JP2007236581A - Health care instrument - Google Patents

Health care instrument Download PDF

Info

Publication number
JP2007236581A
JP2007236581A JP2006062235A JP2006062235A JP2007236581A JP 2007236581 A JP2007236581 A JP 2007236581A JP 2006062235 A JP2006062235 A JP 2006062235A JP 2006062235 A JP2006062235 A JP 2006062235A JP 2007236581 A JP2007236581 A JP 2007236581A
Authority
JP
Japan
Prior art keywords
infrared radiation
far
effect
infrared
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006062235A
Other languages
Japanese (ja)
Inventor
Masakazu Komuro
正和 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAC CORP
Original Assignee
NAC CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAC CORP filed Critical NAC CORP
Priority to JP2006062235A priority Critical patent/JP2007236581A/en
Publication of JP2007236581A publication Critical patent/JP2007236581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrotherapy Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a health care instrument using synergistic effects of magnetic force line effect, a far-infrared effect, an intermediate infrared effect, and a discharged particle effect to a human body. <P>SOLUTION: This health care instrument exerts the synergistic effects of the skin penetration of infrared rays of long and short wavelengths, the skin penetration of charged particles, and the magnetic line operation by using a complex magnet obtained by mixing and molding rare earth permanent magnet powder, a far-infrared radiation material, and intermediate infrared radiation and discharged particle emission material powder and heating them. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁力線効果と遠赤外線効果、中間赤外線効果及び皮膚への電荷注入効果を相乗的に利用する健康医療器具に関する。   The present invention relates to a health care device that synergistically uses a magnetic field effect, a far-infrared effect, a mid-infrared effect, and a charge injection effect on the skin.

永久磁石より生じる磁力線は人体に対して血行を促進する作用があることから、磁石材料を所定の形状にチップ状化して粘着テープ等で人体に貼りつけるタイプの健康医療器具が広く用いられている。磁石材料としては、従来のBHmaxが3程度のフェライト磁石から最近はBHmaxが20ないし30の希土類磁石が使用されている。
また、赤外線も、血行促進効果、神経繊維活性化効果、鎮痛効果等があり、人体に好影響を及ぼすことが知られ、磁石同様にチップ状化して患部に貼りつけて使用されている。赤外線放射材料としては、遠赤外線を出すGeが単体で使用されている。
また、最近では、マイナス電荷を有する荷電粒子の皮膚浸透による疲労回復効果が認識され、その荷電粒子放射材料として、トルマリンが磁石同様に加工され使用されている。
Magnetic field lines generated from permanent magnets have the effect of promoting blood circulation to the human body. Therefore, a type of health medical device in which a magnetic material is chipped into a predetermined shape and attached to the human body with an adhesive tape or the like is widely used. . As a magnet material, a rare earth magnet having a BHmax of 20 to 30 is recently used from a conventional ferrite magnet having a BHmax of about 3.
Infrared rays also have blood circulation promoting effects, nerve fiber activation effects, analgesic effects, and the like, and are known to have a positive effect on the human body. Like infrared magnets, they are used in the form of chips that are attached to affected areas. As the infrared radiation material, Ge that emits far infrared rays is used alone.
Recently, a fatigue recovery effect due to skin penetration of charged particles having a negative charge has been recognized, and tourmaline is processed and used in the same manner as a magnet as the charged particle emitting material.

また、最近は、磁力線効果と赤外線効果の相乗効果を狙って、磁石粉末と赤外線放射材料粉末を混合した複合体磁石が提案され、健康医療器具として使用されている(例えば、特許文献1、特許文献2)。   Recently, a composite magnet in which a magnet powder and an infrared radiation material powder are mixed has been proposed aiming at a synergistic effect of a magnetic field effect and an infrared effect, and used as a health care device (for example, Patent Document 1, Patent). Reference 2).

