. When the lead wires 111 and 112 are connected to the terminal portions 137 and 138 and the through grooves 141 and 142 are sealed with a sealing agent, the lead wires 111 and 112 are also respectively formed in the heater housing grooves. It is preferable to have a bent portion that is bent so as to bend in a direction different from the longitudinal direction of the lead wires 111 and 112 in 129. At this time, the length of the lead wires 111 and 112 from each end of the electric heating pattern 136 to the edges 103a and 120a from which the lead wires 111 and 112 are led out is from the respective ends of the electric heating pattern 136 to the edges 103a and 120a. 1.1 times to 5.0 times, preferably 1.5 times the linear distance. Since it becomes difficult to disperse the stress when the bent portion is located at a sealing location with the sealing agent, it is preferable that the bending portion is provided at a location other than the sealing location.

なお、端子部収納室124、通し溝128、連通溝126の形状を図12又は図13のように変形しても良い。図12において端子部収納室124の対角において通し溝128及び連通溝126が連なっている。リード線110は、U字状に二箇所で折れ曲がって撓んでいる曲げ部110aを有している。図13においては、通し溝128がL字状を呈し、リード線110が通し溝128においてL字状に折れ曲がって撓んでいる曲げ部110aを有している。このように通し溝128及び連通溝126は互いに、図11に示すような同一直線状に位置していない。同様に、端子部収納室123、通し溝127、連通溝125を図12、図13の端子部収納室124、通し溝128、連通溝126と同じ形状にしてもよい。   Note that the shapes of the terminal portion storage chamber 124, the through groove 128, and the communication groove 126 may be modified as shown in FIG. In FIG. 12, a through groove 128 and a communication groove 126 are connected at the diagonal of the terminal portion storage chamber 124. The lead wire 110 has a bent portion 110a that is bent and bent at two locations in a U shape. In FIG. 13, the through groove 128 has an L shape, and the lead wire 110 has a bent portion 110 a that is bent and bent in an L shape in the through groove 128. Thus, the through groove 128 and the communication groove 126 are not located on the same straight line as shown in FIG. Similarly, the terminal portion storage chamber 123, the through groove 127, and the communication groove 125 may have the same shape as the terminal portion storage chamber 124, the through groove 128, and the communication groove 126 of FIGS.

また、リード線111,112が、図12に示す形状と同様に、U字状に二箇所で折れ曲がって撓んでいる曲げ部を有するようにしても良いし、図13に示す形状と同様に、通し溝141,142が折れ曲がり、リード線111,112が通し溝142,141において折れ曲がって撓んでいる曲げ部を有していてもよい。   Also, the lead wires 111 and 112 may have bent portions that are bent and bent at two locations in a U-shape, similar to the shape shown in FIG. 12, or similar to the shape shown in FIG. The through grooves 141 and 142 may be bent, and the lead wires 111 and 112 may have bent portions that are bent and bent in the through grooves 142 and 141.

例えば、リード線109,110を、熱膨張係数が50×10-7/℃程度のコバール線からなる曲げ部のない直線形状とし、封着剤を、熱膨張係数が33×10-7/℃程度で低融点ガラス封着剤とした場合、複合型マイクロ反応装置100を300℃程度に加熱して反応させたところ、リード線109,110の熱膨張による応力が低融点ガラス封着剤の熱膨張による応力より大きいために、リード線109,110における封着剤での封着部に応力の歪みが集中してしまい、リード線109,110が封着剤から外れてしまうことが生じる。リード線109,110が曲げ部を有しているので熱応力が分散され、350℃まで加熱してもリード線109,110が封着剤から外れてしまうことはなかった。図12及び図13に示す構造においても同様の結果が得られた。 For example, the lead wires 109 and 110 have a linear shape without a bending portion made of a Kovar wire having a thermal expansion coefficient of about 50 × 10 −7 / ° C., and the sealant has a thermal expansion coefficient of 33 × 10 −7 / ° C. In the case where the low melting point glass sealing agent is used, when the composite microreactor 100 is heated to about 300 ° C. for reaction, the stress due to the thermal expansion of the lead wires 109 and 110 causes the heat of the low melting point glass sealing agent. Since the stress is greater than the stress due to expansion, stress distortion concentrates on the sealing portion of the lead wires 109 and 110 with the sealing agent, and the lead wires 109 and 110 may be detached from the sealing agent. Since the lead wires 109 and 110 have a bent portion, the thermal stress is dispersed, and even if the lead wires 109 and 110 are heated to 350 ° C., the lead wires 109 and 110 are not detached from the sealing agent. Similar results were obtained with the structures shown in FIGS.