赤外線放射材料としてトルマリン等も使用されているが、トルマリンの有効赤外線波長は10〜15μmで、波長2.5〜25μmの中間赤外線は比較的皮膚の表面に作用してその効果を発揮するが、磁力線は皮膚浸透効果が大きいので、身体の内部まで浸透する。このため、身体内部では赤外線と磁力線が充分にその相乗効果を発揮していなかった(例えば、特許文献3)。
特開平5−347206号公報 特開平10−241924号公報 特開2001−126908号公報
Tourmaline or the like is also used as an infrared radiation material, but the effective infrared wavelength of tourmaline is 10 to 15 μm, and mid-infrared rays with a wavelength of 2.5 to 25 μm act relatively on the surface of the skin to exert its effect. Since the magnetic field lines have a great skin penetration effect, they penetrate into the body. For this reason, infrared rays and magnetic lines of force did not sufficiently exhibit the synergistic effect inside the body (for example, Patent Document 3).
JP-A-5-347206 JP-A-10-241924 JP 2001-126908 A

本発明は、上記の事情に鑑みてなされたものであり、解決しようとする課題は、身体内部まで赤外線と磁力線が充分にその相乗効果を発揮し、人体内部での血行促進、筋肉疲労回復、鎮痛効果が得られる健康医療器具を提供することにある。   The present invention has been made in view of the above circumstances, and the problem to be solved is that infrared rays and magnetic lines of force sufficiently exert the synergistic effect inside the body, promoting blood circulation inside the human body, restoring muscle fatigue, An object of the present invention is to provide a health care device that can provide an analgesic effect.

上記課題を解決するため、本発明の健康医療器具は、希土類磁石の粉末と遠赤外線放射材料、中間赤外線放射及び圧電焦電材料の粉末をバインダーと共に混合して成型し、加熱処理して得られた複合体磁石からなることを特徴としている(請求項1)。
遠赤外線放射材料としては禁止帯幅0.7eV以下の半導体を使用し、中間赤外線放射及び圧電焦電材料としては自発分極をもつ強誘電体を使用することが望ましい(請求項2)。
また、遠赤外線放射材料としては、Ge(ゲルマニウム)、InSb(アンチモン化インジウム)、PbS(硫化鉛)及びHgTe(テルル化第二水銀)の1種類又は複数種類を、中間赤外線放射及び圧電焦電材料としてトルマリン、チタン酸バリウム、チタン酸ジルコン酸鉛、水晶、ZnO、ニオブ酸リチウム及びLBO(LiB3O5リチュウム硼素酸化物)結晶の1種類又は複数種類を使用することが望ましい(請求項3)。
遠赤外線放射材料粉末及び中間赤外線放射及び圧電焦電材料粉末の磁石粉末に対する全体積添加量は10ないし70%で、両赤外線放射材料の配合量の体積比はいずれも5%以上であることが望ましい(請求項4)。
すなわち、本発明は、磁力線の人体深部への浸透効果に合わせて中間赤外線放射効果及び圧電焦電効果を加えるとともに、禁止帯幅の狭い半導体から放射される波長25μm以上の遠赤外線放射効果を同時に使用するようにしたものである。
In order to solve the above-mentioned problems, the health care device of the present invention is obtained by mixing a rare earth magnet powder and a far infrared radiation material, a mid infrared radiation and a piezoelectric pyroelectric material powder together with a binder, and molding and heating the mixture. It is characterized by comprising a composite magnet (claim 1).
It is desirable to use a semiconductor having a forbidden band width of 0.7 eV or less as the far infrared radiation material, and to use a ferroelectric material having spontaneous polarization as the mid infrared radiation and the piezoelectric pyroelectric material.
Further, as far-infrared radiation materials, one or more of Ge (germanium), InSb (indium antimonide), PbS (lead sulfide) and HgTe (mercury telluride) can be used as intermediate infrared radiation and piezoelectric pyroelectric. It is desirable to use one kind or plural kinds of tourmaline, barium titanate, lead zirconate titanate, crystal, ZnO, lithium niobate and LBO (LiB3O5 lithium boron oxide) crystal as a material (Claim 3).
The total volume addition amount of the far-infrared radiation material powder, the mid-infrared radiation material and the piezoelectric pyroelectric material powder to the magnet powder is 10 to 70%, and the volume ratio of the blend amounts of both infrared radiation materials is 5% or more. Desirable (Claim 4).
That is, the present invention adds a mid-infrared radiation effect and a piezoelectric pyroelectric effect in accordance with the penetration effect of magnetic field lines into the deep part of the human body, and at the same time provides a far-infrared radiation effect with a wavelength of 25 μm or more emitted from a semiconductor with a narrow band gap. It is intended to be used.