下基板103は、改質流路部172が設けられている部分では厚みが薄く、改質流路部172が一酸化炭素除去流路部175よりも広く形成されているために外部応力に対する強度が弱く、端子部107,108を改質流路部172の裏面に配置すると、抵抗溶接時の圧力で破壊又は変形してしまう。このため、端子部107,108は、改質流路部172の外に位置する裏面部分、具体的には下基板103において、裏面に接合されるヒータ封止基板120の端子部収納室123,124に対応する位置に配置させる。端子部収納室123,124に対応する下基板103の部位は十分厚くなっているので、抵抗溶接時の圧力によって下基板103の破壊又は変形を防止できる。なお、端子部収納室123,124を大きくしすぎると、改質流路部172から縁103dまでの距離が長くなり、改質流路部172の流路が相対的に小さくなってしまい、また小さくしすぎると端子部107,108が小さくなり溶接しにくくなるので、端子部を1mm×3mmとし、改質流路部172から縁103dまでの距離を2mm〜4mmとしている。
そして、リード線109、110は、曲げ部が複数あってもよい。
The lower substrate 103 is thin at a portion where the reforming channel portion 172 is provided, and the reforming channel portion 172 is formed wider than the carbon monoxide removal channel portion 175, so that the strength against external stress is increased. However, if the terminal portions 107 and 108 are disposed on the back surface of the reforming flow path portion 172, they are destroyed or deformed by the pressure during resistance welding. For this reason, the terminal portions 107 and 108 are provided on the back surface portion outside the reforming channel portion 172, specifically, in the lower substrate 103, the terminal portion storage chamber 123 of the heater sealing substrate 120 bonded to the back surface. It arrange | positions in the position corresponding to 124. FIG. Since the portion of the lower substrate 103 corresponding to the terminal portion storage chambers 123 and 124 is sufficiently thick, the lower substrate 103 can be prevented from being broken or deformed by the pressure during resistance welding. If the terminal storage chambers 123 and 124 are too large, the distance from the reforming channel 172 to the edge 103d becomes long, and the channel of the reforming channel 172 becomes relatively small. If it is too small, the terminal portions 107 and 108 become small and difficult to weld. Therefore, the terminal portion is 1 mm × 3 mm, and the distance from the reforming flow path portion 172 to the edge 103d is 2 mm to 4 mm.
The lead wires 109 and 110 may have a plurality of bent portions.

次に、複合型マイクロ反応装置100の製造方法について説明する。
まず、上基板102、下基板103、ヒータ封止基板120を準備し、これらの接合面に必要に応じて金属膜又はシリコン膜を気相成長法により成膜する。次に、下基板103の下面に電熱膜を成膜し、その電熱膜をフォトリソグラフィー・エッチング法により形状加工することによって、電熱パターン106,136をパターニングする。そして、端子部107,108,137,138を除いて電熱パターン106,136を絶縁膜によって被覆する。次に、上基板102に、いずれも溝部又は凹部である、燃料供給流路部161、改質流路部162、連通溝163、空気供給流路部164、一酸化炭素除去流路部165を形成し、さらに貫通孔166及び溝201,205,206を形成する。下基板103にも、いずれも溝部又は凹部である、燃料供給流路部171、改質流路部172、連通溝173、空気供給流路部174、一酸化炭素除去流路部175を形成し、さらに貫通孔176及び切欠き211〜216を形成する。また、ヒータ封止基板120に、燃焼流路部121、端子部収納室123,124、連通溝125,126、通し溝127,128、ヒータ収容溝129、燃焼燃料供給流路部131、空気供給流路部132、連通溝133、排ガス排出流路部134、通し溝141,142及び溝222,223,224を形成し、さらに貫通孔156を形成する。
Next, a method for manufacturing the composite microreaction apparatus 100 will be described.
First, the upper substrate 102, the lower substrate 103, and the heater sealing substrate 120 are prepared, and a metal film or a silicon film is formed on these bonding surfaces by a vapor deposition method as necessary. Next, an electrothermal film is formed on the lower surface of the lower substrate 103, and the electrothermal pattern 106, 136 is patterned by processing the shape of the electrothermal film by a photolithography etching method. Then, the electrothermal patterns 106 and 136 are covered with an insulating film except for the terminal portions 107, 108, 137, and 138. Next, the upper substrate 102 is provided with a fuel supply flow channel portion 161, a reforming flow channel portion 162, a communication groove 163, an air supply flow channel portion 164, and a carbon monoxide removal flow channel portion 165, all of which are grooves or recesses. Then, a through hole 166 and grooves 201, 205, and 206 are formed. The lower substrate 103 is also formed with a fuel supply channel 171, a reforming channel 172, a communication groove 173, an air supply channel 174, and a carbon monoxide removal channel 175, all of which are grooves or recesses. Further, a through hole 176 and notches 211 to 216 are formed. In addition, the heater sealing substrate 120 is provided with a combustion channel 121, terminal housing chambers 123 and 124, communication grooves 125 and 126, through grooves 127 and 128, a heater housing groove 129, a combustion fuel supply channel 131, and an air supply. The flow path portion 132, the communication groove 133, the exhaust gas discharge flow path portion 134, the through grooves 141, 142 and the grooves 222, 223, 224 are formed, and the through hole 156 is further formed.