請求項1の発明によれば、希土類磁石の粉末と遠赤外線放射材料、中間赤外線放射及び圧電焦電材料の粉末をバインダーと共に混合して成型し、加熱処理して得られた複合体磁石を用いるので、身体内部まで磁力線と赤外線が充分にその相乗効果を発揮し、電荷浸透作用と合わせて人体内部での血行促進、筋肉疲労回復、鎮痛効果が得られる。
請求項2の発明のように、遠赤外線放射材料として禁止帯幅0.7eV以下の半導体を使用し、中間赤外線放射及び圧電焦電材料として自発分極をもつ強誘電体を使用する場合は、半導体からは25μm以上の遠赤外線、自発分極を持つ強誘電体から25μm以下の赤外線及び電荷が体温により活性化され出てくる。
請求項3の発明のように、遠赤外線放射材料としてGe、InSb、PbS及びHgTeの1種類又は複数種類を、中間赤外線放射及び圧電焦電材料としてトルマリン、チタン酸バリウム、チタン酸ジルコン酸鉛、水晶、ZnO、ニオブ酸リチュウム及びLBO結晶の1種類又は複数種類を使用する場合は、遠赤外線と中間赤外線及び電荷が同時に発生し、25μm以上の遠赤外線は人体のより深部の、25μm以下の赤外線は皮膚表面近くの血行を加熱促進し、同時に発生する荷電粒子は筋肉に浸透し、疲労回復を促進する。
請求項4の発明のように、遠赤外線放射材料粉末及び中間赤外線放射及び圧電焦電材料粉末の磁石粉末に対する全体積添加量は10ないし70%で、両赤外線放射材料の配合量の体積比がいずれも5%以上である場合は、磁石が希土類磁石である場合に長短波長の赤外線重畳効果及び電荷浸透効果が確実に得られる。
According to the invention of claim 1, a composite magnet obtained by mixing rare earth magnet powder and far infrared radiation material, intermediate infrared radiation and piezoelectric pyroelectric material powder together with a binder and molding and heating the mixture is used. Therefore, the magnetic field lines and infrared rays are sufficiently exerted to the inside of the body, and in combination with the charge penetration action, blood circulation promotion, muscle fatigue recovery, and analgesic effects are obtained within the human body.
When a semiconductor having a band gap of 0.7 eV or less is used as the far infrared radiation material and a ferroelectric material having spontaneous polarization is used as the intermediate infrared radiation and the piezoelectric pyroelectric material as in the invention of claim 2, the semiconductor From the far infrared ray of 25 μm or more, the infrared ray of 25 μm or less and the electric charge are activated by the body temperature from the ferroelectric material having spontaneous polarization.
As in the invention of claim 3, one or more of Ge, InSb, PbS and HgTe are used as the far infrared radiation material, and tourmaline, barium titanate, lead zirconate titanate as the intermediate infrared radiation and piezoelectric pyroelectric material, When one or more of quartz, ZnO, lithium niobate and LBO crystals are used, far infrared rays, intermediate infrared rays and electric charges are generated simultaneously, and far infrared rays of 25 μm or more are infrared rays of 25 μm or less deeper than the human body. Heats up blood circulation near the surface of the skin, and simultaneously generated charged particles penetrate into the muscles and promote fatigue recovery.
As in the invention of claim 4, the total volume addition amount of the far infrared radiation material powder, the mid infrared radiation and the piezoelectric pyroelectric material powder to the magnet powder is 10 to 70%, and the volume ratio of the blending amount of both infrared radiation materials is When both are 5% or more, when the magnet is a rare earth magnet, an infrared superposition effect and a charge penetration effect with a long and short wavelength can be reliably obtained.

本発明を実施するためには、波長2.5〜25μmの赤外線と荷電粒子を発生する中間赤外線放射及び圧電焦電材料と、波長25μm以上の遠赤外線放射材料を粉末にして磁石材料粉末と混合して複合体磁石を成型し、健康器具としてこれを使用する。
圧電焦電材料は通常禁止帯幅2eV以上の絶縁体であるため、人体による活性化によって荷電粒子及び波長2.5〜25μmの中間赤外線を同時に放射する。赤外線の人体浸透力は波長が長くなるほど増大するので、両波長の赤外線効果を併用することにより磁力線の人体浸透効果を充分に発揮できる。
In order to carry out the present invention, intermediate infrared radiation and piezoelectric pyroelectric materials that generate infrared rays and charged particles having a wavelength of 2.5 to 25 μm, and far infrared radiation materials having a wavelength of 25 μm or more are powdered and mixed with magnet material powder. The composite magnet is then molded and used as a health device.
Since the piezoelectric pyroelectric material is usually an insulator having a forbidden band width of 2 eV or more, charged particles and intermediate infrared rays having a wavelength of 2.5 to 25 μm are simultaneously emitted by activation by the human body. Since the human body penetration force of infrared rays increases as the wavelength becomes longer, the human body penetration effect of magnetic lines of force can be sufficiently exhibited by using the infrared effect of both wavelengths together.

充分な医療効果を発揮する磁力線密度は800〜2000Gとされている。フェライト磁石はエネルギー積BHmaxが小さいので、遠赤外線放射材料及び中間赤外線放射材料(以下、両者を合わせてセラミックという場合がある。)を同時に複合化した場合は、表面磁束密度が800Gを下回ることが多く、使用が難しい。磁石粉末体積に対するセラミック粉末体積の添加量の割合は、10〜70%の範囲が好ましい。バリウムフェライト磁石の場合は、セラミック粉末の添加量60%でBHmaxが0.3を切るので、必要とする磁束密度がとれない。   The magnetic line density that exhibits a sufficient medical effect is 800 to 2000G. Since the ferrite magnet has a small energy product BHmax, the surface magnetic flux density may be less than 800 G when a far-infrared emitting material and a mid-infrared emitting material (hereinafter sometimes referred to as ceramics) are combined at the same time. Many are difficult to use. The ratio of the addition amount of the ceramic powder volume to the magnet powder volume is preferably in the range of 10 to 70%. In the case of a barium ferrite magnet, the required magnetic flux density cannot be obtained because BHmax is less than 0.3 when the amount of ceramic powder added is 60%.

これに対して、希土類磁石の場合は、セラミック配合量が全体積の10%のとき、BHmaxは8程度になり、表面磁束密度1500Gが充分確保できる。また、全体積の70%の場合の複合磁石のBHmaxは2.5程度になり、表面磁束密度が最低800G確保できる。従って、全体積に対するセラミック粉末の配合量は10〜70%に限定される。   On the other hand, in the case of rare earth magnets, when the ceramic content is 10% of the total volume, BHmax is about 8, and a surface magnetic flux density of 1500 G can be sufficiently secured. Further, the BHmax of the composite magnet in the case of 70% of the total volume is about 2.5, and a minimum surface magnetic flux density of 800 G can be secured. Therefore, the blending amount of the ceramic powder with respect to the total volume is limited to 10 to 70%.

遠赤外線材料粉末(A)と中間赤外線及び圧電焦電材料(B)の粉末との混合比は5−95%が好ましい。AとBのどちらかの材料が5%を切った場合は、長短波長の赤外線重畳効果が減少する。配合比として電荷粒子の効果を充分に発揮させるためには、中間赤外線及び圧電焦電材料の遠赤外線放射材料に対する配合割合は60%以上が好ましい。人体による活性化で発生した荷電粒子のライフタイム及びモビリテイが短いので、荷電粒子の筋肉浸透効果を発揮するには、圧電焦電材料の量の確保が必要である。   The mixing ratio of the far-infrared material powder (A) to the mid-infrared and piezoelectric pyroelectric material (B) is preferably 5-95%. When either A or B material is less than 5%, the effect of superimposing long and short wavelength infrared rays is reduced. In order to sufficiently exhibit the effect of the charged particles as a blending ratio, the blending ratio of the mid-infrared and piezoelectric pyroelectric materials to the far-infrared emitting material is preferably 60% or more. Since the lifetime and mobility of charged particles generated by activation by the human body are short, it is necessary to secure the amount of piezoelectric pyroelectric material in order to exert the muscle penetration effect of charged particles.