次に、改質流路部162及び改質流路部172にアルミナゾルを塗布し、更にウォッシュコート法により改質触媒を形成する。また、一酸化炭素除去流路部165及び一酸化炭素除去流路部175にアルミナゾルを塗布し、更にウォッシュコート法により一酸化炭素除去触媒を形成する。また、燃焼流路部121にアルミナゾルを塗布し、更にウォッシュコート法により燃焼触媒を形成する。   Next, alumina sol is applied to the reforming flow path portion 162 and the reforming flow path portion 172, and a reforming catalyst is formed by a wash coat method. Further, an alumina sol is applied to the carbon monoxide removal flow path portion 165 and the carbon monoxide removal flow path portion 175, and a carbon monoxide removal catalyst is formed by a wash coat method. Further, an alumina sol is applied to the combustion flow path portion 121, and a combustion catalyst is formed by a wash coat method.

次に、上基板102及び下基板103を陽極接合法により接合する。次に、端子部107に、曲げ部を有するリード線109を抵抗溶接により接合し、端子部108に、曲げ部を有するリード線110を抵抗溶接により接合し、端子部137にリード線111を抵抗溶接により接合し、端子部138にリード線112を抵抗溶接により接合する。   Next, the upper substrate 102 and the lower substrate 103 are bonded by an anodic bonding method. Next, a lead wire 109 having a bent portion is joined to the terminal portion 107 by resistance welding, a lead wire 110 having a bent portion is joined to the terminal portion 108 by resistance welding, and the lead wire 111 is resistance to the terminal portion 137. The lead wire 112 is joined to the terminal portion 138 by resistance welding.

次に、下基板103とヒータ封止基板120を貼りあわせ、下基板103とヒータ封止基板120の位置合わせを行い、電熱パターン106,136をヒータ封止基板120により覆う。つまり、電熱パターン106を燃焼流路部121、連通溝125,126に、端子部107を端子部収納室123に、端子部108を端子部収納室124に収容し、通し溝127,128にリード線109,110を嵌め込み、電熱パターン136をヒータ収容溝129に収容し、リード線111,112をヒータ収容溝129に連通する通し溝142,141に嵌め込む。そして、下基板103にヒータ封止基板120を陽極接合法により接合する。
次に、通し溝127,128に封着剤を注入することで、通し溝127,128の開口をシールする。通し溝141,142に封着剤を注入する場合、リード線111,112は曲げ部を有している。
Next, the lower substrate 103 and the heater sealing substrate 120 are bonded together, the lower substrate 103 and the heater sealing substrate 120 are aligned, and the electrothermal patterns 106 and 136 are covered with the heater sealing substrate 120. That is, the electrothermal pattern 106 is accommodated in the combustion flow path portion 121, the communication grooves 125 and 126, the terminal portion 107 is accommodated in the terminal portion accommodating chamber 123, the terminal portion 108 is accommodated in the terminal portion accommodating chamber 124, and the lead grooves 127 and 128 are lead. The wires 109 and 110 are fitted, the electric heating pattern 136 is accommodated in the heater accommodating groove 129, and the lead wires 111 and 112 are fitted in the through grooves 142 and 141 communicating with the heater accommodating groove 129. Then, the heater sealing substrate 120 is bonded to the lower substrate 103 by anodic bonding.
Next, the opening of the through grooves 127 and 128 is sealed by injecting a sealing agent into the through grooves 127 and 128. When the sealing agent is injected into the through grooves 141 and 142, the lead wires 111 and 112 have bent portions.