希土類磁石としてNd−Fe―B系を使用し、以下の配合比で複合磁石を成型し、磁気特性と成人の人体肩部に接触させた場合の平均体温上昇値を赤外線サーモグラフィーで測定した。
(1)使用した希土類磁石
磁石組成、Nd27wt%、B0.9wt%、Co6%wt、残Fe。
急冷ロール法によるリボン薄帯を200μmメッシュに粉砕後、600℃で焼鈍。
(2)使用したバインダー
エポキシ樹脂を全粉末重量に対して3wt%添加。
(3)使用した遠赤外線放射材料 n型Ge粉末 粒子径150μm
(4)使用した中間赤外線放射及び圧電材料 トルマリン粉末 粒子径200μm
An Nd—Fe—B system was used as a rare earth magnet, a composite magnet was molded at the following blending ratio, and the magnetic properties and the average body temperature rise when contacted with an adult human shoulder were measured by infrared thermography.
(1) Rare earth magnet used Magnet composition, Nd 27 wt%, B 0.9 wt%, Co 6% wt, remaining Fe.
Ribbon ribbons obtained by the quenching roll method are pulverized to 200 μm mesh and annealed at 600 ° C.
(2) Binder used 3 wt% of epoxy resin was added to the total powder weight.
(3) Far-infrared radiation material used n-type Ge powder particle size 150μm
(4) Mid-infrared radiation and piezoelectric material used Tourmaline powder 200 μm particle size

それぞれの材料を所定の配合比で混合して、7トン/cm2の圧力でをプレスして、直径10mm、厚さ7mmのタブレット状物を成型し、これを150℃で1時間硬化処理した。   Each material was mixed at a predetermined blending ratio and pressed at a pressure of 7 ton / cm @ 2 to form a tablet having a diameter of 10 mm and a thickness of 7 mm, and this was cured at 150 DEG C. for 1 hour.

各実施例及び比較例の各材料の配合率(体積%)は下記の通りである。
磁石粉末 Ge粉末 トルマリン粉末
実施例1 30 10 60
実施例2 30 60 10
実施例3 30 35 35
実施例4 50 10 40
実施例5 50 40 10
実施例6 50 25 25
実施例7 70 5 25
実施例8 70 25 5
実施例9 90 5 5
比較例1 30 70 0
比較例2 30 0 70
比較例3 50 50 0
比較例4 70 30 0
比較例5 70 0 30
比較例6 90 10 0
比較例7 90 0 10
The blending ratio (volume%) of each material in each example and comparative example is as follows.
Magnet powder Ge powder Tourmaline powder Example 1 30 10 60
Example 2 30 60 10
Example 3 30 35 35
Example 4 50 10 40
Example 5 50 40 10
Example 6 50 25 25
Example 7 70 5 25
Example 8 70 25 5
Example 9 90 5 5
Comparative Example 1 30 70 0
Comparative Example 2 30 0 70
Comparative Example 3 50 50 0
Comparative Example 4 70 30 0
Comparative Example 5 70 0 30
Comparative Example 6 90 10 0
Comparative Example 7 90 0 10

上記各実施例及び比較例のテスト結果は、次の通りである。
BHmax 表面磁束密度 体温上昇温度
(MGOe) (G) (℃)
実施例1 2.5 800 2.4
実施例2 2.4 850 2.3
実施例3 2.5 820 2.6
実施例4 4.0 1100 2.2
実施例5 4.1 1180 2.0
実施例6 3.9 1150 2.3
実施例7 5.1 1600 2.1
実施例8 5.2 1640 2.5
実施例9 6.2 1750 1.9
比較例1 2.6 840 1.2
比較例2 2.4 800 1.3
比較例3 4.0 1180 1.5
比較例4 5.0 1550 1.6
比較例5 5.1 1580 1.3
比較例6 6.3 1700 1.1
比較例7 6.1 1650 1.2
The test results of the above examples and comparative examples are as follows.
BHmax Surface magnetic flux density Body temperature rise temperature
(MGOe) (G) (° C)
Example 1 2.5 800 2.4
Example 2 2.4 850 2.3
Example 3 2.5 820 2.6
Example 4 4.0 1100 2.2
Example 5 4.1 1180 2.0
Example 6 3.9 1150 2.3
Example 7 5.1 1600 2.1
Example 8 5.2 1640 2.5
Example 9 6.2 1750 1.9
Comparative Example 1 2.6 840 1.2
Comparative Example 2 2.4 800 1.3
Comparative Example 3 4.0 1180 1.5
Comparative Example 4 5.0 1550 1.6
Comparative Example 5 5.1 1580 1.3
Comparative Example 6 6.3 1700 1.1
Comparative Example 7 6.1 1650 1.2