次に、上基板102、下基板103、ヒータ封止基板120の接合体の右端面の開口(溝201、切欠き211、排ガス排出流路部134の端部を重なり部分等)に供給排出部材151を嵌め込み、改質燃料ガス供給用の燃料供給流路を燃料供給流路部161に接続し、1つの空気供給用の吸気流路を空気供給流路部164に接続し、もう1つの空気供給用の吸気流路を空気供給流路部132に接続し、燃焼ガス供給用の燃焼ガス供給流路を燃焼燃料供給流路部131に接続し、生成ガス排出用の生成ガス排出流路を一酸化炭素除去流路部165に接続し、燃焼排ガス排出用の排ガス排出流路を排ガス排出流路部134に接続する。   Next, the supply / discharge member is supplied to the opening (the groove 201, the notch 211, and the end portion of the exhaust gas discharge flow path portion 134 overlap each other) on the right end surface of the joined body of the upper substrate 102, the lower substrate 103, and the heater sealing substrate 120. 151, the reformed fuel gas supply fuel supply flow path is connected to the fuel supply flow path section 161, one air supply intake flow path is connected to the air supply flow path section 164, and the other air The supply intake flow path is connected to the air supply flow path section 132, the combustion gas supply combustion gas supply flow path is connected to the combustion fuel supply flow path section 131, and the product gas discharge flow path for generating gas discharge is connected. Connected to the carbon monoxide removal flow path 165, the exhaust gas discharge flow path for exhausting combustion exhaust gas is connected to the exhaust gas discharge flow path 134.

次に、断熱パッケージ150を準備し、その断熱パッケージ150の内面に赤外線反射膜を成膜する。そして、10Pa以下、望ましくは1Pa以下に減圧された雰囲気の製造装置炉内で、上基板102、下基板103、ヒータ封止基板120の接合体を断熱パッケージ150内に収容し、供給排出部材151を断熱パッケージ150に貫通させ、リード線109,110,111,112を断熱パッケージ150に貫通させる。そして、供給排出部材151、リード線109,110,111,112の貫通箇所を封着剤でシーリングし、断熱パッケージ150内雰囲気を10Pa以下、望ましくは1Pa以下に減圧させる。 Next, the heat insulation package 150 is prepared, and an infrared reflection film is formed on the inner surface of the heat insulation package 150. Then, the assembly of the upper substrate 102, the lower substrate 103, and the heater sealing substrate 120 is accommodated in the heat insulation package 150 in a manufacturing apparatus furnace in an atmosphere reduced to 10 Pa or less, preferably 1 Pa or less, and the supply / discharge member 151 is accommodated. Is passed through the heat insulation package 150, and the lead wires 109, 110, 111, and 112 are passed through the heat insulation package 150. And the penetration location of the supply / discharge member 151 and the lead wires 109, 110, 111, and 112 is sealed with a sealing agent, and the atmosphere in the heat insulation package 150 is reduced to 10 Pa or less, preferably 1 Pa or less.

複合型マイクロ反応装置100においては、リード線109,110の間に電圧を印加すると電熱パターン106が発熱し、リード線111,112の間に電圧を印加すると電熱パターン136が発熱する。このとき、燃焼ガス(例えば、水素ガス、メタノールガス、エタノールガス、ジメチルエーテルガス)を燃焼燃料供給流路部131に送り込み、空気(酸素)を空気供給流路部132に送り込むと、燃焼ガスと空気の混合気が燃焼流路部121を流動し、燃焼ガスが燃焼触媒により燃焼し、燃焼熱が発する。また、燃料(例えば、メタノール、エタノール、ジメチルエーテル)と水の混合気を燃料供給流路部161に供給すると、混合気が改質流路部162を流れているときに改質触媒により反応して水素ガスが生成され、僅かながら一酸化炭素ガスも生成される(燃料がメタノールの場合には、上記式(1)、(2)を参照。)。空気供給流路部164に空気を供給すると、水素ガス、一酸化炭素ガス、空気等が混合した状態で一酸化炭素除去流路部165を流れる。このとき、一酸化炭素ガスが一酸化炭素除去触媒により優先的に酸化する選択酸化反応が起こり、一酸化炭素ガスが除去される。そして、水素ガス等を含むガスが一酸化炭素除去流路部165から排出される。   In the composite microreactor 100, when a voltage is applied between the lead wires 109 and 110, the electrothermal pattern 106 generates heat, and when a voltage is applied between the lead wires 111 and 112, the electrothermal pattern 136 generates heat. At this time, if combustion gas (for example, hydrogen gas, methanol gas, ethanol gas, dimethyl ether gas) is sent to the combustion fuel supply flow path 131 and air (oxygen) is sent to the air supply flow path 132, the combustion gas and air The air-fuel mixture flows through the combustion flow passage 121, the combustion gas is burned by the combustion catalyst, and combustion heat is generated. Further, when a mixture of fuel (for example, methanol, ethanol, dimethyl ether) and water is supplied to the fuel supply channel 161, the mixture reacts with the reforming catalyst when the mixture is flowing through the reforming channel 162. Hydrogen gas is generated, and a small amount of carbon monoxide gas is also generated (refer to the above formulas (1) and (2) when the fuel is methanol). When air is supplied to the air supply flow path portion 164, it flows through the carbon monoxide removal flow path portion 165 in a state where hydrogen gas, carbon monoxide gas, air, and the like are mixed. At this time, a selective oxidation reaction in which the carbon monoxide gas is preferentially oxidized by the carbon monoxide removal catalyst occurs, and the carbon monoxide gas is removed. Then, a gas containing hydrogen gas or the like is discharged from the carbon monoxide removal flow path portion 165.

なお、燃料(例えば、メタノール、エタノール、ジメチルエーテル)と空気(酸素)の混合気を燃料供給流路部161に供給するようにしても良い。この場合、燃料が部分酸化改質反応を起こして水素ガスが生成されるが、その場合、改質流路部162,172の壁面に担持させる触媒は部分酸化改質触媒とする。改質流路部162,172の担持させる触媒を2種類にし、部分酸化改質反応と水蒸気改質反応(上記式(1))を組み合わせても良い。   Note that an air-fuel mixture of fuel (for example, methanol, ethanol, dimethyl ether) and air (oxygen) may be supplied to the fuel supply channel 161. In this case, the fuel undergoes a partial oxidation reforming reaction to generate hydrogen gas. In this case, the catalyst supported on the wall surfaces of the reforming flow path portions 162 and 172 is a partial oxidation reforming catalyst. Two types of catalysts may be supported on the reforming flow path portions 162 and 172, and the partial oxidation reforming reaction and the steam reforming reaction (the above formula (1)) may be combined.

複合型マイクロ反応装置100の用途について説明する。
この複合型マイクロ反応装置100は、図14に示すような発電装置900に用いることができる。この発電装置900は、燃料と水を液体の状態で貯留した燃料パッケージ901と、燃料パッケージ901から供給された燃料と水を気化させる気化器902と、複合型マイクロ反応装置100と、複合型マイクロ反応装置100の反応器101から供給された水素ガスにより電気エネルギーを生成する燃料電池903とを備える。気化器902で気化した燃料と水は燃料供給流路部161,171に流れ込み、一酸化炭素除去流路部165,175から流れ出た水素ガス等は燃料電池903の燃料極に供給され、燃料電池903の酸素極には空気が供給され、燃料電池903における電気化学反応により電気エネルギーが生成される。ここで、燃料電池903の燃料極に供給された水素ガスは全てが反応しなくてもよく、残留した水素ガスがある場合、その水素ガスが燃焼燃料供給流路部131(燃焼器145)に供給されるようにしてもよい。
The use of the composite microreaction apparatus 100 will be described.
This composite microreaction apparatus 100 can be used in a power generation apparatus 900 as shown in FIG. The power generation device 900 includes a fuel package 901 that stores fuel and water in a liquid state, a vaporizer 902 that vaporizes fuel and water supplied from the fuel package 901, a composite microreactor 100, and a composite microreactor. And a fuel cell 903 that generates electrical energy from hydrogen gas supplied from the reactor 101 of the reactor 100. The fuel and water vaporized by the vaporizer 902 flow into the fuel supply flow path portions 161 and 171, and hydrogen gas and the like flowing out from the carbon monoxide removal flow path portions 165 and 175 are supplied to the fuel electrode of the fuel cell 903. Air is supplied to the oxygen electrode 903, and electric energy is generated by an electrochemical reaction in the fuel cell 903. Here, not all of the hydrogen gas supplied to the fuel electrode of the fuel cell 903 may react, and when there is residual hydrogen gas, the hydrogen gas is supplied to the combustion fuel supply flow path 131 (combustor 145). It may be supplied.