実施例はNd系希土類磁石、ゲルマニウム及びトルマリンに限定して記載したが、遠赤外線放射材料として禁止帯幅0.7eV以下の半導体InSb、PbS等、また、中間赤外線及び圧電焦電材料としてチタン酸バリウウム、チタン酸ジルコン酸鉛等も同様に使用することができる。一般的に、圧電焦電材料は絶縁物でもあるため、禁止帯幅が2eV近くあり、荷電粒子の放出と共に中間赤外線を出す。   Examples have been described with reference to Nd-based rare earth magnets, germanium and tourmaline, but semiconductor InSb, PbS, etc. having a forbidden band width of 0.7 eV or less as far infrared radiation materials, and titanic acid as intermediate infrared and piezoelectric pyroelectric materials. Barium, lead zirconate titanate, and the like can be used as well. In general, since the piezoelectric pyroelectric material is also an insulator, the band gap is close to 2 eV, and an intermediate infrared ray is emitted together with the emission of charged particles.

本発明者の一人は、先に特願2006−042915にて磁石の表面を遠赤外線材料及び圧電焦電材料でコーティングした健康医療器具を提案した。本発明の遠赤外線、中間赤外線及び荷電粒子の併用効果を目的とした複合型磁石健康医療器具は、先出願のコーティングタイプの健康医療器具に比較してそれぞれの材料の最大利点を発揮するものではないが、製造コストが安く従来品の磁力線と赤外線放射又は荷電粒子浸透単体の併用効果を狙った健康医療器具よりも人体活性化能力が50〜100%程度向上した。   One of the inventors of the present invention previously proposed a health care device in which the surface of a magnet is coated with a far-infrared material and a piezoelectric pyroelectric material in Japanese Patent Application No. 2006-042915. The composite magnet health medical device aiming at the combined effect of far infrared rays, middle infrared rays and charged particles of the present invention does not exhibit the maximum advantage of each material as compared with the coating type health medical device of the previous application. Although the manufacturing cost is low, the human body activation ability is improved by about 50 to 100% as compared with the health medical device aiming at the combined effect of the magnetic field lines of conventional products and infrared radiation or charged particle permeation alone.

本発明の磁力線、遠赤外線、中間赤外線及び荷電粒子浸透効果の人体に対する複合作用を使用した健康医療器具は、ネックレス、腕輪、指輪、足輪、肌着、靴下、腹巻、シーツ、枕及び寝具等の使用形状に合わせて成型して応用できると共に、人以外の動物用医療器具としても応用することが可能である。   The medical device using the combined action of the magnetic field lines, far-infrared rays, mid-infrared rays and charged particle penetration effect of the present invention on the human body includes necklaces, bracelets, rings, ankles, underwear, socks, abdomen, sheets, pillows and bedding. In addition to being molded according to the shape of use, it can also be applied as a medical device for animals other than humans.

Claims (4)