このような第2実施形態においては、下基板103の下面に電熱パターン106が形成され、その電熱パターン106がヒータ封止基板120の燃焼流路部121に収容された状態でヒータ封止基板120が下基板103に接合され、通し溝127,128が密閉されているので、電熱パターン106から発した熱が燃焼流路部121内に籠もる。そのため、電熱パターン106で発した熱が、改質流路部162,172内における燃料の改質反応や、燃焼流路部121内における燃焼ガスの燃焼に効率よく用いられる。   In such a second embodiment, the electrothermal pattern 106 is formed on the lower surface of the lower substrate 103, and the electrothermal pattern 106 is accommodated in the combustion flow path portion 121 of the heater encapsulating substrate 120. Is bonded to the lower substrate 103 and the through grooves 127 and 128 are sealed, so that heat generated from the electrothermal pattern 106 is trapped in the combustion flow path portion 121. Therefore, the heat generated by the electric heating pattern 106 is efficiently used for the reforming reaction of the fuel in the reforming flow path portions 162 and 172 and the combustion of the combustion gas in the combustion flow path portion 121.

また、電熱パターン106がヒータ封止基板120の燃焼流路部121、連通溝125,126等に収容されるので、ヒータ封止基板120と下基板103の密着度が高まる。また、通し溝127,128がヒータ封止基板120の縁まで連なってその縁において開口し、リード線109,110が通し溝127,128を通っているので、ヒータ封止基板120と下基板103の密着度がリード線109,110によって低下することがない。同様に、リード線111,112の一部や電熱パターン136がヒータ収容溝129に収容されているので、下基板103とヒータ封止基板120の密着度が高くなっている。このようにヒータ封止基板120と下基板103の密着度が高いので、電熱パターン106の熱や燃焼流路部121内の燃焼ガスが漏れない。   Further, since the electrothermal pattern 106 is accommodated in the combustion flow path portion 121, the communication grooves 125 and 126 of the heater sealing substrate 120, the degree of adhesion between the heater sealing substrate 120 and the lower substrate 103 is increased. Further, since the through grooves 127 and 128 continue to the edge of the heater sealing substrate 120 and open at the edge, and the lead wires 109 and 110 pass through the through grooves 127 and 128, the heater sealing substrate 120 and the lower substrate 103. Is not lowered by the lead wires 109 and 110. Similarly, since part of the lead wires 111 and 112 and the electrothermal pattern 136 are accommodated in the heater accommodating groove 129, the adhesion between the lower substrate 103 and the heater sealing substrate 120 is increased. Thus, since the adhesion degree of the heater sealing substrate 120 and the lower substrate 103 is high, the heat of the electrothermal pattern 106 and the combustion gas in the combustion flow path portion 121 do not leak.

また、通し溝127,128の端の開口が封着剤によってシールされているので、電熱パターン106で発した熱が逃げず、その熱が改質流路部162,172内における燃料改質反応に効率よく用いられる。また、燃焼流路部121に燃焼ガスが供給されるので、電熱パターン106の熱が燃焼ガスの触媒燃焼にも利用される。特に電熱パターン106がその燃焼流路部121内において露出しているから、電熱パターン106の電熱を燃焼ガスの触媒燃焼に効率よく用いることができる。そして、通し溝127,128の端の開口が封着剤によってシールされているから、燃焼流路部121に供給された燃焼ガスがその開口からリークしない。   In addition, since the openings at the ends of the through grooves 127 and 128 are sealed with the sealing agent, the heat generated by the electrothermal pattern 106 does not escape, and the heat is used for the fuel reforming reaction in the reforming flow path portions 162 and 172. It is used efficiently. Moreover, since combustion gas is supplied to the combustion flow path part 121, the heat of the electrothermal pattern 106 is also used for catalytic combustion of the combustion gas. In particular, since the electric heating pattern 106 is exposed in the combustion flow path portion 121, the electric heat of the electric heating pattern 106 can be efficiently used for catalytic combustion of the combustion gas. And since the opening of the end of the through-grooves 127 and 128 is sealed with the sealing agent, the combustion gas supplied to the combustion flow path part 121 does not leak from the opening.

また、ヒータ封止基板120の縁におけるヒータ収容溝129の開口は封着剤によって閉塞されていない場合、温度変化に伴ってヒータ収容溝129内の気体が膨張・収縮しても、ヒータ収容溝129内の気圧が極端に変化しない。そのため、ヒータ封止基板120、下基板103の寿命を延ばすことができる。
なお、上記実施形態では、上基板102、下基板103のいずれにも、改質流路部,一酸化炭素除去流路部を形成したが、これに限らず、上基板102のみに改質流路部,一酸化炭素除去流路部を形成するか、或いは下基板103のみに改質流路部,一酸化炭素除去流路部を形成してもよい。
Further, when the opening of the heater housing groove 129 at the edge of the heater sealing substrate 120 is not closed by the sealing agent, even if the gas in the heater housing groove 129 expands / contracts due to a temperature change, the heater housing groove The atmospheric pressure in 129 does not change extremely. Therefore, the lifetime of the heater sealing substrate 120 and the lower substrate 103 can be extended.
In the above embodiment, the reforming flow path section and the carbon monoxide removal flow path section are formed on both the upper substrate 102 and the lower substrate 103. However, the present invention is not limited to this, and the reforming flow path is formed only on the upper substrate 102. The channel portion and the carbon monoxide removal flow path portion may be formed, or the reforming flow path portion and the carbon monoxide removal flow path portion may be formed only on the lower substrate 103.

また上記実施形態では、ヒータ封止基板120を用いて、電熱パターン106,136が改質流路部172,一酸化炭素除去流路部175内に収納されたが、これに限らず、電熱パターン106,136の少なくとも一方が上基板102、下基板103の一方に設けられてもよい。この場合、上基板102、下基板103の一方又は他方には、改質流路部とは別に設けられ且つ端子部収納室123,124に相当する端子部収納室と、連通溝125,126に相当し、改質流路部内の電熱パターンを端子部収納室に収納される端子部まで引き回す連通溝と、通し溝127,128に相当する通し溝と、が設けられている。特に、改質流路部によって外部応力に対する強度が著しく弱くなる場合には、改質流路部を上基板102、下基板103の一方のみに形成し、他方のみに電熱パターンを形成すればよい。   Moreover, in the said embodiment, although the electrothermal pattern 106,136 was accommodated in the reforming flow path part 172, the carbon monoxide removal flow path part 175 using the heater sealing substrate 120, it is not restricted to this, and an electrothermal pattern At least one of 106 and 136 may be provided on one of the upper substrate 102 and the lower substrate 103. In this case, one or the other of the upper substrate 102 and the lower substrate 103 is provided separately from the reforming flow path portion and in a terminal portion storage chamber corresponding to the terminal portion storage chambers 123 and 124, and the communication grooves 125 and 126. Correspondingly, a communication groove for routing the electrothermal pattern in the reforming flow path part to the terminal part accommodated in the terminal part storage chamber, and a through groove corresponding to the through grooves 127 and 128 are provided. In particular, when the strength against external stress is remarkably weakened by the reforming channel portion, the reforming channel portion may be formed only on one of the upper substrate 102 and the lower substrate 103, and the electrothermal pattern may be formed only on the other. .

1 反応器
6、106 電熱パターン
9、10、109、110、111、112 リード線
20 ヒータ封止基板
21 溝
25、26、125、126 連通溝
23、24、123、124 端子部収納室
27、28、127、128 通し溝
162、172 改質流路部
165、175 一酸化炭素除去流路
121 燃料流路部
131 燃焼燃料供給流路部
132 空気供給流路部
133 連通溝
134 排ガス排出流路部

1 Reactor 6, 106 Electrothermal pattern 9, 10, 109, 110, 111, 112 Lead wire 20 Heater sealing substrate 21 Groove 25, 26, 125, 126 Communication groove 23, 24, 123, 124 Terminal storage chamber 27, 28, 127, 128 Through-grooves 162, 172 Reformation flow path sections 165, 175 Carbon monoxide removal flow path sections 121 Fuel flow path sections 131 Combustion fuel supply flow path sections 132 Air supply flow path sections 133 Communication grooves 134 Exhaust gas discharge flow Road