希土類磁石の粉末と遠赤外線放射材料、中間赤外線放射及び圧電焦電材料の粉末をバインダーと共に混合して成型し、加熱処理して得られた複合体磁石からなる健康医療器具。   A medical device comprising a composite magnet obtained by mixing rare earth magnet powder, far-infrared radiation material, intermediate infrared radiation and piezoelectric pyroelectric material powder together with a binder, followed by heat treatment. 遠赤外線放射材料として禁止帯幅0.7eV以下の半導体を使用し、中間赤外線放射及び圧電焦電材料として自発分極をもつ強誘電体を使用した請求項1記載の健康医療器具。   The medical device according to claim 1, wherein a semiconductor having a forbidden band width of 0.7 eV or less is used as the far infrared radiation material, and a ferroelectric having spontaneous polarization is used as the intermediate infrared radiation and the piezoelectric pyroelectric material. 遠赤外線放射材料としてGe、InSb、PbS及びHgTeの1種類又は複数種類を、中間赤外線放射及び圧電焦電材料としてトルマリン、チタン酸バリウム、チタン酸ジルコン酸鉛、水晶、ZnO、ニオブ酸リチュウム及びLBO(LiB3O5)結晶の1種類又は複数種類を使用した請求項1記載の健康医療器具。   One or more of Ge, InSb, PbS and HgTe as far infrared radiation materials, Tourmaline, barium titanate, lead zirconate titanate, quartz, ZnO, lithium niobate and LBO as intermediate infrared radiation and piezoelectric pyroelectric materials The health care device according to claim 1, wherein one or more types of (LiB3O5) crystals are used. 遠赤外線放射材料粉末及び中間赤外線放射材料及び圧電焦電材料粉末の磁石粉末に対する全体積添加量が10ないし70%であり、両赤外線放射材料の配合量の体積比はいずれも5%以上である請求項1、2又は3記載の健康医療器具。   The total volume addition amount of the far infrared radiation material powder, the mid infrared radiation material and the piezoelectric pyroelectric material powder to the magnet powder is 10 to 70%, and the volume ratio of the blend amount of both infrared radiation materials is 5% or more. The health care device according to claim 1, 2, or 3.
JP2006062235A 2006-03-08 2006-03-08 Health care instrument Pending JP2007236581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062235A JP2007236581A (en) 2006-03-08 2006-03-08 Health care instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006062235A JP2007236581A (en) 2006-03-08 2006-03-08 Health care instrument

Publications (1)

Publication Number Publication Date
JP2007236581A true JP2007236581A (en) 2007-09-20

Family

ID=38582721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062235A Pending JP2007236581A (en) 2006-03-08 2006-03-08 Health care instrument

Country Status (1)

Country Link
JP (1) JP2007236581A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790110A (en) * 2021-06-17 2022-07-26 佛山市颐本生物科技有限公司 Hot-pressing photonic polycrystalline semiconductor material and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790110A (en) * 2021-06-17 2022-07-26 佛山市颐本生物科技有限公司 Hot-pressing photonic polycrystalline semiconductor material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Zhao et al. Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titanate (CaBi4Ti4O15)
CN103191459B (en) Composite silica gel protective dressing and preparation method thereof
JP2008106392A (en) Functional fiber, and finished article and molded article including the functional fiber
JP2007236581A (en) Health care instrument
JP4565476B2 (en) Method for producing composite material comprising tourmaline and magnet, composite material obtained by the method, and composite material used therefor
WO2010011319A3 (en) Magnetic heating for drug delivery and other applications
WO2011027789A1 (en) Functional product comprising semiconductor particle-compounded macromolecular complex
US20170312539A1 (en) Therapeutic Device Using Far-infrared Radiation
Godara et al. Antimicrobial and antibacterial applications of ferrites and their polymer composites
JP2007260000A (en) Health care instrument
JP2008183090A (en) Charge particle generator and health medical appliance using it
JP2008086714A (en) Healthcare device
JP2008136735A (en) Healthcare device
JP3508089B2 (en) Electromagnetic wave generation complex
KR101494743B1 (en) Panties manufacturing method and the panties thereof
JP2001187155A (en) Magnetotherapy sheet containing tourmaline
JP2006230616A (en) Magnet and method of manufacturing it
JP3170251U (en) Magnetic therapy sheet
JP3229462U (en) Magnetic therapy sheet
US20080319518A1 (en) Charged particle generator and functional fabric having a charged particle emission function
JP2002145611A (en) Powdery mixture containing mineral
JP2001187153A (en) Magnetotherapy sheet containing tourmaline and manufacture thereof
Jiang et al. Static elastic modulus and compressive strength of giant magnetostrictive composites
Thompson Structural and Magnetic Properties of CoV2O4 Thin Films
Yoshimi et al. Unidirectional magnetoresistance in a bulk Rashba ferromagnet