Claims (3)

反応物が反応する溝又は凹部と、端子部を有する電熱パターンと、を有する第1基板と、
前記電熱パターンの前記端子部に接続されたリード線と、
前記リード線を外部に引き出す通し溝とを有する第2基板と、
前記通し溝を封着する封着剤と、
を備え、
前記反応は、前記溝又は凹部に担持された触媒を用いた触媒反応を含み、
前記リード線は、前記封着剤と前記端子部との間において、曲げ部を有し、
前記リード線の曲げ部は、前記第1基板と前記第2基板との間の、空隙を有する端子部収納室内に収納されていることを特徴とする反応装置。
A first substrate having a groove or a recess with which a reactant reacts, and an electrothermal pattern having a terminal portion;
A lead wire connected to the terminal portion of the electrothermal pattern;
A second substrate having a through groove for pulling out the lead wire to the outside;
A sealing agent for sealing the through groove;
With
The reaction includes a catalytic reaction using a catalyst supported in the groove or the recess,
The leads between said terminal portion and said sealing agent, have a bent portion,
The reaction apparatus according to claim 1, wherein the bent portion of the lead wire is accommodated in a terminal portion accommodating chamber having a gap between the first substrate and the second substrate .
前記電熱パターンは、前記第1基板と前記第2基板との間の電熱パターン収納室に収納されていることを特徴とする請求項1に記載の反応装置。 The electric heating pattern, the reaction apparatus according to claim 1, characterized in that it is housed in the heating pattern storage chamber between the first substrate and the second substrate. 前記端子部収納室は、前記溝又は凹部と重ならないように配置されていることを特徴とする請求項1に記載の反応装置。 The reaction apparatus according to claim 1, wherein the terminal portion storage chamber is disposed so as not to overlap the groove or the recess.
JP2009048732A 2009-03-03 2009-03-03 Reactor Expired - Fee Related JP5304326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048732A JP5304326B2 (en) 2009-03-03 2009-03-03 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048732A JP5304326B2 (en) 2009-03-03 2009-03-03 Reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006008794A Division JP4324741B2 (en) 2006-01-17 2006-01-17 Reactor

Publications (2)

Publication Number Publication Date
JP2009160579A JP2009160579A (en) 2009-07-23
JP5304326B2 true JP5304326B2 (en) 2013-10-02

Family

ID=40963796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048732A Expired - Fee Related JP5304326B2 (en) 2009-03-03 2009-03-03 Reactor

Country Status (1)

Country Link
JP (1) JP5304326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509895B2 (en) * 2010-02-05 2014-06-04 コニカミノルタ株式会社 Fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4039177B2 (en) * 2002-08-21 2008-01-30 カシオ計算機株式会社 Heat treatment equipment
JP4471635B2 (en) * 2003-11-27 2010-06-02 京セラ株式会社 Fuel reformer storage container

Also Published As

Publication number Publication date
JP2009160579A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
KR100824472B1 (en) Reactor device
JP2004356003A (en) Reactor, its manufacturing method, reformer, and power supply system
TWI338406B (en) Reactor and power supply system
JP4631623B2 (en) Reactor
JP4324741B2 (en) Reactor
JP5304326B2 (en) Reactor
JP4254770B2 (en) Reactor
JP4254768B2 (en) Reactor
KR100804913B1 (en) Reacting device
JP4665803B2 (en) Reactor
KR101004487B1 (en) Reformer for power supply of a portable electronic device
JP5040177B2 (en) Microreactor, microreactor manufacturing method, power generation device using the microreactor, and electronic device
JP5082535B2 (en) Reactor
JP4715586B2 (en) Reactor
JP4254769B2 (en) Reactor
JP5132107B2 (en) Reactor, fuel cell system and electronic device
JP4939148B2 (en) Reactor, fuel cell system and electronic device
JP5132105B2 (en) Reactor, fuel cell system and electronic device
JP5309482B2 (en) Reactor, power generator and electronic device
JP2007319769A (en) Reactor, dynamo using it and electronic device
JP5132106B2 (en) Reactor, fuel cell system and electronic device
JP5197940B2 (en) Reactor, fuel cell system and electronic device
JP4887102B2 (en) Reactor, fuel cell system and electronic device
JP5082533B2 (en) Reactor
JP5229269B2 (en) Reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees